Ultraviolet and light absorption spectrometry - ACS Publications

(230) Ivanov, S. N.; Druzhlnlna, I. A.; Belyaev, A. V. Zh. Neorg. Khlm. 1983, 28(5), 1261-6; Chem ...... (434) Rylatt, D. B.; Parish, C.R. Anal. Bioch...
0 downloads 0 Views 4MB Size
Anal. Chem. 1084, 56, 225R-241 R (252) Ushioda, S.; Loudon, R. ”Surf. Polarltons: Electromagn. Waves Surf. Interfaces”; Agranovitch, V. M., Miiis, D. L., Eds.; North-Holland: Amsterdam, 1982; pp 535-586. (253) Chen, Y. J.; Burstein, E. “Surf. Polaritons: Electromagn. Waves Surf. Interfaces”; Agranovltch, V. M., Mills, D. L., Eds.; North-Holland: Amsterdam, 1982; pp 535-586. (254) Inouye, K. Kagaku (Kyoto) 1981, 36, 930-2. Chem. Abstr. 1982, 96, 11061. (255) Pemberton, J. E.; Buck, R. P. Appl. Spectrosc. 1981, 35. 571-6. (256) Wltke, K. Appl. Spectrosc. 1982, 36, 471-3. (257) Hlnkov, V.; Burov, J.; Savov. E. J . fhys. E . 1983, 16, 29-30. (258) Kelser, J. T.; Brown, C. W.; Heidersbach, R. H. Corroslon (Houston) 1982, 38, 357-60. (259) Keiser, J. T.; Brown, C. W.; Heldersbach, R. H. Corms. Sci. 1983, 2 3 , 251-9. (260) Keiser, J. T.; Brown, C. W.; Heldersbach, R. H. J . Electrochem. Soc. 1982, 129, 2686-9. (261) Keiser, J.; Brown, C.; Heidersbach, R. Envlron. Degrad. Eng. Mater. Aggresslve Environ., Roc. Int. Conf., 2nd 1981, 43-8. (262) Lynch, P.; Brown, C.; Heidersbach, R. Envlron. Degrad. Eng. Mater. Aggresslve Envlron., R o c . Int. Conf. 2nd 1981, 49-56. (263) Heritage, J. P. Sprlnger Ser. Chem. fhys. 1980, 14, 343-7. (264) Tsang, J. C.; Avouris. P.; Kirtley, J. R. Chem. fhys. Lett. 1983, 9 4 , 172-4. (265) Peray, J. F.; Icole, J.; Croset, M. Rev. Tech. Thomson-CSF 1981, 13, 227-62. Chem. Abstr. 1981, 95, 195280. (266) Tsal, C. C.; Nemanich, R. J.; Thompson, M. J.; Stafford, B. L. fhysica B f C (Amsterdam) 1983, 117, 118 (2). 953-6. (267) Zorabedian, P.; Adar, F. Appl. fhys. Lett. 1983, 43, 177-9. (268) Nemanich, R. J.; Haneman, D. Appl. fhys. Lett. 1982, 40, 785-7. (269) Krasser, W.; Renouprez, A. J. J . Raman Spectrosc. 1981, 11,425-9. (270) Bradley, E. 8.; Arunkumar, K. A. Spectrosc. Lett. 1982, 15, 113-24. (271) Champion, A.; Brown, J. K.; Grizzle, V. M. Surf. Scl. 1982, 115, L 153-Ll58. (272) Kamitsos, E. I.; Tzlnis, C. H.; Risen, W. M. Report 1982 TR-82-01; Order No AD-A109737, 21 pp. Avail. NTIS From Gov. Rep. Announce Index (US) 1982, 82(10), 1901. Chem. Abstr. 1982, 9 7 , 64656. (273) Kamitsos, E. I.; Risen, W. M. J. Chem. fhys. 1983, 79, 477-82. (274) Van Haverbeke, L.; Herman, M. A. Eur. Spectrosc. News 1982, 40, 38, 40. (275) Spiro, T. G. fhys. Bloinorg. Chem. Ser. 1983, 2, 89-159. (276) Moskovits, M.; Di Lella, D. P.; ACS Symp. Ser. 1982, No. 179, 153-75. (277) Yamada, H. Appl. Spechosc. Rev. 1981, 17, 227-77. (278) Kobayashi. T.; Yokoyama, K. Kagaku no Ryolkl 1982, 36,537-45. Chem Abstr. 1983, 98, 60664. (279) Chang. R. K., Furtak, T. E.. Eds. “Surface Enhanced Raman Scattering”; Plenum Press: New York, 1982. (280) Blrke, R. L.; Lombardi, J. R. Adv. Laser Spectrosc. 1982, 1 , 143-53. (281) Ueba, H.; Ichlmura. S.; Yamada, H. Surf. Scl. 1982, 119, 433-48. (262) Domhaus, R. Festkoerperprobleme 1982, 2 2 , 201-28. (283) Otto, A. Springer Ser. Chem. fhys. 1982, 2 1 , 186-95. (284) Birke, R. L.; Lombardi, J. R.; Sanchez, L. A. Adv. Chem. Ser. 1982, NO. 201, 69-107. (285) Seo, K.; Kono, H.; Fujimura, Y. Bull. Chem. SOC. Jpn. 1982, 5 5 , 266-76. (286) Mulazzl, E.; Tubino, R.; Dellepiane, G. Chem. fhys. Lett. 1982, 86, 347-52. (287) Marinyuk, V. V.; Lazorenko-Manevlch, R. M.; Kolotyrkin, Y. M. .€lektrokhlmlya 1982, 18, 307-11. Chem. Abstr. 1982, 9 6 , 171318. (288) Makamei, S.; Grimbert, D.; Rabin, Y. fhys. Rev. A 1982, 2 6 , 341-55. (289) Dellepiane, G.; Piseri, L.; Tubino, R.; Mulazzl, E. J . Raman Spectrosc. 1982, 13, 153-4. (290) Tonks, D. L.; Page, J. B. J . Chem. fhys. 1982, 76, 5820-6. (291) Clark, R. J. H.; Dines, T. J. Mol. fhys. 1982, 45, 1153-62. (292) Ikeda, K.; Higuchi, S.; Tanaka, S. BunseklKagaku 1981, 30, 701-5. Chem. Abstr. 1982, 96, 45625. (293) Tosi, L.; Garnler-Suiiierot, A. J. Chem. Sac., Dalton Trans. 1982, 103-8.

.

(294) Zglerski, M. 2.; Pawlikowskl, M. Chem. fhys. 1982, 6 5 , 335-67. (295) Ho, Z. 2.; Hanson, R. C.; Lin. S. H. J . Chem. fhys. 1982, 7 7 , 3414-23. (296) Coltlng, J. E.; Hoskins, L. C.; Levan, M. E. J. Chem. fhys. 1982, 77, 1081-6. (297) Koyama, Y.; Koihori, M.; Shiomi, K.; Yoshida, T. J. ColloM Interface SC/. 1982, 9 0 , 293-5. (298) Haley, L. V.; Koningsteln, J. A. J . fhys. Chem. 1983, 8 7 , 621-5. (299) Van Haverbeke, L.; Herman, M. A. fergamon Ser. Envlron. Sci. 1982, 7 , 127-31. (300) Brahma, S. K.; Hargraves, P. E.; Howard, W. F.; Nelson, W. H. Appl. Spectrosc. 1983, 3 7 , 55-8. (301) Higuchi, S.; Shimada, H.; Tanaka, S. Bunseki Kagaku 1982, 31, 390-6. Chem. Abstr. 1983, 9 8 , 48224. (302) Adrian, F. J. J. Chem. fhys. 1982, 77, 5302-14. (303) Otto, A. J . Nectron Spectrosc. Relat. fhenom. 1983, 2 9 , 329-42. (304) Arya, K.; Zeyhar, R. Vib. Surf. (froc. Int. Conf.), 2nd 1980 1982, 421-9. (305) Tsang, J. C.; Klrtley, J. R.; Jha, S. S. Vib. Surf. (froc. Int. Conf.) 2nd 1980 1982, 361-77. (306) Wokaun, A.; Gordon, J. P.; Liao, P. F. fhys. Rev. Lett. 1982, 48, 957-60. (307) Cooney, R. P.; Howard, M. W.; Mahoney, M. R.; Mernagh, T. P. Chem. fhys. Lett. 1981, 79, 459-64. (308) Wood. T. H.: Zwemer. D. A.; Shank, C. V.: Rowe, J. E. Chem. fhys. Lett. 1981, 82, 5-8. (309) Kerker, M. Pure Appl. Chem. 1981, 5 3 , 2083-94. (310) Seki, H. J . Chem. fhys. 1982, 76, 4412-18. (311) Doraln, P. B.; Von Raben, K. U.; Chang, R. K.; Laube, B. L. Chem. fhys. Lett. 1981, 84, 405-9. (312) Baranov, A. V.; Bobovitch, Y. Opt. Spektrosk. 1982, 52, 385-7. Chem. Abstr. 1982, 96, 210107. (313) Heard, S. M.; Grieser, F.; Barraciough, C. G. Chem. fhys. Lett. 1983, -Q5 _ ,164-8 -

(314) Manzi; K.; Schulze, W.; Moskovits, M. Chem. fhys. Lett. 1982. 85, 163-6. (315) Creighton. J. A. “Surface Enhanced Raman Scattering”; Chang, R. K., Furtak, T. E., Eds.; Plenum; New York, 1982, pp 315-337. (316) Harvey, A. B., Ed. Chemical Applications of Non-linear Raman Spectroscopy”; Academic Press: New York, 1962. (317) Kiefer, W., Long, D. A,, Eds. “Non-linear Raman Spectroscopy and Its Chemical Applications”: Kluwer Boston, Inc.: Hlnghman, MA, 1982. (318) Harvey, A. B.; Fleming, J. W.; Barnes, W. T. froc. SfIE-Int. SOC. Opt. Eng. 1981, 286, 146-52. (319) Borman, S. A. Anal. Chem. 1982, 5 4 , 1021A-l022A, 1024A. 1026A. (320) Rzazewski, K.; Lewenstein, M.; Raymer, M. G. Opt. Commun. 1982, 43, 451-4. (321) Weigmann, H. J.; Lau, A.; Werncke, W.; Lenz, K.; Pfeiffer, M. 2. Chem. 1982, 2 2 , 96-102. Chem. Abstr. 1982, 9 6 , 171249. (322) Eckbreth, A. C. Symp. (Int.) Combust., (froc.), 18th 1980, 1471-88. (323) Hall, R. J.; Eckbreth, A. C. Opt. Eng. 1981, 2 0 , 494-500. (324) Flemlng, J. W. Opt. Eng. 1983, 2 2 , 317-21. (325) NATO Adv. Study Inst. Ser., Ser. C 1982, 93 (Non-linear Raman Spectrosc. and its Chemical Applications). (326) Maivlclnl, C. Report I980 CISE-1647, 16 pp. Avail. NTIS from Sci. Tech. Aerosp. Rep. 1981, 19 (15) Abstr. No. N81-24441. Chem. Abstr. I.Q-E-I ,. 95. . , . 177790. ...... ~

(327) Attai, B.; Debarre, D.; Mueiier-Dethlefs, K.; Taran, J. P. E. Rev. fhys. Appl. 1983, 18, 39-50. (328) Alden, M.; Edner, H.; Svanberg, S. fhys. Scr. 1983, 2 7 , 29-38. (329) Mueller-Dethlefs, K.; Pealat. M.; Taran, J. P. E. Ber. Bunsenges fhys . Chem. 1981. 8 5 . 803-7. (330) Volkov, S. Y.; Koziov, D. N.; Nikles, P. V.; Prokhorov, A. H.; Smirnov, V. V.; Chuksln, S. M. Kvantovaya Eiektron (Moscow) 1981. 8, 223-6. Chem. Abstr. 1982, 97, 227147. (331) Goss, L. P.; Trump, D. D.; MacDonaid, 8. G.; Switzer, G. L. Rev. Scl. Instrum. 1983, 5 4 , 563-71. (332) Relntjes, J.; Duncan, M. D.; Manuccia, T. J. R o c . SHE-Int. SOC. Opt. Eng. 1982, 322, 87-92.

Ultraviolet and Light Absorption Spectrometry L. G. Hargis* University of New Orleans, New Orleans, Louisiana 70148

J. A. Howell Western Michigan University, Kalamazoo, Michigan 49008

This is a review of the developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, primarily as documented in CA Selects, Ul0003-2700/84/0356-225R$06.50/0

traviolet & Visible Spectroscopy, and extends the series of reviews sponsored by Analytical Chemistry beginning in 1945 for Light Absorption Spectrometry (48,178,204,328,329)and 0 1984 American Chemical Society

225 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

1949 for Ultraviolet Absorption Spectrometry (90,91,17’8,193, 204, 211, 430). The subject matter has been divided into

sections on chemistry, physics, and applications, as was done with previous reviews. Activity in the area of Ultraviolet and Light Absorption Spectrometry continues to be extensive. As has been true in the past, the literature citations in this area are so numerous and varied in scope that the authors of this review necessarily must restrict their citations to those developments which are of most probable interest to analytical chemists. Apology is made in advance for any error of judgement in omitting certain references. Over the past 2 years, a large number of reviews have appeared. Reviews dealing with reagents employed in the spectrophotometric determination of particular metals or metal groups have included crown ethers and cryptands (534), substituted cinnamohydroxamicacids (5),Eriochrome Azurol B (605),N-arylhydroxamicacids (6u), o-dihydroxychromenols (517 ) , and diethyldithiocarbamates (538). One review discussed multicomponent complexes of heteropoly acid with basic dyes and their applications in photometric analysis (580). Heterocyclic hydroxyazo compounds as analytical reagents for cobalt, nickel, and zinc have been the subject of a review (351). Photometric reactions between tin(1V) and organic reagents in the presence of third components have been reviewed (499). Two reviews pertaining to the photometric determination of fluoride ion have appeared (496,602). Reviews related to methodology for particular substances or classes of substances include methods for the determination of atmospheric isocyanates (4081, monosaccharides (176), antipyretic analgesics (117),and hemoglobin oxygen saturation (319). Metals analyses have been reviewed generally (192-4, 372),as well as emphasis on heavy metals (29),and toxic metal ions (6). The application of ultraviolet and visible spectrophotometry to the analysis of water has been reviewed (521). Reviews of methods of analysis for steroids (162),sugars (488), and drugs in blood and urine (495,565) have appeared. One review discussed the ap lication ultraviolet spectrophotometric identification of some &gs in gastric lavage fluid (239). More eneral reviews of the methods and principles for clinicaliochemical analyses (281,282) and for pharmaceuticals (28, 283) have appeared. Application of ultraviolet spectroscopy in the analysis of petroleum constituents was the subject of another review (417). A number of general reviews have been written (67,83,490, 555) as well as two reviews detailing the role of spectrophotometric measurements in the development of analytical chemistry (397,398). High-sensitivityspectrophotometry has been the subject of several reviews (180,224). A number of reviews dealing with various spectrophotometric techniques have included discussion of kinetic methods (126,537), derivative spectroscopy (77,128,129,133,134,285, 554), dual wavelength spectrometry (69, 5681, and Fourier transform ultraviolet and visible spectroscopy (51,355). Other spectrophotometric techniques reviewed include spectroelectrochemistry (533),laser applications in general (371,569), thermal lensing spectroscopy (222,506), imaging techniques (261,421),microspectrophotometry (103,441),and photoacoustic spectroscopy (2,26,221,322,334,458,491,557,592). A number of reviews discussed various aspects of spectrophotometer design, maintenance, and calibration (238 344, 559,596). Surveys of the instruments exhibited at the 1982 and 1983 Pittsburgh Conference on Analytical and Applied Spectroscopy have been published (80,81). A comparison of the automated segmented-flowtechnique with flow-injection analysis in conjunction colorimeters has been reviewed (440) as well as the application of automated spectrophotometric modules for industrial control analysis (552). Several reviews dealt with computer applications to ultraviolet and visible spectrometry in general (130), graphical representation of spectroscopic data (487),and software for calibration methods (498). Recent developmentsand applications of simultaneous spectrophotometry using linear photodiode arrays have been reviewed (292). Accuracy of photometric measurements was the subject of two reviews, one of which focused its attention on the control of the spectrophotometer (73) while the other concerned itself with standard reference materials (59). A number of books regarding various aspects of ultraviolet and light absorption spectrometry have appeared. Several books dealing with methodology include “Annual Book of

E

226R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

ASTM Standards, Sect. 14: General methods and instrumentation, Vol. 14.01: Analytical Methods-Spectroscopy: Chromatography; Temperature Measurements;Computerized Systems” (14), “Handbook of the Photometric Analysis of Organic Compounds, Supplementary Vol. 2” (243),and “Color Reactions in the Spectrophotometric Analysis of Organic Compounds, Suppl. Vol. 2: Inorganic Color Reagents” (544). “Handbook of Spectrophotometric Data of Drugs” (502) includes a guide to qualitative analysis, classification of ultraviolet absorbing compounds, properties of drugs, ultraviolet absorption data, useful solvents, and standards for calibration of ultraviolet-visible instruments. A very useful compilation of practical information relative to ultraviolet and visible spectrophotometry is “Techniques in Visible and Ultraviolet Spectrometry. Volume 1. Standards in Absorption Spectrometry” (58). Another useful manual is “High Purity Solvent Guide” (406), which contains solvent properties and data for a variety of commonly used solvents in chromatography and spectroscopy. In the area of structure-spectral correlation and interpretation, “Organic Electronic Data, Vol. 17” (389) and “Spectrometric Identification of Organic Compounds (4th ed.)” (482) have been published. “Lasers: Principles and Applications” (190) provides an introduction to the principle of lasers and to a wide variety of laser applications in analytical chemistry. In 1983 John Wiley & Sons, Inc., introduced a new journal entitled Computer Enhanced Spectroscopy which will appear quarterly. This journal is devoted to the rapid publication of papers describing novel practical work in which the performance of a spectrometer or chromatograph-spectrometer combination is enhanced with a computer.

CHEMISTRY This section of the review deals with the chemistry involved in the development of suitable reagents, absorbing systems, and methods of determination. Interest continues in the areas of dual-wavelength and derivative techniques, undoubtedly as a result of greater availability of instrumentation which offer these techniques. A rather dramatic increase in methods involving multicomponent techniques in conjunction with diode array instruments has taken place over the past 2 years. This too, probably stems from the greater availability of diode array spectrometers, a trend which is likely to continue for some time. Computers and microprocessors continue to have their impact in the areas of automatic instrument calibration, parameter control, and data acquisition and computation. It is noteworthy that a number of papers in the area of laser applications and techniques in absorption spectrometry have begun to appear. Several papers have reported studies and applications in the area of increasing the sensitivity of micellar color reactions. One paper describes methodology for the determination of titanium in steel using this technique (473). Two other papers report the results of studies of the effect of surfactants (271) and the underlying mechanism of micellar sensitization (32). A systematic study of enhanced absorption at low temperatures has been reported (549). Single- and dual-beam configurations for thermal lens spectrometry was the subject of one paper (72),while in the same area it has been reported that nitrite ion can be detected with thermal lens spectrometry at levels more than 200 times smaller than conventional spectrophotometry (139). Metals. A great deal of activity in the area of developing and studying the properties of reagents for the spectrophotometric determination of various metals continues unabated. 2,2’-Bis[(bis(2-p ridyl)methylene]thiocarbohydrazone (491, 1,5-bi[di(2-pyri yl)methylene] derivatives of carbonic and carbonimidic dihydrazides (161), dithiocarbamic acids (369), methylirninodimethylenephosphonic acid (303), 4-(2and pyridylazo)resorcinol,2-(2-thiazolylazo)-4-methoxyphenol, 2-(2-pyridylazo)-l-naphthol-4-sulfonic acid (489) are just some of the papers reporting properties of reagents for a variety of metals. An indirect determination for potassium,rubidium, and cesium involves the reaction of their tetraphenylborates with mercury(I1) chloranilate (209). The boron-alizarin complex and its compounds with the alkaline-earth metals have been used as the basis for the spectrophotometric determination of the latter metals (392). Eriochrome Cyanine R has been studied relative to its suitability as a reagent for group 3 elements (524). Regents which have been studied for

B

U T R A V I O C E T AND

RBms of inleresl are In utlravblel and visibie abswpllon specbomelry. *me emission and a l m k ab-% spscboscopy. and atso m p u t e r appllcallons to chernica insmmentamn. ~e )s me sw of B numbsr of research p p e r s and chapters in books. CR. Howell Is a m e m k of tha ACS. SAS. and lhe ASSOCIBI~II of Analytical

-

chemists.

the determination of rare earth metals include chlorophosphonazo mA (82). chlorophosphonazo mN (207). 2[N(o-hydroxyphenyl)formimidoyl]-9-hydroxyquinoIineand cupferron (IC%), sodium molybdate and Arsenazo I11 (492). and tetraethylenepentamineheptaaceticacid (597). A number of reagents have been studied for determining rare-earth metals as ion-association complexes with cetyltrimethylammonium bromide and include rn-cresolphthalexon (471). Chrome Azurol S and 4,7-diphenyl-l,l0-phenanthroline(500). Eriochrome Azurol B and 5-nitro-o-phenanthroline (501). Eriochrome Cyanine R and 22'-hipyridine (851,and Pyrocatechol violet (260). Another rare-earth ion-association reagent with cetylpyridinium bromide that was reported is Phthaloaxon S (259). A number of pyrimidyl azo compounds have been studied as reagents for transition metals (370). Alizarin has been used for the determination of aluminum, gallium, and iron(II1) (391),while biphenyl mono- and bis(catecholylazo) derivatives have been studied as potential reagents for aluminum, gallium, indium, and zirconium (457). Sulfarsazen has been studied as a possible reagent for aluminum, gallium, and indium (411). Some new reagents based on bromine-substituted pyridineazwhromatropic acid and H acid have been investigated with respect to their suitability for the spectrophotometric determination of aluminum, beryllium, mbalt, copper, nickel, and palladium (169). A suitable reagent that has been reported for determining antimony(I1). indium, and tin(1V) is 6-(2-pyridylazo)-3,4-dimethylphenol (288).The beryllium, copper(II), iron(III1,palladium(II), and vanadium(IVl complexes of Eriwhrome Cyanine R (523),and the beryllium, copper(II), iron(III), palladium(II),titanium(IV), vanadium(IV), and zirconium(1V) complexes of Chromazurol S (522) have been studied relative to their potential as spectrophotometric reagents. Spectrophotometric methods of analysis for antimony(III), bismuth, indium, and gallium using pyrocatechol violet and tridodecylethylammonium bromide (476)and for bismuth, copper(II), iron(III), molybdenum, palladium, tungsten, and vanadium(W using catechol violet and cetyltrimethylammonium ion (525) have been proposed. The color reactions of 1,5-bis(Z-hydroxy-5chlorophenyl)-3-cyanoformazanwith calcium, magnesium, vanadiumW), and zinc have been studied and proposed as reagents for the spectrophotometric determination of the indicated metal ions (135). Complexes of 1-(1,2,4-triazoIy-

LIDHT ABSORPTION SPECTROMETRY

lyl-3-azo)-Z-na hthol with cadmium and mercury(I1) (63). l-phenyl-5metRyl-4-~-yl~opyrml-~onewith cadmium, copper, lead, mercury, nickel, and zinc (53.9,and diphenylcarbazide derivativea with cadmium, chromium(IV). cobalt(II), copper(II), iron(II1). lead(II), magnesium, manganese(II), mercury(I1). molybdenum(VI). nickel(I4, and zinc (612)have been studied as potential systems for spectrophotometric methods of analysis of the indicated metal ions. Complexes of 2,4-pentandione with chromium(I1) and of l-(Z-thienyl)1,Bbutanedione with iron(II1) have been investi ated as potential spectrophotometric methods for the iniicated ions (429). A number of studies of potential spectrophotometric reagents for various metals are as follows: pyridine-2-acetaldehyde benzoylhydrazone with bismuth(III), cobalt(II), mpper(II), gallium(III), iron(II), iron(III), lead(II), manganese (II),,mercury(II),nickel(II), palladium(II), titanium(IV), vanadium(V), and zinc(I1) (151); 7-nitroso-8-hydroxyquinoline-&sulfonic acid with zephiramine for cobalt(I1) and iron(I1) (376);rhodanine derivatives with copper(I), copper(II), old(III), mercury(II), and palladium(I1) (144); and 2-thiofydantoin with copper (I), copper(II), mercury(II), palladium(II), and silver(1)(333). 8Amincquinoline derivatives have been reported as reagents for nickel and cobalt (1731,while Z-(Z-hydroxynaphthyll)be~irnidazolehas been suggested as a reagent for cobalt(II),copper(II), iron(II), iron(III),and nickel(I1) (107). 4,4'-Bis(dimethylamino)thiohenzophenone has been recommended for the determination of traces of copper, gold, mercury, palladium, platinum, and silver in a variety of types of samples (393). Numerous papers have appeared which focused their attention on comparing or studying re ents for a specific metal or group of metals. Salicyloylhy?razones of pyridine-2aldehyde and pyridoxal have been studied as reagents for the determination of aluminum ions (145). A comparative study of reagents for the photometric determination of calcium considered 10 different reagents and concluded that Chlorohosphonm 111, thymolphthalexon, and Arsenazo I were the est reagents (396). 2-(2-Pyridylazo)-l-naphthol-4-sulfonic acid, 4-(2-pyridylazo)resorcinol,4-(2-thiazolylazo)resorcinol, and 2-(2-thiazolylazo)-4-methoxyphenolwere studied as spectrophotometric reagents for cobalt (599). Nine triphenylmethane dyes including Eriochrome Cyanine R, Chromazurol S,bromopyrogallol red, and pyrogallolsulfonephthalein in the presence of cetyltrimethylammoniumbromide have been studied as spectrophotometric reagents for copper(I1) (576). The 4- and 5-nitro derivatives of 2-benzoyl2,3-indandione have been investigated as potential reagents for iron(II), copper(II), and the uranyl ion (16). 3-(2Pyridyl)-5,6-dipheny1-1,2,4-triazine has been reported to be an effective reagent for determining trace levels of iron(I1) in the presence of large amounts of iron(I1) (183). Bromopyrogallol red in the presence of hexadecyltrimethylammonium bromide has been u t i l i as a photometric reagent for iron(I1) (577). A study of the selectivity of the method for manganese(I1) using 2,2'-bipyridyl and both 0- and p nitrobenzeneazopyrocatecholshas been described (600). The properties of mercury(I1) phenyl-e-pyridyltriazeneand pnitrophenyl-a-pyridyltriazene have been studied for use as reagents for the extraction and spectrophotometric determination of mercury (401). The metal/ligand ratios, formation constants, molar absorptivities, and potential interferences of several indium(II1) complexes of sulfonated azo dyes have been reported (387). The Chromotrope 2R,Gallion, Eriochrome Blue SE, Eriochrome Black T, and Pyrocatechol Violet complexes of scandium have been used for the spectrophotometric determination of scandium (93). A study of the aqueous-chloroform extraction equilibria of tin(1V) and 8quinolinol and its 5,7-dichloro and 2-methyl-5,7-dichloro derivatives and their resulting ultraviolet-visible spectra have been reported (174). A study of pyrocatechol, the bromo-. chlore, and nitropyrocatechol complexes of thallium and the extraction of their ion associates with basic dyes, has been described (44).Two studies of reagents for vanadium(V) have included N-substituted phenylhydroxylamines (480) and mixed ligand complexes of various hydroxyamidines and thiocyante ion (236). A study of the effects of added electrolytes on the spectrophotometric determination of beryllium with Chrome Azurol S revealed that the addition of salts a t high concentrations swamped out interferences and lowered the detection

E

ANALYTICAL C M M I S T R Y . VOL. 56. NO. 5. APRIL 1984

ZZ7R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

limits for beryllium (66). The effect of citric and tartaric acid um(IV), and uranium(1V) chelates of dibromopyrogallolwas studied in the spectrophotometric determination of bissulfonephthaleinby the fluoride ion as a means of determining muth with Xylenol Orange and Methylthymol Blue in the that anion (378); 1-naphthylamine and N-(1-naphthyl)presence of copper and indicated that large negative errors ethylenediaminefor the determination of the nitrite ion (340); might occur as the result of the formation of mixed metal and the determination of phosphate based on its bleaching complexes (409). Studies of optimized conditions for various of complexes of uranium(V1) and iron(II1) with salicylaldmethods include the determination of copper(I1) with a,/3,oxime, 2-hydroxy-l-naphthaldoxime,peonol oxime, and 2y,d-tetrakis(4-(trimethylammonium)phenyl)porphine (587), hydroxy-5-methylpropiophenoneoxime (420). The position the ruthenium(III)-2-thiobarbituricacid system (335), the and intensity of intervalent transition absorption spectral zinc-2,2’-dipyridyl-2-pyridylhydrazone color reaction (543), bands of aqueous-organic solutions of molybodophosphate and the zinc-a,/3,y,6-tetrakis(4-(trimethylammonium)- reduced by tin(I1) chloride have been correlated with the pheny1)porphine system (601). A detailed study of the effects electron-donor activity of the organic solvents (407). The of protonation with the copper(I1)-Arsenazo I system has been conditions for determining phosphorus by measuring the investigated (87). The distribution of various mixed aquoabsorbance of the ion association complex of molybdochloro complexes of iron(II1) and the precise conditions afvanadophosphate with Rhodamine 6Zh at 530 nm have been fecting their absorbance have been discussed (400). An imoptimized by means of factorial experimental design (352). proved method for the synthesis of Dithizone S and its apThe ratio of components and molar absorptivity of mixed plication and reaction parameters for the spectrophotometric ligand complexes of titanium(1V) with bromopyrogallol red determination of trace mercury(I1) levels has been studied and cetylpyridinium ion have been reported (146). The use (603). The effects of solvent nature, reducing agent, acid, and of a sodium borohydride pellet for generating arsine which amide on the extractability and the spectra have been deis subsequently passed into a chloroform solution of silver scribed for the spectrophotometric determination of molybdiethyldithiocarbamate has been described as the basis for denum with thiocyanate and amide dimers of N-phenyla spectrophotometric determination of arsenic (310). The acetamide (382). Studies on the complexation reaction beN-ethyl-Nsodium salts of N-ethyl-N-sulfopropylaniline, tween palladium and 3-(2’-thiazolylazo)-2,6-diaminobenzene sulfopropyl-m-toluidine, and N-ethyl-N-sulfopropyl-mhave revealed the dissociation constants of the ligand, the anisidine have been recommended as new water-soluble hyformation constants of the 1:l and 1:2 palladium-ligand drogen donors for the enzymatic spectrophotometric detercomplexes, and the conditions necessary for the application mination of hydrogen peroxide (513). of the reaction for the determination of palladium (149). During reextraction of rhodium from systems containing Organic Constituents. Papers have appeared reporting tetraoctyl- and trialkylbenzylammonium chlorides by either the spectrophotometricdeterminationof various alkaloids such concentrated or dilute hydrochloric acid, anionic polynuclear as atropine, pilocarpine, and strychnine with chloranilic acid rhodium chloro complexes have been shown to form in the (121) and also quinine and strychnine in biological fluids with aqueous phase (230). Two spectrophotometric maxima have Orange I1 (315). A study of the spectrophotometric deterbeen shown to exist for the 1:lzirconium-quercetin complex, mination of tricyclic antidepressants including amitriptyline, both of which are suitable for the determination of zirconium nortriptyline, and doxepine with sulfophthalein dyes such as (8). bromphenol blue, bromcresol green, and bromcresol purple A number of new reagents and/or methods for various has been reported (46). Picric acid has been used as the metals have appeared since the last review and include glyoxal reagent for the extractive colorimetric determination of ambis(4-hydroxybenzoylhydrazone) for calcium (567), 0itriptyline, imipramine, and opipramol (98). The fact that mercaptoazo complexes of iron(I1) and copper(I1) (405), 2certain polyphenolic sympathomimetric amines form colored (5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)- complexes in the presence of acetone and resorcinol has been aniline for iron(I1) (202), and methylenediaminetetraacetic made the basis of a spectrophotometric method for the acid for iron(I1) (136). 2-[ [(2-hydroxy-5-chlorophenyl)imi- quantitative analysis of adrenaline, noradrenaline, and isono]methyl]phenol has been shown to give sensitive reactions prenaline (442). Solochrome Black T, Solochrome Dark Blue, with gold(III), nickel(II), platinum(IV), and iodate ions (21). and Fast Sulfon Black FF have been recommended for the Several new reagents and/or methods for nickel(I1) include ion pair extraction of 15 different pharmaceuticals with 6-(5-meth 1-1,3,Cthiadiazol-2-ylazo)-3,4-dimethylphenol(64), chloroform (447). Acetylcysteine, penicillamine, and mer2-[2-(3,5-d:ibromopyridyl)azo]-5-(dimethylamino)benzoicacid captopropionylglycine in pharmaceutical dosage forms have (141), 2- (2-thiazoly1azo)- and 2- (2-benzothiazolylazo)-5- (dibeen determined based on their oxidation with iron(II1) in methy1amino)benzoic acids (140), and 1-(2-pyridylazo)-2the presence of 1,lO-phenanthroline (415). The colorimetric naphthol-6-sulfonic acid (367). NJV-dimethyl-N’-(4-p-nitrodetermination of nitrazepam, methaqualone, and trimethophenyl-5-nitro-2-thiazolyl)thiourea has been reported as a new prim has been carried out based on the principle that their chelating agent for palladium (591). Several method modiphosphomolybdic acid salts may be reduced to molybdenum fications have been developed for the photometric determiblue with anthrone (448). The spectrophotometric deternation of ruthenium using a,a’-furil doxime (297). Silver(1) mination of oxymetazoline, isoxuprine, orciprenaline, has been determined with 2-(3,5-dibromo-2-pyridylazo)-5- pholedrine, vitamin K-4 dibutyrate, and rutin have been (diethy1amino)phenol in the presence of sodium lauryl sulfate carried out with Folin and Ciocalteau’sphenol reagent (446). (212), while uranium(V1) has been spectrophotometrically The results of a comparative study of the efficiency of p determined with 2-(3,5-dibromo-2-pyridylazo)-5-[N-ethyl- (dimethy1amino)benzaldehyde as an analytical reagent for N-(3-sulfopropyl)amino]phenol (368). Vanadium (111) and hydrazine and phenylhydrazine have been reported (318). It vanadium(V1)have been spectrophotometrically determined has been shown that iodochlorohydroxyquinoline, diiodoin the presence of one another by measuring the absorbance hydroxyquinoline, and dibromohydroxyquinoline can be deof their 1,lO-phenanthrolinecomplexes at 530 and 440 nm for termined by treatment with diazotized benzocaine in the vanadium(I1) and vanadium(IV), res ectively (307). The presence of trimethylamine (444). 3-Methylbenzophotochemical reaction between iogne and ethylenedithiazoline-%one hydrazone has been recommended as a aminetetraacetic acid has been used to develop methods for reagent for the spectrophotometric determination of 17 determining chromium(V1) and vanadium(V) (148). A new pharmaceutical phenols including para-unsubstituted, paramethod for avoiding coprecipitation on lead sulfate when substituted, and o-dihydroxyphenols (119). Another paper determining traces of iron, copper, zinc, aluminum, and bisdevoted to the determination of phenols has suggested the muth in lead- and tin-based solder and white-metal bearing use of two pairs of reagents: m-aminophenol and periodate alloys has been developed (560). Nonionic surfactants such ion for catechol, catecholamines, eugenol, and guaiacol, and as polyoxyethylene nonylphenyl ether have been utilized in metals and periodate ion for pyrogallol, gallic acid, phlorothe extraction of the zinc chelate of 1-(2-pyridylazo)-2glucinol, and butylated hydroxyanisole (453). Extraction and naphthol (563). photometric determination of substances containing the Nonmetals. A number of investigations concerned themsulfhydryl group have been accomplished by extracting their selves with studying various reagents for certain specific ion associates of Rhodamine 6Zh and Astra Phloxine cations nonmetals such as acetylquinalizarin, quinalizarin, and with hexachloroantimonate(II1) from buffered aqueous soluQuinalizarin Complexon as reagents for determining boron tions into toluene (464). (267); the bleaching of zirconium(IV),aluminum(III), thori228R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

and paracetamol (449); 5-(p-(dimethylamino)phenyl)-2,4Serum albumin determinations by the bromocresol purple pentadienal as a reagent for primary aromatic amines (345); method and by the bromocresol green method have been and 2,4-dinitrophenylhydrazine as a reagent for aliphatic compared (606). Two simple and sensitive colorimetric proamines such as methylamine, butylamine, and piperidine cedures for the determination of p-aminophenol and 3(413). A spectrophotometric method for the determination cyano-N-methoxypyridiniumperchlorate have been reported; of traces of alkylbenzenesulfonate based on its formation of one is based on the reaction in methoxyethanolin the presence a complex with 1-(4-nitrobenzyl)-4- (4-(diethylamino)of sodium acetate while the other is based on reaction in pheny1azo)pyridiniumbromide has been studied (437). The methoxyethanol in the presence of chloramine-T (274). A study of the use of 8-amino-l-hydro~ynaphthalene-3~6-di-spectrophotometric quantitation of accessible carboxylic groups in proteins has been reported through the use of osulfonic acid and N-(1-naphthy1)ethylenediamineas coupling dianisidine and water-soluble carbodiimide (426). A coloriagents in the spectrophotometric determination of aromatic metric assay for serum creatine kinase has been described amines has been presented (356). The colorimetric method which uses N-ethylmaleimide and Nitro blue tetrazolium/ for the determination of fatty acid and serum total lipids has phenazine methosulfate (414). A spectrophotometric method been compared with five other methods and the results have of determining purine and yrimidine 2-deoxyribonucleosides been presented and discussed (223). Two papers appeared has been developed basef on their color reaction with dieach of which presented comparative studies of six methods phenylamine (250). The simultaneous spectrophotometric for determining urinary protein (105,323). In another paper, determination of dibucaine and chlorpheniramine maleate in three total protein procedures, including Biuret reagent, Fopharmaceuticals has been effected based upon the characlin-Ciocalteau reagent, and Coomassie Brilliant Blue were teristic thermochromic behavior of their ion associates with compared and the results presented (50). the ethyl ester of tetrabromophenolphthalein (438). ComThe influence of bilirubin on the determination of acid pounds containing cis-a-glycolicand sulfide functional groups phosphatase in serum has been investigated (198) with a have been determined spectrophotometrically by a method continuous measurement system using a-naphthyl phosphate involving oxidation with periodate, masking the excess peras the substrate and diazotized 2-amino-5-chlorotoluene as iodate with sodium molydate, reacting the iodate formed with the colorimetric reagent. The absorption maxima and conpotassium iodide, and subsequentlymeasuring the absorbance centration range over which the Beer-Lambert law is obeyed of the resulting triiodide ion at 352 nm (294). The hypnotic for six different benzothiadiazine derivatives have been deand sedative methylpentynol carbamate has been determined termined and reported (3). Complexon I11 has been used in by measuring the absorbance of the complex formed with conjunction with carbon tetrachloride extraction followed by mercury(I1) acetate at 277-280 nm (423). A reliable technique treatment with dithizone to determine 10-chlorophenoxarsine for the selective determination of phenols in water by and bis(tributy1tin)oxide in aqueous solution in the presence measuring the change in absorbance at 291 nm caused by of one another (550). The reactivity of lanosterol, desmosterol, raising the pH from 7 to 12 has been developed (106). and 7-dehydrocholesterol, key intermediates in cholesterol Manganese(I1) and o-hydroxyhydroquinonephthaleinhave biosynthesis, have been compared in three standard coloribeen suggested as reagents for a new and selective spectrometric assays for cholesterol based on formation of chromogens photometric method for the determination of streptomycin with acetic anhydride, iron(II1) chloride, and iron(I1) sulfate (138). A new method for determining triglyceride levels in (451). Two studies of the colorimetric assay for glycosylated human serum in which the triglycerides are hydrolyzed to hemoglobin which involve the production of 5-hydroxyglycerol and fatty acid with lipase and the resulting glycerol methylfurfural by hydrolysis, which attem t to evaluate the is phosphorylated and oxidized to dihydroxyacetone phosphate effect of various parameters and their stanfardization within by glycerol kinase and glycerol 1-phosphate dehydrogenase the method, have been reported (350,494). Another paper with ATP and NAD has been evaluated (422). Another serum has appeared which reports the molar absorptivities of human triglycerides colorimetric determination which has been rehemoglobin in the visible spectral range (608). The results ported is similar to that described above except that oxidation of a comparative study of various spectrophotometric and of the glycerol phosphate is catalyzed by L-a-glycerophosphate fluorometric modifications of the Sakaguchi method for the oxidase to produce hydrogen peroxide which subsequently determination of monosubstituted guanidines have been reacts in the peroxidase catalyzed coupling of 4-aminoantipresented (380). A study of an enzymic spectrophotometric pyrene and sodium 2-hydroxy-3,5-dichlorobenzenesulfonate procedure for the determination of serum high-density lipoto form an intense red chromogen (324). N-Ethyl-N-(3protein choline-containing phospholipids has been reported methylpheny1)-N’-acetylethylenediaminehas been evaluated (325). The interference of azide in the estimationof total lipids as a reagent for the determination of triglycerides without over by the sulfophosphovanillinmethod has been examined, and determination of free glycerol (366). Ureides in soybean tissue steps for the elimination of the interference have been prohave been determined colorimetrically by treating extracts posed (52). The interference of serotonin creatinine sulfate with an acidic cation exchange resin to remove amino acids and its elimination for both the differential ultraviolet and and then treating with hypochlorite at pH 4.0 to convert the also the extraction ultraviolet methods for determining low amide from allantoic acid or allantoin to products which react salicylate concentrations in capillary blood have been inveswith alkaline phenol or form indophenol (384). tigated (614). A critical study of serum triglyceride determination with a parallel analyzer by an enzymic-colorimetric Simultaneous Analysis. Three papers have discussed method has been carried out and its results presented (497). application of matrix representations and linear regression A spectrophotometric determination of unsaturated comtechniques and criteria for selecting analytical wavelengths pounds as charge-transfer complexes has been developed and for multicomponentspectroscopic analysis (53,114,553). Also studied with 12 different unsaturated substances (361). the use of nomograms in the spectrophotometric analysis of The qualitative identification of a number of thermolabile two-component systems has been described (317). A graphical drugs has been carried out based on their ultraviolet spectra ratio method for the photometric determination of two in(286). Also in this area, the variation of absorbance a t fixed terfering components has been proposed and applied to the pH and also the ratio of absorbances a t different wavelengths determinations of cobalt and copper with dimethylphenol a t fixed pH have been successfully employed as criteria for orange and for molybdenum and vanadium using tetrathe qualitative identification of 13 barbiturates including decyldimethylammonium chloride and bromo pyrogallol red amobarbital and diazepam (171). Three papers which provide (475). Other simultaneous determinations of metals have spectral studies of drugs including substituent and solvent included methods for aluminum, iron, and titanium with effects of their ultraviolet spectra include data on ten phar8-quinolinol (220), cobalt, nickel, copper, zinc, and cadmium maceuticals with the benzene chromophore (279) and a large with 2-[(5-bromo-2-pyridylazo)diethylamino]phenol(IO& iron number of phenanthrenes and phenanthrene alkaloids (278, and titanium in rocks with sulfosalicylic acid (472),gold, 280). Aminocrine hydrochloride in creams, jellies, and supplatinum group, and nonferrous metals as bromo complexes positories has been determined based on multiple wavelength (349),lanthanum, praseodymium,neodymium,and samarium with chlorophosphonazo and also carboxynitrazo (249),and measurements of its visible spectrum (55). Several new reagents for the determination of various types of amines have both light and heavy lanthanides with methylthymol blue been proposed. These include the following: 9-chloroacridine (607). A heteropoly blue procedure has been proposed for the for drugs containing amine or potential amine groups such simultaneous determination of the ortho- and pyrophosphate as chloramphenicol, metronidazole, tinidazole, nitrazepam, anions (363). A number of spectrophotometric methods have ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

229 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

been proposed for the simultaneous analysis of organic constituents and include methods for the simultaneous determination of aromatic compounds in middle distillate fuels (257),4,4’-diaminodibenzyl and ci~-4,4‘-diaminostilbene(71), aspirin, phenacetin, and caffeine in their mixtures (589), 2,4-dinitroaniline and 2’,4,4’-trinitrobenzanilide(342), orthoand paraisomers of nitrophenylsuccinic acid (481), deoxy-, carboxy-, oxy-, sulfhemoglobins, and hemiglobin, as well as oxygen saturation (609,613), ethosuximide, phenytoin, and phenobarbital (214);and phenytoin and carbamazepine (231). Enhancement of sensitivity in the dual-wavelength spectrophotometric method relative to the conventional single wavelength method has been found not to be of any great significance when the absorption spectra of the reagent and the complex seriously overlap (588). Dual-wavelength determinations for metals such as copper in seawater with a,/3,y,G-tetrakis(l-methylpyridinium-4-yl)porphine (564),and zinc with a,P,y,6-tetrakis(5-sulfothienyl)porphine(231) have been reported. Orthophosphate and arsenate have been determined by means of dual-wavelength spectrophotometric measurements on their corresponding heteropoly blues (364). Mixtures of caffeine and quinine (578) and also of caffeine and sodium benzoate (205) have been analyzed by the dual-wavelength method. The selective determination of pentoses, hexoses, and 6-dioxyhexoses (200) and also the determination of phenylbutazone and amidopyrine in tablets (206) have been developed by using the dual-wavelength technique. One paper discussed the application of dualwavelength spectrophotometryin medical technology and used as an example the determination of cholesterol in blood serum (208).

The AE method of differential spectrophotometry has been used for the analysis of a mixture of norsulfazole and sulfanilamide as well as a mixture of the former and sulfadimezine without prior separation (327). Derivative Spectrophotometry. The extensive activity in the area of derivative spectrophotometry would seem to warrant the inclusion of a special section within this review devoted to the developments in this rapidly expanding field. The application of derivative ultraviolet-visible spectroscopy in forensic toxicology was the subject of one paper (158). The use of second derivative spectroscopy in the differentiation of isoenzymes or isoproteins (337) and also for the differentiation of dibazole, papaverine hydrochloride, salsaline hydrochloride, and barbamyl with theobromine (37) has been described. The second derivative absorbance spectra of 29 lignin model compounds and lignosulfates have been compared with their ultraviolet spectra (304). High-order derivative spectrophotometry has been employed for studying and the characterization of proteins and other native and synthetic macromolecules (511) as well as in studies of the chemical and structural changes in the surface layers of ferruginous bentonite (512). Zirconium has been determined with Picramine E in the presence of hafnium by means of the first-order derivative technique (290). A method employing a field-portable second derivative ultraviolet absorption spectrometer has been proposed for detecting nitrous acid in NO,- and SO,-rich atmospheres (320). The application of derivative spectroscopy to the quantitative determination of chlorophylls and related pigments has been reported (12). First derivative spectroscopy has been used to determine dipicolinic acid in bacterial spores (561) and also hydrochlorothiazide in hypotensive tablets (579). Applications of the second-order derivative technique to quantitative analyses are numerous and include the determination of aromatic amino acids in purified proteins (302), drugs such as aspirin, vitamin Be, cortisone acetate, prednisone acetate, hydrocortisone, and hydroprednisone in their pharmaceutical preparations (147), benzoic acid in foods (483), morphine and heroin (308), naphthalene syntans in mixtures with phenolic resin syntans (295),nicotinic acid in multivitamin tablets (311),salicylic acid in acetylsalicylic acid (266, 321), sorbic and benzoic acids in juices and soft drinks (309), and tyrosine and try tophan residues in proteins (465). Second- and fourth-orc fer derivative spectrophotometry have been employed in the assay of ephedrine of pseudoephedrine (95) and also in the analysis of coloring agents such as amaranth and carmoisine in pharmaceuticals (131). NAcetyl-L-tryptophanamidehas been analyzed in the presence of the ethyl ester of N-acetyl-L-tyrosine using fourth-order 230R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

derivative spectra (112). Fourth-order spectra have been used to determine the state of tyrosine and phenylalanine residues in proteins (377). Higher-order derivative spectrophotometry has been utilized in the simultaneous estimation of aniline and phenol in wastewater and the determination of pentachlorophenol in polluted drinking water (510).

PHYSICS As has been the case over the years, a reasonable amount of activity has been focused upon the subject of errors in spectrophotometric analysis and means for minimizing or eliminating them. A method has been described for compensating for the error from indicator variations in spectrophotometric analysis (462). One investigation directed its attention to errors arising from adsorption and desorption of phosphate from filter paper used in the procedure (210). A discussion of natural interference in spectrophotometric analysis of clinical specimens and procedures for correction in some cases has been reported (432). An electrochemical cleanup has been proposed for eliminating ultraviolet and visible absorbing impurities in buffering agents and detergents used in low absorbance assays (431). The aluminum-Xylenol Orange system has been used to study factors leading to nonlinear relations in the low concentration region in photometric methods of analysis (610). It has been proposed that the absorbance of ideal solutions may be expressed as A = [-In (1 - tck)]z,where t is the molar absorptivity, Ck is the mole fraction of the solute, and Z is the sample path length (585). The authors go on to point out that Beer’s law is a partial case of this expression and propose a method for estimating the range of Beer’s law obeyance. Two papers have appeared which direct their attention to errors arising from problems with spectrophotometer calibration (74,125). The role of a reference solution in recording absorption spectra has been discussed and an ex eriment is suggested for revealing false band maxima anfshifts (255). A discussion of the effect of slit width setting on spectrophotometric measurements has been presented (237). An optical electronic circuit has been suggested as well as a procedure of direct objective measurement of dark and photoelectric current fluctuations which are responsible for the instrumental error of spectrophotometricmeasurements (273). Two new methods of expressing and measuring the stray light ratio in spectrophotometers have been described (252)and used to study stray radiation from holographic gratings (253) and ruled gratings (254). Another new method for estimatingthe amount of stray light in ultraviolet spectrophotometersemploys solution filters with sharp ultraviolet absorption edges (331). Results obtained with double-beam, double-monochromator spectrophotometers, e uipped with software for stray light correction, were compare to those obtained with two types of singlebeam, single-monochromator instruments equipped with blocking filters to eliminate most of the stray light (358). In another paper, an equation has been developed and presented to correct for the presence of stray light during the microspectrophotometric determination of intracellular ion concentrations with indicator dyes (611). The effect of errors arising from spectrophotometric measurements on the evaluations of sensitivity of spectrophotometric analysis of multicomponent mixtures has been discussed (38). In the area of standard reference materials, the activities undertaken since 1969 within the National Bureau of Standards’ Center for Analytical chemistry in the field of high accuracy spectrophotometry have been described (60). Also the National Bureau of Standards has published a summary of its clinical laboratory standards (466). In another paper, material has been presented on the reduction of the uncertainties of standards used in ultraviolet absorption spectrometry (88). Photometric accuracy and problems of spectrometers, with particular attention being directed to wavelength accuracy, accuracy of optical measurement, filters, stray radiation, and instrument environment have been discussed (584). The accuracy and precision of the spectrophotometric determination of trace elements with microspectrophotometry have been improved by external and internal signal enhancement techniques involving the addition of radiation absorbing compounds to the reference and sample cells (122). The use of dedicated microprocessors in single-beam spectrophotometry to provide the reduction of drift, improve signal

1

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

to noise ratio, and enhance optical throughput has been described (573).The wavelength precision (191)and means of improving sensitivity with two wavelength measurements (2%) of various commercial spectrophotometers have been the subject of two recent papers. The advantages of difference spectrophotometry have been discussed for analyses in the presence of high absorbances or interferences and several examples of difference spectrophotometry with a parallelaccess instrument under interactive microprocessor control are given (232).A least-squares calculation known as linear parameter estimation has been studied to determine ita affect on precision and potential applicability in multicomponent analysis (219). The generalized standard addition method (GSAM) has been the subject of a number of investigations in order to determine its ability to compensate for drift and interferences (246)and correcting for matrix effects in multicomponent analysis (245,247,539). Spectrophotometric determinations of reaction stoichiometry and equilibrium constants have included investigations of redox reactions involving iodate, bromate, or periodate and manganese(I1) or some cyclohexanedion bisthiosemicarbazones (428)and reactions of Antipyrylazo 111complexing with the calcium ion (108). Several papers have provided compilations of molar absorptivities and Acml%values for proteins a t selected wavelengths in the ultraviolet and visible regions (262-264). Another paper has reported the molar absorptivities of the ultraviolet and visible bands of aqueous ozone solutions (181). Conditions for the formation of isosbestic points, equations for their binary and ternary systems, and their ap lication in determining equilibrium concentrations, molar afsorptivities, and the number and type of equilibria were the subject of one paper which has appeared (153). Factorial analysis with dimensionless absorbance with spectra measured at different optimum path lengths, and taking into account the different levels of accuracy of the measurements in the absorbance and transmittance scales, has been used to determine the number of components present in an equilibrium system (102). A study of a simple dual-wavelength spectrophotometric method for the determination of copper with tetrakis(4(trimethy1ammonium)phenyl)porphyrin has been reported (586).Differential spectrophotometric measurements made with unusual substances for the reference solutions, such as phenyl salicylate and sodium sulfacyl as reference solutions when determining sulfonamides, have been proposed (36). Low-temperature spectrophotometry has been used in the detection and identification of intermediates of rhodopsin during photobleaching (595). Discussions of the theoretical aspects of derivative spectroscopy have focused on the effect of differentiation on the signal-to-noise ratio (365),application of the technique to multicomponent analysis (110),and the scope and limitations of this newly developing technique (166). A mathematical relationship has been developed for evaluating the optimum selectivity of conventional and derivative spectrophotometric analyses and describes the conditions under which the use of different order derivatives might be most suitable (289).In another study, the relation between derivative band characteristics and the data processing span on the convolution operation has been investigated (216).A variant of the first derivative technique in spectrophotometry has been reported which is based on a continuous sinusoidal wavelength sweep within a narrow spectral region (291). Also the application of derivative spectroscopic techniques to the determination of the kinetics of photoisomerization reactions has been proposed (152). A double-beam photoacoustic spectrophotometer capable of recording simultaneously either uncorrected or corrected spectra has been developed and tested (41).The modification of a photoacoustic spectrometer to incorporate wavelength modulation has permitted the direct generation of first- and second-order derivative spectra (76).Two studies concerned with photoacoustic cell design and use have been reported (187,326)while in another study, the effects of concentration and sample preparation for photoacousticmeasurements were investigated (258). The optoacoustic detection of poiyatomic molecules using the multiphoton absorption effect has been reported (479). In another application of photoacoustic spectroscopy, the slow kinetic formation of a solid charge transfer complex has been studied (113).A wide variety of

other applications of the photoacoustic technique have been reported and include its measurements in highly absorbent solutions (359),in vivo measurements of the optical absorption of skin (404),and the determination of the absorption coefficient of aerosol particles (570).The determination of less than a nanogram of cobalt has been reported by means of laser-induced photoacoustic spectroscopy (100). In other developments, the photoacoustic technique has found application in the quantitative determination of zinc, copper, and nickel as their respective complexes with dithizone, diethyldithiocarbamate, and dimethylglyoxime, atmospheric hydrogen chloride at the 50 ppb level (137),atmospheric nitrogen dioxide as low as 2 ppb (399))and the @-adrenergic receptor blocker drug, propranolol, in solid formulations (75). In the area of spectrophotometer components one interesting study reports recent developments in the techniques for the self-calibration of silicon photodiodes (598).A new cuvette-carouselapparatus has been patented which provides a means for permitting transfer of radiant energy from a source to a detector along an optical path passing through at least part of each of the cuvettes (530). The construction of an electromagnetic stirrer for optical cells has been described (504).One commercial vendor of spectrophotometer supplies has recently announced the availability of disposable cuvettes (541). Optical interference filters in the ultraviolet wavelengths as low as 200 nm and which feature a 5 year average service life with excellent moisture resistance and solarization resistance are now commercially available (330).A normalizing system for modulation spectroscopy measurements has been described (47).The diffraction pattern symmetry resulting from passing radiation from a helium-neon laser through the entrance slit of the monochromator has been used as a sensitive visual guide for alignment of the spectrometer system (436). Spectrophotometers. The incorporation of microprocessors in spectrophotometers has reached the point that it is the exception to find a spectrophotometer without a microprocessor. In this area, it appears that more powerful microprocessors and, in some cases, multiprocessors, are being incorporated into the instruments. This coupled with greater memory capacity is providing the analyst with much greater data treatment capability. This trend is demonstrated in the Bausch & Lomb Spectronic 1001 ultraviolet-visible spectrophotometer which incorporates two microprocessors,one for monochromator control and one for instrument functions and limited data processing (30).Beckman Instruments, Inc., have introduced two new single-beam ultraviolet-visible spectrophotometers employing their stable beam technology. The Model DU-7 features high speed scans up to 1200 nm min, peak pick, first and second derivatives, log A, and a re time graphic display (33).The Model DU-6 is described as being a low cost instrument featuring microprocessor control, limited storage, peak pick, and first and second derivatives (34). Gilford Instruments have recently announced The Response, an ultraviolet-visible scanning spectrophotometer which employs a 16-bit microprocessor and offers a dynamic key approach to menu-driven programming, autoranging, up to 40 readings per second, and a wide dynamic range (157). The Hach Model DR/3000 spectrophotometer is a microprocessor-controlled single-beam instrument with a double-pass grating monochromator which yields a full 325- to 1000-nm wavelength range (175). Hewlett-Packard’sModel HP 8451A diode array spectrophotometer features full spectrum scan from 190 to 820 nm in 0.1 s with a 2-nm bandwidth and a photometric scale from 0.0003 to 4 absorbance units (189). Additionally, it is noteworthy that this instrument’s computer can be operated independently with most HP-85 Computer Applications Pacs. Hitachi Scientific Instruments has introduced their Model 150-20 double-beam ultraviolet-visible spectrophotometer which utilizes a fully interactive graphic CRT and keyboard along with program storage for up to 20 methods and menu-driven software (196).Hitachi continues to offer a versatile dual-wavelengthspectrophotometer in the Model 557 double-beamultraviolet-visible spectrophotometer (197). IBM Instruments, Inc., introduced three new ultraviolet-visible spectrophotometers with the Model 9410 featuring double-beam optics, single grating, LED readout, and keypad operation; the Model 9520 employs the same optics as the Model 9410 but is provided with a CRT, printer/plotter, and keypad operation; and the Model 9430 features a dual-

A

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

* 231 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I. Spectrophotometric Methods for Metals constituent

material

A1 Bi Ca co

alloys, ores skin creams soil paint catalysts, alloys soil

Cr cu

Fe Ga

steel steel magnesium

natural waters bronze alum Cr(111) salts

In alkali metal halides Ir La Mn Mo Nb Ni

tea leaves steel

Pb

FeSO,, NiSO,

Ni alloys

alloys

alloy Pr Rh

Nd oxide

Sb sc Sn

alloys

Ta Ti

ore V alloys

T1 U

alloys alkyl metal halides

V

steel

Zn

petroleum crudes tap H,O

Zr

silicate minerals

method or reagent [wavelength; molar absorptivity or concentration range] chlorophosphonazo I [610; 1.96 x lo4] chrome azurol S, cetyltrimethylammonium bromide [613; 3.0 X l o 5 ] KBH,, Ag diethyldithiocarbamate [425; 4.6 x lo4] tetra-n-butylammonium ion, iodide (CHC1,) chlorophosphonazo-mA [630; 0-24 ppm] benzyl 2-pyridyl ketone, 2-pyridylhydrazone biacetylmonoxime 2-pyridylhydrazone [430; 3.7 x lo3] cadmium a, P,r,6 -tetrakis(4-~ulfophenyl)porphine,imidazole [432; 2.4 x 1051 HCl, 1-(2-pyridylazo)-4-benzylresorcinol (CHC1,-isoamyl alc) 11.9 x i o 4 ] phenylfluorone, cetylpyridinium ion [620; 1.16 x l o 5 ] phenylarsenazo [635; 3.3 X l o 4 ] tetraphenylarsonium chloride (C,H,Cl,) [363] [640; 3.05 x lo4] 1,5-bis(2-hydroxy-4-nitrophenyl)-3-acetylformazan pyridine-2-aldehyde guanylhydrazone [380; 1.2 x l o 4 ] pyridylazonaphthol, HOBz (heptanol) r562; 2.5 x lo4] 2-quinolinecarboxaldehyde p-methoxykil, eosin. (CHC1,-isomyl alc) r543; 4.3 x 1041 O(,~,Y6 , -tetrakis(4:N-methylpyridyl)porphine, pH 4.5 [424; 0.072 pg/L] 1-(1,2,4-triazolyl-3-azo)-2-naphthol [530; 1.4 x lo4] 1,2-cyclohexanedione dioxime, H,BO,(CHCl,) [447; 1.8 x l o 4 ] (CHC1,) [536; 5.3 x lo3 at 4901 methyl 1,3-indandione-2-carboxylate 1-(2-hydroxy-3-sulfo-5-chlorobenzeneazo)-2-naphthol, caproic acid (CHC1,) [2-20 MI Eriochrome Black T, diphenylguanidine (i-BuOH) [600;3.5 x lo4] 4-methyl-2-(2’-hydroxy-l’-naphthylazo)thiazole 1580;4.8 x lo4] phenylfluorone, cetylpyridinium ion [570; 1.12 x l o 5 ] HBr, SnCl,, HCl (ether) [404.7] sulfonazo I11 [655; 3.7 X lo4] [469; 0.56 ng/cm2] Cd ( o r , P , ~ , 6 -tetrakis(4-~arboxyphenyl)porphine) SCN-, amidopyridine (C,H,) [470; 1.7 x l o 4 ] SCN-, dibenzo-18-crown-6 (C,H,) [3.85 X l o 4 ] hydrazine carbothioamide-2-(2-furanylmethylene) [366; 2.16 x lo4] phenylfluorone, cetylpyridinium chloride [540 nm; 1.0 x l o 5 ] 3-azo-4)-N,N-diethylaniline, I-, 1,4-dimethyl-1,2,4-triazolinium-( (MePh-cyclohexanone) [557; 4.8 x l o 4 ] PAR (mesityl oxide) [610; 1-7.5 ppm] propericiazine [474; 4.1 X lo3] 1,2,4-triazole-3-thiol [305; 2.20 X l o 4 ] 1.0 M HC10, [444; 25-300 ppm] Cl-, dithizone (CHCl,) [560; 2.92 X l o 4 ] 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol, ascorbic acid [GOO; 1.2 x 1051 HCl, Phenosafrazo Blue (C,H,-Me,CO) [598; 6.4 x lo4] Eriochrome Azurol B, zephiramine [603; 1.8 X l o 5 ] 5-bromo-2-hydroxyphenyl-2,3,7-trihydroxyfluorone antipyrine, I(CHCl,) [515; 9.5 X l o 4 ] 5-bromosalicyfluorone, BzPhNOH [525; 1.2 X l o 5 ] salicylfluorone, cetylpyridinium ion [520; 1.15 X lo5] bromopyrogallol red, cetylpyridinium bromide, ascorbic acid [630; 2.50 X l o 4 ] chlorophosphonazo I [580; 0-25 ppm] 4-methyl-2-(2‘-hydroxy-1’-naphthylazo)thiazole E600 ; 5.3 X 104] benfuroin oxime 15-25 pg of UO,Z+/mL] N-p-(chlorophenyl)-2-napthohydroxamicacid (CHCl, ) [530; 0.0089 pg/cm21 5,5’-methylenedisalicylhydroxamicacid, 2NHCl [490; 2-9 ppm] a,P,y, s -tetrakis(l-methylpyridinium-3-yl)porphine, pH 10.5 [0.186 ng/cm2] picramine S [640; 0.1 clg/mL d.t.1

beam, dual-grating optical system, with CRT, printer/plotter, and keypad operation (215). Two new spectrophotometers were introduced by LKB Biochem Ltd. which include their Model 4050 with a 200 to 900 nm wavelength range, a novel optical system which precludes source and detector changes during a spectral scan, and keypad operation; their Model 4051 is the same as the Model 4050 except it is limited strictly to the visible region (306). Perkin-Elmer continues to extend its Lambda series of spectrophotometers with the Lambda 5 ultraviolet-visible instrument which incorporates a CRT display, keypad o eration, a 190 to 900 nm wavelength range, -3.0 to 3.0 absoriance range, 0 to 200% T range, 0 to 9999 concentration range, and fist through fourth derivatives (385). 232R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

ref 590 86 92 182 575 150 20 225 536 515 142 25 42 427 79 470 62 62 34 8 4 84 410 24 1 390 9 244 26 8 226 383 45 164 514 26 5 293 165 18 94 4 24 30 3 172 604 528 529 13 27 7 574 390 19 276 439 227 24 0

The Perkin-Elmer Model 553 fast scan ultraviolet-visible spectrophotometer features wavelength scans up to 960 nm per minute, most of the output features of the Lambda 5, and additional microcomputer-controlledgraphic data presentation and manipulation (386). The pye Unicam PU 8800 series programmable video ultraviolet-visible spectrophotometers feature both double and single monochromator instruments with microprocessor optimized scan speed and a display of each peak amplitude and position, as well as a self-test program for calibration and instrument diagnostics (450). Sequoia-Turner Corp. has announced the availability of their Model 390 spectrophotometer which features a wavelength range from 330 to 1000 nm, an 8-nm bandwidth, and a con-

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table 11. Spectrophotometric Methods for Nonmetals constituent

materials

As B c1-

soil, plants water, air

CN F H,O

plating wastewaters concrete hydrocarbons, alc.

1,

N total NO,0 3

environ. waters waste water river water air

Po: -

S2Se Si

so,,Te

sewage manuf. wastes pyrite quartz seawater

method or reagent [wavelength;molar absorptivity or concentration range]

ref

molybdoantimonate blue, malachite green [640; 1.13 X l o 5 ] (i-BuCOMe) curcumin, 2-methylpentane-2,4-diol Hgn-2,4,6-tri-2-pyridyl-l,3,5-triazine, indirect flow methods [0.01-10 ppm] chloramine-T, isonicotinic acid-barituric acid [600; 0-0.5 pg/mL] Zr-chromazurol S, indir. [ 0.2 pg/mL] 43 20% TiCl, in HC1 beauty prods. 256 tablets & injections NH, , ext. with CHCl,, meas. Aq. 1307; 1-20 ~ g / m L ] 341 p-dimethylaminobenzaldehydo [4 571 548 drugs oxidn, direct UV (hexane) [242; 0.2-2 mg] 551 4 -(p-nitrobenzy1)pyridine 388 a1coh ol ",OH, FeC1, [540] 275 pharm. prepns. HgCl, , dithizone E4801 35 triphenyltetrazolium chloride Me,NOH [485] ointments 558 tablets tablets

alcohols, tertiary alkaloids amines amines, arom. amines, prim. arom. amines, tert aminopenicillins aminoquinolines amphetamines ampicillin anthraquinone bamethan benzodiazepines 1,4-benzodiazepines benzoic acid benzo[ alpyrene benzyl alcohol bile acids carbarsone carboxylic acids carboxyhemoglobin catecholamines cationic surfactants cephalxin cephalosporins clavulanic acid convicine cystine dihydrazides ephedrine episulfides esters ethynyl steroids fluocinolone acetonide acetate gibberellins glycosaminoglycans hemoglobins, glycosylated hydrazides p-hydroxybenzoic acid inositol niacinate isoniazid

+

pharmaceu t. cartilage serum soft drinks tablets pharmaceuticals

mercaptans mersalyl acid me themalbumin nitro compds. nitromersol nonionic surfactants norephendrine organosulfur compds organothiophosphate insecticides paracetamol pentoses phenolic drugs phenothiazine derivs. phenothiazines phenothiazines, N-subst. phosphine sulfides phospholipids phosphoric esters, alkyl & alkylethoxy polyols sugars sulfonamides

serum wood

steroids terephthalic acid 234R ANALYTICAL

air

serum indust. wastewaters H,O drugs drugs

drugs pharm. prepns. pharm. prepns. serum aqueous medium pharm. prepns. pharm. prepns. pharm. prepns.

12-molybdophosphoricacid [710; 4.40 X lo3] 1,9-dimethylmethylene blue [535] thiobarbituric acid [443] NaNO, diazotization direct UV [200-3501 1N NaOH, 1st deriv. [274] metol, VO,-, Fe(II1) quinonimine molybdic acid [700; 2-10 X mol/L] Na,S,O, , Na 1,2-naphthoquinone-4-sulfonate [460] 2nd deriv [700-560; 15.3-76.7 pmol of hematin/L] TiC1, , (Et,O) 1,2-naphthoquinone-4-sulfonate Zn-HC1 diazotization, N-( l-naphthyl)ethylenediamine-2HCl [570] tetrabromophenolphthalein Et esters K salt (0-Cl,C,H,) [620] oxidn, direct UV (hexane) [242; 0.15-0.19 mg] ammonium vanadate [800] benzophenone [35-350 pg/mL] 2,4,6-tris( 2-pyridylyl)-s-triazineiron(11) [593; 12.5-150 pg/mL] orcinol aniline. chloramine T r420-6001 BiI; (CHC1,) vanadoDhosvhoric acid r4 96-53 01 Alizarin Red S (CHCl,) '[424-436 2-50 ppm] tetracyanoethylene (CHC1,-MeCN) [460-490; lo'] enzymatic hydrolysis, 4-aminophenazone [505] CU' (i-BuOH-cyclohexane), diethylammonium diethyldithiocarbamate [435; 5-50 ppm] NaIO,, chromotropic acid [570] NaIO,, chromotropic acid [570] diazot. and couple with N-1-naphthylethylenediamine-2HC1 [545; 0.5-3 pg/mL] CrO, oxidation, direct UV 1.0% KOH [238; 0.007 mg]

-

+

CHEMISTRY, VOL. 56, NO. 5. APRIL 1984

474 127 556 54 7 58 3 89 485 454 419 338 40 23 5 338 526 551 520 443 229

199 532 346 416 347 61 403 188

23 23 44 5 167 516

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

-.

Table I11 (Continued) constituent trithiocarbonates thioethers thiophosphates thioproperazine vicine

method or reagent [wavelength;molar absorptivity or concentration range]

material

Goa+ (CHC1,) [4 201 alk. hydr., chromatogr., Ellman reag. [412] tetracyanoquinodimethane(CHC1,-MeCN) [440-8601

urine

picric acid (C,H,) [406; 10-80 pg/mL] 20% TiC1, in HCl

beauty prods.

micro rocessor-controlleddata collection system for use with a Tectnicon AutoAnalyzer has been developed. An autoranging switch which can be connected to a Technic01 AutoAnalyzer I1 spectrophotometer which will ad'ust the sensitivity to maintain all sample peaks on scale as been described (156). Spectrophotometric analysis of multicomponent mixtures have been greatly facilitated as a result of incorporating The role computers with spectrophotometers (99,394,395). of new data systems in a partnership with spectrophotometers and with spectroscopistshas been discussed (456).The many features provided by the Perkin-Elmer Model 3500 data station and its use in conjunction with spectrophotometers have been described (111). Two papers have described computer programs which are of interest; one of which is a machine language program for handling data acquired from a photodiode array detector (%I), and the other a program with about 50 subroutines for interactive graphic-assisted analysis of spectroscopic data (242).Several papers have described the role of computers and computer interfaces for diode array spectrophotometers (132,379,519) while others have been concerned with computerized spectrophotometers for the purpose of measuring reaction rates (67,469).An Apple I1 interface to a Biomation 1010 transient recorder has been shown to be a powerful spectroscopic signal averager (24). An inexpensive flow injection analyzer for teaching purposes has been described (433).Spectrophotometricdeterminations by means of flow injection analysis have included the determination of iron, chromium, and copper in the part-per-billion region (298),aluminum in copper base alloys using Xylenol Orange (332),copper, nickel, and zinc in copper base alloys (287),iodide ion using a catalytic method (93,and aromatic sulfonyl haloamines (300). A state of the art self-scanned silicon photodiode array, utilized as a spectrometric multichannel detector, has been studied for its applicability to molecular absorption and fluorescence spectrometry (509). Two spectrophotometric titrators incorporating photodiode array detectors have been developed and their applications studied (571,572). A spectrophotometer designed as a dual-wavelengthinstrument has been developed and applied to the simultaneous determination of indocyanine green and heavy water in blood (70). The modification of a commercial spectrophotometer by incorporating an analog differentiator to produce derivative spectra has been described (248).An optically transparent thin layer electrode has been described which can be used in a spectrometer with little or no modification of the instrument and applied to the study of the spectroelectrochemistry of various redox species (15).

h

APPLICATIONS

Methods of Analysis. Spectrophotometric methods of analysis continue to enjoy wide popularity among practicing analytical chemists as a method of choice. The ease and simplicity of the procedures, as well as the speed, precision, and sensitivity it affords, continue to make it an attractive alternative. The incorporation of computers for control and data rocessing and the utilization of diode array detectors are lifely to ensure the future popularity of this technique. The Chemistry and Physics sections of this review have attempted to survey the recent developments in methodology. This section, which is comprised of Tables I, 11, and I11 attempts to note the many spectrophotometric methods used to determine specific constituents in both real and synthetic samples. Given the limited format of the tables, it is not possible to cite unique preliminary sample treatments, tolerances to diverse constituents, and other noteworthy features

ref

546 54 61

518 256

of the methods. LITERATURE CITED

( I ) Abdalla, M. A.; Fogg, A. 0.; Burgess, C. Analyst (London) 1982, 107

(1271), 213-17. (2) Adams, M. J. Prog. Anal. At. Spectrosc. 1982, 5(2-3), 153-204. (3) Agrawal, D. K.; Deshpande, A. V. Pharmazie 1982, 3 7 (2), 150. (4) Agrawal, S. P.; Chandrasekhara, N.; Madu, A. U. Acta Pharm. Techno/. 1081, 2 7 (3), 181-4. (5) Agrawal, Y. K.; Janl, R. K. Rev. Anal. Chem. 1882, 6 (l), 49-64. (8) Agrawal, Y. K.; Mehd, 0.D. Rev. Anal. Chem. 1982, 6 (3), 185-239. (8a) Agrawal, Y. K.; Patel, S. A. Rev. Anal. Chem. 1980, 4 , 237. (7) Akazawa, T.; Kamaya, M.; Murakami, T. Kogakuin Daigaku Kenkyu Hokoku 1883, (54), 41-8; Chem. Abstr. 99, 81710a. (8) Alan, A. L.; Agullo, E.; Fernandez Band, B. S.; Beano, N. E. An. Qulm., Ser. B 1882, 78 (3), 311-16. (9) Al'bota, L. A.; Gutsulyak, R. B. Ukr. Khim. Zh. 1983, 49 (4), 385-91; Chem. Abstr. 99, 634136. (10) Alcocer, J. A.; Llvlngston, D. J.; Russell, G. F.; Shoemaker, C. F.; Brown, W. D. J . Autom. Chem. 1983, 5(2), 83-8. (11) Alexander, P. W.; Thallb, A. Anal. Chem. 1983 55(3), 497-501. (12) Almela, L.; Garcia, A. L.; Navarro, S. Photosynthetica 1983, 17 (2). 216-22. (13) Amellna, V. G.; Chernova, R. K. Zh. Anal. Khim. 1983, 38 (8), 14465 0 Chem. Abstr. 99, 1512992. (14) Amerlcan Society for Testlng and Materlals 1883, 890 pp. (15) Anderson, C. W.; Cushman, M. R. Anal. Chem. 1982, 54(12), 2122-3. (18) Apsitls, A.; Rotbergs, J. Lam. PSR Zinat. Akad. Vestis, Khim. Ser. 1983, (2), 207-9; Chem. Abstr. 99, 83418g. (17) Arany-Fuzessery, K.; Fugedl-Nemetl, M. Acta Aliment. 1981, 70 (4), 329-36. (18) Arkhangel'skaya, A. S.; Khomik, L. I. Deposited Doc. 1981, SPSTL 837 KhpD81, 8 pp; Chem. Absh. 98, 1 5 4 4 0 3 ~ . (19) Armeanu, V.; Vlsan, S. Rev. Roum. Chlm. 1883, 28 (I), 45-52. (20) Asuero, A. 0.; Rosales, D.; Rodriguez, M. M. Analyst (London) 1082, 707 (1278), 1065-72. (21) Aznarez, A. J.; Belarra Piedraflta, M. A.; Bona Ernicas, A. Rev. Acad. Clenc. Exactas, Fis-Quim. Nat Zaragoza 1981, 36, 87-93; Chem. Abstr. 99,81641d. (22) Amarez, J.; Bonilla, A.; Vial, J. C. Ana/yst (London) 1883, 108 (1284), 368-73. (23) Baer, A.; Kraemer, H. Krankenhauspharmazie 1983, 4 (9, 117-18; Chem. Absh. 99, 10919q. (24) Bailey, R. T.; Crulckshank, F. R.; Wagstaffe, N. Comput. Enhanced Spectrosc. 1983, 1 (2), 63-70. (25) Balshya, N. K.; Baruah, G. J. Indlen Chem. SOC.1982, 59 (3), 389-91. (26) Balasubramanlan, D.; Rao, C. Mohan Photochem. Photoblol. 1881, 34 (e), 749-52. (27) Barlow, D. Brit. UK Pat. Appl. OB 2,089.028 (CI. G01N21/25), 18 Jun 1982, Appl. 80/8,037,989, 26 Nov 1980; 11 pp. (28) Bartos, J. Prog. Qual. Control Med. 1981, 21-48. (29) Baudo, R. Acqua Arle 1982, (71, 703-15; Chem. Abstr. 98, 17202704. (30) Bausch & Lomb Biomed. P r d . 1983. 8 , 8. (31) Baveja, A. K.; Nair, J.; Gupta, V. K. Analyst (London) 1981, 106 (1266), 955-9. (32) Baxter-Hammond, J.; Cook, K. D. Solution Behav. Sufactants: Theor. Appl. Aspects, [Proc. Int. Symp.] 1980 1982, 2 , 1283-304. (33) Beckman Instruments, Inc. Bulletin 7703, 1982. (34) Beckman Instruments, Inc. Data Sheet 7729, 1982. (35) Belal, S.; Issa, N. phermazie 1982, 3 7 (4), 297-8. (36) Belikov, V. G.; Stepanyuk, S. N. Khim.-Farm. Zh. 1982, 16(10), 12535 ; Chem. Abstr. 98, 8225w. (37) Bellkov, V. G.; Vergeichlk, E. N.; Saushklna, A. S.; Chichiro, V. E. Farmtslya 1981, 30 (5),34-8; Chem. Abstr. 95, 225737g. (38) Benclnnl, D. A.; Wild. J. R.; O'Donovan, 0 . A. Anal. Biochem. 1983, 132 (2), 254-8. (39) Bershteln, I. Ya. Zh. Prikl. Spektrosk. 1983, 38 (2), 215-19; Chem. Abstr. 98, 1 9 0 9 8 7 ~ . (40) Bertrand, A.; Cox, C.; Foucart, P.; Buret, J. Clin. Chim. Acta 1982, 723 (1-2). 121-6. (41) Bhkle, V. 0.; Ram, R. S.; Varma, S. P.; Prakash, 0. Res. Ind. 1983, 28 (I), 25-8. (42) Bigma. V. V.; Bolko, A. I.; Usatenko, Yu. I. Sovrem. Mefody Khim.Anal. Kontrolya Mashlnostr.,Mater. Semin. 1981, 105-7; Chem. Abstr. 98, 10761m. (43) Blrd, A. E.; Bellls, J. M.; Gasson, B. C. Analyst (London) 1982, 707 (1279), 1241-5. (44) Blryuk, E. A.; Vinarova. L. I.; Ravitskaya, R. V. Fiz.-Khim. M e t m Anal. 1981. 31-3; Chem. Abstr. 98, 100365q. (45) Blanco Gomis. D.; Arribas Jimeno, S.; Sanz-Medel, A. Talanfa 1982, 29 (9), 761-5. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

235R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (46) Blazsek-Bodo, A.; Jozsa, J.; Kis, IFarmacla (Bucharest) 1982, 30 (4), 193-200; Chem. Ab&. 9 9 , 58976h. (47) Blinov, L. M.; Dubinin, N. V.; Kostylev, K. A.; Kosarev, S. P.; Yudln, S. G. R i b . Tekn. Eksp. 1983 (2), 170-1; Chem. Abstr. 9 9 , 79789q. (48) B o k , D. F.; Mellon, M. G. Anal. Chem. 1984, 36. 256R; 1968, 38, 317R; 1988, 40, 255R; 1970, 42, 152R; 1972, 44, 300R; 1974, 46, 227R; 1978, 48, 216R. (49) Bonilla Abascal, J. R.; Garcia de Torres, A.; Can0 Pavon, J. M. Mlcrochem. J . 1983, 28 ( l ) , 132-6. (50) Bozimowski, D.; Artiss, J. D.; Zak, B. Mlcrochem. J . 1983, 28 (2), 285-93. (51) Brautt, J. W. Phllos. Trans. R . SOC.London, Ser. A 1982, 307(1500), 503-11. (52) Broetjes, J. J. S.; DeWaard, P.; Voogt, P. A. Experlentla 1983, 39 (e), 594-5. (53) Brown, C. W.; Lynch, P. F.; Obremski, R. J.; Lavery, D. S. Anal. Chem. 1982, 54 (9), 1472-9. (54) Buffonl, F.; Coppi, C.; Santonl, G. Clln. Chem. (Winston-Salem, N . C . ) 1982, 28 (I), 248-50. (55) Bunch, E. A. J . Assoc. Off. Anal. Chem. 1983, 66(1), 140-4. (56) Bundgaard. H.; Larsen, C. J . W a r m . Biomed. Anal. 1983, 7 ( l ) ,29-37. (57) Burce, G. L.; Klotter, K. I n t . Lab. 1982. 12(6), 26, 28-32, 34, 36, 38. (58) Burgess, C., Knowles, A., Eds. "Technlques in Vislble and Ultravlolet Spectrometry"; Chapman and Hall: New York, 1981; VoI. 1. (59) Burke, R. W.; Mavrodineanu, R. NBS Spec. f u b l . ( U . S . ) 1983, 260-81, 140 pp. (60) Burke, R. W.; Mavrodineanu, R. Repot? 1983, NBS-SP-260-81; Order NO. PB83-214536, 141 pp. (61) Bystryakov, V. P. Deposited Doc. 1981, VINITI 575-82, 556-9; Chem. Abstr. 9 8 , 227261h. (62) Cacho, J.; Nerln, C. Aflnldad 1983, 40 (383), 60-2. (63) Cacho, J.; Nerln, C. Anal. Chlm. Acta 1981, 731 ( l ) , 271-5. (64) Cacho, J.; Nerin, C.; Ruberte, L. Collect. Czech. Chem. Commun. 1983, 48 (2), 471-6. (65) Cai, J.; Chen, Q.; Qian, W. Shengwu Huaxue Yu Shengwu Wuli Jlnzhan 1983, 50,69-71; Chem. Abstr. 9 9 , 1 8 9 7 0 ~ . (66) Cailahan, J. H.; Cook, K. D. Anal. Chem. 1962, 54 (1), 59-62. (67) Calmet, J. Tec. Lab. 1982, 7(101),604-6; Chem. Abstr. 9 8 , 459540'. (68) Cannon, L. C. V I A , Varlan Instrum. Appl. 1982, 16 ( l ) , 13. (69) Cao, Y. Yaoxue Tongbao 1981, 76 (12), 751-5; Chem. Abstr. 9 6 , 2233490'. (70) Capitlni, R.; Roveyaz, P. Fr. Demande FR 2,451,573 (Cl.G01J3/42), 10 Oct 1980, Appl. 7916,597, 15 Mar 1979. (71) Caracuiacu, A.; Popescu, V.; Idrlceanu, S. Rev. Chlm. (Bucharest) 1983, 34(2), 138-40; Chem. Abstr. 9 9 , 151435r. (72) Carter, C. A.; Harris, J. M. Anal. Chem. 1983, 55 (8), 1256-61. (73) Castiglionl, E. Tecnol. Chlm. 1982, 2 (3), 82-7; Chem. Abstr. 9 7 , 100763~. (74) Castlglioni, E. Tecnol. Chlm. 1982, 2 (4). 78-81; Chem. Abstr. 9 8 , 116 1 9 4 ~ . (75) Castleden, S. L.; Kirkbrlght, G. F.; Long, S. E. Can. J . Spectrosc. 1981, 26 (6), 244-8. (76) Castleden, S. L.; Kirkbright, G. F.; Spillane, D. E. M. Anal. Chem. 1981, 53 (14), 2228-31. (77) Chadburn, B. P. Anal. R o c . (London) 1982, 19 (I), 42-3. (76) Chamran, M. M.; Scott, L. 6.; Williams, P. B. Ger. Offen. DE 3,108,373 (CI. GOlN21/25), 10 Dec 1981, US Appl. 128,029, 07 Mar 1980. (79) Charykov, A. K.; Dzhalalova, P. N.; Yudina, L. V. Vestn. Lenlngr. Unlv., Flz., Khlm. 1983, (I), 71-6; Chem. Abstr. 9 8 , 209290n. (80) Chem. Eng. News 1982, 60 (12), 41. (81) Chem. Eng. News 1983, 67 (12), 33. (82) Chen, D.; Lln, M.; Ll, S.; Liang, 2. Fenxi Huaxue 1982, 70 (12), 736-40; Chem. Abstr. 99, 6 3 4 0 7 ~ . (83) Cho, H. T. Hanguk Sumyu Konghakhoe Chl 1981, 78 (4), 236-43; Chem. Abstr. 9 7 , 2 0 7 2 2 3 ~ . (84) Choudhury, D. R. Chem. Anal. and Bioi. Fate: folynucl. Aromat. Hydrocarbons, I n t . Symp., 5th 7980 1981, 265-76. (85) Ci, Y.; Sal, Y. Kexue Tongbao 1982, 27 (23), 1433-5; Chem. Abstr. 9 9 , 47125d. (86) Cl. Y.; Yang, R. Fenxi Huyaxue 1982, 10 (9), 529-34; Chem. Abstr. 99, 4 7 1 9 6 ~ . (87) Cingl, M. B.; Blgoli, F.; Leporatl. E.; Pelllnghelll, M. A. J . Chem. Soc., Dalton Trans. 1982, ( l o ) , 1965-70. (88) Clarke, F. J. J. UV Spectrom. Group Bull. 1981, 9 (2), 81-90. (89) Corti, P.; Sclarra, G. Boll. Chlm. Farm. 1981, 720(11),657-67; Chem. Abstr. 9 6 , 18739461. (90) Crummett. W. B. Anal. Chem. 1966, 3 8 , 404R. (91) Crummett. W. B.; Hummel, R. A. Anal. Chem. 1988, 40, 330R; 1970, 42. 239R. (92) Cuo, R.; Wang, B.; Yuan, X. Fenxi Huaxue 1982, 10 ( l l ) , 656-61; Chem. Abstr. 9 9 , 81651g. (93) Dabhade, S. B.; Sangal, S. P. Chem. Era 1982, l 8 ( l ) , 6-8. (94) Davldescu, L.; Slivneanu, I.; Popa, L. Rev. Chlm. (Bucharest) 1981, 32 (12), 1198-201; Chem. Abstr. 9 6 , 1 7 3 5 5 8 ~ . (95) Davidson, A. G.; Elshelkh, H. Analyst (London) 1982, 107 (1277), 879-84. (96) Debruyne, I.Anal. Blochem. 1983, 730 (2), 454-60. (97) Deguchi, 1.;Tanaka, A,; Sanemasa, I.; Nagal, H. Bunseki Kagaku 1983, 32(1), 23-8; Chem. Abstr. 9 8 , 1 1 8 7 2 8 ~ . (98) Dembinskl, B. Farm. Pol. 1983, 39 ( l ) , 21-4; Chem. Abstr. 99, 28090~. (99) Demlan, A. M.; Schmidt, W. Rev. Roum. Chlm. 1981, 26(5),769-74; Chem. Abstr. 9 6 , 623312. (100) Deng, Y.; Chen, G.; Sheng, R. Wuhan Daxue Xeubao, Zlran Kexueban 1962, (4), 61-6; Chem. Abstr. 98, 2 0 9 2 2 4 ~ .

236R ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(101) Deng. Y.; Gao, J.; Zhang, M. Zhongguo Kexue Jlshu Daxue Xeubao 1982, 12(3), 126-30; Chem. Abstr. 98, 136714s. (102) Denisov, G. S.; Terushkin, B. S. Opt. Spektrosk. 1981, 57 (6), 111820; Chem. Abstr. 9 6 , 115149e. (103) Dhillon, S. S.; Miksche, J. P.; Ceclch, R. A. New Front. Food Mlcrostruct. 1983, 27-69. (104) Diamond, A. M.; Ratz, R. D. US. US 4,340,307 (CI. 356-418; GOlJ3/50), 20 Jul 1982, Apl. 166,654, 07 Jul 1981. (105) Dilena, B. A.; Penberthy, L. A.; Fraser, C. G. Clin. Chem. (WinstonSalem, N . C . ) 1983, 29 (3), 553-7. (106) Disinger, J.; Manahan, S. E. Anal. Lett. 1982, 15 (A12), 1017-29. (107) Domagallna, E.; Zareba, S. Ann. Unlv. Marlae Curie-Sklodowska, Sect. A A ; Chem. 1979 1982, 34, 141-9; Chem. Abstr. 9 9 , 115155r. (108) Dorogi, P. L.; Moss, K.; Neumann, E.; Chang, H. W. Blophys. Chem. 1961, 14 (2), 91-100. (109) Doyle, J. E.; Wallis, F. A. Applta 1982, 36 (2), 122-5. (110) Dubrovkin, I.M. Zh. Prlkl. Spektrosk. 1983, 38(6), 947-51; Chem. Abstr. 99, 98266h. ( I l l ) Duclos, J. I n t . Lab. 1981, 7 1 (I), 91-2, 94, 96. (112) Dunach, M.; Sabes. M.; Padros, E. Eur. J . Blochem. 1983, 734 (I), 123-8. (1 13) Eaton, H. E., Jr.; Stuart, J. D. Spectrosc. Left. 1982, 75 (4), 275-85. (114) Ebei, S.; Giaser, E.; Abdulla, S.; Steffens, U.; Waiter, V. Fresenius' 2. Anal. Chem. 1982, 313(1), 24-7; Chem. Abstr. 9 8 , 2 7 0 5 1 ~ . (115) Eifler, K. J.; Cottreii, C. Laborfraxls 1982, 6 (4), 248, 253-4; Chem. Abstr. 9 6 , 2134938. (116) Einaga, H.; Iwasakl, I . Taianta 1981, 28(12), 889-900. ( 1 17) Ejima, A.; Tatsuzawa, M.; Matsuda, R. Iyakuhln Kenkyu 1981, 72 (4), 1176-81; Chem. Abstr. 96, 7 4 6 6 1 ~ . (1 18) Elgass, H.; Maute, A.; Martin, R.; George, S. Laborfraxls 1982, 6 (4), 256-60, 263; Chem. Abstr. 96, 213808m. (119) El-Kommos, M. E. Arch. fharm. Cheml, Scl. Ed. 1982, 10 (5-6), 146-52. (120) Eilaithy. M. M.; El-Tarras, M. F.; El-Khateeb, S. 2. Chem., Biomed. Envlron. Instrum. 1983, 12 (5-6), 319-25. (121) Elsayed, M. A. H.; Agrawal, S. P. Talanta 1982, 29 (6), 535-7. (122) Elslrafy, A. A. Egypt. J . Chem. 7980 1961, 2 3 ( 6 ) , 417-21. (123) Epifanov, V. S.; Konyakhina, L. V.; Syskova, V. P.; Kolgorukov, A. S. Deposited Doc. 1981, SPSTL 834 Khp-D81, 16 pp.; Chem. Abstr. 98, 172090~. (124) Eplfanov, V . S.;Syskova, V. P.; Konyakhlna, L. V.; Dolgorukov, A. S. Zavod. Lab. 1983, 4 9 ( 1 ) , 16-17; Chem. Abstr. 9 8 , 1 0 0 4 5 8 ~ . (125) Erbanova, L. N . T r . VNII Khlm. Reaktlvov l Osobo Chlst. Khim. Veshchestv 1980, (42), 9-13; Chem. Abstr. 9 5 , 1 9 6 8 6 4 ~ . (126) Fallab, S. Chimia 1963, 36 (4), 128-34; Chem. Absk. 9 8 , 222492. (127) Farndale, R. W.; Syaers, C. A.; Barren, A. J. Connect. Tissue Res. 1982, 9 (4), 247-8. (128) Fell, A. F. Anal. Chem. Symp. Ser. 1962, 70 (Adv. Sterold Anal.). 495-510. (129) Fell, A. F. Anal. R o c . (London) 1982, 19 (8), 398-403. (130) Fell, A. F. Med. Lab. World I981 (Oct.) 19, 21, 23, 25. (131) Fell, A. F.; Ailan, J. G. Anal. R o c . (London) 1981, 18 (7), 291-6. (132) Fell, A. F.; Scott, H. P.; Gill, R.; Moffat, A. C. Anal. R o c . (London) 1983, 20 (4), 173-6. (133) Fell, A. F.; Smlth, G. Anal. f r o c . (London) 1982, 19 ( I ) ,28-33. (134) Fell, A. F. TrAC, Trends Anal. Chem. (fers.Ed.) 1983, 2 ( 3 ) , 63-6. (135) Feng, Y.; Yu, R. Huaxue Shgi 1982, 4 , (4), 219-22, 2 3 0 Chem. Abstr. 98, 1 1 8 6 6 4 ~ . (136) Fernandez Solis, J. M.; Alvarez Devesa, A,; Bermejo Martinez, F. Acta Qulm..Composte/ana 1980, 4 (3-4), 99-108; Chem. Abstr. 96, 154639j. (137) Fried, A.; Berg, W. W. Opt. Lett. 1983, 8 ( 3 ) , 160-2. (138) Fujita, Y.; Mori, I.;Kltano, S. Chem. fharm. Bull. 1983, 37 (4), 1289-95. (139) Fujlwara, K.; Uchlkl, H.; Shimokoshl, F.; Tsunoda, K., Fuwa, K.; Kobayashi, T. Appl. Spectrosc. 1982, 36 (2), 157-61. (140) Furukawa, M. Anal. Chim. Acta 1982, 140(1), 281-9. (141) Furukawa, M.; Shlbata, S. Anal. Chim. Acta 1982, 740 ( l ) ,301-7. (142) Fu-Sheng, S. Talanta 1983, 30 (6), 446-8. (143) Fu-Sheng, W.; Yu-Rei, 2.;Fang, Y.; Nai-Kui, S. Talanta 1981. 28(11), 853-4. (144) Galan Alfonso, G.; Gomez Ariza, J . L. Mlcrochem. J . 1981, 26 (4), 74-85. (145) Gallego, M.; Valcarcel, M.; Garcia-vargas, M. Analyst (London) 1983, 108 (1282), 92-8. (146) Ganago, L. I.; Kovaleva, L. V. Zh. Anal. Khlrn. 1982, 3 7 ( 7 ) , 120911; Chem. Abstr. 9 7 , 1 1 9 5 4 2 ~ . (147) Gao, 2 . Yaowu Fenxi Zazhi 1983, 3 (2), 102-5; Chem. Abstr. 99, 76972h. (148) Garcia, M. S.; Sanchez-Pedreno, C.; Sierra, M. T.; Guillen, T. An. Qulm., Ser. 8 1982, 78 (2), 260-2; Chem. Abstr. 97, 2 2 9 3 0 0 ~ . (149) Garcia Monteiongo, F.; Gonzalez Diaz, V.; Taiio Gonzaiez, C. R. Ana/usis 1981, 9 (7), 353-9. (150) Garcia Sanchez, F.; Navas, A.; Laserna, J. J.; Arbaizar, A. Analyst (London) 1982, 707 (1270), 35-40. 151) Garcla-Vargas, M.; Bautista, J. M.; De Toro, P. Mlcrochem. J . 1981, 26 (4), 557-68. 152) Gaugiitz, G.; Kiink, T. 2. f h y s . Chem. (Wiesbaden) 1981, 726 (2), 177-86.

153) Gin[ L. I.; Devyatova, 1.M.; Ivanov, V. M. Zh. Anal. Khim. 1983, 38 (2), 197-207; Chem. Abstr. 9 8 , 172058q. 154) Ghijsen, R. T.; Drenth, B. H. F.; Overzet, F.; DeZeeuw, R. A. HRC CC, J . H/gh Resolut. Chromatogr. Chromatogr. Commun. 1982, 5 (4), 192-8. 155) Gianelli, M. L.; Burns, D. H.;Callis, J. B.; Christian, G. D.;Andersen, N. H. Anal. Chem. 1983, 55 (12), 1858-62. 156) Glbbs, M. M. Analyst (London) 1982, 107 (1272), 343-6.

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (157) Gllford Instruments Biomed. Prod. 1983, 8 , 25. (158) Gill, R.; Bal, T. S.; Moffat, A. C. J. Forsenic Scl. SOC.1982, 22(2), 165-71. (159) Glenn, T.; Brown, J.; Kohler, V.; Brenner, N. Am. Lab. 1982, 14 (3), 48, 51-2, 54. (160) Golubtsova, 2. G.; Lebedeva, L. I.; Dudko, L. M. Zh. Anal. Khlm. 1983, 38(5), 841-4; Chem. Abstr. 9 9 , 81665q. (161) Gomez Arlza, J. L.; Montana Gonzalez, M. T. Mlcrochem. J . 1982, 27 . (2),290-8. (162) Gorog, S.; Herenyl, B.; Horvath, P.; Lauko, A. Anal. Chem. Symp. Ser. 1982, 10 (Adv. Steroid Anal.), 35-53. (163) Gottardl, W. Fresenlus’ Z. Anal. Chem. 1982, 313 (3), 217-20; Chem. Abstr. 9 8 , 46120r. (164) Gowda, H. S.; Ahmed, S. M.; Thimmalah, K. N. Curr. Scl. 1983, 52 (E), 360-1. (165) Gowda, H. S.; Gowda, A. T.; Gowda, N. M. M. Anal. Chem. 1983, 55 ( I l ) , 1816-17. (166) Grlfflths, T. R.; King, K.; Hubbard, H. V. St. A.; Schwlng-Welll, M. J.; Meullemeestre, J. Anal. Chlm. Acta 1982, 143, 163-76. (167) Grignard, R.; Kerboul, A. Analusls 1982, lO(9), 423-5; Chem. Abstr. 9 8 , 60002k. (168) Gromova, M. I.; Nlkolaeva, E. M.; Krasavln, I.A.; Dzlomko, V. M. Zh. Anal. Khlm. 1983, 38(5), 819-22 Chem. Abstr. 9 9 , 63444n. (169) Gu, G.; Gao, J.; Chen, T. Huaxue ShJl 1983, 5 (I), 12-14, 38; Chem. Abstr 99, 63380p. (170) Gu, Y. Yaoxue Tongbao 1982, 17 ( l l ) , 684-8; Chem. Abstr. 9 8 , 78215s. (171) Gulslanl, M.; Poggl, G.; Martlnelll, G.; Palagl, U.; Lombardl, M. A. Rlv. Ital. Ig. 1981, 41 (5-6), 258-68; Chem. Abstr. 9 8 , 138549r. (172) Guseinov, I.K.; Mamedova, F. S.; Azimov, Ya. A. Azerb. Khlm. Zh. 1982, (6),83-9. (173) Gusev, S. I.;Dazhlna, L. G.; Zhvaklna, M. V.; Kozhevnlkova, I.A. Org. Reagenty Anal. Khim. 1981, 4 , 26-31; Chem. Abstr. 9 7 , 174041g. (174) Gutlerrez, A. M.; Gallego, R.; Sanz-Medel, A. Anal. Chlm. Acta 1983, 149, 259-68. (175) Hach Company Bulletin 1169, 1983. (176) Hadzlja, 0.; Tonkovlc, M. Kem. Ind. 1981, 30 (IO), 593-6; Chem. Abstr. 9 6 , 173610j. (177) Hagenbuchner, K. frax. Naturwiss., Chem. 1983, 32 (9), 280-3; Chem. Abstr. 9 9 , 166720d. (178) Hargls, L. 0.; Howell, J. A. Anal. Chem. 1980, 5 2 , 302R. (179) Harr, H. P.; Netheler, H.; Zlegenhorn, J. Methods Enzym. Anal. (3rd Ed.) 1983, 1 , 280-305. (180) Harris, T. D. Anal. Chem. 1982, 54 (6),741A, 743A-744A, 746A, 750A. (181) Hart, E. J.; Shested, K.; Holoman, J. Anal. Chem. 1983, 55(1), 46-9. (182) Hasebe, K.; Taga, M. Talanta 1982, 29 (12), 1135-7. (183) Hashml, 1. H.; Araln, I.; Memon, M. H. J . Chem. SOC.f a k . 1981, 3 (4), 181-5. (184) Hassan, S. M.; Metwally, M. E. S.; Abou Ouf, A. A. Analyst (London) 1982, 107 (1279), 1235-40. (185) Hausdroff, H. H.; Coates, V. J. Microbeam Anal. 1982, 17th, 233-7. (186) Heering, W. Roc.-Int. Symp. Tech. Comm. Photon-Detect., Int. Meas. Confed. 1982, loth, 83-90. (187) Helander, P. J . fhotoacoust. 1982, 1 (2), 251-74. (188) Henchirl, A.; Ceclle, J. L. Analusls 1982, lO(2), 102-3; Chem. Abstr. 96, 154751q. (189) Hewlett-Packard, Publication No. 23-5953-8032, 1983. (190) Hleftje. G. M.; Travis, J. C.; Lytle, F. E. “Lasers: Principles and Applications”; Humana Press: Clifton, NJ. 1981. (191) Hills, M. E. Appl. Opt. 1983, 22 (15)- 2326-8. (192) Hlrokawa, K. Nippon Kinzoku Gakkal Kalho 1982, 21 (3), 141-9; Chem. Abstr. 97, 137736s. (193) Hlrt, R. C. Anal. Chem. 1958, 28, 579R; 1958, 30, 589R; 1960, 32, 255R; 1982, 3 4 , 276R. (194) Hlrt, R. C.; Vandenbelt, J. M. Anal. Chem. 1984, 36, 308R. (195) Hkachl, Ltd. Jpn. Kokal Tokkyo Koho 81,104,239 (CI. G01N21/75), 19 Aug 1981. Appl. 90/5,798, 23 Jan 1980; 2 pp. (196) Hkachl Scientific Instruments Bulletin, 1983. (197) Hitachl Scientific Instruments Bulletin Catalog No. EX-E526P, 1983. (198) Hoffmann, G. E.; Welss, L. J. Clln. Chem. Clln. Biochem. 1983, 21 (I), 31-3. (199) Holtzapple, M. T.; Humphrey, A. E. Tappl J. 1983, 66 (8), 90-1. (200) Honda, S.; Chlba, H.; Kakehl, K. Anal. Chlm. Acta 1981, 131 (I), 205-1 1. (201) Hong, N.; Meng, C. Shanghai Ylxue 1983, 6 (I), 35-7; Chem. Abstr. 9 8 , 175781f. (202) Horiguchl, D.; Saito, M.; Imamura, T.; Kina, K. Anal. Chlm. Acta 1983, 151 (2), 457-63. (203) Horlkawa, R.; Tanlmura, K. Anal. Lett. 1982, 15 (A20), 1929-42. (204) Howell, J. A.; Hargls, L. G. Anal. Chem. 1982, 54 (5), 171R-188R; 1978, 50 (5), 234R. (205) Hu, Y.; Yang. Q.; Dong, S.;Yu, R. Nanjing Yaoxueyuan Xuebao 1982, (2), 29-36; Chem. Abstr. 9 8 , 113812h. (206) Hu. Y.; Yang, Q.; Dong, S.;Yu, R. Nanjlng Yaoxueyuan Xuebao 1982. (21, 37-43; Chem. Abstr. 98. 113813j. (207) Hu, Y. Yankuang Ceshll982, 1 (3), 71-2; Chem. Absh. 99,32331~. (208) Huang, 2.; Zhao. X.; Ren, Z.Zhonghua Ylxue Jianyan Zazhl 1981, 4 (3), 185-8; Chem. Abstr. 9 6 , 82182e. (209) Huber, H. J.; Raber, H.; Dvorak, K.; Kalcher, K. Mikrochim.Acta 1982. 1 (1-2), 155-8; Chem. Abstr. 96, 154533~. (210) Hughes, J. C.; Macphee, W. S. G. Ana/yst (London) 1983, 708 (1282), 81-4. (211) Hummel, R. A.; Kaufman, D. C. Anal. Chem. 1972, 44, 535R; 1974, 46. 354R; 1978, 48, 268R.

.

(212) Hung, S.; Qu, C.; Wu, S. Talanta 1982, 29 (2), 85-8. (213) Husband, T. A.; Cottrell, C. T. Indian Chem. Manuf. 1982, 20 (7), Paper No. 8, 4 pp. (214) Hyodo, M.; Oglhara, S.; Masuzawa, A.; Sudo, M. Byuoh Yakugaku 1981, 7(5), 305-7; Chem. Abstr. 9 6 , 210301g. (215) IBM Instruments, Inc. Bulletin G565-0118-0, 1982. (216) Ichlkawa, T.; Terada, H. Yakugaku Zasshi 1983, 103 (E), 878-83; Chem. Abstr. 9 9 , 148832n. (217) Igarashl, S. Bunseki Kagaku 1982, 31 (lo), 610-12; Chem. Abstr. 9 8 , 10889/. (218) Igarashl, S.; Saekl, T.; Yotsuyanagl, T. Bunseki Kagaku 1983, 32(1), 39-42; Chem. Abstr. 9 8 , 136727~. (219) Ilda, Y.; Furukawa, M.; Shlbata, S. Bunseki Kagaku 1983, 32 (2), 104-9; Chem. Abstr. 9 8 , 136647~. (220) Ma, Y.; Goto, K.; Furukawa, M.; Shlbata, S. BunsekiKagaku 1983, 32 (7), 401-6; Chem. Abstr. 99, 115117e. (221) Imakubo, K. Selbutsu Butsuri 1983, 23 (I), 39-42; Chem. Abstr. 98, 194314~. (222) Imasaka. T.; Ishlbashl, N. PAC, Trends Anal. Chem. ( f e r s . Ed.) 1982, 1 (12), 273-7. (223) Inoue, K. Nsel Kensa 1981, 30 (9), 1129-32; Chem. Abstr. 98, 652096, (224) Ishll, H. Bunsekl 1981, 12, 865-72; Chem. Abstr. 9 6 , 27770~. (225) Ishll, H.; Koh, H. Mikrochim. Acta 1983, 1 (3-4), 279-88. (226) Ishll, H.; Koh, H.; Satoh, K. Anal. Chim. Acta 1982, 136,347-52. (227) Ishll, H.; Koh, H.; Satoh, K. Analyst (London) 1982, 107 (1275), 647-53. (228) Ishlzu, H.; Ameno, S.; Yamamoto, Y.; Okamura, K.; Shogano, N. Hanzaigaku Zasshl 1982, 48 (5-6), 187-96; Chem. Abstr. 9 8 , 155973s. (229) Itinose, A. M.; Sznelwar, R. B. Rev. Farm. Bloquim. Univ. Sa0 faulo 1982, 18 (2), 164-76; Chem. Abstr. 98, 46344s. (230) Ivanov, S. N.; Druzhlnlna, I.A.; Belyaev, A. V. Zh. Neorg. Khlm. 1983. 28(5), 1261-6; Chem. Abstr. 99, 11745s. (231) Jaffery, N. F.; Ahmad, S. N.; Jallkhanl, B. L. J. fharmacol. Methods 1983, 9 (I), 33-9. (232) James, G. E. Am. Lab. (Fairfleld, Conn.) 1981, 13 ( l l ) , 66,69-74, 77. (233) James, G. E Am. Lab. (Falrfleld, Conn.) 1982, 14 (11), 79-82, 84. (234) James, G. E.; Schultze, A. Chem.-Tech. (Heidelberg) 1981, IO (9), 841-6; Chem. Abstr. 96, 1 4 8 0 8 ~ . (235) Jenlk, J.; Renger, F.; Smetanova, M. VodniHospod., B. 1981, 31 (12), 325-7; Chem. Abstr. 9 7 , 28320f. (236) Jha, A. R.; Mlshra, R. K. J. Indian Chem. SOC. 1982, 59 (IO), 1177-9. (237) Jlang, S. M.; Parker, G. A. Int. Lab. 1982, 11 (4), 32, 35-6, 38. (238) Johnson, T. J. Am. Lab. (Falrfleld, Conn.) 1982, 14 (11), 118-20. (239) Josancy, M.; Jaltel, M.; Luthler, B.; Cauderller, P. fharm. Biol. 1982, 16 (140), 309-15; Chem. Abstr. 9 7 , 192616~. (240) Kabrt, L.; Vacha, P. Sb. Vys. Sk. Chem.-Techno/. fraze, Anal. Chem. 1982, H17, 11-29. (241) Kafarova, A. A. Izv. Akad. Nauk Gruz. SSR, Ser. Khim. 1982, 8(3), 192-6; Chem. Abstr. 9 8 , 154486~. (242) Kahn, P. C.; Bailey, S. A. fers. Comput. Chem. 1979 1981, 130-52. (243) Kakac, B.; Vejdelek, 2. J. “Handbook of the Photometric Analysis of Organic Compounds”; Verlag Chemie: Weinhelm, Fed. Rep. Ger., 1983; Supplementary Vol. 2, 506 pp; Chem. Abstr. 9 9 , 133080s. (244) Kallnlna, L. B.; Novakovskaya, E. G.; Khalonln, A. S. Izv. Vyssh. Uchebn. Zaved., Khlm. Khlm. Tekhnol. 1983, 26 (2), 177-81; Chem. Abstr 9 8 , 190886n. (245) Kallvas, J. H. Anal. Chem. 1983, 55 (3), 565-7. (246) Kallvas, J. H.; Kowalskl, B. R. Anal. Chem. 1982, 54 (3), 560-5. (247) Kalivas, J. H.; Kowalskl, B. R. Anal. Chem. 1983, 55 (3), 532-5. (248) Kandrnal, J.; Llpus, V.; Huvar, B. Chem. Llsty 1983, 77 (I), 95-9; Chem. Abstr. 9 8 , 122194k. (249) Kang, J.; Zhang, M. Gaodeng Xuexlao Huaxue Xuebao 1983, 4 (3), 299-304; Chem. Abstr. 9 9 , 151191h. (250) Karkllna, V.; Jansons, E.; Blrska, I.; Veverls, A. Latv. fSR Zinat. Akad. Vestis, Kim. Ser. 1983, (l), 100-3; Chem. Abstr. 98, 1722710‘. (251) Kawaguchl, H. Kagaku no Ryoikl 1982, 36 ( l l ) , 799-819; Chem. Abstr. 9 8 , 6 3 0 8 1 ~ . (252) Kaye, W. Anal. Chem. 1981, 53 (14), 2201-6. (253) Kaye, W. Anal. Chem. 1983, 55 (13), 2018. (254) Kaye, W. Anal. Chem. 1983, 55 (13), 2022-5. (255) Kazanskll, L. P.; Dorokhova, E. N. Zh. Anal. Khim. 1981, 36 (lo), 2067-70; Chem. Abstr. 9 6 , 60249e. (256) Kim, S. I.; Hoehn, E.; Eskln, N. A. M.; Ismall, F. J. Agric. FoodChem. 1982, 30 (l), 144-7. (257) Kim, W. S.; Seng, G. T. NASA Tech. Memo. 1982, NASA-TM-83032, E-1470, NAS1.15:83032, 47 pp. (258) King, D.; Davldson, R. S.; Phllllps, M. Anal. Chem. 1982, 54 (13), 2 191-4. (259) Klrlllov, A. I.; Kostromltlnova, 0. M.; Koroleva, G. N.; Korsun, L. N.; Kostromina, N. A. Zh.Anal. Khim. 1981, 36 (7), 1323-9; Chem. Abstr. 9 6 , 27806m. (260) Kirillov, A. I.; Shaullna, L. P.; Churakova, G. N. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1981, 24 ( l l ) , 1448-50; Chem. Abstr. 96. 79052g. (261) Kirkbright, 0. F. Recent Adv. Anal. Spectrosc., Proc. Int. Conf. At Spectrosc. 9th 1981 1982, 15-25. (262) Klrschenbaum, D. M. Appl. Biochem. Biotechnol. 1982, 7 (€9, 475-95. (263) Klrschenbaum, D.M. J. Quant. Spectrosc. Radiat. Transfer 1982, 27 (1). 23-38. (264) Klrschenbaum, D. M. J. Quant. Spectrosc. Radiat. Transfer 1982, 27 (I), 39-53.

.

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

237 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (265) Kish, P. P.; Bazel, Ya. R.; Balog, I.S. Ukr. Khlm. Zh. (Ross. Ed.) 1982, 48(9), 969-72; Chem. Abstr. 98, 4 6 0 5 5 ~ . (266) Kitamura, K.; Majlma, R. Anal. Chem. 1983, 55 ( l ) , 54-6. (267) Khakhalkina, I. G.; Minin, A. A.; Khiyupina, L. L.; Donskova, A. P. Zavod. Lab. 1983, 49 (5), 14-15; Chem. Abstr. 9 9 , 8 1 8 9 3 ~ . (268) Kharzeeva, S.E.; Mal'tseva, V. S.Deposited Doc. 1981, SfSTL 945 Khp-D67, 6 pp; Chem. Abstr. 9 8 , 1 9 0 8 2 7 ~ . (269) Knight, J. H. G.; Griffiths, D. Eur. Pat. Appl. EP 47,094 (Cl.G01N21/ OI), 10 Mar 1982, GB Appi. 80/27,319, 21 Aug 1980; 35 pp. (270) Kobyakov, V. V.; Ovsepyan, A. M.; Panov, V. P. Khim.-Farm. Zh. 1982, 16 (3), 371-3; Chem. Abstr. 9 6 , 187410f. (271) Koch, S.; Ackermann, G. Chem. Anal. (Warsaw) 1981, 26 (2), 23731; Chem. Abstr. 9 6 , 7 8 9 8 0 ~ . (272) Kochetkova, T. M.; Eroshina, 0. I.; Bundenkova, N. I.Zavod. Lab. 1983, 49 (3), 21-3; Chem. Abstr. 96, 1 9 1 0 3 4 ~ . (273) Komar, N. P.; Samoiiov, V. P.; Zalkind, V. M.; Stepanenko, I.A. Zh. Anal. Khim. 1982, 37(2), 349-56; Chem. Abstr. 96, 154509s. (274) Korany, M. A.; Herber, D.; Schnekenburger, J. Talanta 1982, 29 (4), 332-4. (275) Korchagina, G. T.; Leks, T. G.; Rukhlyadeva, A. P. Fermentn. Spirt. from-st. 1982, (I), 23-6; Chem. Abstr. 9 6 , 1 2 0 7 6 1 ~ . (276) Koshy, V. C.; Tandon, S.G. Croat. Chem. Acta 1981, 54 (4),459-64. (277) Kovaieva, L. V.; Ganago, L. I. Vests/ Akad. Navuk BSSR, Ser. Khlm, Navuk 1983, (2), 3-7; Chem. Abstr. 9 8 , 2 2 7 1 2 9 ~ . (278) Kracmar, J.; Kracmarova, J. Cesk. Farm. 1982, 37 ( I ) , 14-23; Chem. Abstr. 9 7 , 11694h. (279) Kracmar, J.; Kracmarova, J. Cesk. Farm. 1982, 37 (7), 271-8; Chem. Abstr. 9 7 , 2033012. (280) Kracmar, J.; Kracmarova, J. fharmazie 1982, 3 7 ( 2 ) , 120-5; Chem. Abstr. 97, 78966s. (281) Kratochviia, J.; Pollak, M.; Garcic, A.; Zahradnlcek, L. Blochem. Clln. Eohemoslov. 1980, 9 (4), 209-18; Chem. Abstr. 96, 84983n. (282) Kratochvlla, J.; Pollak, M.; Garcic, A.; Zahradnlcek, L. Blochem. Clln. Eohemoslov. 1981, 10(1), 1-8; Chem. Abstr. 9 6 , 4 8 4 1 3 ~ . (283) Kryiov, Yu. F.; Arzamastsev, A. P.; Chichiro, V. E. Farm. Zh. (Klev) 1982, (3), 16-18; Chem. Abstr. 9 7 , 1338259. (284) Kuban, V. Blochem. Ciin. Eohemoslov. 1982, 11 (4), 299-314; Chem. Abstr. 9 8 , 1 3 9 9 8 7 ~ . (285) Kubiak, 2.; Hendrich, W. Wiad. Chem. 1981, 35(11), 701-16; Chem. Abstr. 97, 1036329. (286) Kuhnert-Brandstaetter. M.; Geiler, M.; Wurian, I.Sci. fharm. 1982, 50 (4), 324-31; Chem. Abstr. 9 8 , 1324388. (287) Kuroda, R.; Mochizuki, T. Talanta 1981, 28 (e), 389-93. (288) Kutlukova, U. S.; Mll'kis, F. S. Deposited Doc. 1981, VINITI 335961, 8 pp.; Chem. Abstr. 97, 6 5 6 6 8 ~ . (289) Kvaratskhell, Yu. K.; Demin, Yu. V. Zh. Anal. Khlm. 1983, 38 (E), 1427-33; Chem. Abstr. 9 9 , 1 5 1 1 3 8 ~ . (290) Kvaratskheli, Yu. K.; Demin, Yu. V.; Pchelkin, V. A,; Kukushkin, G. R.; Mel'chakova, N. V. Zh. Anal. Khlm. 1983, 38 (E), 1434-8; Chem. Abstr. 99, 151297~. (291) Kvaratskheli, Yu. K.; Pcheikln, V. A.; Demin, Yu. V.; Kukushkin, G. R. Zh. Anal. Khlm. 1981, 36(10), 2054-8; Chem. Abstr. 96, 454750. (292) Lachmann, H. GIT Fachz. Lab. 1983, 2 7 ( 3 ) , 170-2, 175-6, 178-9; Chem Abstr. 99, 325 15g. (293) Langade, A. D.; Shinde, V. M. Analyst (London) 1982, 107 (1275), 708-11. (294) Laurs, J.; Zaharans, V. Latv. f S R Zinat. Akad. Vestls, Klm. Ser. 1981, (6), 708-10; Chem. Abstr. 9 6 , 9 6 8 1 1 ~ . (295) Lawrence, A. H. J. Am. Leather Chem. Assoc. 1981, 76 (11), 447-53. (296) Lazarev, A. I., Zavod. Lab. 1983, 49 ( I ) , 3-7; Chem. Abstr. 9 8 , 1003270'. (297) Lazareva, V. I.;Lazarev, A. I. Zavod. Lab. 1983, 49 (2), 11-15; Chem. Abstr. 9 8 , 190866f. (298) Leach, R. A,; Ruzicka, J.; Harris, J. M. Anal. Chem. 1983, 55 ( l l ) , 1669-73. (299) Legg, E. F.; Cooper, J. D.; Holland, M. R.; Willls, J. J. Autom. Chem. W80, 2 (2), 81-5. (300) Leggett, D. J.; Chen, N. H.; Mahadevappa, D. S.Fresenius' 2.Anal. Chem. 1982, 377 (7) 687-90. (301) Lemii, J.; Knockaert, I.fharm. Weebl., Sci. Ed. 1983, 5 ( 4 ) , 142-4; Chem. Abstr. 9 9 , 1 4 6 2 0 7 ~ . (302) Levlne, R. L.; Federici, M. M. Blochemlstfy 1982, 27 ( l l ) , 2600-6. (303) Li, W.; Cao, S.Kuangye Gongcheng 1983, 3 ( l ) , 58-62; Chem. Abstr. 9 9 , 47158s. (304) Lln, S. Y. Sven. faperstldn. 1982, 85(18), R162-Rl71. (305) Liu, C.; Mlao, H. Yaowu Fenxi Zazhl 1982, 2 (5), 288-73; Chem. Abstr. 9 8 , 113805h. (308) LKB Biochrom Ltd. Buiietln B-4050/51-E01, 1981. (307) Lobanov, F. I.; Opasova, R. 0.; Savostin, A. P. Zavod. Lab. 1982, 48 (12), 19-20; Chem. Abstr. 98, 829899. (308) Lopez, A.; Mazzeo, P.; Quagiia, M. G.; Segnallnl, F. Farmaco, Ed. Plat. 1982, 37 ( 1 1). 371-6. (309) Lopez, J.; Simal, J. An. Bromatol. 1982, 34 ( l ) , 113-21; Chem. Abstr. 9 9 , 68863h. (310) Lopez-Rlvadulia, M.; Fernandez, P.; Carracedo, A,; Concheiro, L.; Alonso, J. R.; Concheiro, A. J. Anal. Toxlcol. 1982, 6(6),314-16. (311) Lou, Y.; Wang, Y.; Wang, M.; Chen, D.; Lin, J.; Xu, S.; Hong, D. Yaowu FenxlZazhl1983, 3 (3), 137-41; Chem. Abstr. 99, 1 4 6 1 7 2 ~ . (312) Luaces Paros, M. C.; Bermejo Barera, A,; Bermejo Martinez, F. Acta Qulm. Compostelana 1982, 6 ( I ) , 1-8; Chem. Abstr. 99, 9 8 3 2 0 ~ . (313) Magri', A. L.; Santopadre, P.; Tomassetti, M. Ann. Chim. (Rome) 1983, 73 (5-6), 273-81. (314) Maiy, J.; Kosikova, M.; Vodni Hospod., 6 1983, 33 (5), 137-40; Chem. Abstr. 9 9 , 9 3 3 9 4 ~ .

.

238 R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(315) Manes Vlnuesa, J.; Bosch Serrat, F. An. R . Acad. Farm. 1982, 48 (4), 525-32; Chem. Abstr. 9 8 , 1944379. (316) Marczenko, 2.; Kraslejko, M.; Stec, J. Chem. Anal. (Warsaw) 1981, 26 (6),1051-7; Chem. Abstr. 99, 63405a. (317) Marek, E . M.; Kolmogorova, I . V.; Andosov, V. V. Khlm.-Farm. Zh. 1981, 15(10),114-18; Chem. Abstr. 9 6 , 27892m. (318) Maslii, L. K.; Umetskaya, M. N.; Tlkhomoiov, A. A,; Timofeeva, T. N. Zh. Anal. Khim. 1983, 38 ( l ) , 120-8; Chem. Abstr. 9 6 , 11876s. (319) Matsumoto, Y.; Shiraishi, T. Rlnsho Kensa 1981, 25 (13), 1571-6; Chem Abstr 96 I 1 18275d. (320) Matthews, T. G.; Hawthorne, A. R.; Gammage, R. B. Report 1982, ORNL/TM-8007; Order No. DE82010335, 25 pp. (321) Mazzeo, P.; Quaglia, M. G.; Segnalini, F. J. fharm. fharmacol. 1982, 34 (7), 470-2. (322) McCleliand, J. F. Anal. Chem. 1983, 55 ( l ) ,89A-90A, 92A, 94A, 96A, 98A, 100A, 103A, 105A. (323) McEiderry, L. A.; Tarblt, 1. F.; Cassells-Smith, A. J. Clin. Chem. (Wlnston-Salem, N.C.) 1982, 26 (2), 356-60. (324) McGowan, M. W.; Artiss, J. D., Strandbergh, D. R.; Zak, B. Clln. Chem. (Wlnston-Salem, N.C.) 1983, 29 (3), 538-42. (325) McGowan, M. W.; Artiss, J. D.; Zak, B. J. Clln. Chem. Clln. Blochem. 1082, 20 ( l l ) ,807-12. (328) McQueen, D. H. J. f h y s . D 1982, 75 (3), 437-44. (327) Melent'eva, G. A.; Tyzhigirova, V. V. Farmatsiya (Moscow) 1982, 37 (5), 26-9; Chem. Abstr. 9 7 , 2 2 3 0 7 1 ~ . (328) Mellon, M. G. Anal. Chem. 1945, 77, 81; 1949, 21, 3; 1050, 22, 2; 1951, 2 3 , 2; 1952, 24, 2; 1954, 26, 2. (329) Meiion, M. G.; B o k , D. F. Anal. Chem. 1956, 28, 559R; 1958, 3 0 , 554R; 1960, 3 2 , 194R; 1082, 34, 232R. (330) MicroCoatings, Ing. Lab. Equlp. 1982, 78,66. (331) Mielenz, K. D.; Weidner, V. R.; Burke, R. W. Appl. Opt. 1982, 21 ( l a ) , 3354-6. (332) Mochizuki, T.; Kuroda, R. Fresenius' 2.Anal. Chem. 1982, 371 ( l ) , 11-15. (333) Montana Gonraiez, M. T.; Sanchez Martin, A,; Gomez Ariza, J. L. Mlkrochlm. Acta 1982, 2 (5-6), 363-9. (334) Moore, T. A. fhotochem. fhotoblol. Rev. 1983, 7 , 187-221. (335) Morelii, B. Analyst (London) 1983, 106 (1284), 386-94. (336) Mori, I.; Fujita, Y.; Sakaguchl, K. Chem. fharm. Bull 1882, 30 (7), 2599-603. (337) Morse, G. A,; Behrlsch, H. W. I n t . J. Blochem. 1983, 15(3),323-7. (338) Moussa, B. A. Egypt. J. fharm. Scl. 7980 1982, 21 (3-4), 255-64. (339) Moyles, T. P.; Schneider, D. R.; Erhndon, R. F. J. fharmacol. Methods 1982, 8 (3), 225-30. (340) Mural, S. Kenkyu Hokoku-Kanagawa-ken Kogyo Shlkensho 1982, (52), 93-6; Chem. Abstr. 9 7 , 103509e. (341) Muzhanovskii, E . V.; Fartushnyi, A. F.; Sedov, A. I.Farm. Zh. (Kiev) 1981, (5), 65-6; Chem. Abstr. 9 6 , 578251. (342) Myakisheva, E. A,; Kaminskii, A. Ya.; Chinenova, A. V. Khlm. f r o m st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khlm. from-stl. 1882, (2), 33-5; Chem. Abstr. 9 6 , 192653s. (343) Nagashima, S.;Ozawa, T. Int. J. Envlron. Anal. Chem. 1981, 10(2), 99-106. (344) Nakagawa, F . Sangyo to Kankyo 1982, 77 (12), 88-92; Chem. Abstr. 98, 113198n. (345) Nakatsujl, S.; Nakano, R.; Kawano, M.; Kakashlma, K.; Akiyama, S. Chem. fharm. Bull. 1982, 30 (7), 2487-73. (346) Nayak, A. N.; Ramappa, P. G.; Yathlrajan, H. S. An. Qulm., Ser. C 1982, 78 ( l ) ,86-8. (347) Nayak, A. N.; Ramappa, P. G.; Yathirajan, H. S.; Subrahmanya, U. Ann. Chlm. (Rome) 1981, 77(11-12), 721-7. (348) Nazarenko, A. Yu.; Voioshin, Ya. 2. Zh. Anal. Khim. 1982, 37 (8), 1469-72; Chem. Abstr. 9 8 , 4 8 0 4 6 ~ . (349) Nesterenko, P. N.; Ivanov, V. M. Zh. Anal. Khim. 1983, 38(8), 141521; Chem. Abstr. 99, 168616y. (350) Nicoi. D. J.; Curnow, D. H.; Davis, R. E. Clin. Chem. (Wlnston-Salem, N.C.) 1083, 29 (9), 1694-5. (351) Nikipelova, E. M.; Olenovich, N. L. DeposltedDoc. 1980, SPSTL 989 khp-DEO, 30 pp; Chem. Abstr. 9 7 , 487069. (352) Nikolaeva, D. N.; Lebedeva, L. I.Vestn. Lenlngr. Unlv., Fiz., Khlm. 1982, 2 2 ( 4 ) , 112-14; Chem. Abstr. 9 8 , 82972d. (353) Nikoiova, N.; Taneva, N.; Nin'jo, N. Tr. Nauchnoizsled. Khlm.-Farm. Inst. 1982, 12, 239-44; Chem. Abstr. 9 8 , 95737f. (354) Noguchi, H.; Yoshio, M.; Nakamura, H.; Nagamatsu, M. Rlkogakubu Shuho (Saga Dalgaku) lg82, 70, 119-22; Chem. Abstr. 9 7 , 1 9 2 3 6 5 ~ . (355) Nordstrom, R. J . Fourier, Hademard, Hllberi Transforms Chem. 1982, 421-52. (356) Norwitz, 0.; Keiiher, P. N. Anal. Chem. 1982, 54 (4), 807-9. (357) Norwltz, G.; Keilher. P. N. Anal. Chem. lQ83, 55 (E), 1226-9. (358) Obremski, R. J . I n d . Res. Dev. 1983, 25(5), 140-3. (359) Obrezkov, 0. N. Deposited Doc. 1981, VINITI 575-82, 360-4; Chem. Abstr. 98, 2270871. (360) Obrezkov, 0. N.; Shpigun, 0. A,; Zolotov, Uy, A. Zh. Anal. Khim. 1983, 3 8 ( 6 ) , 965-9; Chem. Abstr. 99, 1 1 5 1 2 2 ~ . Kaiugina. S. V.; Bukhtenko, L. N. Zh. Anal. (361) Obtemperanskaya, S. I.; Khlm. 1981, 36 ( l l ) ,2199-201; Chem. Abstr. 9 6 , 7 9 1 6 4 ~ . (382) Obtemperanskaya, S. I.; Ortiz Ordonez, F.; Bukhtenko, L. N. Zh. Anal. Khlm. 1983, 38 (4), 707-9; Chem. Abstr. 9 9 , 32568b. (363) Ohashi, K.; Nakazawa, H.; Enomoto, T.; Yamamoto, K. Bunsekl Kagaku 1981, 30 ( l l ) , 727-31; Chem. Abstr. 96, 6 2 2 2 7 ~ . (364) Ohashi, K.; Nakazawa, H.; Yamada, K.; Yamamoto, K. Bunsekl KagakU 1982, 31 ( l ) , El-E6. (365) O'Haver, T. C. Anal. f r o c . (London) 1982, 79 ( l ) , 22-8. (366) Ohkubo, S.;Mashige, F.; Kamei, Y.; Ohkubo, A.; Yamanaka, M. Rinsho Kensa 1983, 2 7 ( 3 ) , 329-32; Chem. Abstr. 98, 2 1 2 3 5 7 ~ .

.

.

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (367) Ohshita, K.; Wada, H.; Nakagawa, G. Anal. Chim. Acta 1982, 740(1), 291-300. (368) Ohshita, K.; Wada, H.; Nakagawa, G. Anal. Chlm. Acta 1983, 149, 269-79. (369) Oktavec, D.; Siles, B.; Remen, J.; Konecny, V.; Garaj, J. Collect. Czeck. Chem. Commun. 1982, 47 ( l l ) , 2676-81. (370) Oblnlk, A. A.; Bogodlst, Yu. 11; Yanlshevskaya, T. A. Deposited Doc. 1981, SPSTL 860 Khp-Del, 7 pp; Chem. Abstr. 98, 720524. (371) Omenetto, N.; Winefordner, J. D. CRC Crk. Rev. Anal. Chem. 1981, 73 (I), 59-115. (372) Onishl, H. EunsekiKagaku 1981, 30 (IO), 511-518. (373) Otuski, A. EunseklKagaku 1981, 30 (lo), 686-9; Chem. Abstr. 95, 225322t. (374) Overzet, F.; Rurak, A.; Van der Voet, H.; Drenth, B. F. H.; Ghijsen, R. T.; DeZeeuw, R. A. J . Chromatogr. 1983, 287 (2), 329-45. (375) Overzet, F.; Ghijsen, R. T.; Drenth, B. F. H.; De Zeeuw. R. A. J . Chromatogr. 1982, 240 (I), 190-5. (376) Ozaki, T. Anal. Lett. 1982, 15 (A7). 595-610. (377) Padros, E.; Morrow, A.; Manosa, J.; Dunach, M. Eur. J . Blochem. 1982, 727 (l), 117-22. (378) Pandey, S. C.; Sangal, S. P. Chem. Era 1981, 77(4), 95-6. (379) Pardue. H. L.; Hamliton, S. D.; Wiser, W. E.; Kirk, H.; Lads, I. J . . Autom. Chem. 1983, 5(2), 108-10. (380) Parniak, M. A.; Lange, G.; Viswanatha, T. J. Blochem. Blophys. Metho d ~1983, 7 (4), 267-76. (381) Paslawska, S. Ann. Acad. Med. Gedanensls 1982, 12, 57-63; Chem. Abstr. 99, 1 0 5 5 6 ~ . (382) Patei, K. S.;Khatri, H.; Mishra, R. K. Anal. Chem. 1983, 55 (ll), 1823-6. (363) Patel, K. S.; Mishra, R. K. Talanta 1982, 29 (9), 791-3. (384) Patterson, T. G.; Glenister, R.; Larue, T. A. Anal. Blochem. 1982, 719 (l), 90-5. (365) Perkin-Elmer Corp. Bulletin 2222/10.81. 1981. (386) Perkin-Elmer Corp. Bulletin Order No. 8-441, 1982. (367) Pesavento, M.; Soidi, T.; Riolo, C.; Garrone, P. Ann. Chim. (Rome) 1981, 77 ( 7 4 , 371-85. (388) Petroskl, R. J. J . Assoc. Off. Anal. Chem. 1983, 68 (2), 309-11. (389) Phillips, J. P.; Bates, D.; Feuer, H.; Thyagarajan, 8. S.“Organic Electronic Spectral Data”; Wiley: New York, 1981; Vol. 17, 1060 pp. (390) Pilipenko, A. T.; Karetnikova, E. A. Ukr. Khlm. Zh. (Russ. Ed.) 1982, 48(12), 1284-6; Chem. Abstr. 98, 82974f. (391) Pilipenko, A. T.; Makslmyuk, E. G. Ukr. Khim. Zh. (Russ. Ed.) 1982, 48 (5), 500-2; Chem. Abstr. 97, 46905d. (392) Plllgenko, A. T.; Maksimyuk, E. G.; Savranskli, L. I. Dopov. Akad. Nauk Ukr. RSR, Ser. 6 : Geol., Khlm. 8/01,Naukl 1982, (E), 41-2; Chem. Abstr. 97, 211873~. (393) Pliipenko, A. T.; Ryabushko, 0. P.; Matsibura, 0. S. Zavod. Lab. 1982, 48(5), 7-11; Chem. Abstr. 97, 65564J. (394) Pilipenko, A. T.; Savranskli, L. I.; Mas’ko, A. N. Zh. Anal. Khlm. 1983, 38(6), 1455-62; Chem. Abstr. 99, 151139~. (395) Pilipenko, A. T.; Savranskll, L. I.; Mas’ko, A. N.; Sheptun. V. L. Dokl. Akad. Nauk SSSR 1981, 260 (2), 377-80; Chem. Abstr. 95. 196844g. (396) Pilipenko, A. T.; Semenko, L. S. Ukr. Khlm. Zh. (Russ. Ed.) 1982, 48 (2), 170-3; Chem. Abstr. 96, 209944n. (397) Pilipenko, A. T.; Tulyupa, F. M.; Volkova, A. I.; Pillpenko, L. A.; Faiendysh. E. R. Ukr. Khlm. Zh. (Russ. Ed.) 1983, 49 (6),612-30; Chem. Abstr. 99, 1 1 5 0 1 6 ~ . (398) Piiipenko, A. T.; Volkova, A. I. Zavod. Lab. 1981, 47 (11). 3-20; Chem. Abstr. 96, 27752r. (399) Poizat, 0.; Atkinson, G. H. Anal. Chem. 1982, 54 (9), 2465-9. (400) Pomoje, R.; Oprescu, D.; Goldstein. A. Bur. Stllnt. Teh. Inst. Politeh. “Traian Vuia” Tlmlsoara, Ser. Chlm. 1981, 26(2), 121-5; Chem. Abstr. 99, 3 2 3 4 0 ~ . (401) Popescu, M.; Danet, A. Rev. Roum. Chlm. 1983, 28 (l), 65-74. (402) Popovici, I.; Dorneanu, V.; Cuclureanu, R.; Stefanescu, E. Rev. Chlm. (Bucharest) 1983, 34 (6),554-5; Chem. Abstr. 99, 164091a. (403) Postiglione, L.; Oriente. P.; Cimmino, F.; Nastasi, L.; Spano, A,; DiFrala, 0. Boll.-SOC. Ital. Elol. Sper. 1982, 58 (lo), 605-11; Chem. Abstr. 97, 51966e. (404) Poulet, P.; Chambron, J. J . Photoacoust. 1983, 1 (3), 329-46. (405) Pringle, D. L.; Mohabbis, M. T.; Mahoney, M. H.;Stoak, C. H.; Sullivan, J. M. Talanta 1982, 29 (12), 1097-100. (406) Przybytek, J. T., Ed. “High Purity Solvent Guide”, 2nd ed.; Burdlck & Jackson Laboratories, Inc.: Muskegon, MI, 1982. (407) Ptushkina, M. N.; Lebedeva, L. I.; Stolyarov, K. P. Zh Obshch. Khlm. 1983, 53 (5), 975-81; Chem. Abstr. 99, 32244t. (408) Purneii, C. J.; Walker, R. F. Anal. Proc. (London) 1981, 78 ( l l ) , 472-8. (409) Fyatnitskii, I . V.; Giushchenko, L. M.; Lipkovskaya. N. A. Zh. Anal. Khlm. 1982, 37(8), 1458-61; Chem. Abstr. 97, 2293036. (410) Fyatnitskii, I. V.; Kolomiets, L. L.; Maryshchnko, L. I. Ukr. Khim. Zh. (Russ. Ed.) 1982, 48(12), 1267-90; Chem. Abstr. 98, 62975g. (411) F‘yatnltskii, I . V.; Kolomlets, L. L.; Popovick, 0. M. Zh. Anal. Khlm. 1983, 38 (5), 815-18; Chem. Abstr. 99, 983589. (412) Qian-Feng, W.; Peng-Fei, L. Talanta 1983, 30 (4), 275-6. (413) Qureshi, M.; Nabi, S. A.; Khan, I . A,; Qureshi, P. M. Takrnta 1982, 29 (9). 757-60. (414) Racek, J.; Siaby, P. Clin. Chlm. Acta 1983, 130 (2). 245-50. (415) Raggi, M. A.; Cavrlni, V.; DiPMra. A. M. J . Pherm. Scl. 1982, 77 (12), 1384-6. (416) Ramappa, P. G.; Nayak, A. N. Indlan J . Pharm. Scl. 1983, 45(2), 65-9. (417) Ramaswamy, V. J. Sci. Ind. Res. 1981, 40 (e). 584-95. (418) Rao, K. E.; Murthy, K. V. S.S.;Sastry. C. S. P. Indlan Drugs 1982, 20 (2), 58-61.

.

(419) Rawat, J. P.; Singh, 0. Acta Clenc. Indica, [Ser.] Chem. 1982, 8(2), 114-18. (420) Reddy, V. K.; Reddy, D. V. J . Indian Inst. Scl. 1981, 63(10), 211-15. (421) Rees, D.; McWhlrter, I.; Cochrane, A. Quantum Electron, fiectro-Opt. Proc. Natl. Quantum Electron. Conf., 5th 1981 1983, 415-18. (422) Rehm, C. Aerztl. Lab. 1982, 28 (3), 85-7; Chem. Abstr. 96, 139060~. (423) Rizk, M.; Walash, M. I.; El-Brashy, A. Fresenius’ 2. Anal. Chem. 1982, 370 (3-4), 256. (424) Roebisch, G.; Pfendt. 8.; Szargan, R. Z . Chem. 1982, 22 (9), 338-9; Chem. Abstr. 98, 46075e. (425) Roessner, B.; Schwedt, G. Fresenlus’ Z . Anal. Chem. 1983, 375 (3), 197-200; Chem. Abstr. 99, 634902. (426) Rogozhin, V. V.; Kutuzova, G. D.; Ugarova, N. N.; Berezln, I. V. Eloorg. Khim. 1983, 9 (6),794-802; Chem. Abstr. 99, 49553r. (427) Roman, M.; Berzas, J. J.; Esplnosa, A. Microchem. J . 1983, 28 (l), 69-76. (428) Roman Ceba, M.; Munoz Leyva, J. A,; Berzas Nevado, J. J. Anal. Chim. Acta 1981, 730 (I), 183-92. (429) Romero, J. M.; Blanco, C.; Verdu. J. An. Qulm., Ser. E 1981, 77(2), 182-5: Chem. Abstr. 97. 8 4 2 3 5 ~ . (430) Rosenbaum, E J. Anal. Chem. 1949, 27, 16; 1950, 22, 14; 1951, 23, 12; 1952, 24, 14; 1954, 26, 20. (431) Rubinson, K. A.; Mark, H. B., Jr. Anal. Lett. 1982, 15(A12), 989-93. (432) Rutkowski, R.; Barnhart, E.; Alexander, L. R. Report 1980, DHEW/ CDC/BL-80/0221; Order No. PB61-176273, 17 pp. (433) Ruzicka, J.; Hansen, E. H.; Ramslng, A. U. Anal. Chlm. Acta W82, 134, 55-71. (434) Rylatt, D. B.; Parish, C. R. Anal. Biochem. 1982, 727 (l), 213-14. (435) Sagaster, H. R.; Roebisch, G. Z . Chem. 1982, 22(6), 225-6; Chem. Abstr. 97, 74338r. (436) Sainz, M. A.; Coleman, D. M. Appl. Spectrosc. 1981, 35 (6), 564-7. (437) Salto, T.; Murakami, Y.; Ozasa, Y.; Hagiwara, K. Osaka Kogyo GJutsu Shlkensho Kiho 1982, 33 (2), 216-20; Chem. Abstr. 97, 168568t. (438) Sakai, T. Analyst (London) 1982, 707 (1275), 640-6. (439) Salinas, F.; Capkan-Valley, L. F.; Gazquez, D. Mlcrochem. J . 1982, 27 (2), 188-93. (440) Salpeter, J.; LaPerch, F. Am. Lab. (Fairfield, Conn.) 1981, 73(9), 76, 80-1, 83-5. (441) Sandritter, W. Acta Hlstochem., Suppl. 1982, 26, 15-24; Chem. Abstr. 98. 1771451. (442)-Sane, k. T.; Bimane, B. D.; Mhalas, J. G. Indian Drugs 1981, 79 (3), 121-6. (443) Sane, R. T.; Kamat, S. S. J. Assoc. Off. Anal. Chem. 1982, 65 (l), 40-2. (444) Sane, R. T.; Malkar, V. B.; Nayak, V. G. Indian Drugs 1982, 19 (12), 487-92. (445) Sane, R. T.; Nayak, V. G. Indian Drugs 1982, 79 (5), 206-10. (446) Sane, R. T.; Nayak, V. 0.; Joshi, S.K.; Pandit, U. R.; Suie, U. A. Indian Drugs 1983, 20 (E), 329-30. (447) Sane, R. T.; Valdya, U. M.; Nayak, V. G.; Dhamankar, A. Y.; Joshi, S. K.; Doshi, V. J.; Swanat, S.V.; Malkar, V. B.; Pandit, U. R.; et ai. Indian Drugs 1982, 79 (lo), 398-403. (448) Sanghavi, N. M.; Bailur, Y. V. Indian Drugs 1981, 18 (g), 330-2. (449) Sanghavi, N. M.; Sathe, V. H.; Padki, M. M. Indian Drugs 1983, 20 (6), 341-2. (450) Sargent-Welch Scientific Co. Bulletin 7061.02.7182.1 1. (451) Sarkar, C. P.; Cenedella, R. J. Llplds 1982, 17(1), 46-9. (452) Sastry, C. S.P.; Rao, 0. G.; Murthy, K. V. 8 . S. J . Indian Chem. SOC. 1982, 59 (9), 1107-9. (453) Sastry, C. S. P.; Rao, K. E.; Prasad, U. V. Talanta 1982, 29 (llA), 917-20. (454) Sastry, C. S.P.; Reddy, B. S.;Rao, B. G. Indlan J. Pharm. Sci. 1981, 43 (3), 116-20. (455) Sato, S. Anal. Chlm. Acta 1982, 142, 319-24. (456) Savitzky, A. Recent Adv. Anal. Spectrosc., Proc. Int. Conf. At. Spectrosc., 9th 1987 1982, 275-64. (457) Savos’kina, L. N.; Nemodruk, A. A.; Oskotskaya, E. R. Zh. Anal. Khlm. 1981, 36(8), 1483-9; Chem. Abstr. 98, 45406k. (458) Sawada, T. Eunsekl1982, (3), 164-70; Chem. Abstr. 96, 2280559. (459) Scharmann, A,; Wirz, P. Aerztl. Lab. 1981, 27 (12), 352-4; Chem. Abstr 96, 78944n. (460) Schmidt, W. Anal. Eiochem. 1982, 125 (I), 162-7. (461) Schmltt, A.; Sprettzhofer’, E. Brit. UK Pat. Appi. OB 2,071,644 (Cl. GOlN21/27), 23 Sep 1981, DE Appi. 3,008,345, 05 Mar 1980; 6 pp. (462) Schoonover, D. J.; Larson, P. U.S. US 4,329,149 (Cl. 23-230R; G01N21/27, 11 May 1982, Appl. 127,724, 06 Mar 1980; 5 pp. (463) Sequoia-Turner Corp. Anal. Chem. 1983, 13, 1346A. (464) Sergeev, G. M.; Korenman, I. M.; Subbotina, T. K.; Sirotina, N. M. Zh. Anal. Khlm. 1983, 38(2), 330-3; Chem. Abstr. 98, 20937th. (465) Servillo, L.;Colonna, G.; Baiestrierl, C.; Ragone, R.; Irace, G. Anal. Eiochem. 1982, 726 (2), 251-7. (466) Seward, R. W.; Mavrodineanu, R. NBS Spec. Publ. ( U . S . ) 1981, 260-71, 168 pp. (467) Shahine, S.; Khamis, S.Microchem. J. 1983, 28 (l), 28-32. (468) Shao, J.; Tian, X. Shengwu Huaxue Yo Shengwu Wuli Jlnzhan 1983, 57, 70-3; Chem. Abstr. 99, 8463317. (469) Sharp, T. R.; Goplnath, K. R.; Brandt, P. W.; Rosenberry, T. L. Anal. Eiochem. 1981, 176 (2), 545-52. (470) Shapovalov, S. A.; Adamovich, L. P. DeposltedDoc. 1982, SPSTL 21 Khp-D82, 10 pp, Chem. Abstr. 98, 190820m. (471) Shaulina, L. P.; Kiriliov, A. I . Depos/tedDoc. 1980, SPSTL 776 KhpD80, 9 pp, Chem. Abstr. 97, 1 0 3 5 0 1 ~ . (472) Shcherbov, D. P.; Gladysheva, G. P.; Plotnikova, R. N. Zavod. Lab. 1982, 48 (E), 14-16; Chem. Abstr. 97, 229338s.

.

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

* 239 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (473) Shen, H.; Wang, L.; Li, Y. Fenxi Huaxue 1983, If (5), 336-42; Chem. Abstr. 9 9 , 984046. (474) Shen, N.; Zhang, F. Yaoxue Xuebao 1981, 16 (5), 397-400; Chem. Abstr. 9 7 , 11914e. (475) Shih, H. M.; Ho, H. W.; Yang, W. L. Kao Teng Hsueh Hsiao Hua Hsueh Hsueh Pa0 1981, 2 ( 3 ) , 389-92; Chem. Abstr. 95, 2312188. (476) Shijo, Y.; Shimlzu, T.; Sakai, K. Bull. Chem. SOC.Jpn. 1983, 56 (l), 105-7. (477) Shimadzu Scientific Instruments, Inc. Bulletin 30 10-05208-21ATD-E. (478) Shimadzu Scientific Instruments, Inc. Bulletin 3010-1221 1-76ANS-E. (479) Shtepa, V. I.; Vereshchagina, L. N.; Osmanov, R. R.; Putiin, F. N.; Zharov, V. P. J . Photoacoust. 1982, 1 (2), 181-202. (480) Shukla, J. P. Rev. Roum. Chim. 1982, 27 (6), 751-9. (481) Silasi, M.; Lupea, A.; Cuiban, F. (Rom.) Bul Stilnt. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim. 1881, 26 ( l ) , 115-20; Chem. Abstr. 99, 32553t. (482) Sllvenstein, R. M.; Bassier, G. C.;Morrlll, T. C. "Spectrometric Identification of Organic Compounds", 4th ed.; Why: New York, 1981; 442 pp. (483) Simal, J.; Lopez, J. An. Bromatoll982, 34(1), 103-11; Chem. Abstr. 9 9 , 688629. (484) Simonenko, V. I.; Volovenko, Yu. M. Ukr. Khim. Zh. 1882, 48 (12), 1291-2; Chem. Abstr. 9 8 , 100419k. (485) Siraj, P.; Krishna, R. R.; Mum, S.S.N.; Reddy, B. S.;Sastry, C. S.P. Talenta 1981, 28 (7A), 477-80. (486) SLM Instruments, Inc. Bulletin DWlOl IOM, 1983. (487) Smith, R. M. Anal. Proc. (London) 1983, 20 ( I ) , 32-3. (488) Soloniewicz, R.; Teodorczyk, M. W a d . Chem. 1982, 36 (9-lo), 57194; Chem. Abstr. 99, 1 3 3 0 2 5 ~ . (489) Sommer, L.; Kuban, V.; Langova, M. Fresenius' 2. Anal. Chem. 1982, 310 (1-2), 51-61. (490) Son, Y. S. Hwahak Kwa Kongop Ui Chinbo 1981, 2 1 (e), 340-9; Chem. Abstr. 9 6 , 151491. (491) Song, H.; Qiu, D. Shengwu Huaxue Yu Shengwu Wuli Jhzhan 1981, 4 1 , 48-51; Chem. Abstr. 9 6 , 6 4 9 9 9 ~ . (492) Spitsyn, P. K. Zevod. Lab. 1982, 48 (E), 16-17; Chern. Abstr. 9 7 , 229339t. (493) Spreitzhofer, E.; Schmitt, A. Ger. Offen. 3,007,453 ( C l . G01N21/31), 03 Sep 1981, Appl. 28 Feb 1980; 19 pp. (494) Standefer, J. C.;Eaton, R. P. Clin. Chem. (Wlnston-Salem, N.C.) 1983, 29 (I), 135-40. (495) Stewart, M. J. Ann. Clin. Biochem . 1982, 19 (4), 254-7. (496) Stoiyarov, K. P.; Smirnova, G. M. Probl. Sovrem. Analit. Khimii 1981, (3), 158-200; Chem. Abstr. 9 5 , 2 3 1 2 0 1 ~ . (497) Succari, M.; Gals, M. J.; Desmoulins, D.; Amoros-Le Fay, A. Pharm. Biol. 1982, 138, 185-9; Chem. Abstr. 97, 519741. (498) Sudo, E. Bunsekl1982, (2), 70-6; Chem. Abstr. 96, 114956d. (499) Sumina, E. G.; Chernova, I?. K. Zh. Anal. Khim. 1983, 38 (e), 104855; Chem. Abstr. 9 9 , 1 1 5 0 1 8 ~ . (500) Sun, S. Gaodeng Xuexiao Huaxue Xuebao 1982, 3 (3), 314-18; Chem. Abstr. 9 8 , 64767m. (501) Sun, S.;Shen, X. Knxue Tongboa 1983, 28(4), 220-2; Chem. Abstr. 99,32348~1. (502) Sunshine, I. "Handbook of Spectrophotometric Data of Drugs"; Chemical Rubber Go.: Cleveland, OH, 1961. (503) Susaki, H.; Mlnami, S.Appl. Spectrosc. 1982, 36 (5), 553-62. (504) Svec, A.; Rajec, P.; Matel, L. Chem. Llsfy 1981, 75 (9), 967-90; Chem. Abstr. 96, 2 1 6 7 7 ~ . (505) Svobodova, X.; Svoboda, M. Jena Rev. 1981, 26 (5),200-2. (506) Swofford, R. L. Lasers Chem. Anal. 1981, 143-56. (507) Taha, A. M.; El-Shabouri, S. R.; Rageh, A. I. Egypt. J. Pharm. Sci. 1980, 2 1 (3-4), 363-72. (508) Taha, A. M.; El-Shabouri. S.R.; Rageh, A. I. Pharmazie 1982, 37 (7), 489-9 1. (509) Talmi, Y. Appl. Spectrosc. 1982, 36 ( I ) , 1-18. (510) Talsky, G. I n t . J. fnviron. Anal. Chem. 1983, 14 (2), 81-91. (511) Talsky. G.; Dostal, J.; Giasbrenner, M.; Goetr-Maler, S.Angew. Makromol Chem. 1982, 105, 49-59. (512) Talski, G.; Haubensak, 0.; Kohler, E. E. Keram. 2. 1982, 34 ( l o ) , 573-4. 576-8: Chem. Abstr. 9 8 . 131112i. (513) Tamaoku,~K.; Murao, Y.; Akiura, K.; 'Ohkura, Y. Anal. Chlm. Acta 1052. ... -, 136. .. 121-7. (514) Tananaikd, M. M.; Ozerova, N. I_.Ukr. Khlm. Zh. 1982, 48 (12), 1293-4; Chem. Abstr. 9 8 , 1 3 6 7 2 3 ~ . (515) Tananaiko, M. M.; Todradze, G. A. Ukf. Khlm. Zh. 1983, 49 (4), 3914; Chem. Abstr. 9 9 , 6 3 4 1 4 ~ . (516) Tang, C.: Yu, X. Zhonghua Yufangyixue Zazhi 1982, 16 (2), 101-2; Chem. Abstr. 9 7 , 114395r. (517) Tantsyura, G. F.; Olenovlch, N. 1.. Deposited Doc. 1981, SPSTL 459 Khp-D81, 27 pp; Chem Abstr . 98 172024a. (518) Tarasiewicz, M.; Staniszewska, E.; Puzanowska-Tarasiewlcz,H. Pharmazie 1983, 38 (3), 203-4. (519) Terada, M.; Kawamoto, H.; Ichise, M.; Kojima, T. Bunseki Kagaku 1982, 31 (l), 6-12; Chem. Abstr. 9 6 , 79131g. (520) Thind, P. S.;Singh, M. Indian Drugs 1983, 20 (7), 288-9. (521) Thompson, K. C.Methods Exam. Waters ASSOC.Mater. 1981, 45 pp. (522) Tikhonov, V. N . Zh. Anal. Khim. 1982, 37 (11). 1960-5; Chem. Abstr. 9 8 , 8 2 8 6 5 ~ . (523) Tikhonov, V. N.; Anlslmova, T. M. Zh. Anal. Khim. 1983, 38 (5), 77882; Chem Abstr . 9 9 , 63340a. (524) Tikhonov, V. N.; Fedotova, N. S. Zh. Anal. Khim. 1982, 37 ( l o ) , 1888-91; Chem. Abstr. 98, 460059. (525) Tlkhonov, V. N.; Mikhailova, A. M.; Myasnikova, I. A.; Vanyurkina, V. I. Zh. Anal. Khim. 1983. 38 (2), 216-20; Chem. Abstr. 9 8 , 1 9 0 8 7 0 ~ . (526) Toel, K.; Motomizu, S.;Umano, T. Taianta 1982, 29 (2), 103-6.

.

I

.

240R

ANALYTICAL CHEMISTRY, VOL. 56,NO. 5, APRIL 1984

(527) Tohyama, S.;Akitomo, N . Bunko Kenkyu 1983, 32 (2), 110-16; Chem. Abstr. 9 9 , 615472. (528) Toporov, S. V.; Oienovich. N. L. Deposited Doc. 1982, SPSTL 134 Khp-D82, 8 pp; Chem. Abstr. 98, 190817r. (529) Toporov, S.V.; Oienovich, N . L. I z v . Vyssh. Uchebn. Zaved., Khim. Tekhnol. W83, 26 (7), 803-6; Chem. Abstr. 9 9 , 1 6 8 6 2 1 ~ . (530) Trod, E . US. US 4,309,394 ( C l . 422-64; GOlN35/02), 05 Jan 1982, Appl. 137,503, 04 Apr 1980; 6 pp. (531) Tsyganova, 2. F.; Lebedeva, L. 1.; Nesterova, M. D. Zavod. Lab. 1982, 48 ( l l ) ,25-7; Chem. Abstr. 9 8 , 6 4 8 0 3 ~ . (532) Tulus, R.; Konyali, H. Istanbul Univ. Eczacilik Fak. Mecm. 1980, 16, 56-72. (533) Tyson, J. F. Anal. R o c . (London) 1882, 19 (3), 145-7. (534) Ueno, K.; Takagi, M. Stud. Phys. Theor. Chem. 1983, 27 (Ions Mol. Solution), 279-93. (535) Umetani, S.;Sasayama, K.; Matsui, M. Bull. Inst. Chem. Res., Kyoto Univ. 1982, 60 (3-4), 276-81. (536) Urmanov, N.; Chaprasova, L. V.; Tashkhodzhaev, A. T.; Mirzakasymov, T. M.; Amanov, K. Deposited Doc. 1982, SPSTL 133 Khp-D82, 5 pp; Chem. Abstr. 98, 190818s. (537) Utsumi, S.Bunseki Kagaku 1881, 30 ( l l ) , S37-S46. (538) VanCO, D. Chem. Listy 1983, 77 ( l ) , 16-30; Chem. Abstr. 9 8 , 13662411. (539) Vandeginste, B.; Klaessens, J.; Kateman, G. Anal. Chim. Acta 1983, 150 ( l ) , 71-86. (540) Van Wart, H . E.; Zimmer, J. Anal. Biochem. 1881, 117(2),410-18. (541) Variable Voiumetrics, Inc. Blomed. Prod. 1983, 8 , 31. (542) Varian Instrument Group Pubilcation No. 85-100527-00, 1983. (543) Vasilikiotis, G. S.;Alexaki-Tzivanidou, H. Mlcrochem. J . 1981, 26 (4), 519-26. (544) Veldeiek, Z. J.; Kakac, B. "Color Reactions in the Spectrophotometric Analysis of Organic Compounds, Suppi. Vol. 2: Inorganic Color Reagents"; Fisher: Jena, Ger. Dem. Rep., 1982; 374 pp; Chem. Abstr. 9 9 , 15865d. (545) Verkman, A. S.; Dix, J. A.; Pandiscio, A. A. Anal. Biochem. 1981, 117 ( l ) , 164-9. (546) Verma, B. C.;Singh, M.; Butail, J. Proc. Indian Natl. Sci. Acad., Part A 1982, 48 (3), 225-7. (547) Veselov, V. Ya.; Grekov, A. P.; Kachorovskaya, 0. P. Zh. Anal. Khim. 1982, 37(6), 1511-14; Chem. Absfr. 9 9 , 151434q. (548) Veseiov, V. Ya.; Urovskii, L. F.; Grekov, A. P. Zh. Anal. Khim. 1983, 38 (5), 893-6; Chem. Abstr. 9 9 , 6 3 6 1 6 ~ . (549) Vincent, J. C.;Kumar, C.;Chance, B. Anal. Biochem. 1982, 126 ( l ) , 86-93. (550) Vinogradova. N . I.; Korabel'nikova, T. I.; Zalmanova, T. V. Deposited Doc. 1981, SPSTL lQ7 khp-D81, 9 pp; Chem. Abstr. 98, 485172. (551) Walash, M. I.; Ouf, A. A.; Salem, F. B. J . Assoc. Off. Anal. Chem. 1982. 65 (8). 1445-51. (552) wake;, F.; Bartels, H. Laborpraxis 1982, 6 (9), 984, 987-90; Chem. Abstr. 9 7 , 1689692. (553) Wang, B.; Li, 2 . Huaxue Xuebao 1883, 41 (E), 709-15; Chem. Abstr. 99. 1 6 8 6 8 5 ~ . (554) 'Wang, 8. C. Fenxl Huaxue 1983, Id (2), 149-58; Chem. Abstr. 9 9 , 155522. (555) Wang, H. Trace €/em. Anal. Chem. Med. Biol., Proc. Int. Workshop, 2nd 1982 1983. 555-69. (556) Wang, J.;-Yang, G. Hunan Yixueyuan Xuebao 1982, 7 (3), 325-8; Chem. Abstr. 9 7 , 1 9 5 3 2 6 ~ . (557) Wang, W. Fenxi Huaxue 1983, I f (6), 475-80, 417; Chem. Abstr. 99, 1511OOc. (558) Wang, X. Yaowu Fenxi Zazhl 1982, 2 (4), 246-7; Chem. Absb. 98, 7621 I n . (559) Wang, Y. Zhonghua Yixue Jianyan Zazhi W81. 4 (4), 243-7; Chem. Abstr. 96, 2134237. (560) Wang, 2.; Cheng, K. L. Talanta 1982, 29 (7), 551-6. (561) Warth, A. D. Anal. Biochem. 1983, 130 (2), 502-5. (562) Warwick, C.J.; Bagon, D. A. Chromatographia 1982, 15 (7), 433-6. (563) Watanabe, H. Solution Behav. Surfactants: Theor. Appl. Aspects, [Proc. I n t . Symp.] 1980 1982, 2 , 1305-13. (564) Watanabe, H.; Ohmori, H. Talanta W81, 28 (IO), 774-6. (565) Watanabe, K. Med. Techno/. (Tokyo) 1981, 9 (g), 753-64; Chem. Abstr. 9 6 , 791969. (566) Whitten, W. B. Anal. Chem. 1982, 54 (7), 1026-8. (567) Wieteska, E.;Szczepanlak, Z. Chem. Anal. (Warsaw) 1981, 26 ( l ) , ' 175-7; Chem.Abstr. 9 6 , 9 6 7 1 1 ~ . (568) Wine, D. L. Contemp. Top. Anal. Clin. Chem. 1982, 4 , 27-35. (569) Wright, J . C. Tech. Chem. ( N . Y . ) 1982, 17, 35-179. (570) Wrobel, B. Atmos. Trace Const., Proc. Two-Annu. Colloq., 5th 1981 1982, 145-52. (571) Wu, A. H. B.; Rotunno, T.; Malmstadt, H. V. Am. Lab. (FairfleM, Conn.) 1981, 13 (9), 16, 21-2, 24, 29-32, 34. Wu. A. H. 8.: Rotunno. T.: Malmstadt. H. V. I n t . Lab. 1982, 12(2), 16, 1572) ' 16, 20; 22-4, 26, 28. (573) Wuyts, C. Chem. Mag. 1983, 9 (3), 26-8; Chem. Abstr. 99. - (Ghent) . ' 98262d. (574) 6Al-4 Xing-Chu, Q.; Ylng-Quan, 2. Analyst (London) 1885, 108 (1286), ..

(575) Xing-Chu, Q.; Yu-Sheng, 2.; Ying-Quan, 2. Analyst (London) 1983, 108 (1287), 754-7. (576) Xi-Wen, H.; Poe, D. P. Anal. Chim. Acta 1981, 131 ( I ) , 195-203. (577) Xi-Wen, H.; Poe, D. P. Talanta 1981, 28 (7A), 419-24. (578) Xu, J.; Yang, Q.;Dong, S.;Yu, R. NanJlng Yaoxueyuan Xuebao 1982, (2), 44-50; Chern. Abstr. 98, 113814k. (579) Xu, J.; Yang, Q.; Dong, S.;Yu, R. Nanling Yaoxueyuan Xuebao 1982, 20 (3), 9-14; Chem. Abstr. 99, 938431.

Anal. Chem. 1084, 56, 241 R-25QR (580)Xu, S.FenxiHuaxue 1983, 7 1 (4),312-19;Chem. Absfr. 99,81598t. (581) Xu, T.; Sun, X.; Ye, J. Huanjing Kexue 1983, 4 (4).38-41; Chem. Abstr. 99,145260~. (582) Xue, S . Yaowu Fenxi Zazhi 1983, 3 (2),126-7; Chem. Absfr. 99, 76975m. (583) Yamamoto, Y.; Yamashita, M.; Hirose, Y.; Miyoshl, K. Shokuhin Elsei Kenkyu 1982, 32(11),1077-83;Chem. Abstr. 98, 124283n. (584) Yamashita, H.; Fujii, K.; Okuyama, H.; Hayakawa, J. Bunko Kenkyu 1983, 32 (2).65-76;Chem. Absfr. 99,95894a. (585)Yampil’skii, L. M.; Yampol’skii, M. 2. DeposltedDoc. 1980, SPSTL 927 Khp-DBO, 13 pp; Chem. Abstr. 97,65519~. (586) Yang, K. Huaxue Tongbao 1983, (3), 24-8; Chem. Absfr. 99, 115081~. (587) Yang, K.; Zhang, C.; Cheng, J. Gaodeng Xuexiao Huaxue Xuebao 1982, 3 (2),188-94;Chem. Absfr. 97,84300m. (588) Yang, Q.; Huang, J. Fenxi Huaxue 1992, 70 (3),167-9;Chem. Abstr. 98,82854s. (589) Yina, L.; Liu, Y. Huadong - Huagong - .Xuebao 1982, (l), 71-8; Chem. Abstr. 37, 169003s. 30 (4),291-3. (590) Ying-Quan, 2.; Lin. 2.; Jun-Yi, L. Taianta (591) . . Yoda, R.; Yamamoto, Y.; Murakaml, Y. Mikrochim. Acta 1983, 2 (1-2),75-83. (592)Yokoyama, Y. Keisoku Gljufsu 1981, 9(12),47-51;Chem. Absfr. 96, 112336~. (593) Yonehara, N.; Kawashima, T. Bunseki 1983, (E), 418-25; Chem. Absfr . 99,13277013. (594) Yoshimura, K.; Nigo, S.; Tarutani, T. Talanta 1982, 29 (3),173-6. (595) Yoshlzawa, T.; Schichida, Y. Mefhods Enzymoi. 1982, 87, 333-54. (596) Young, E. F. Opt. Spectra 1980, 14 (E), 44-8. (597) Zaki, M.; Tarek, M.; Shoukry, A. F.; Hafez, M. B. Analyst (London) 1983, 108 (1285),531-4. (598) Zalewski, E. F. Proc.-In!. Symp. Tech, Comm. Photon-Defecf., Inf. Meas. Confed. 1982, loth, 127-36. ’

(599) Zbiral, J.; Sommer, L. Scr. Fac. Sci. Nat. Univ. Purkynianae Brun. 1982, 12 (6), 283-307. (600) Zeinaiova, S. A.; Guseino, I. K.; Rustamov, N. Kh. Zh. Anal. Khim. 1983, 38 (2), 241-4;Chem. Abstr. 98, 1721812. (601) Zhang, C.; Cheng, J. Xiyou Jlnshu 1983, 2 (l),10-6;Chem. Abstr. 99,151255~. (802) Zhang, H.; Liu, N.; Wang, M. Nlngxia Daxue Xuebao, Zkan Kexueban 1980, 2,28-32;Chem. Abstr. 96,96596e. (603) Zhang, S.; Tang, F.; Yang, F.; Liu, F. Huaxue Shgi 1982, 4 (6),335-8; Chem. Abstr. 99, 156406. (604)Zheng. Y.; Zhou. S. Huaxue Shy1 1983, 5(4), 198-201;Chem. Absfr. 99, 151321a. (605) Zheng, Y.; Zhou, S.; Wang, 2. Huaxue ShJi 1982, (2), 72-8; Chem. Abstr. 97,84121d. (606) Zhuang, Y.; Xu, P. Zhonghua Yixue Jianyan Zazhi 1982, 5 (l),7-10; Chem. Abstr. 97,52039s. (607) Zlellnski, S.;Lomozlk, L.; Antczak-Kupracz, B. Microchem. J . 1983, 28(1), 1-9. (608) Zijistra. W. G.; Buursma, A.; Zwart, A. J. Appi. Physiol.: Respir., Environ. Exerclse Physiol. 1983, 54 (9, 1287-91. (609) Zijlstra, W. G.; Zwart, A. Blood pH, Carbon Dioxide, Oxygen, Calcium-Ion , Proc . Meet. IFCC Expert Panel pH Blood Gases, 5th 1980 1981, 151-61. (610)ZOu, S.;Dal, L. Huaxue Xuebao 1982, 40 (l), 33-9;Chem. Abstr. 97, 32705~. (611) Zucker, R. S.J . Neurosci. Methods 1982, 5 (4),389-94. (612) Zuo, B.; Xu, L. Huaxue Shlji 1983, 5 (3), 164-8,244;Chem. Abstr. 99,983232. (613) Zwart, A.; Buursma, A.; Zijlstra, W. G. Mefhodol. Physiol. Blood Gases pH, Proc. Meet. IFCC Expert Panel pH Blood Gases, 6th 1981 1982, 127-38. (814) Zwlllenberg, L. 0.; Boesiger, G.; Zwillenberg, H. H. L. Methods Find. Exp. Ciin. Pharmacol. 1982, 4 (8). 575-9.

X-ray Spectrometry Andrzej A. Markowicz and Ren6 E. Van Grieken*

Department of Chemistry, University of Antwerp (U.I.A.),B-2610 Wilrijk, Belgium

In an effort to pick up where the last review on X-ray spectrometry (I) left off, this survey starts from late 1981 and covers the literature to late 1983. A computer search revealed some 500 references on X-ray analysis for the period under review; all of these have been considered and the ones deemed the most significant will be discussed below. All references will refer to English languages articles, unless stated otherwise. The references will be grouped according to subject matter, under general headings, similar to the previous reviews. This subdivision can, of course, be somewhat artificial since many papers may be appropriate to more than one section. In the period under review no significant radically new developments have been seen in X-ray spectrometry (XRS). Rather the XRS technique continued to be established and recent developments gained a more general acceptance and wider application. The energy-dispersive (ED) detection mode with a liquid nitrogen cooled Si(Li) detector at its heart has increasingly consolidated its position; nowadays EDXRS represents a major part of the commercial XRS market, while it still grows steadily. In EDXRS the HgIz detector seems to be coming to maturity now, opening new vistas for portable XRS systems. Excitation with heavy charged particles and with synchrotron radiation has continued to grow, and the interest in polarized exciting beams, which induce less background, was renewed recently. As in any other field of science, computerization of the analysis step and the data evaluation, as well as miniaturization of the equipment, were the predominant trends in XRS. Major theoretical breakthroughs took place in the quantitative analysis of individual microscopic particles by EPXMA. The predominant feature for the covered period, however, seemed to be the increased combination of various X-ray analysis techniques in one instrument. All of these trends will appear from the selective literature survey given below.

In the period under review several valuable books were published both on conventional XRS (2,3)and on quantitative EPXMA (4). While the recent journal International X-ray Spectrometry (Media House, London, U.K.), which includes abstracts of all publications dealing with XRS and EPXMA, found wider distribution, two new journals of possible interest to X-ray analysis users were initiated: X-Ray Software Reviews (Criss Software, Largo, MD) and Journal of Trace and Microprobe Techniques (Marcel Dekker, Inc., New York, NY). Of course, all articles in X-Ray Spectrometry and some in e.g., Analytical Chemistry, Analytica Chimica Acta, Talanta, Fresenius’ Zeitschrift fur Analytische Chemie, Mikrochimica Acta, Scanning Electron Microscopy, etc. remain relevant for scientists in the XRS field. As usual, the annual Denver Conferences on “Applications of X-Ray Analysis” have been of interest. The proceedings of the conferences that took place in 1981 and 1982 have been published as Volumes 25 and 26 of “Advances in X-Ray Analysis” (5,6). The proceedings of the 1983 Conference are still in press. The series of conferences in University Park, PA, on Electron Microscopy and X-Ray Applications to Environmental and Occupational Health Analysis seems to have been discontinued, and the proceedings (Ann Arbor Science Publishers, Inc., Ann Arbor, MI) of the last conference in 1980 still await publication as of this writing. The 32nd International Conference on Particle Induced X-Ray Emission and Its Analytical Applications took place in July 1983 in Heidelberg, Federal Republic of Germany; its proceedings are due to appear in an issue of Nuclear Instruments and Methods in Physics Research in April 1984. A special Workshop on XRS in Medicine was organized in Rome, Italy, in April 1982; the proceedings were published as a book (7). A significant fraction of the 23rd Colloquium Spectroscopicum Internationale, which took place in 1983 in Amsterdam, The Nether0 1984 American Chemical Society

241 R