Ultraviolet and light absorption spectrometry - ACS Publications

J. A. Howell*. Western Michigan University, Kalamazoo, Michigan 49001. This review is a continuation of the series entitled Light. Absorption Spectrom...
2 downloads 0 Views 3MB Size
Anal Chern. 1980,52, 306R-323R

Ultraviolet and Light Absorption Spectrometry L. G. Hargis University of New Orleans, New Orleans, Louisiana 70722

J. A. Howell” Western Michigan University, Kalamazoo, Michigan 4900 1

This review is a continuation of the series entitled Light Absorption Spectrometry (30,356,357),Ultraviolet Absorption Spectrometry (104, 105, 218, 219, 227, 494), and Ultraviolet and Light Absorption Spectrometry (225). The information reported in this review covers the developments in these fields from December 1977 through November 1979, primarily as documented in Chemical Abstracts. As in previous reviews, the subject matter has been divided into sections on Chemistry, Physics, and Applications. In writing this review the authors have attempted to report from the numerous papers published in the areas of ultraviolet and visible absorption spectroscopy those which, in our opinion, are of most probable interest to analytical chemists. The authors wish to take this opportunity to apologize for any errors of judgment made in the omission of various references. A number of reviews regarding photometric reagents have appeared in the past few years. The use of nonchelating dyes in methods for both anions and cations based on the formation of ion-associates has been reported (345). Also applications of ternary complexes have been reviewed (635). Reviews of Chromazurol S (349), gallein (394), oximes (542), phenylhydrazines and phenylhydrazones (30),as well as porphyrins (649) as spectrophotometric reagents have appeared. An extensive review of the use of pyrogallol red and bromopyrogallol red and their spectral properties has been written (21). T h e analytical uses of thio-&diketones for extraction a n d spectrophotometric analyses have been reported (605). T h e influence of reagent structure and reaction conditions of azo dyes on the formation of chelates has been discussed (556). Photometric methods for the determination of antimony (352), palladium (179),and a number of noble metals (613)have been reviewed. A review of organic reagents for the extraction and photometric determination of tantalum in ferroniobium has been reported ( 4 5 2 ) ,while an extensive review of spectrophotometric methods for osmium, ruthenium, and gold has appeared (466). A review of analytical methods for the determination of sulfur dioxide with particular emphasis on the West-Gaeke method has been written (305). Reports on photometric methods for high-purity substances (396)and for t h e analysis of micro objects and thin films (442) have been made. A general review of colorimetric, photometric, and nephelometric procedures has appeared (444). A number of reviews have dealt with specific subjects such as: ion-combination indicators (302),ultraviolet spectroscopy o f polymers (249),precision colorimetry (110),photometric titrations (2531, and methods of interpreting the ultraviolet and visible spectra of metal complexes (550). T h e fundamental principles of photoacoustic spectroscopy has been the subject of a number of reviews (43,404,490,496) while others have been concerned with t h e applications of this newly emerging technique to geochemical and biochemical samples (SO), aspirin (275), and a variety of solids, smears, and gels (497, 645). Reviews of such instrumental techniques as derivative spectrophotometry (570), wavelength modulation spectroscopy (417), photon counting (333),vidicon detector instrumentation (75,566),and ultraviolet monitors as high performance liquid chromatographic detectors (578) have been published. Books related t o ultraviolet and light absorption spectrometry which have appeared are: “Treatise on Analytical Chemistry”, P a r t 2, Vol. 10, 2nd ed. (294);“Dosages Absorptiometriques Des Elements Mineraux” (89);“Absorption 306 R

0003-2700/80/0352-306R$0.5.00/0

Spectra in t h e Ultraviolet and Visible Region” (324); “Optickeski Metody Analiza, Chast 1: Spectrofotometriya” (553);“Colorimetric Chemical Analytical Methods” (583); “1978 Annual Book of ASTM Standards, Pt. 12: Chemical Analysis of Metals; Sampling and Analysis of Metal Bearing Ores” (16);“Photometric Determination of Traces of Metals: General Aspects”, 4th ed. of P a r t 1 (506); “Photometric and Fluorometric Methods of Analysis-Metals”, Parts I and I1 (545); “Organic Reagents for Copper” (631); “Chemical Analysis, Vol. 8: Colorimetric Determination of Nonmetals“, 2nd ed. (63);“Handbuch der Photometrischen Analyse Organischer Verbindungen, Ergaenzungsband 1” (253); “Aldehydes-Photometric Analysis, Vol. 5 : Formaldehyde Precursors” (521);“Handbook of Optics” (134);“Optoacoustic Spectroscopy and Detection” (429); “Analytical Laser Spectroscopy” (421);“Laser and Coherence Spectroscopy” (557);and “Multichannel Image Detectors” (567).

CHEMISTRY In this part of t h e review, those citations regarding the chemical aspects involved in t h e development of suitable reagents, absorbing systems, and methods for spectrophotometric analysis will be discussed. Applications involving the utilization of mixed ligand and extractable ternary ion-association complexes continue to be an area of significant activity. A resurgence of interest in simultaneous analysis seems to have been greatly facilitated by the availability of dual-wavelength spectrometers. Further developments in this area can reasonably be anticipated in the future as a result of the relatively recent introduction of computer and microprocesser controlled spectrometers. This type of instrumentation will likely stimulate greater interest in methods utilizing reaction rate measurements since the measurements can easily be automated and manual datd computation eliminated. Improvement of sensitivity reportedly has been achieved by a new technique of extracting excess reagent prior t o photometric measurement (375). A new principle of analytical molecular absorption spectrometry employing electrothermal volatilization of simple molecules in a graphite furnace has been described for various gallium and indium halides (122, 123). A method for measuring heavy atom kinetic isotope effects by direct spectrophotometric determination of rate differences due to isotopic substitution was the subject of one recent paper (495). Metals. Aspartic acid has been shown to be a selective reagent for a number of metals such as beryllium(II), aluminum(III), copper(II), molybdenum(VI), gold(III), and bismuth(II1) (526). Several new reagents have been synthesized and investigated relative to their applicability as photometric reagents. T h e reagents include bipyridylglyoxal bis(4phenyl-3-thiosemicarbazone) as a potential reagent for 40 different metal ions ( 9 1 ) ,2,7-dibromogallein for molybdenum, tungsten, and tantalum (20).and 4-thiobenzoyl-3-methyl-lphenyl-5-pyrazolone as a reagent for copper, nickel, cobalt, zinc, lead, a n d uranium(V1) (471). A study of micellar reactions between Chromazurol S and a number of transition metals as well as beryllium(I1) and aluminum(II1) in t h e presence and absence of non-ionic surfactants has been reported (518). As a result of a preliminary evaluation, biacetyl bis(2-pyridy1)hydrazoneappears t o be promising as a color

F 1980 American Chemical Society

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY Larry G. Hargis, Associate Professor of Chemistry at the University of New Orleans, graduated from Wayne State University with a B S in 1961, an M S in 1963, and a Ph D. in 1964 He served as a Postdoctoral Research Associate at Purdue University from 1964 until joining the faculty at UNO in 1965 Dr Hargis holds membership in the American Chemical Society (Analytical and Education Divisions), phi Lambda Upsilon, and Sigma Xi. He has also served as associate editor of Analytical Lefters since its inception in 1967. Dr. Hargis has authored or co-authored 21 research papers, one chapter, and an Instrumental Analysis Laboratory textbook. His present fields of research include ultraviolet and light absorption spectrometry, reaction-rate analysis, heteropoiy chemistry, and on-line computer techniques.

James A. Howell is a professor of chemistry at Wes!ern Michigan University and also a science advisor for the Detroit District Laboratory of the Food and Drug Administration. He received his B.A. from Southern Illinois University in 1959, his M.S. from the University of Illinois in 1961, and his P h D in analytical chemistry from Wayne State University in 1964. His particular fields of interest are in ultraviolet and visible absorption spectrometry, flame emission and atomic absorption spectroscopy, and also computer applications to chemical instrumentation. He is the author of a number of research papers and chapters in books. Dr. Howell is a member of the ACS, SAS, and the Association of Analytic211 Chemists

reagent for cobalt and palladium (29). Dithiopyrylmethane has been found t o form intensely colored complexes with bismuth(II1) and antimony(II1) as well as a number of transition metals (125). Other compounds which have been reported t o be effective photometric reagents for various transition metals are glyoxal dithiosemicarbazone (224),and nitroxamine (111). T h e introduction of a nitro group into the 5-position of the thiazole heterocycle improves the selectivity a n d sensitivity of thiazolylazo reagents for t h e spectrophotometric determination of transition metals (650). T h e calcium indicating azo dye hydroxy naphthol blue has also been suggested as a reagent for transition metals (70). T h e ligand thiobenzoyltrifluoroacetone has been studied as a reagent for 19 metal ions (489) while mixed ligand complexes of 16 elements with pyrocatechol violet and cetylpyridinium has also been reported (95). In addition to thiosulfate and nitrite ions, spectrophotometric determinations of iron(III), iron(II), cobalt(II), vanadium(IV), and molybdenum(V1) have been carried out with pentacyanoamminoferrate (167). The ligands 2-(1,2,4-triazolyl-5-azo)-4-methylphenol and 2-(5-tetrazolylazo)-4-methylphenol have been suggested as reagents for various metals (99). 2-(2-Hydroxybenzoylazo)-l-naphthol-4sulfonic acid and 2-(2-hydroxy-3-naphthoylazo)l-naphthol4-sulfonic acid have been used t o determine copper(I1) and mercury(I1) (5491, while cobalt(II1) a n d iron(I1) were determined using 4-hydroxy-2-(-(dimethylamino)-5-nitroso-6aminopyrimidine (596). A study of t h e complexation of titanium, zirconium, and hafnium with 3-nitroalizarine has also been reported (448). A number of papers have dealt with selected reagents for specific metals. For example nine catechol derivatives and four cationic dyes were examined as reagents for arsenic(V) (315). Derivatives of 5-phenylazo- and 3-naphthylazopyrocatechol (199) and chromotropic acid (579) have been investigated as reagents for the spectrophotometric determination of chromium(II1). Malachite Green, Victoria Green 4R, and Rhodamine S were found to be the most efficient of a number of rhodamine dyes t o form mixed halo complexes with cadmium (280). A comparative study of diethyldithiocarbamate a n d 2,2’-diquinolyl as reagents for copper has been carried out using statistical analysis for evaluating the procedures (25). 2-Thioxo-5-nitroso-l-methylperhydropyrimidine-4,6-dione was one of 13 pyrimidine compounds studied for the determination of iron (595). Reactions of gallium with substituted pyrocatechols (201),mercury(I1) (136),and nickel(I1) (135) with substituted formazans, rare earth metals with 2,7-bisazo de-

rivatives of chromotropic acid (529),and zinc with substituted 2,3,7-trihydroxy-6-fluorones (395) and various antipyrylazo compounds (450)have been studied. T h e det,erminations of indium with various pyrimidinethiols (541)and palladium with derivatives of 4,4,6-trirnethyl-lH,4H-2-pyrimidinethiol and (391) have been with 4-amino-2,6-dimercapto-1,3,5-triazine studied. 2-[(2-Carboxyphenyl)azo]-1.8-dihydroxynaphthalene-3,6-disulfonicacid was found to be the best of four reagents studied for magnesium partly as a result of the reagent’s ability t o differentiate between calcium and magnesium (355). A study of 31 ligands which form mixed complexes with niobium and benzoylphenylhydroxylamine reports pertinent spectral data for 14 of the ligands (433). Fifty-two organophosphorus compounds including phosphinic, phosphonic, phosphonamidic acid derivatives, phosphine oxides, a n d phosphoric triamide derivatives have been studied as selective reagents for the extraction and spectrophotometric determination of titanium as salicylate, pyrocatechol, and thiocyanate complexes (533). Acetate ion has been reported t o interfere in the photometric determination of aluminum with alumnocreson by forming complexes with the metal ion and thus reducing the color intensity (586). T h e use of quaternary ammonium compounds in the extraction of aluminum complexes with pyrocatechol violet has been studied and found t o produce a shift in t h e absorption band as well as an increase in the molar absorptivity relative to the simple aluminum-pyrocatechol violet complex (575). T h e addition of non-ionic surfactants has been found to exhibit a strong bathochromic shift and an increase of molar absorptivity of the berylliumChromazurol S complex (312). A number of papers have dealt with optimum conditions for certain analysis procedures including Xylenol Orange and Semixylenol Orange with zirconium(1V) a n d bismuth(II1) (551),P A N with copper(I1) and nickel(I1) (287),4-(2-thiazolylazo)resorcinolwith lead(I1) in alloys (341),and Crystal Violet with platinum (348). Organic bases such as pyridine, y-picoline, and imidazole have been found to accelerate complexation of cadmium(I1) by cr,,?,y,btetrakis(4-carboxypheny1)porphine(291). Several studies have considered t h e effect of reagent purity on results obtained using established methods such as the diphenylcarbazide method for chromium(II1) (422),and t h e Xylenol Orange method for lanthanum (300). Stoichiometry and spectral behavior of copper complexes with reagents such as 2-(5,5-

dimethyl-4,5,6,7-tetrahydrobenzthiazolyl-2-azo)-5-hydroxybenzoic acid (260),dimethylglyoxime with ascorbic acid (68), a n d cyclohexanone thiosemicarbazones ( I 77) have been the subject of several studies. The results of collaborative studies involving seven laboratories and an assessment of interferences for the determination of iron(I1) with 1,lO-phenanthrolinehave been reported (92). Solvent dependence of the visible absorption spectrum of the mixed complex dicyanobis(4,7-diphenyl-1,lO-phenanthroline) iron(I1) has been reported to be dependent upon hydrogen bonding and solvent electron acceptor properties (137). Chemical properties and spectral characteristics of certain metal-ligand systems have been the subject of a number of studies including 2,6,7-trihydroxy-3isoxanthenone and its derivatives with zirconium and hafnium (221),tri-n-octylamine and gallion with gallium(II1) and indium(II1) (449),and pyrogallol red and diphenylguanidine with indium (363). Similar studies have also been carried out on systems involving Solochrome Violet R S with niobium(V) (451),PAR with lead(I1) (283),and mixed complexes of EDTA and pyrocatechol violet with zirconium(1V) as well as DTPA and pyrocatechol violet with thorium(1V) (340). A procedure for t h e analysis of magnesium in rain water which employs dual-wavelength spectrophotometry to correct for background absorption resulting from the chromogenic reagent has been reported (627). Bromanilic acid has been used in place of chloranilic acid for the determination of molybdenum(V1) (453) and tungsten (454). Nitrogen-containing rubber vulcanization accelerators such as mercaptobenzothiazole and Thiram present in rubber tubing have been shown t o exert a significant interference in the determination of ammonia by Nessler’s method (573). A comparative study of six modifications of t h e Bismuthiol I1 method for tellurium in semiconductors has been reported (347). New reagents which have been reported include 2,Z-bipyridyl-2-pyridylhydrazonefor cadmium(I1) (12),promazine hydrochloride for cerium(1V) as well as arsenic(II1) and nitrite ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

* 307R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

ion by an indirect method (191), 8-amino-7-(2-aminophenylazo)-1,6-naphthalenedisulfonic acid for cobalt (256), Aluminophthalexon a n d Aluminophthalexon A for chromium(II1) ( 4 0 9 ) , a n d 3-N-salicylideneamino-4-hydroxybenzenesulfonic acid (652) and 8,8’-diquinolyldisulfide and its derivatives (559) for copper. Other new reagents were N’-hydroxy-N’,N’’-diphenyl-p-toluamidine and thiocyanate for iron(II1) (431), l-phenyl-2,3-dimethyl-5-pyrazolonylazopyrogallol for gallium (170),2,3,4-trihydroxy-4-sulfoazobenzene for molybdenum(V1) (171),and 2-pyridyl-2-thienyl Z-ketoxime for palladium (51) and platinum (53). Also reported as new reagents were N-phenyl-N’-(a-pyridy1)thioureafor rhodium (607), mephazine hydrochloride for ruthenium(II1) (187), N-furoylphenylhydroxylamineand 1,8-dihydroxynaphthalene for titanium ( 1 4 9 , and 2-[2-(5-chloropyridyl)azo]-5-dimethylaminophenol for zinc (166). T h e sulfhydryl group in Bismuthiol I has been found to induce a reaction between sodium azide a n d iodine. T h e fact t h a t bismuth(II1) can complex with t h e Bismuthiol I and thereby prevent the induction of the azide-iodine reaction has been used as the basis for t h e analysis of bismuth(II1) (313). A novel colorimetric reagent for potassium involves the formation of a crown ether complex between potassium and 4’-picrylaminobenzo-15crown-5 (564). Silver has been determined by extracting the ion-association product of the dicyano complex of silver and methylene blue in 1,2-dichloroethane (289). Polyoxyethylene nonylphenylether has been used as a new non-ionic surfactant for t h e extraction of t h e zinc-PAN complex (628). A flow injection analysis for calcium in serum, water, and wastewater using o-cresophthalein complexon as a color reagent has been reported t o give good reproducibility (206). Nonmetals. Several collaborative studies have been carried out including one involving 17 participating laboratories investigating t h e determination of arsenic with silver diethyldithiocarbamate (376) and another involving 23 laboratories t o study t h e determination of selenium with 3,3’-diaminobenzidine (640). T h e addition of methanol, ethanol. 1propanol, 2-propanol, or acetone in the determination of cyanide with copper(I1) and phenophthalein has been found to increase the sensitivity, reduce the analysis time, and lower t h e absorbance of the blank (164). T h e 2,4-xylenol method for t h e determination of nitrate ion has been studied for organic (406) and inorganic (407) interferences and consequently has resulted in improvements in the method (408). T h e type and position of substituents on the analine and naphthylamine reagents used in the Griess reaction for the determination of nitrite ion has been studied with particular attention being given t o the factors controlling t h e rate, amount, and stability of the colored product (161). An investigation of the use of high molecular weight alkylamines in the solvent extraction of molybdophosphoric acid included bis(2-ethylhexyl)amine, dinonylamine, and diisoamyloctylamine in 1,2-dichloroethane (244). The effect of hydrochloric acid concentration on the formation of methylene blue during the photometric determination of sulfur was studied and has resulted in a new set of optimized conditions for the procedure (307). T h e physical properties and absorption spectrum of potassium superoxide in dimethyl sulfoxide-18-crown-6 ether has been reported (274). 9-Dimethylaminoisorosinduline and its methylamino derivatives react with iodide and bromide ions to form ion-associates which are extractable in a chloroform-benzene mixture (498). Several aryl and alkyl sulfonyl derivatives of imidobenzoylthiocarbamic acid have been used for the extraction and photometric determination of osmium(V1) (606). T h e extraction and direct spectrophotometric determination of sulfide ion based on ethylene blue formation has been has been recdescribed (279). 4-Nitro-1,2-diaminobenzene ommended as a new chromogen for the determination of sulfur dioxide based on t h e West-Gaeke method as a result of,its large bathochromic shift and the absence of blank correction (323). Water has been determined in acidic methanol by measuring t h e keto-ketal equilibrium of 4-methoxyacetophenone (591). Methods for the determination of phosphorus a n d silicon either singly or in their mixtures have been developed based upon t h e formation of molybdovanadophosphoric acid or silicovanadophosphoric acid followed by their extraction with butanol and subsequent reaction with luminol to produce chemiluminescence which is then measured (336). A new variation on the determination of phosphate ion 308R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

with ammonium molybdate involves the extraction of 12molybdophosphate into molten benzophenone, followed by solidification, dissolution in methyl proprionate and subsequent determination by t h e heteropoly blue method (229). T h e analysis of tetrathionate, thiosulfate, and sulfite in their mixtures has been performed by a three-procedure method (293). A new technique for the determination of blood ammonia collects the ammonia in t h e vapor phase and allows a diffusion controlled reaction with ninhydrin a t the surface of an optical waveguide (544). A new indirect procedure for fluoride ion is based on t h e reaction with inverse basic beryllium carboxylate dye complex (470). Oxygen in gases has been determined by heating methyl viologen on Aerosil in the presence of oxygen (332). O r g a n i c Constituents. Reaction temperatures, times, and molar absorptivities for 5-isothiocyanato-1,3-dioxo-2-ptoly1-2,3-dihydro-lH-benzo[de]isoquinoline as a reagent for 23 aliphatic and aromatic amines has been studied (273). Also low molecular weight amines and N-substituted aniline derivatives have been determined based on t h e formation of a colored ion-association product in the reaction with Anthracene Blue WR (413). Polynitroaromatic compounds containing one or more amino, methoxy, hydroxy, carboxy, or chloro groups have been determined with ethylenediamine (525). Acyloxysulfonium salts have been found to produce colored products when reacted with a-cholestanol thus providing the basis for an analysis procedure for the latter compound (235). Sensitivities from 0.6 t o 2.5 ppm for various aminopyridine compounds have been achieved by using p (dimethy1amino)cinnamaldehyde (530). A study of interferences encountered in the determination of benzalkonium with tetrabromophenolphthalein ethyl ester has been reported (502). T h e optical absorption spectra of chlorophyll a and b in polymethylmethacrylate and methyltetrahydrofuran have been studied over a concentration range from to lo-’ M (204). A procedure for the determination of dispersed oil in wastewater employs the use of dual-wavelength spectrophotometry to avoid interferences arising from surfactants used as emulsifiers as well as a variety of inorganic ions (500). A study of a variety of oxidants which have been found t o interfere with the determination of phenols using 4-aminoantipyrine and the ultraviolet ratio method has been reported (405). Also the influence of pH and the interference of anions in the determination of phenol, o-cresol, resorcinol, and pyrogallol complexed with 4-aminoantipyrine and potassium ferricyanide has been investigated (205). In another study t h e application of 1,5-dihydroxy-4,8-diaminoanthraquinone2,6-disulfonic acid for t h e determination of reducing sugars has been explored (547). Z-a,P-Dinitrostilbene has been reported as a new reagent for the determination of primary and secondary amines provided t h a t the amines are sufficiently basic a n d sterically unhindered (138). In another development, a method for determining free deoxyribose and the deoxyribose in DNA in photographic gelatins has been reported (456). Silanization of primary hydroxyl groups in poly(ethy1ene glycol) with dimethylaminosilane has been used to determine hdyroxyl content (163). T h e analysis of potassium alkyl and benzyl trithiocarbonates as well as mercaptans has been accomplished by reaction with nickel(I1) in aqueous acetone (618). Simultaneous Analysis. As a result of obvious similarities with simultaneous analysis, dual-wavelength techniques will also be discussed in this section. T h e use of a complex colorimetric reagent for multicomponent spectrophotometric analysis has been proposed, as well as a procedure for optimizing analysis conditions including the best quantitative composition of t h e multicomponent reagent (430). T h e utilization of extraction and back extraction procedures has been able to effect the analysis of bismuth(II1) and antimony(II1) with thiooxine (629). T h e simultaneous analysis of mixtures of calcium and magnesium with Eriochrome Black T has been performed a t 490 and 540 nm (19). Several procedures have been reported for the simultaneous analysis of cobalt(I1) and nickel(I1) including the use of 6-nitroquinoxyline-2,3-dithiol (59),2-carboxy-2’-hydroxy-3’,5’-dimethylazobenzene-4-sulfonic acid (116),and 2-carboxy-1-pyrrolidinecarbodithioic acid (282). T h e wavelengths of 545 and 735 nm have been chosen to determine copper(I1) and chromium(II1) or (VI) with Complexion I11 (434). A dual-wavelength procedure for the determination of iron and copper using hydrochloric acid and

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

thiocyanate ion has been developed (425). Benzoylacetone has been found to produce a green complex with titanium(II1) and a yellow complex with titanium(1V) and therefore can be used for the simultaneous analysis of these two oxidation states of titantium (423). The simultaneous analysis of uranium and vanadium using 4-methyldaphnetin a t 450 and 600 nm has been reported (507). An extraction and simultaneous analysis procedure has been developed for the determination of zirconium, tantalum, and phosphorus in loparite concentrates (398). T h e simultaneous analysis of acetaldehyde and glycoaldehyde with 2,4-dinitrophenylhydrazinehas been performed by measuring t h e absorbance of carbon tetrachloride-chloroform extracts a t 440 and 344 nm respectively (620). The spectrophotometric determination of lead and both di- and trialkyllead compounds has been carried out by simultaneous analysis using PAR, followed by the addition of EDTA and remeasurement of the absorbance (523). T h e direct determination of rutin a n d quercetin without any pretreatment or separation has been accomplished with dual-wavelength spectrophotometry (504). Reaction-Rate Analysis. A new approach to first-order kinetic analysis that is insensitive to variables such as pH and temperature has been described and demonstrated using the iron(II1)-thiocyanate system as a model reaction (361). The rate of ligand exchange between cadmium(II), l-(%thiazolylazo)-2-naphthol. and EDTA has been used as the basis for the determination of cadmium(I1) (242). Several procedures have been reported for t h e simultaneous kinetic analysis of ligand exchange reactions t o permit the determination of multicomponent mixtures. Copper(II), nickel(II), and cobalt(I1) in their mixtures have been determined simultaneously based on the difference of ligand substitution rates between their 2-(2-thiazolylazo)-4-methylphenol complexes and EDTA (243). A simultaneous kinetic method for a four component mixture of zinc(II), cadmium(II), mercury(II), and copper(I1) ions employing a stopped-flow spectrophotometer with an on-line computer has been described (487). Nitrite ion has been determined based on the rate of fading of the iron(II1) thiocyanate complex in t h e presence of iodide ion (608). Several catalytic reaction-rate methods have been reported for cobalt a n d include one which is based upon catalysis by cobalt of the oxidation of gallocyanin with hydrogen peroxide (217 ) ,and another based on the catalytic effect of elemental mercury on t h e reaction between cobalt(I1) and mercury(I1) in the presence of 1,2-diaminocyclohexanetetraaceticacid (536). Copper(I1) can be determined by its catalytic effect upon the oxidation of hydroquinone with hydrogen peroxide (127). A number of analyses for iron(II1) have been developed based upon that ion’s ability to catalyze the hydrogen peroxide oxidation of a variety of compounds including p-phenetidine (129),4-amino-N,N-diethylanaline sulfate (233),N-(p-methoxyphenyl)-N’,N’-dimethyl-p-phenylenediamine (269),and 2,4-diaminophenol (617). The catalytic oxidation of copper(I1) tellurate with hypobromite by iridium is t h e basis for the photometric analysis of that metal (257). The catalytic effect of manganese(I1) on t h e hydrogen peroxide oxidation of materials such as o-dianisidine (128), 1-amino-8-naphthol3,6-disulfonic acid (3061, 1,4-dihydroxyphthalimidedithiosemicarbazone (436), and lumomagneson (562) have been made t h e basis for t h e analysis of manganese(I1). Also manganese(I1) has been determined by an automated kinetic procedure based upon its catalytic effect on t h e periodateantimony(II1) reaction (402). This method can also be adapted for t h e analysis of nitrilotriacetic acid, EDTA, and diethylenetriaminepentaacetic acid. A variation of t h e kinetic method has been proposed as a method for the analysis of mercury(II), lead(II), a n d cadmium(I1) based upon their reaction with thiourea, an inhibitor of the catalytic periodate oxidation of p-phenetidine (130). Ruthenium has been determined based on its catalysis of t h e oxidation of bromide or iodide by perchlorate ion (443). T h e catalytic exchange reaction between the pentacyanoamrnine ferrate(I1) ion and ferrozine has been made the basis for the analysis of silver(I), gold(III), and mercury(I1) ions (168). Vanadium in silicon tetrachloride has been determined by its catalytic effect on the oxidation of o-phenylenediamine with hydrogen peroxide (234). Selenourea and selenious acid have been found t o catalyze t h e reduction of silver(1) ions with iron(I1) a n d can be used for determining selenide and selenite ions (447). T h e inhibitory effect of t h e thiocyanate ion on the iodate-hypo-

phosphite reaction has been made the basis for an automatic spectrophotometric reaction-rate method for the thiocyanate ion (262).

PHYSICS This section of the review deals primarily with the principles associated with t h e measurement of ultraviolet and visible radiant energy as well as the instrumentation used for these measurements. Several papers have described systematic procedures for the evaluation of reagents and reaction conditions as a means to develop optimized spectrophotometric methods of analysis (2, 548). A detailed discussion of the principles of automation with a continuous flow method such as found in liquid chromatography with special consideration being given to parameters such as residence time, injection volume, and pumping rate has appeared (226). Two coefficients have been proposed to describe the extent of selectivity of a spectrophotometric method or the extent of competition of a particular interference with the analyte against the reagent (285). One paper has described the deconvolution of overlapping peaks being treated as an estimation problem and then applying a simplex optimization procedure to resolve the true areas of the peaks (322). A generalized standard addition method which provides a means of detecting interference effects, quantification of their magnitude and simultaneously determining anal>te concentrations has been described (522). Equations have been presented and plotted which describe the effect of increment size on the precision of standard addition or standard substitution measurements (474). In another paper, alternative graphical methods for spectrophotometric analysis are described which permit data to be taken a t multiple wavelengths t o generate linear plots from which concentrations can subsequently be determined (102). A recent National Bureau of Standards publication provides a critical discussion of t h e uses and limitations of standard addition methods in spectrophotometric analysis (284). An empirical method for reducing errors arisng from departure from Beer’s law has been demonstrated in the analysis of synthetic spectra of nitrous oxide (330). Methods for optimizing sample size and proper sample preparation techniques for strong absorbers in photoacoustic spectroscopy have been developed in order t o avoid errors resulting from signal saturation (331). Two National Bureau of Standards Publications have dealt with the use of acidic potassium dichromate solutions as a transfer standard for verifying the accuracy of the absorbance scale of narrow-bandpass spectrometers (73, 74). Another National Bureau of Standards publication has announced t h e availability of crystalline potassium iodide as a standard reference material for use in the assessment of stray light in ultraviolet spectrophotometers below 260 nm (399). Varian Instrument Division has announced the availability of their UV-Vis Reference Set which is comprised of four samples, e.g., benzene vapor for spectral resolution tests, samarium oxide for wavelength calibration, lithium carbonate solution for stray light determination, and a potassium dichromate solution for absorbance repeatability tests (626). Several papers have described procedures for the performance evaluation and calibration of spectrophotometers (72, 342, 601). T h e advantages of a drum dispersion method for the calibration of the wavelength drum of a Littrow prism spectrometer have been discussed (535). The theoretical assessment of precision (476, 477) and accuracy (478) in dualwavelength spectrophotometric measurements has been discussed in detail. A generalized form of the variance and covariance matrix in unconventional multicomponent spectrophotometric analysis has been presented (359). This form accounts for the case when t h e variances of absorbance measurements a t different wavelengths are not equal. Mathematical expressions for calculating the sensitivity, reproducibility, and the lower limits of determination of direct and differential and extraction spectrophotometric methods have been presented and their analytical implications discussed (62). A comparative study of the precision of photometric determinations and titrations has been presented (236). Two methods have been proposed for calculating equilibrium constants and molar absorptivities for 1:1 molecular complexes (317, 499). An extensive compilation of molar absorptivities for numerous proteins a t selected wavelengths has been published (276-278). A method for determining the ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

309 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

____

Table I.

Spectrophotometric Methods for Metals

constituent Ag

A1

material lead concentrate copper alloy silicate rocks

...

silicate rock

...

... Au

indium metal Cu, Ag, Pb

ores Be

...

natural waters Bi

...

Pb and Ni nonferrous alloys ores ores Ca Cd

...

... zinc solutions

... Ce

... optical glass

co

... ... ... steel

...

... steel

...

Ni metal water Pt base alloys

steel

...

Cr steel cu

...

method o r reagent [wavelength; molar absorptivity, o r concentration range] ammonium 2-cyano-3-iminodithiobutyrate [565; 1 . 2 7 X l o 4 ] copper tetramethylthiuramdisulfide (C,H,) [440] 3-mercapto-1-phenyl-2-buten-1-one (C,H,-BuOH) [370; 1 . 2 3 X l o 4 ] 1,lO-phenanthroline, thiothenoyltrifluoroacetone (xylene) [360; 0.2-4.5 ppm] Anthrazochrome [590; 2 . 1 x l o 4 ] Chromazurol S anion, tris( 1,lO-phenanthroline) iron(I1) (nitrobenzene) [600; 0.02-3 pg] Chromazurol S, nonionic surfactants [610; 1.36 X l o s ] Gallein, cetylpyridinium chloride [600; 3.4 X l o 4 ] Stilbazo, zephiramine [570; 6.3 X l o 4 ] Sulfochrome, cetylpyridinium chloride [ 6 101 Sulfonitrophenoi S, propanol-acetic acid [685; 6.4 X l o 4 ] 4,4'-bis(dimethylamino)thiobenzophenone, tri-n-octylamine (toluene) [540; 1 . 2 x 10'1 1,4-diinethyl-1,2,4-triazole-( 3-azo-4)-N,NN-diethylaniline, bromide ion (C,H,-PhC1-PhNO,) [540; 6.26 X l o 4 ] Rhodazol Kh.S (Et,O) [540; 4.60 X l o 4 ] Chromazurol S, cetyltrimethylamnionium bromide [615; 9.45 X l o 4 ] Eriochrome Cyanine R , cetylpyridinium bromide [ G O O ; 8 . 3 X l o 4 ] 1,3-cyclohexanedione bis( thioseinicarbazone) hydrochloride (i-BuCOMe) [550; 3.34 X l o 4 ] Dalzin in Me,CO (CHCl,) [350; 2-25 ppm] diethyldithiocarbamate, xanthate, iodide ion (CHCl,) [377 or 4601 diethylenetriaminepentaacetic acid [270; 1-40 ppm] dithiopyrylniethane, NaClO,(C,H,Cl, ) [540; 0.6-20 ppm] Lumogallion, diphenylguanidine (CHC1,-BuOH) [490; 1.28 X lo4] Palladiazo reagent [630; 2.5 X l o 4 ] 6-(benzothiazolylazo)-3,4-dimethylphenol ( 0 -xylene) [600; 0.2-2.8 ppm] monothiobenzoylacetone (C,H,) [390; 0.32-6.66 ppm] 1,lO-phenanthroline, 4,5-dibromofluorescein (CHC1,) [536; 4.6 x l o 4 ] 1-( 2-pyridylazo)-2-naphthol, Capriquat (CHC1,) [555; 0-2.0 ppm] 8 -quinolinol-5-sulfonic acid ; trioct ylmethylammonium iodide (xylene) [ 4 0 5 ; 1 . 0 X l o 4 ] 01 , p , r ,fi -tetraphenylporphinetrisulfonicacid, 2,2'-bipyridyl, HBr-KBr-trioctylamine (xylene) [432; 4.45 X 10'1 Antrazochrome [540; 1 . 5 6 x l o 4 ] Methyl green [470; 1.11 x l o 4 ] N-p-tolyl-methoxybenzohydroxamicacid (CHC1,) [460; 3.25 X l o 3 ] 6-amino-2-benzylthio-5-nitroso-4-oxo-3,4-dihydroxopyrimidine (CHCl,) [410; 6.12 X l o 4 ] 2-amino-5-nitroso-l,4,5,6-tetrahydropyrimidine-4,6-dione ~ 3 7 55.30 ; x 1041 bis( 2-pyrid yl) met hanone-2-pyrimidin ylhydrazone [440; 3.15 X l o 4 or 460; 2.95 x l o 4 ] Chlorindazon DS [638; 3.25 x l o 4 ] 5-chloro-2-thiophenealdehyde-2'-benzothiazolyhydrazone (C,H,) 1423; 7.5 x i o 4 ] 1,2-diaminoanthraquinone[690; 1-25 ppm] A'-methylaminothioformyl-N-phenylhydroxylamine[470; 1.65 X l o 4 ] 4-nitroso-2-methylresorcinol [400; 3.75 X lo4] 2-nitroso-1-naphthol, H,O, (CHC1,) [365; 0.02-1.4 ppm] 2-pyridyl-2-thienyl~p-ketoxime, 2-nitroso-1-naphthol [0.2-1.0 ppb] Sulf-R-azo, pyridine, H,O,, borax, differential spectrophotometry 15601 thiocyanate, crown ether (lb-crown-6 or dicyclohexyl-18-crown-6) (1,2-dichloroethane) [623] thiooxine, o-phenanothroline ternary complex [465; 1 . 2 X l o 4 ] Violuric acid, Zephiramine (CHC1,) [372;2.1 X l o 5 ] 4-(2-pyridylazo)resorcinol,H,O, [530; 5.1 X l o 4 ] 8-quinolinol (molten naphthalene) CHCl, back extn. ~ 4 1 03 , x 1031 benzil mono(2-quinoly1)hydrazone (C,H,) [520; 4.0 X l o 4 ] benzothiazole-2-aldehvde-2-a uinolvlhvdrazone (C,H,) " ", [523; 7.50 X l o 4 ] 2-~2'-benzothiazolvlazo~-4.6-dimethvl~henol r635: 1.6 X 1041 5,7 -dichlorooxine,"co-pptn' with n a i h h a l e n e [420 ] N,N-dimethyl-p-phenylenediamine, N,N-dimethylaniline, H,O,, catalytic [725] 01 -(ethylamino)-p-(dimethy1amino)benzylphosphonic acid monoethyl ester [207 o r 385; 4-43 ppm] furfuryliminodiacetic acid [7 201 2-hydroxyacetophenoneoxime (i-BuCOMe) [355; 3.4 X l o 3 ] -

...

310R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

I

~

ref. 377 527 380 113 45 40 3 517 37 4 418 96 520 598 121 47

346 60 3 49 2

392 131 400 126 30 1 15 133 37 9 558 7

560 231 67 25 1 382 388 594 543 88 4 16 81 350 182 31 52

316 648 630 35 1 636 461 56 424 24 513 38 6 655 a4

485

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY ~~

Table I ( C o n t i n u e d ) constituent

material

... ... gun metal

... ... ... alloys steel I

.

.

Zn powder, steel, cement

Fe

... tab lets

... ... ... ... NaOH ...

... ...

sugar

... seawater natural water . . .

Ga

...

... Ge

...

rocks and coke Hg ...

... ...

In

... ...

... ...

copper Ir La

. . .

... ...

Lu Mg

pyrophyllite

Mn

water

,..

method or reagent [wavelength; molar absorptivity, o r concentration range] o-hydroxyhydroquinonephthalein[565; 1.6 X l o ' ] monothiothenoyItrifluoroacetone,pyridine (C,H,, )

[390; 4.65 X l o 4 ] phenanthrenequinone monoxime, pyridine (CHCI,) [460; 8.7 x 1031 l-phenyl-3-methyl-4-benzoylpyrazol-5-one [670] Pyridoin phenylhydrazone (amyl alc.) [440; 2.05 X l o 4 ] 2-pyridyl-2,6,7-trihydroxy-3-isoxanthenone [595; 1.5 X l o 5 ] 1-pyrrolidinecarbodithioate,Triton X-100 [440; 1.6 X l o 4 ] salicylaldehyde hydrazone [400; 7 . 8 X lo'] Sb(II1)-1-pyrrolidinecarbodithioate(CHCI,) [435] a , p , y , d -tetrakis(4-carboxypheny1)porphine [416; 4.2 X l o ' ] a , ~ , y , d-tetrakis(1-methyl-3-pyridy1)porphine [434; 0-140 ppb] a , p , y , d -tetra(3-N-methylpyridy1)porphine [434; 3.5 X lo'] CY , p ,y , d -tetraphenylporphine, hydroxylammonium chloride, Na lauryl sulfate [414; 4.7 x lo'] thiodipropionic acid [740; 48-386 ppm] 6-amino-2-benzylthio-5-nitroso-4-oxo-3,4-dihydropyrimidine (CHCI,) [670; 2.25 X l o 4 ] 6-amino-5-nitroso-4-oxo-l-phenyl-2-thioxo-l,2,3,4-tetrahydropyrimidine [670; 2.5 X l o 4 ] p-aminophenylmercaptoacetic acid [525; 2-10 ppm] Astrazon Rose FG (C,H,-EtCOMe) [530; 4.2 x l o 4 ] 4,7-bis(p-phenylazoanilino)-l,lO-phenanthroline (BuOH) ~ 5 2 04.4 ; x 1041 Chinoform (molten naphthalene) [480,6201 adsorption on naphthalene 5-chloro-7-iodo-8-hydroxyquinoline, [480,6201 2,6-diacetylpyridine dioxime [485;1.16 x l o 4 ] 4,7-diphenyl-1,lo-phenanthroline (CHCI, or MeCCl,) [533] 2,3-hydroxynaphthoic acid, diphenylguanidine (CHCI,) ~ 4 9 0 2.9 ; x 1041 5,5'-methylenedisalicyclic acid [550; 1-13 ppm] monothiothenoyltrifluoroacetone, pyridine (C,H,,) csio; 5.59 x 107 2-nitroso-5-dimethylaminophenol [750] 4-nitroso-2-methylresorcinol [700; 1.8 x l o 4 ] 1,lo-phenanthroline [5 101 3 4 2-pyridyl)-5,6-diphenyl-l,2,4-triazine, Na dodecyl sulfate (isoamyl alc.) [555] thiocyanate, Triton X-100 [485; 1.88 x l o 4 ] 2-thioxo-5-nitrosoperhydropyrimidine-4,6-dione

[650; 2.68 x l o 4 ] p-nitrophenylfluorone [560; 8.00 x l o 4 ] Pontachrome Azure Blue B, cetyltrimethylammonium chloride [68C;;0.08-0.6 ppm] Rhodamine B, thiothenoyltrifluoroacetone (C,H,) ~ 5 8 0 3.3 ; x 1041 molybdate, dimethylthionine [610] 1-phenyl-2,3-dimethyl-5-pyrazolon-4-ylazopyrogallol [530; 1.15 X l o 4 ] phenylfluorone [525; 1.75 x l o 3 ] Pyrogallol, Brilliant Green (C,H,) [635; 1.1X 10'1 Astrafloxin FF, bromide (C,H,) [570; 1.03 X l o 5 ] biacetyl bis( 4-phenyl-3-thiosemicarbazone)[420; 3-9 ppm] 8-ethoxyl-1-aminophenothiazine [445; 2.41 x l o 4 ] KCN, methylene blue (1,2-dichloroethane) [657; Y.02 X l o 4 ] 3-methyl-5-pyrazolone-4-dithiocarboxylic acid, nickel complex. Indirect [470; 1-3.5 ppm] l-(p-nitrophenyl)-3-(p-sodiosulfophenyl) triazine [420; 2.87 X l o " ] 6,7-dihydroxy-2,4-diphenylbenzopyran, (CHCI,) [545; 6.2 X lo4] KI, Na,S,O,, Janus Green B (C,H,) [645; 4.42 x l o 4 ] p-phenylenebis(2,3,7-trihydroxy-6-fluorone) H,BO, 1535; 1.36 x 1 0 5 1 salicylideneamino-2 -thiophenol, 1 , l O -phenanthyroline (CHCI ) [425; 1.1 x lo"] Pyrogallol red, diphenylguanidine (n-pentanol) [530; 3 x lo4] p-dimethylaminobenzylidenerhodanine(CHCI,) r540; 3.3 x 1041 Chlorophosphonazo 111, diphenylguanidinium chioride 1675; 1.6 x 10'1 p-nitrophenylf1uo;ene [540; 4.81 X l o 4 ] Thymolphthalexon [595; 0.1-7 ppm] 1,2,7-trihydroxyanthraquinone [530; 3.5 X lo3] Binazine [420; 1.1 X l o 4 ] 2,7-bis(4-carboxybenzeneazo)-1,8-hydroxynaphthalene-3,6disulfonic acid, diethyldithiocarbamate (CHCI,) [720; 1 . 5 X l o 5 ] ANALYTICAL CHEMISTRY, VOL.

52, NO. 5. APRIL 1980

ref. 37 2 222 259 364 539 62 4 210 482 213 240 237 238 239 156 387 389 157 455

462 512 515 2 66 Y3 197 173 222 297 183 419 30 3 211 597 154

604 117 365 8 588 20 0 28 1 174 YO 29 0 250 107

420 198 155 165

31 1 491 358 154 45 7 87

537 519 311 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY ~

~~

Table I ( C o n t i n u e d ) constituent

... ...

...

Mo

...

... ...

...

Nb

st eel

Ni

steel steel steel ... alloys

...

...

soils

os

method or reagent [wavelength; molar absorptivity, o r concentration range]

material

... ...

...

... Pb brass gunmetal, solder . . .

Pd

hydroxynaphthol blue, H,O,, catalytic oxidation [645; 0-5 ng] I-(2-pyridylazo)-2-naphthol, Triton X-100 [562] salicylaldoxime (BuOH) [420; 2.3 X l o 5 ] chlorpromazine hydrochloride, KSCN (CHCl,) [465; 1.6 X l o 4 ] 2,4-dihydroxyacetophenoneoxime [400] 2,2'-dihydroxybenzophenonethiosemicarbazone, SnCl, ~ 5 0 0 3.3 ; x 1031 polyoxyet hylene sorbitan monolaurate, o-hydroxyquinonephthalein [520; 1.4 X 10'1 sodium 2-bromo-4,5-dihydroxyazobenzene-4'-sulfonate, cetyltrimethylammonium chloride [525; 6.1 X l o " ] N-o-tolvl-o-methoxvbenzohvdroxamic acid (isoamvl alc.) i355;-0.3-11 ppm] Ar-benzoylphenylhydroxylamine,Lumogallion (CHCl, ) r505: 1.38 x 1041 Chlorophosphonazb I11 [675] cinnamoylphenylhydroxylamine,phenylfluorone (CHCL,) [502] 5,7-dibromo-8-hydroxyquinoline (CHCl,) [403; 2-6 ppm] diphenylamine, KSCN (CHCl,) [420] 2-(6-bromo-2-benzothiazolylazo)-4-methylphenol (CHCl,) [620] l-hydroxy-l,2-diphenylthiourea [470 ; 1 . 6 X 104] 2-(5-nitro-2-pyridylazo)-l-naphthol, Triton X-100 [632; 7.4 X l o " ] phenvlfluorone. hexadecvltrimethslammonium bromide .. pyridine [620; 1.04 X l o ' ] picclinealdehyde salicyloylhydrazone [37 5 ; 3.9 X l o " ] 2-psrilidene-o-hydroxsaniliner4601 2-pyrilidene-1-naphthylamine(430,-440; 1.6 X l o 3 ] salicylidene-2-aminothiophenol (CHC1,) [420; 0-3 ppm] 5-sulfothiazolylazo)-2-nitroresorcinol, diphenylguanidine (CHC1,) [ 5 3 0 ; 7.55 x l o " ] l-(2-thiazolvlazo)-2-naphthol (molten naphthalene) [595; 0.1-0.9 p'pm] 1-(2-thiazolvlazo~-2-na~hthol. Triton X-100 r595l . o-arsanilic acid [ 5 0 0 ; 1:83 x l o " ] N-benzoyl-o-tolylhydroxylamine[465; 1.49 X lo4] 2,2'-bis(o-mercaptophenyl)acetylacetoneani1 [480; 7.3 X l o 3 ] 2,2'-bis(2-pyridy1)benzothiazoline [490; 1 x l o 4 ] 4,5-diamino-2-methyl-pyrimidinol [480; 2.53 X l o " ] tetramethylthiurani disulfide, HCl (PhMe) [504; 4.06 X lo3] dithizone (CHC1,) 8-hydroxyquinoline (molten naphthalene-CHC1,) [360; 9 . 1 X l o 4 ] methylthymol blue, diphenylguanidine (BuOH) [597] thiobenzoylacetone (C,H,) [390] Xylenol Orange, diphenylguanidine (BuOH) [590; 1.7 X l o 5 ] 1.5-bis(2-chloro~henvl~-3-~henvlcarbamovlformazone " '[6231 1.04 X i o 4 ] 54 chloromethvl~-4-selenohexahvdroavrimidine-2-thione .[340; 1 x 1641' dipotassium 1,5-bis(2-chlorophenyl-5-sulfonic acid)-3-phenylcarbamoylformazan [633; 1.15 X l o 4 ] Erichrome Cyanine R , cetyltrimethylammonium ion [ ~ o o9;. 6 x 1041 o-furidioxime, co-pptn with naphthalene-acetone (CHC1,) [380; 0.5 ppm] 3-(2-hydroxy-5-methylpheny1)-5-(p-1nethoxyphenyl)isoxazoline (extn) [332; 1-20 ppm] isonitrosobenzoylacetone (C,H,) [415] monothiotrifluoroacetylacetone (n-hexane) [428; 6.3 X l o 3 ] monothiourea-3-nitrophthalic acid [306; 2.9 X l o " ] 2-nitroso-5-diethylaminophenol (CHC1,) [486; 4.4 X l o " ] phenylazobenzaldehyde [550; 3 . 6 x l o 3 ] phenvlme t hv lamido t hi onop - hos -p hona te . Sn Br ( CHCl, ) ~ 4 0 04; x i o . ] phenyl-2-pyridylketone azine, ethanol water [425; 1 . 0 4 X l o 4 ] Pyridoin phenylhydrazone [450] Rhodazo1Kh.S [540;1.20 2 l o 5 ] tetramethylthiouram disulfide (PhMe) 1301; 2-14 ppm] o l , p , y , 6 -tetraphenylporphinetrisulfonatk, L -ascorbicacid 1434; 5 . 0 x 1051 thiopyrine [330; 3.65 X l o 4 ] triphenylphosphine (C,H,) [346; 2.26 X l o 4 ] Chloropromazine hydrochloride [400; 1.9 X 10'1 diethazine hydrochloride [404; 1 . 0 8 X l o 4 ] Profenamine hydrochloride, Cu catalyst [400; 1.3 X l o 4 ] tetramethylthiuram disulfide [ 348 ; 0.2-9.0 ppm] Bismuthiol 11, Sn(I1) or Ti(II1) [355-365; 2.2 X l o 4 ] s i - (

1

,

-

~

...

alloys

... ...

catalysts

catalysts ...

electrolyte bathc

...

Pt

. . .

alloys Re 312R

W-Re alloys

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

ref. 641 185 48 4 463 1 334

37 3

625 172 432 78 39 65 328 20 2 207 503 505 169 82 79 511 3

369 241 17 3 643 33 33

248 612 176 460 581

38 1 580

27 1 22 27 2 584 514

115

109 57 6

194 590 339 445 17 5 538 46 419 232 574 37 1

189 186 188 61 1 32 5

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I (Continued) constituent

alloys

...

Rh Ru

Sb sc

method or reagent [wavelength; molar absorptivity, o r concentration range]

material

Cu, Pb, Pb alloy

...

hexaniethylphosphoramide, hydrazine sulfate, KSCN (CHCI,) [430; 2.23 X l o 4 ] KBr, (H,SO,) (toluene) [2.56 X 10'1 l-phenyl-2,4-dithiobiuret, SnCI, [390; 9.3 X lo3] p-(dimethylamino)benzylidenerhodanine, EtOH (PhNO, ) - [535; 9.97 x 1 0 9 isonitrosoacetvlacetone (i-BuCOMe) r550; 4.285 X l o 3 ] monothiourea-3-nitrophthalic acid [598; 2.9 X l o 3 ] l-pentyl-4,6-dihydroxy-5-nitrosopyridine-3-carboxylate [535; 4 . 2 X l o 4 ] Pyrocatechol violet (tri-n-octylamine)[555; 0.5-2.0 ppm] 5.7-diiodo-8-hydroxyquinoline. Rhodamine S,- (C,H,) . " " '[550; 5.8 x i o 4 ] Eriochrome Cyanine R , cetyltrimethylammonium ion [590; 1.48 10'1 bis(thiopyriny1)methane [370; 1.12 X l o 4 ] 5,7-dichloro-8-quinolinol (CHCI,) [403] 3,5-dinitropyrocatechol and Brilliant Green (CCI,) [630] Pyrogallol Red, cetyldimethylbenzylammonium chloride (hexane-acetone) [480; 6.5 X l o 4 ] Resarson [500; 2.48 X l o 4 ] o -( salicy1idenamino)thiophenol (C, H, ) [4 15 ; 0 .O 1-6 ppm] chromethylpyrazole, fluoride ion (C,H,) [590; 9.1 X l o 4 ] salicylfluorone, antipyrine, oxalate (CHC1,) [505; 2 . 1 X l o 5 ] dithiodiantipyrylmethane [360; 5.2 X l o 4 ] cinnamoylphenylhydroxylamine, phenylfluorone (CHCI,) [550] Dimedrol, KSCN (C,H,) [420;8.24 X l o 4 ] disulfophenylfluorone, cetylpyridinium ion [620; 1.2 X l o 5 ] 2-ethyl-7-aminophenothiazine [440; 0-1.6 ppm] 2-mercapto-3-(2~furyl)propenoicacid (amyi ale..) 1490; 3.5 x 10'1 N-phenylacetylphenylhydroxylamine (CHCI,) l-phenyI-2-methyl-3-hydroxy-4-pyridone1 KSCN (CHC1,) [365; 8 . 6 5 x 1041 pyrocatechol, nitrilotriacetic acid [360, 4301 salicylic acid [430] tetraphenylarsonium or tetraphenylphosphonium ion, KSCN (CHCI,) [420; 0.1-1 ppm] N-rn-tolyl-p-methoxybenzohydroxamic acid (CHCI,) [330 ; 1-8 ppm] mesityl oxide, Brilliant Green, LiCl (toluene) [640; 1.03 X l o 5 ] 2-o-methoxyphenylhydrazinylylidenemethyl)-l,3,3trimethylindoline perchlorate (C,H,) [480; 3.1 X l o 4 ] Arsenazo I, trioctylphosphine (cyclohexane) 1600; 20-200 ~ g ] Arsenazo I11 (Bu,PO,-C,H,-EtOH) [655] Chlorophosphonazo 111, trialkylamine (C,H,) [670; 0.03-2.0 ppm] Chlorophosphonazo 111, tri-n-octylamine ternary mixture (xylene) [667] Eriochrome Cyanine R , cetylpyridinium bromide [620; 4.8 X l o * ] salicylanilide (2-BuCOMe) [360; 3.87 x l o J ] N-rn-tolyl-rn-nitrobenzohydroxamic acid (CHC1,) E5101 anthranilic acid benzoylhydrazide [550] benzoylhydrazine [400; 9.0 x l o 3 ] N-benzoyl-AT-phenylhydroxylamine(CHCI,) [530] 5-chloro-2-hydroxy-4-methylacetophenone oxime (CHCI,) [400; 3.15 X l o 3 ] h~-(n-chlorophenvl)-2-thenovlhvdroxaniic acid (CHC1,) - 6 3 0 ; 5.5 lo:']' Chromazol KS r590: 1 . 3 X 1041 3,3'-dimethyln~phthidinedisulf~nic acid [555; 1.94 X l o 4 ] 2-hydroxy-5-nitrophenyl-l-l'-azo-~-naphthol [550; 0.1-3 ppm] N-hydroxy-N-p-tolyl-Ai'-phenylbenzamidine (CHCI,) ~ 5 7 54.46 ; x 1031 3-methyI-1-phenyl-4-capryl-5-pyrazolone (BuOH) [470] picolinic acid (CHCI,) [385; 1-50 ppm] profenamine hydrochloride [510; 7.09 x l o 3 ] pyrocatechol violet, 1,lO-phenanthroline (BuOH) [540; 0.5-4 ppm] sulfochlorophenol N [627; 3.12 x l o " ] ammonium 1-pyrrolidinecarbodithioate[250; 4.5 X l o 4 ] dihvdroxvfluorescein. cetvltrimethvlammonium bromide 1515; 1:2 x 1051 pyrocatechol violet, cetylpyridinium chloride [670; 4.4 X lo4] zinc dithiol (isoamyl acetate) 16401 Arsenazo I11 ion-exch. sepn., eluted with D L -2-hydroxybutyric acid rs'ini -, 2,2'-dipyridyl-2-pyridylhydrazone [ 4 4 2 ; 0.12-1.32 ppm] 1,lO-phenanthroline, 4,5-dibromofluorescein (CHCI,) [536; 5 . 0 X l o 4 ]

x

Sn

alloys Pb alloys vanadium

... river water Ta .

Te Ti

.

I

pyrite steels ...

steel and bronzes

...

..

..

... T1

Cd

U

phosphate rocks ores

...

ores

...

V

steel steels stainless steel ...

steel steel . . .

... steel steels alloys steel W

...

Re and perrhenates

Y

rocks silicate rocks

x

I

"

ref. 368 66 32 428 644 195 486 569 298 585 10 510 62 3 634 264 582 162 295 124 39 565 55 91 246 34 572 39 3 180

571 178 25 8 35 327 465 76 637 458

344 6 263 44 6 270 32 1 427 184 509 85 516 268 642 190 71

651 638 397 94 26 354

L-

Zn

...

ANALYTICAL CHEMISTRY, VOL 5 2 , NO 5, APRIL 1980

11

558 313R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I ( C o n t i n u e d ) constituent

material

... ... Zr

AI and M g alloys alloys Ni-base alloys minerals

...

method or reagent [wavelength; molar absorptivity, o r concentration range] picolinealdehyde salicyloylhydrazone r365; 4.8 x 1041 4-( 2-pyridylazo)resorc~ino~l, diphenylguanidine (CHCl, j 1515; 6.73 x 1001 antipyrine, KSCN, Arsenazo I11 ( B u O H ) [665; 8.0 x lo4] 3,4dihydroxyazobenzene [510; 4.0 x lo4] 3-methylbutanol, Chlorophosphonazo I11 [675; 2.0 x l o 5 ] Xylenol Orange [550; 0.1-0.5 ppm] Xylenol Orange, gelatin [600; 7.50 x l o 4 ]

purity of hygroscopic or other difficult t o purify spectrophotometric reagents can be used provided the metal-to-ligand ratio is known, the absorbance of the metal is negligible a t the working wavelength, a limiting absorbance is reached with increasing metal concentration. and multister, comdexation is absent-(621). A detailed sresentation of the theoretical Drinciules of dual-wavelendh spectroscopy has been publishid (383’).T h e construction a n d evaluation of a computer-controlled dualwavelength spectrometer employing an electromechanical modulator has been described (475). Various methods of obtaining a second derivative spectrum have been presented a n d their application t o trace organic analysis has been discussed (209). I t has been reported that it is possible to discover symptoms which distinguish false peaks in a derivative spectrum by examining t h e true spectrum as reconstructed from t h e derivative spectrum (299). The application of first derivative absorption curves t o t h e analysis of complex multicomponent mixtures has been demonstrated by t h e determination of benzoic acid in the presence of benzaldehyde in zinc electroplating solutions and also the determination of saccharin in the presence of aromatic sulfonic acids in nickel electroplating baths (60). A single-beam photoacoustic spectrometer suitable for the study of absorption spectra and the radiationless process from solid samples have been described (546). Two Fourier transform spectrometers capable of operating in the ultraviolet and visible regions have been constructed a n d evaluated (223, 335). A spectral evaluation of windowless argon discharge vacuum-ultraviolet lamps for matrix isolation spectroscopy has been t h e subject of one report (18). A nitrogen monoxide electrodeless discharge lamp has been developed as a light source for determining nitrogen monoxide by molecular absorption spectrometry (106). A critical discussion of the advantages and disadvantages of the photodiode, phototransistor, photodarlington, photo-array, and the photo-integrated-circuit has been presented (378). T h e effects of general cell design (58, 77),filler gas (144, 309, 632) and supporting membrane (261) used in the construction of detectors for photoacoustic spectrometers have been discussed. Also the effect of sample thickness of thin polymer films on t h e magnitude of optoacoustic detector signals has been studied ( 5 ) . The availability of two new ultraviolet enhanced silicon p-i-n photodetectors has been announced (483). A photometric analysis system comprised of a second generation multisample rotating-disk module with unique sector-shaped cuvettes for maximum collection of photon information, and a microcomputer for data acquisition, processing, presentation, and control has been described (146). .4 procedure has been outlined for determining the precise shape and position of t h e light beam as it passes through the cuvette holder by using blueprint paper (468). An apparatus consisting of a circular holder of transparent cells for cyclic repetition of a sequence of photometric measurements has been described (534). S p e c t r o p h o t o m e t e r s . Two major trends in spectrophotometer design seem to be apparent from the new instrumentation introduced over t h e past two years. T h e first of these is the move by the manufacturers to the almost exclusive use of holographic gratings and the second is the growth in the number of microprocessor controlled spectrophotometers. In spite of this, a number of dependable high performance instruments without microprocessors continue to be available. T h e Fisher Spectromatic (159) and the Turner Model 380 (600) spectrophotometers are examples of visible instruments in this category, although t h e latter instrument has both ultraviolet and infrared expandability by means of accessories. 314R

ANALYTICAL CHEMISTRY, VOL 5 2 , NO 5 , APRIL 1980

_______

ref. 169 343

9 622 639 254 532

T h e Cary Model 210 ultraviolet-visible spectrophotometer offers an absorbance range from -0.6000 t o 4.000, programmable base-line corrector, and a wide variety of accessory features (614). T h e Varian Series 634 ultraviolet-visible spectrophotometer offers double-beam opitcs, accuracy, simplicity, and versatility a t a modest cost (615). A German patent describes a highly accurate dual-beam spectrophotometer with two monochromators, an analog-to-digital converter, a n d a digital processor (338). Again in the area of commercial instruments, Beckman Instruments, Inc., have recently announced the introduction of their Model DU-8 computing spectrophotometer which is a single-beam instrument featuring computed base-line correction, a variety of software programs for wavelength scanning, gel scanning, kinetics systems, and auto sample changing which both control the instrument operation and the processing of the data ( 5 4 ) . Hewlett-Packard’s Model 845OA ultraviolet-visible spectrophotometer operates under the control of a 16-bit microcomputer with 88K bytes of memory and is capable of measuring and displaying a spectrum covering the entire wavelength range of 200-800 nm in 1 s (214). NSI/Hitachi Scientific Instruments, Inc., have introduced their Model 800-80 ultraviolet-visible spectrophotometer which is a double-beam recording instrument featuring repeat scanning, derivative, printing, and a complete enzyme program (410). The Perkin-Elmer Corporation has introduced six ultraviolet-visible instruments all of which are microprocesser controlled. The Model 320 features wavelength programming up to ten wavelengths, repetitive scanning, l s t , 2nd, 3rd, and 4th derivatives, automatic base-line correction, and concentration calculation (441j. The Model 552 features autoconcentration, autozero, and automatic base-line correction (439). Models 555, with a double grating monochromator, and 557 which is a dual-wavelength instrument share many of the features of the Model 552 1439). T h e Models 554 and 559 feature automatic calculation and control of many instrument functions including concentration calibration, base-line correction. recording of 1st or 2nd derivative values, storage of wavelength values for repetitive scanning, and output of selected parametric values (437, 440). Pye Unicam Ltd. has introduced their Models SP8-150 and SP8-250both of which incorporate master holographic gratings, with the Model SP8-250 having a double monochromator and being microprocesser controlled (464). Pacific Precision Instruments have combined photon counting and current measuring techniques in their Model 126 photometer to provide 0.5% accuracy over ten decades of light intensity (426). A microscope photometer has been developed which consists of an optical microscope which has been combined with photometric measuring equipment and illumination for reflection of transmission measurements ( I 19). E D T Research has marketed their model OAS 400 photoacoustic spectrometer which employs a 300-W high pressure xenon lamp and two gratings to cover a wavelength range from 290 nm to 3.2 pm (145). Princeton Applied Research has introduced their Model 6001 photoacoustic spectrometer which is microprocesser controlled, uses a 1-kW xenon arc lamp as its source and has a spectral range from 200 nm to 3.0 pm (459). T w o noncommercial double-beam photoacoustic spectrometers capable of analyzing both liquid and solid samples have been described (4, 61). Special Application I n s t r u m e n t s a n d Accessories. A double-beam photometer for the determination of atmospheric ozone a t concentrations of 0.025 to 1.0ppm has been described (48). A spectrophotometer has been described which utilizes a rotating chopper disk containing three filters uhich allow5 light beams of three different wavelengths to pass through

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table 11. Spectrophotometric Methods for Nonmetals materials

constituent acids As

soils B

thorium sulfate B-Ca mixtures BrO 3

...

BrO; CN -

... ... ...

co

...

HF 12 NaBH, ”3

gaseous HC1 solid electrolytes

F-

...

water NaCl

... ...

soil

...

P polyt hionates

carbonate salts steel, alloys

S2-

...

SCN Se

... industrial waste

Si S,O,’-

...

SO,’-

river waters water ...

so,Te

...

method or reagent [wavelength, molar absorptivity, or concentration range]

ref.

NH4V0, [400; 1 0 - 4 - 1 0 - 3MI Bismuthiol I1 (CHC1,) [335; 1.62 X l o 4 ] silver diethyldithiocarbamic acid, NaBH, [508; 1-35 ppm] 2,4-dinitro-l,8-naphthalenediol, Brilliant Green (PhMe) [637; 1.03 X l o 5 ] monomethylthionine, fluoride (1,2-dichloroethane)[0.2-10.0 big] sodium salicylate, ferroin [500] 1,3-cyclohexanedione, bisthiosemicarbazone monohydrochloride [415; 1-8 ppm] iodide, kinetic oxidation [353, 0.3-3 pg] 3,5-dithiobis( 2-nitrobenzoic acid), cetyltrimethylammonium bromide [0.18-2.80 ppm] Hg( 11),ammonium p - ( 2-omino-3-hydroxypyridyl-4-azo)benzenearsonate [535; 0.04-0.37 ppm] HeBr,’- indirect TO.5-10 ppml H&,7KI [323; 1.3-13 ppm] sodium barbiturate. sodium isonicotinate. chloramine-T r6001 - azobenzene, PdC12,’1-hydroxy-2-naphtho~c acid [520] iron( III)-5,5’-methylenedisalicylic acid, indirect [550; 1-40 ppm] sulfochlorophenol, Zr [640; 3 X l o 4 ] Alizarine Complexone, La(NO,), [597; 0.05-0.30 ppm] Malachite Green (PhMe) [640; 5.40 X l o 4 ] 2,4,6-trinitrobenzenesulfonicacid [460] o-benzenesulfonamide-p-benzoquinone [480] 2.5-dimethox~oxolane, cinnamaldehvde . iE)-p-(dimethvlamino) , ,- , ‘[630; 4.52 lo4] p-(N.N-dimethvlaminoibenzaldehvder430: 0.04-0.24 _m-m l 3,6-diaminoac;idine sulfate [300;0.1-2.4 ppm] 5-hydroxyindole-2-carboxylic acid [465; 3.54 X l o 3 ] crystal violet (PhCl) [595; 60-720 ppb] 3,4-dimethylphenol [430; 1-40 ppm] methylene blue, (1,2-dichloroethane)[658; 4-20 ppm] molybdophosphate-methylene blue ion assoc. [655; 5 X l o 5 ] molybdovanadophosphate, bis(2-ethylhexy1)amine (1,2-dichloroethane) tungstovanadophosphate [480; 0.5-8.0 ppm] cyanolysis, methylene blue (1,2-dichloroethane) [657] copper thiothenolytrifluoroacetone, indirect [400; 0.1-0.75 ppm] iodonitrotetrazolium chloride [532; 0.32-6.4 ppm] crystal violet (PhC1) [595; 8.7 X l o “ ] N-(p-hydroxypropy1)-o-phenylenediamine [348; 2 X l o 4 ] o-phenylenediamine [3351 molybdosilicic acid-methyl green ion assoc. [627; 4.7 X 10‘1 NaCN, Fe(NO,),, La3+catalyzed cyanolysis [460; 1.02-61.2-ppm] HBr 1300: 1.6-32 ppml 6-(p-acetylphenyla-z&)-2 -aminoperimidine [ 480; 0-10 ppm] 2-perimidinylammonium bromide, HNO, [420] 2-mercapto-4,4,6-trirnethyl-lH,4H-pvrimidine I385 ; 1 . 2 6 x l o 4 ]

120 362

x

the sample cell and into the detector for the purpose of measuring the concentration of a given component in a mixture (151). A recent ASTM bulletin discusses the standard practice for testing fixed-wavelength photometric detectors used in liquid chromatography (27). A number of commercial fixed-wavelength chromatographic detectors which have been introduced during the past two years include the DuPont Model 860 (140), Gow-Mac Instrument Company‘s Model 80-800 (192), Perkin-Elmer’s Model LC-15 (438),and Spectra Physics’ Model SP8300 (552). Commercial variable wavelength detectors include Laboratory Data Control’s SpectroMonitor I11 (318),Micromeritics Instrument’s Model 786 (360), and one developed by NSI/Hitachi Scientific Instruments, Inc. (410). A photosensitive field-effect transistor has been incorporated into an apparatus designed to function as a detector for high speed liquid chromatography (528). A somewhat novel approach to designing a chromatographic detector employs a light source to illuminate a flow cell from which the emergent light is directed to a concave mirror which reflects the light a t different angles according to wavelength (353). T h e modification of a Beckman DB series spectrophotometer as a dual-beam liquid chromatographic detector has been described (215). Multiwavelength detectors include one which is designed to scan from 200 to 800 nm in 375 ms (501) and another instrument which is dual-beam and utilizes 256 linear photodiode array detectors for scanning from 200 to 800 nm (411,412). Also a dual-wavelength instrument has been described as a ligand chromatographic detector which

~

-

44

314 15 3 488

49 3 326 554 61 9 22 8 10 1 384 469 83 141 531 30 4 147

14 19 6 38

69 80

30 148

98 367 245 57 288 114

13 23 265 654 366 29 2 60 9 589 108 540

has been used to overcome problems resulting from peak overlapping in multicomponent elution (329). A specific liquid chromatographic detector of inorganic phosphates has been described which employs a post-column reaction using molybdate and ascorbic acid to produce the heteropoly blue compound (216).Another specific liquid chromatographic detection system for metal ions has been described which is based on the use of PAR and the zinc-EDTA complex (252). A simple photometric detector has been described which as a result of high stability of its light source is capable of detecting subnanogram quantities of metal ions using PAR as the photometric reagent ( 5 7 ) . Lachat Chemicals, Inc., have introduced a continuous flow ultraviolet-visible spectrometer which features flow cell path lengths to 100 nim, a 50-fold amplifier, spectral range of 190-900 nm, and a bandpass of 2 m m (320). T h e Hach Chemical Co. has marketed two continuous pump flow analyzers, one of which determines free chlorine in water and wastewater. and the other which determines total chlorine (203). A flow monitor for uranium(V1) in c a r b o n a t e solutions which uses 2,3-dihydroxynaphthalene-6-sulfonic acid in alkaline solutions has been described (247). An automated colorimeter which employs an electromagnetic valve, and electric relay, a memory capacitor, and two continuous flow vessels connected to the sample cuvette has been developed (319). A description of an automated analyzer for the colorimeter determination of urea in soil extracts has been presented (132). A simple resistance -capacitor circuit with an adjustable time constant ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

315R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table 111. Spectrophotometric Methods for Organic Compounds constituent acetaldehyde acetone acetylenes, (mono, di-sub.) acids, organic acrolein

material acetic acid

...

ethylenic compds. ammonium vanadate gases air

...

alcohols, primary amino aldehydes ampicillin

drug prep’ns.

amines, prim.

insol. support material

antipyrine azo compounds

industrial water

p-benzoquinone carbamates, N-monosubstituted carbon disulfide chloramphenicol crotonaldehyde

wastewater

cyanates

vapors

diphenylamine estrogens fur f ura 1 glucose

drugs hydrolyzed polysaccharides

hydrazine hydrazines, aroyl

...

...

human fluids ointments air

. ..

...

hydroxylamine hygronium indene p-methylaminophenol sulfate (metol) 1-naphthol nicotinamide nitrobenzene nitro compds., arom. oxalic acid oxymetazoline hydrochloride phenolphthalein picric acid salicylic acid sodium oleate

... naphthalene photographic developers

... ... ... ... nonsulfide minerals (adsorbed)

sugars, glucide thiourea urea

vapors

vitamin C

wastewater food

filter has been used with an ultraviolet-visible spectrometer to obtain good quality derivative spectra (139). Several analog devices have been developed t o obtain derivative spectra u p t o 7th order (568,569). A microcomputer controlled monochromator accessory module has been developed which provides split-beam dual-wavelength capability as well as ratiometric compensation for source fluctuation a t a single wavelength (112). In a n effort t o improve the wavelength range vs. resolution trade-off problem commonly associated with vidicon detectors, a modified Czerny-Turner mounting using six mirrors to display six 100-nm segments of spectrum between 200 and 800 nm along the vertical axis of a silicon vidicon detector has been described (220). An apparatus designed t o eliminate errors owing t o incorrect cuvette positioning and time-dependent sample changes has been developed (337). Also the use of long-path optical microcells has been discussed (160).

APPLICATIONS S p e c i a l T e c h n i q u e s . A computer processed linear pho316R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

method or reagent [wavelength; molar absorptivity, or concentration range] diazotized 4-aminobenzoic acid [550; 1 . 2 1 x l o 4 ] furfural, NaOH [520] mercuric acetate [260-279; 5 X 102-9.8 x l o 3 ] [400; 10-4-10-3MI phloroglucinol [550; 1.5-15 ppm] sodium sulfanilate [425] sodium nitroprusside, acetone [315; 1.42 X lo’] pararosanilinium chloride, Na,[HgCl,SO,] [556] 4-dimethylaminocinnamaldehyde [480 ; 0.5 -12.5 PPml 2,4,6-trinitrobenzenesulfonicacid [340; 20-50 pmolig] p-dimethylaminobenzaldehyde [ 514 ; 5-25 ppm] 8-hydroxyquinoline-5-sulfanilic acid, sulfonic acid [5-30 PPml methylamine [360] 1,3-diaminopropane, NaOH [557] NaN, [313, 7.27 X l o 3 ] Cu(II), NaOH, MeOH [550] sodium sulfanilate [425] o-tolidine [285; 0.025-0.14 mg] Citrochrome BUN, sodium lauryl sulfate [3 X 10-4-5 X l o - * mm Hg] vinyl acetate [281] sodium hexanitritocobaltate(II1)(CHCI,) 13661 o-aminophenol, Zn acetate [425] glucose oxidase-horseradish peroxidase, K1, enzymatic [353] ferrozine, Fe(II1) [562; 0.04-0.4 ppm] 2,3,5-triphenyltetrazolium chloride (i-BuCOMe) [480] Ferrozine, Fe(II1) [562; 0.04-0.4 ppm] direct UV absorption [226; 4-20 ppm] benzaldehyde, KOH [440] sulfanilamide, K,Cr,O, [520; 1 . 2 X l o 4 ] ammonium vanadate, (PhMe) [510; 20-600 p g ] HCI [261] lithium hydride in DMSO [540] acetyl chloride, Zn, Fe(II1) [0.05-10 mg] ferric sulfate [380] Bromocresol Green (CHCI,) [420; 3-15 ppm] self-absorption [555; 5-500 ppm] zinc, ammonium chloride [560; 10-1000 ppm] p-aminobenzoic acid, NaOCl [650; 8-44 ppm] Nile Blue [594] phenol, H,SO, [490-4801 sodium nitrite, Fe(III), indirect [450; 0.28-15.6 ppm] Citrochrome BUN, sodium lauryl sulfate [3 X 10-4-5 X 10.’ mm Hg] p-(dimethy1amino)benzaldehyde [420; 1-100 ppm] 2,4-dinitrophenylhydrazine

ref. 467 230 42 120 38 5 286 57 7 555 47 2 626 390 40 36 524 40 1 310

286 633 59 2 587 29 6 593 103 118

47 3 118

150 193 308 479 37 647 480 563 508 561 48 1

41 370

49 212 592 653 435

todiode array spectrometer employing disodium ethyl b i d 5 tetrazoly1azo)acetate as a photometric reagent has been used for the continuous and simultaneous determination of nickel and cobalt (17). Transition metals in solution have been determined by a method involving transmission spectroscopy parallel t o a platinum electrode surface in combination with chronoamperometry and linear-sweep voltammetry (602). Second derivative ultraviolet absorption spectrometry has been coupled with linear least-squares fitting to accurately analyze complex mixtures of volatile polynuclear aromatic compounds (208). Precise measurements of gases using second derivative spectroscopy has been used to determine partper-billion levels of trace pollutants such as ammonia, nitrogen oxides, and sulfur dioxide (152). Interest in photoacoustic spectroscopy (PAS) has continued to increase with its applications of the analysis of solid materials becoming more prevelent. One recent application of this technique has been the determination of nanogram quantities of material on TLC plates (86). Other applications have included the determination of uranium(1V) fluoride (142, 1 4 3 , holmium(II1) and erbium(II1) oxides ( 1 4 3 ) , and bis-

ULTRAVIOLET A N D LIGHT ABSORPTION SPECTROMETRY

muth(II1) iodide (158) in various solid materials. Aluminum and copper have been determined by PAS techniques as aluminum-quinalizarin lake and copper-thiooxime complex formed on filter paper by spot test techniques (267). Nanogram quantities of nickel as nickel dimethylglyoxime have been determined by PAS (646). The use of laser induced PAS has permitted the simultaneous determination of liquid mixtures of various food dyes including Amaranth, New Coccine, and Sunset Yellow FCF (415). An extrapolated sensitivity of 4 ppb of nitrogen dioxide per watt of laser power has been reported for the optoacoustic detection of nitrogen dioxide using a pulsed dye laser (ZOO). Laser induced photoacoustic detection has been studied for its practical application to trace analysis of permanganate ion in aqueous solutions (414). Methods of Analvsis. In mite of the advent of manv new highly sensitive analgtical tecKniques, the ease and simplicity of spectrophotometric methods often continues to be a compelling reason for their selection as the method of choice for analysis. Consequently it is not surprising to find a continual increase in the number of applications of these methods being reported each year. Tables I, 11, and I11 attempt to condense information from some of the more representative applications reported during the past two years. As a result of the limited format of these tables, it is not possible to note unique preliminary sample treatments, tolerance to diverse constitutents, and other noteworthy features of the methods. LITERATURE CITED (1) Abdul-Hug, G., Roa, S. E., Curr. Sci., 47, 155 (1977); Chem. Abstr., 89, 70149s (1978). (2) Ackerman, G., Kothe, J., Koch, S., Scr. Fac. Sci. Naf. Univ. Purkynianae Brun., 8 , 1 (1978); Chem. Absfr., 89, 84070w (1978). (3) Adarnovich, L. P., Gershuns, A. L., Oleinik, A. A,. Yanishevskaya, T. A,, Isv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.. 20, 1328 (1977); Chem. Abstr. 88, 2024631 (1978). (4) Adarns, M. J., Beadle, B. C., Kirkbright, G. F., Analyst(London), 102, 569 (1977). (5) Adams, M. J., Kirkbright. G. F , Menon, K. R , Anal. Chem., 51, 508 (1979). (6) Agrawal, Y. K . . Ann. Chim. (Rome).66,371 (1977); Chem. Abstr., 87, 210640f (1977). (7) Akaiwa, H., Kawamoto, H., Takenouchi. T., Bunseki Kagaku, 27, 449 (1978); Chem. Absfr.. 89, 208507r (1978). ( 8 ) Akhrnedli, M. K., Alieva, R. A,, Azerb. Khim. Z h . , 107 (1977): Chem. Abstr., 89, 1 3 9 7 8 9 ~(1978). (9) Akirnov, V. K., Gvelesiani, L. T., Busev, A. I., Nenning. P., Acta Chim. Acad. Sci. Hung., 97, 105 (1978); Chem. Absfr., 89,2 0 8 5 4 6 ~(1978). (10) Akirnov, V. K . , Tenyakova, L. A.. Antonenko, L. V., Zavod. Lab., 44,1047 (1978); Chem. Absfr.. 90,33448p (1979). ( 11) Alexaki-Tzivanidou. H., Microchem. J . , 22, 388 (1977). (12) Alexaki-Tzivanidou, H , Kounenis. G., Elezoglou, E.. Microchem. J . , 23, 329 (1978). (13) Alexandrov, A., Blasius, E.. Ziegler, K., Frensenius' Z . Anal. Chem., 288, 187 (1977); Chem. Absfr.. 88, 686291 (1978). (14) Alferov, E. A., Kostyrkina, T. D., Babenko, A. S., Izv. Vyssh. Uchebn. Zaved.. Khim. Khim. Tekhnol, 20, 1732 (1977); Chem. Absb., 68, 114782d (1978). (15) Alverez Jimenez, M. D., Perez-Bustamante, J. A,, An. Quim., 73, 978 (1978). (1978); Chem. Abstr., 88, 1 1 1 3 1 8 ~ (16) American Society for Testing and Materials, "1978 Annual Book of ASTM Standards, 12: Chemical Analysis of Metals; Sampling and Analysis of Metal Bearing Ores", ASTM, Philadelphia, Pa.. 1978. (17) Anderson, L., Anfaelt. T., Graneli, A,, Strandberg, M., Anal. Chim. Acta, 109,425 (1979). (18) Andrews. L., Tevault, D. E., Smardzewski, R. R., Appl. Spectrosc., 32, 157 (1978). (19) Anisirnova, L. G., Umarova, B. F., Fiz.-Khim. Metody Anal. Konfrolya PrOiZVOd. MeZhVUZ. Sb., 2,123 (1976); Chem. Abstr., 88. 181823f (1978). (20) Antonovich, V. P.. Ibragirnov, G. I., Nevskaya, E. M., Shelikhina, E. I., Chernyshova, M. A., Zh. Anal. Khim.. 34,81 (1979); Chem. Absfr., 90, 1794892 (1979). (21) Antonovich, V. P., Suvorova, E. N.. Fiz.-Khim. Mefody Anal., 3, 9 (1978); Chem Abstr , 91, 1505379 (1979) (22) Apostolescu, M Golgotiu, T , Rev Chm (Bucharest).29 1077 (1978) Chem Abstr . 90. 179514d (1979) (23) Arai, N., Nozawa,' T., Ishihara, Y.. Nipon Daigaku Seisankogakubu Hokoku, A . , IO, 179 (1977); Chem. Abstr., 88, 1 6 1 6 2 ~(1978). (24) Arias, Leon, J. J., Perez Trujillo, J. P., Garcia Montelongo, F , An. Quim.. 74, 606 (1978); Chem. Absti., 90, 114383r (1979). (25) Arnac. M., Chanut J. P., Talanta, 26, 181 (1979): Chem. Absfr.. 91. 101417a (1979) (26) Aruscavage, P Campell E Y J Res U S Geol Surv 6 697 (1978) (27) ASTM ANSIiASTM E 685. 1979 (28) Asuero, A. G., Microchem. J . , 23,390 (1978). (29) Asuero. A. G., Microchem. J . , 24, 217 (1979). (30) Baca, P., Freiser, H., Anal. Chem., 49,2249 (1977). (31) Baczo, G., Banyasz. Kahasz. Lapok, Kohasz.. 111. 379 (1978): Chem. Abstr., 90,80302w (1979). (32) Bag, S.P., Chopra. R.. Indian Chem. Soc.. 54,607 (1977); Chem. Absfr., 89, 16198u (1978).

e.

(33) Bag, S. P., Das, S. R., Chatterjee, A. E., J . Indian Chem. Soc., 55, 615 (1978). (34) Bag, S. P., Khastagir, A. K., Microchem. J . , 22, 434 (1977). (35) Bagdasarova, K . N., Schemeleva, G. G., Rubtsova, 0.K.,Shelepin, N. E., Zavod. Lab., 44, 392 (1978): Chem. Absfr., 89, 1 2 2 4 8 4 ~(1978). (36) Bagdasarova, K.N., Zhantalai, B. P., Sukhareva, Z. I ,Zavod. Lab., 43, 1068 (1977); Chem. Absfr., 88, 126001rn (1978). (37) Bagdasarova, I.Ya., Baranova, A . N., Bychkova, T. V., Mefody Anal. Kontrolya Proizvod. Khim. Prom-sti., 9, 40 (1977); Chem. Abstr., 88, 1634332 (1978). (38) Bakai, G. F.. Zaets, V. V., Mefody Anal. Kontrolya Proizvod. Khim. Prom-sfi., 9,44 (1977); Chem. Abstr., 89, 16104k (1978). (39) Bakurdzhieva, D., Panova, A.. Metalurgiya (Sofia), 33, 24 (1978); Chem. Absfr., 89, 1 3 9 7 9 8 ~(1978). (40) Balica, G., Pirvanescu, H., Rev. Chim. (Bucharest), 28, 1004 (1977); Chem. Absfr., 89, 135015s (1978). (41) Baiica, G., Pirvaneseu, H., Petrescu, V., Rev. Chem. (Bucharest), 29,780 (1978); Chem. Absfr., 90,47989c (1979). (42) Balyatinskaya, L. N., Babankova. L. G., Zh. Anal. Khim., 33, 842 (1978): Chem. Abstr., 89, 84378c (1978). (43) Bard, A. J., Analusis, 6 , 277 (1978); Chem. Absfr., 89,2 0 8 4 2 6 ~(1978). (44) Basadre-Pampin, M. I., Alvarez-Devesa, A,, Bermejo-Martinez, F., Bollain-Rodriguez, M. H., Microchem. J . , 23,360 (1978). (45) Basargin, N. N., Bykova, V. S.,Polupanova, L. I., Teor. Prakt. Vopr. Primen. Org. Reagenfov Anal. Miner. Ob'ekfov; 119 (1976); Chem. Abstr., 87, 193165k (1977). (46) Basargin, N. N., Rozovskii, Yu. G., Malinina, I. V., Teor. Prakf. Vopr. P h e n . Org. Reagenfov Anal. Miner. Ob'ekfov, 125 (1976); Chem. Absfr., 87, 193166m (1977). (47) Basargin, N. N., Rozovskii, Yu. G., Voichenkova, V. A,, Zubkova, L. S . , Teor. Prakt. V o w Primen. Ora. Reaaenfov Anal. Miner. Ob'ekfov, 93 (1976); Chem. Abstr., 87, 193i6Oe (1977). (48) Bass, A. M., Ledford, A. E., Jr., Thitaker, J. K.. U . S . Environ. Prot. Agency, Off. Res. Dev.. [Rep] €PA, EPA-600i3 -77-001a (1976); Chem. Absfr.. 88. 94117k (1978). (49) Batista. M. T.. Baeta. M..'Bo/. Fac. Farm. Coimbra. 2. 35 (1977); Chem. Abstr , 89, 70529r (1978) (50) Beadle, B C Adams M J Kirkbright, G F Proc Anal Dw Chem Soc., 14, 240 (1977) (51) Beaupre, P. W., Holland, W. J., Mikrochim. Acta, 1, 279 (1979). (52) Beaupre, P., Holland, W., Mikrochim. Acta, 2, 95 (1978). (53) Beaupre, P. W., Holland, W. J., Notenboom, R., Mikrochem. Acta, 1, 303 (1979). (54) Beckman Instruments, Inc., Bulletin S80-342-0879 GR 17.5, 1979. ( 5 5 ) Beiousova, V. V.. Chernova. R. K , Zavod. Lab., 44,658 (1978); Chem. Abstr., 89. 139838k (1978). (56) Berger, S . A,, Mikrochim Acta, I, 311 (1979). (57) Betteridge, D., Dagiess, E. L., Fields. E., Graves, N. F., Analyst(London), 103, 897 (1978). (58) Betteridge, D., Haliam, H. E., Meyier, P. J., Fresenius Z . Anal. Chem., 290,353 (1978). ( 5 9 ) Bhaskare, C. K., Jagdale, U. D., Anal. Chim. Acta. 93, 335 (1977). (60) Bilobran, S., Kryszczynska, H., Powloki Ochr., 5, 36 (1977); Chem. Abstr., 88, 31680t (1978). (61) Blank, R . E., Wakefield, T.. 11, Anal. Chem., 51, 50 (1979). (62) Blyurn, I . A., Zavod. Lab., 44,660 (1978); Chem. Absfr., 89, 1 3 9 7 1 9 ~ (1978). (63) BoRz, D. F., Howell, J. A,, Eds.. "Chemical Analysis", Vol. 8: "Colorimetric Determination of Nonmetals", John Wiley & Sons, New York, 1978, 560 pp. (64) B o k D. F., Melion M. G., Anal. Chem., 36, 256R (1964); 38. 317R (1966); 40, 225R (1968); 42, 152R (1970); 44, 300R (1972); 46, 227R (1974); 48,216R (1976). (65) Bonilla Simon, M. M., Sanz Medei. A., An. Quim., 74,595 (1978); Chem. Abstr., 90,66089a (1979). (66) Borisova, L. V., Plastinina, E. I., Ermakov, A. N., Marov, I. N., Zhukov, V. V., Zh. Anal. Khim., 33, 1982 (1978); Chem. Abstr.. 90,66107e (1979). (67) Borzova, Z. V.. Yarysheva, E. A.. Tataev, 0. A,, Fiz.-Khim. Metody Anal. Kontrolya Proizvod., 129 (1975); Chem. Abstr., 88, 15434k (1978). (68) Bosch Reig. F., Martiniz Calatayud, J., Peris Toran, M. L., Afinidad, 34, 191 (1977): Chem. Abstr.. 89, 16098m (1978). (69) Bosch Reig, F . , Martinez Caiatayud, J., Pic0 Puchades, R., An. Quim.. 74, 1256 (1978); Chem. Abstr., 91, 1 3 3 4 3 3 ~(1979). (70) Brittain, H. G., Anal. Lett., A l l , 355 (1978). (71) Bukhteeva, L. N., Ganago, L. I . , Khim. Khim. Tekhnol. (Minsk), 13, 17 (1978); Chem. Abstr., 89, 2 2 5 5 3 9 ~(1978). (72) Burgess, C., UV Spectrom. Group Bull., 5 , 77 (1977). (73) Burke, R . W., Mavrodineau, R., Nafl. Bur. Stand. ( U . S . ) ,Spec. Publ., 466, 121 (1977). (74) Burke, R . W.. Mavrodineanu, R., Natl. Bur. Stand. (U S . ) , Spec. Publ., 260, 1977. (75) Busch, K. W., Malioy. B., ACS Symp. Ser.. 102,27 (1979). (76) Bykhovtsova, T. T.. Tserkovnitskaya, I.A., Zh. Ana:. Khim , 32, 745 (1977); Chem. Abstr., 87. 2 1 0 5 2 6 ~(1977). (77) Cahen, D., Lerner, E. I . , Auerbach, A., Rev. S o . Instrum.. 49, 1206 (1978). (78) Camara Rica. C.. Sanz Medei, A., An. Quim., 74, 589 11978); Chem. Abstr., 90,33426e (1979). (79) Capitan, F., Alonso. E. J., Jimenez-Ruedas, M., Quin,. Anal., 31. 341 (1977): Chem. Anal.. 89. 208493h (19781. (80) Cap/tan, F., Roman, M., Ales-Barrero, F:, Bo/. Soc. Quim. Peru, 43, 1 (1977); Chem. Abstr., 88, 114730k (1978). (81) Capitan, F., Roman, M., Garcia Sanchez, F., Rev. Univ. Ind. Sanfander, Invest.. 8 , 43 (1978); Chem. Abstr., 89, 225568d (1978). (82) CaDitan. F.. Salinas. F.. CaDitan-Vaiivev. L. F.. Quim. Anal.. 31. 269 (1977); Chem. Absfr., 90, 132190e (1979). (83) Capitan, F., Salinas, F., Martinez Vidal, J. L., An. Quim.. 73, 1464 (1978); ANALYTICAL CHEMISTRY, VOL. 52, N O . 5, APRIL. 1980

317R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY Chem. Abstr., 90,33425d (1979). (84) Capitan, F., Salinas, F., Vallejo, P., Ars. Pharm., 19, 151 (1978); Chem. Absfr.. 90. 33469w (1979). (85) Caramlau, M., Duca, A,', Moroi. G.. Rev. Chim. (Bucharest). 29, 983 (1978); Chem. Abstr., 90, 132213q (1979). (86) Castleden, S. L., Elliott, C. M., Kirkbright, G. F., Spiliane, D. E. M., Anal. Chem., 51, 2152 (1979). (87) Ceba, M. R., Fernandez-Gutierrez. A,. Paiomera, A., Anal. Lett., 10, 907 (1977). (88) Cham, S. F.. Lau, 0. W., Mikrochim. Acta, I,241 (1979). (89) Charlot, G., "Dosages Absorptiometriques Des Elements Mineraux", Masson, Paris, F., 1978; Chem. Abstr., Abstr., 89,99268r (1978). (90) Chaudhary, R. C., Ann. SOC. Sci. Bruxelles, Ser. I , 91, 185 (1977); Chem. Abstr., 89. 52764j (1978). (91) Chaudhary, R. C., An. Quim., 74,172 (1978); Chem. Abstr., 89,208502k (1978). (92) Chemical Society Analytical Methods Committee, Analyst (London), 103, 391 (1978). (93) Chemical Society, Analytical Methods Committee, Analyst (London), 103, 521 (1978). (94) Chernova, R. K., Kharlamova, L. N., Belousova, V. V., Zavod. Lab., 44, 260 (1978); Chem. Abstr.. 89, 8 4 2 0 5 ~(1978). (95) Chernova, R . K., Kharlamova, L. N., Belousova, V. V., Kulapina, E. G., Sumina, E. G.. Zh. Anal. Khim., 33,858 (1978): Chem. Abstr.. 89,1398011 (1978). (96) Chernova, R. K., Sukhova, L. K., Amelin, V. G., Zh. Anal. Khim., 33, 1934 (1978); Chem. Abstr., 90,80284s (1979). (97) Chkanikova, 0. K., Tikhomirova, T. I., Dorokhova, E. N., Zh. Anal. Khim., 33, 2156 (1978); Chem. Abstr., 90,66153s (1979). (98) Ciesielski, H., Soignet, G., Catoire, M., Vancayzeele, P., Analusis, 6, 38 (1978); Chem. Abstr., 88, 130406q (1978). (99) Cinatlova, H., Sucha, L., Sb. Vys. Sk. Chem.-Techno/. Praze, Anal. Chem., H12, 105 (1977); Chem. Abstr., 90,47796n (1979). (100) Claspy, P. C., Ha, C., Pao, Y.. Appl. Opt., 16,2972, (1977). (101) Clyde, D. D., Warner, M., Analyst (London), 103,648 (1978). (102) Conners, K. A., Eboka, C. J., Anal. Chem., 51, 1262 (1979). (103) Cremonesi, P.. Bovara, R., Focher, B., D'Angiuro, L., Cellul. Chem. Techno/., 11, 341 (1977). (104) Crumrnett, W. B., Anal. Chem., 38, 404R (1966). (105) Crummett, W. B., Hurnmei, R. A., Anal. Chem., 40,330R (1968); 42, 239R (1970). (106) Daidoji, H., Akai, Yoshiro, Honma, A,, Nlppon Kagaku Kaishi, 1503 (1978); Chem. Abstr., 90,33494a (1979). (107) Danet. A. F., Tiron, M., Rev. Chim. (Bucharest),30,376 (1979): Chem. Abstr., 91, 1334379 (1979). (108) Dasgupta, P. K., Hanley, L. G., Jr., West, P. W., Anal. Chem., 50, 1793 (1978). (109) Dave. D. P., Haldar, B. C., J . Indian Chem. SOC., 5 5 , 781 (1978). (110) Debal, E.,Levy, R., Talanta, 25, 183 (1978). (111) Dedkov, Yu. M., Kalinechenko, T. Ya., Kondratyuk, N. G., Kochetova, G.V., Org. Reagenty Anal. Khim., Tezisy Dokl. Veses. Konf., 4th., 1, 96 (1976); Chem. Abstr., 88,44407j (1978). (1 12) Defreese, J. D., Walczak, K. M., Malmstadt, H. V.. Anal. Chem., 50, 2042 (1978). (1 13) Deguchi, M., Inamori, T., Hiroshima Daigaku Kogakubu Kenkyu Hokoku, 25, 91 (1977); Chem. Abstr., 88, 2 0 2 5 0 3 ~(1978). (114) Deguchi, M., Kitamura, A., Bunseki Kagaku, 27, 529 (1978); Chem. Abstr., 90,96946v (1979). (1 15) Deshmukh, B. K., Kharat, R. B.. Bull. Chem. Soc., Jpn., 52,584 (1979). (116) Deshmukh, B. K., Parate, V. M., Kharat, R. B., Fresenius' Z . Anal. Chem., 293, 304 (1978). (1 17) Dhond, P. V., Khopkar, S. M., Indian J . Chem. Sec. A , 15A, 934 (1977); Chem. Abstr., 89. 35928y (1978). (118) Dias, F., Otojola, A. S., Jaselkis, B., Talanta, 26, 47 (1979). (119) Dietrich. R., Preuss, J., Ger. Offen. 2,628,551 (CI. G01N21/60), 29 Dec 1977, Appi. 25 June 1976; Chem. Abstr., 88. 180149d (1978). (120) Dima, F., Ghimicescu, Gh., Talanta, 24, 333 (1977). (121) Dimitrova, A., Dimitrova, K., Dokl. Bolg. Akad. Nauk., 30, 1593 (1977); Chem. Abstr., 89, 122460h (1978). (122) Dittrich, K.. Anal. Chim. Acta, 97,59 (1978); Chem. Abstr.. 89,52840f (1978). (123) Dttrich, K., Anal. Chim. Acta, 97,69 (1978): Chem. Abstr., 89,528419 (1978). (124) Dolgorev, A. V., Busev, A. I., Zibarova, N. F.. Zavod. Lab., 44, 1182 (1978); Chem. Abstr., 90,33473t (1979). (125) Dolgorev. A. V., Ezhov, V. N., Zibarova, Yu. F., Lukoyanov, A. P., Org. Reaoentv Anal. Khim.. Terisv Dokl. Veses. Konf.. 4th.. 1. 104 (1976); C h e h Abstr , 88,44409m (3978) (126) Dolgorev, A V I Lysak, Ya G I Zibarova, Yu F , Zavod Lab , 44, 1050 (1978). Chem Abstr 89. 2085701 (1978) (127) Dolmanova, I . F., Mei'nikova, 0: I., Shekhovtsova. T. N., Zh. Anal. Khim., 33, 2096 (1978); Chem. Abstr., 90,47930b (1979). (128) Dolmanova, I. F., Ushakova, N. M., Vestn. Mosk, Univ., Ser. 2 : Khim., 19,369 (1978); Chem. Abstr., 89, 190377m (1978). (129) Dolmanova. I. F., Zolotova, G. A,, Mazko, T. N., Vestn. Mosk. Univ., Ser. 2 : Khlm., 18, 750 (1977); Chem. Abstr., 89, 52765k (1978). (130) Dolmanova, I. F., Zolotova, G. A,, Mazko, T. N., Z h . Anal. Khim., 32, 1025 (1977); Chem. Absfr., 88. 68538d (1978). (131) Donaldson, E. M.. Talanta, 25, 131 (1978). (132) Douglas, L. A., Sochtig, H., Flaig, W., Soil Sci. SOC.A m . J . , 42,291 (1978). (133) Dragusin, E., Armeanu, V., Rev. Cbim. (Bucharest), 29,257 (1978); Chem. Abstr., 89, 1 2 2 4 9 2 ~(1978). (134) Driscoll, W. G., Vaughan, E. D.. Eds., "Handbook of Optics", McGraw-Hill Book Company, New York, 1978. (135) Dubinina. L. F., Podchainova, V. N., Sedov, Yu. A,, Koord. Khlm.. 3,1564

318R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

(1977); Chem. Abstr., 88. 81254c (1978). (136) Dubinina, L. V., Rodnenko. L. V., Lipunova, G. N., Podchainova, V. N., Zh. Anal. Khlm., 33, 1547 (1978); Chem. Abstr., 90, 80277s (1979). (137) Dubois, P., Levillain, P., Mariaud, M., Bull. SOC.Chim. Fr., 5-6, PI. 1, 243 (1978); Chem. Abstr., 90, 14228a (1979). (138) Dubois, P., Leviliain, P., Veil, C., C . R . Hebd. Seances Acad. Sci., Ser. C ,288,311 (1979); Chem. Abstr., 90, 2 1 4 8 0 2 ~(1979). (139) Dubrovkin, I. M., Sagdeev, R. S., Sobolev. A. S., Zavod. Lab., 44,685 (1978); Chem. Abstr., 88, 156956q (1978). (140) DuPont, E. I., Anal. Chem., 51, 613A (1979). (141) Dzhashi, D. O., Dedkova, V. P., Sawin, S.B., Zh. Anal. Khim., 33, 1164 (1978); Chem. Abstr., 89, 15685113 (1978). (142) Eaton, H. E.,Anton, D. R., Stuart, J. D., Spectrosc. Len., 10,847 (1977). (143) Eaton, H. E., Stuart, J. D.. Anal. Chem., 50, 587 (1978). (144) Eaton, H. E., Stuart, J. D., Analyst(London), 102, 531 (1977). (145) EDT Research, Anal. Chem., 50, 1342A (1978). (146) Efstathiou, C., Cordos, E., Malmstradt, H. V., Anal. Chem., 51, 58 (1979). (147) Elamin, B., Means, G. E., Anal. Chim. Acta, 107, 405 (1979). (148) Elton-Bott, R . R., Anal. Chim. Acta, 90,215 (1977). (149) Eremenko, M. V., Pilipenko, A. T., Zh. Anal. Khim., 33, 1955 (1978); Chem. Abstr., 90,47847e (1979). (150) Evgrashin, I. B., Oleshko, G. I., Kudymov, G. I., DeposltedDoc., VINITI 2543-78 (1976); Chem. Abslr., 90, 158279 (1979). (151) Febinski. W.. Ger. Offen. 2,651,481 (CI. GOlN21/22), 18 May 1978, Appl. 11 Nov. 1976; Chem. Abstr., 89, 208626d (1978). (152) Falanga, E., Inquinamento, 20,43 (1978); Chem. Abstr., 89, 168131e (1978). (153) Federgrun, L., Abras, A.. Report. 1976, 1EA-420; INIS Atromindex, 1978,9, Abstr. No. 354290; Chem. Abstr., 88, 163374f (1978). (154) Fedin, A. V., Izv. Vyssh. Uchebn Zaved., Khim. Khim. Tekhnol., 20, 1607 (1977); Chem. Abstr., 88. 1147789 (1978). (155) Fedin, A. V., Vakar, G. P., Izv. Vyssh. Uchebn. Zaved.. Khim. Khim. Tekhnol., 20, 645 (1977); Chem. Abstr., 88,83077w (1978). (156) Fernandez Gomez, E., Berrnijo Martinez, F., Acta Qulm. Compostelana. 1, 100 (1977); Chem. Abstr.. 91, 1 1 6 6 6 0 ~(1979). (157) Fernandez Gomez, E.. Bermejo Martinez, F., Acta Quim. Compostelana. 1, 108 (1977); Chem. Abstr., 91. 1166612 (1979). (158) Fernelius, N. C., Spectrosc. Len., 11, 693 (1978). (159) Fisher Scientific Corp., Anal. Chem., 51, 230A (1979). (160) Flaschka, H., Couiter, M. L., Essays Anal. Chem., 253 (1977). (161) Fox, J. E., Jr., Anal. Chem., 51, 1493 (1979). (162) Freidenzon, L. N., Podchainova, V. N., Selezneva, E. A,, Zh. Anal. Khim., 32, 1754 (1977); Chem. Abstr., 88, 14554k (1978). (163) Fritz, D. F., Sahil, A., Keller, H., KovLts, E., Anal. Chem., 51, 7 (1979). (164) Fujinuma, H.. Itsuki, K., Yosui To Halsui, 18,1133 (1976); Chem. Abstr., 88,986471 (1978). (165) Fujiwara, A., Watanabe, K., Kawagaki, K., Bunseki Kagaku, 27, 645 (1978); Chem. Abstr., 90,66118j (1979). (166) Furukawa, M., Nagoya Kogyo GIutsu Shikensho Hokoku, 27,223 (1978); Chem. Abstr., 90,47864h (1979). (167) Gadia, M. K., Mehra, M. C., Microchem. J . , 22, 561 (1977). (168) Gadia, M. K., Mehra, M. C., Microchem. J . , 23, 278 (1978). (169) Gailego, M., Garcia-Vargas, M., Pino, F., Vaicarcel, M.. Microchem. J . , 23, 353 (1978). (170) Gambarov, D. G.. Akhmedli, M. K., Guseinov, A. G., Bashirov, E. A,, Azerb. Khlm. Zh., 99 (1978); Chem. Abstr., 90, 132196m (1979). (171) Gambarov, D. G., Guseinov, A. G., Zh. Anal. Khim., 33, 1343 (1978); Chem. Abstr., 89, 190356d (1978). (172) Gandhe. S. P., Agrawal, Y. K., Sci. Cult., 44,458 (1978). (173) Gangopadhyay, P. K., Fresenius' Z . Anal. Chem., 286, 251 (1977). (174) Garcia Asuero, A., Pino, F., Afinidad, 35, 549 (1978); Chem. Abstr., 90, 1 4 5 2 9 8 ~(1979). (175) Garcia-Vargas, M., Valcarcel, M., Microchem. J . , 23, 366 (1978). (176) Garoff, T., Tutkimus Tek., 49 (1976); Chem. Abstr., 90,66087y (1979). (177) Genestar, C.. Garcia Sanchez, F., Perez Bendito, M. D.. Valcarcel, M., An. Quim., 74, 1522 (1978); Chem. Abstr., 91, 15061611 (1979). (178) Gholse, S. B., Kharat, R . B., J . Indian Chem. SOC.,55, 894 (1978). (179) Gladysheva, G. P.. Ivankova, A. I., Shcherbov, D. P., Issled v Ob/. Khim. i F i r . Metodov Analiza Mineral'n. Syr'ya, 28 (1976); Chem. Abstr., 88, 130170h (1978). (180) Goncalves. A. C.. DeSalles Andrade. H. A,. Fresenius' Z . Anal. Chem.. 292,299 (1978). (181) Gonzalez Balairon. M., Cano Pavon, J. M., Pino, F., Talanta, 26, 71 (19791. (182) Gonzalez Diaz, V., Arias, J. J., Garcia Montelongo, F., An. Quim., 73, 1300 (1977); Chem. Absb., 89, 1729889 (1978). (183) Gonzaiez, Diaz, V., Sanchez-Pedreno, C., An. Quim., 73, 1002 (1977); Chem. Abstr., 89, 1 2 2 4 4 1 ~ (1978). (184) Gordelva, M. N., Dedorova, L. N., Basargin, N N.. Rozovskii, Yu G , VeStn. Leningr. Univ. Fir. Khim., 98 (1978); Chem. Abstr., 90,66133k

, - . - ,. 119791 ,

(185) Goto, K., Taguchi, S., Fukue, Y.. Ohta, K., Watanabe, H.. Mizu Shori Giiutsu. 19. 745 11978): Chem. Abstr.. 90. 33484x 11979). ( 1 8 6 j Gowda, H. S.: Jagadeesh, K. S., Mikrochim. Acta 1, 183 (1979). (187) Gowda, H. S., Keshavan, 8.. J . Indian Chem. SOC.,54, 603 (1977); Chem. Abstr.. 89, 16197t (1978). (188) Gowda, H. S., Padmaji, K. A., Curr. Sci., 48, 520 (1979). (189) Gowda, H. S., Padmaji, K . A., Fresenius' Z . Anal. Chem., 295,413 (1979). (190) Gowda, H. S., Padmaji, K. A., Indian J . Chem., 16A, 633 (1978); Chem. Abstr., 89,208576n (1978). (191) Gowda, H. S., Thimmaiah, K . N., Microchem. J . , 23, 291 (1978). (192) Gow-Mac Instrument Co., Anal. Ghem., 51, 1116A (1979). (193) Grabiec-Koska, W., Miller, G., Dworzanska, K., Chem. Anal. (Warsaw), 22. 523 (1977); Chem. Abstr.. 88. 316792 (1978). (194) Gregorowicz, Z., Bobrowska, E., Microchem. J . , 23,517 (1978).

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (195) Gregorowicz, Z., Bobrowska, E., Microchem. J . , 23, 521 (1978). (196) Gross, R. L., Carson, F. W., Eviron. Anal., [Pap. Annal. Meet Fed. Anal. Chem. Spectrosc. S o c . ] , 3rd. 207 (1976); Chem. Abstr., 89, 1 6 8 7 9 1 ~ (1978). (197) Gurbanov, A. N., Azerb. Khim. Zh., 108 (1978); Chem. Abstr., 89, 208513q (1978). (198) Guseinov, I. K , Rashidov, K. D.. Azerb. Khim. Zh., 108 (1978); Chem. Abstr., 89, 2 2 5 5 4 0 ~(1978). (199) Guseinov, I. K., Rustamov, N. Kho, Azimov, Ya. A,, Agamaiieva, M. M., Azerb. Khim. Zh., 97, (1977); Chem. Abstr., 89, 35914r (1978). (200) Guseinov, I.K., Rustamov, N. Kh., Kerimov, S. K., Azerb. Khim. Zh., 119 (1976); Chem. Abstr., 87, 1 9 3 1 2 6 ~(1977). (201) Guseinov, I.K., Zul'fugarly, D. I., Kilieva, Kh. N., Azerb. Khim. Zh., 106 (1977); Chem. Abstr., 88, 83091w (1978). (202) Gusev, S. I . , Zhavakina, M. V., Kozhevnikova, I . A.. Mal'tseva, L. S., Zh. Anal. Khim., 33. 952 (1978); Chem. Abstr., 89, 1 3 9 8 0 5 ~(1978). (203) Hach Chem. Co., Anal. Chem., 51, 244A (1979). (204) Haegele, W., Schmid, D., Drissler, F., Naus, J., Walf, H. C., Z . Naturforsch. A . , 33, 1197 (1978). (205) Haiasi, R., Segedianac, M., Hem. Ind., 32, 98 (1978); Chem. Abstr., 89, 84376a (1978). (206) Hansen, E. H.. Ruzicka, J., Ghose, A. K., Anal. Chim. Acta, 100, 151 (1978). (207) Hasan, M., Mathur. S. P., Mehta. V. P., Bhandari, C. S., Indian J . Techno/., 16, 123 (1978); Chem. Abstr., 89, 2 0 8 6 0 3 ~(1978). (208) Hawthorne, A. R., Thorngate, J. H., Appl. Spectrosc.. 33, 301 (1979). (209) Hawthorne, A. R., Thorngate, J. H.; Gammage, R. B., Vo-Dinh, T., Report, 1978, CONF-780434-2, Avail. NTIS Energ Res. Abstr., 3 (17), 1978, Abstr. No. 41195; Chem. Abstr., 89, 225709a (1978). (210) Hayashi, K., Doukan, H., Yamamoto, A., Bunseki Kagaku, 27, 405 (1978); Chem. Abstr., 90, 15747f (1979). (211) Hayashi, K., Sasaki, Y., Tagashira, S., Harada. K., Okamura, K., Bunseki Kagaku. 27, 338 (1978); Chem. Abstr., 90, 33422a (1979). (212) Hayashi, K., Sasaki, Y., Tagashira, S., Yanai, F., BunsekiKagaku, 28, 511 (1977); Chem. Abstr., 88, 1 3 0 4 6 0 ~(1978). (213) Hayashi, K., Yamamoto, A . , BunsekiKagaku, 28, 318 (1979); Chem. Abstr., 91, 67937h (1979). (214) Hewlett-Packard Co., Anal. Chem., 51, 870A (1979). (215) Higgins, J. W., J . Chromatogr., 148, 335 (1978). (2161 Hirai. Y.. Yoza. N.. Ohashi. S..J . Liu. Chromatour.. 2 . 677 (1979). (217) Hirayama, K., Unohara, N., Nippon Kagaku Kaishi, f i g 8 (1978): 'Chem. Abstr., 90, 334932 (1979). (218) Hirt, R . C., Anal. C h e m . , 28, 579R (1956); 30, 589R (1958); 32, 225R (19601: 34. 276R 11962) (219) Hih,-R.'C., VaAdeGelt, J. M., Anal. Chem., 36, 308R (1964). (220) Hoffman, R. M., Pardue, H. L., Anal. Chem., 51, 1267 (1979). (221) Holler, P., Vrbsky, J., S b . Vys. S k . , Chem.-Technol. Praze, Anal. C h e m . , H12, 287 (1977); Chem. Abstr., 90, 478621 (1979). (222) Honjo, T., Fujioka, Y., Itoh, H., Kiba, T., Anal. Chem., 49, 2241 (1977). (223) Horlick, G., Yuen, W. K., Appl. Spectrosc., 32, 38 (1978). (224) Hoshi, S., Yotsuyanagi, T., Aomura. K., BunsekiKagako, 28, 592 (1977); Chem. Abstr.. 88. 1 8 1 8 6 3 ~(1978). (225) Howell, J. A., Hargis, L. G., Anal. Chem., 50, 243R (1978). (226) Huber. W., Fresenius' Z . Anal. Chem., 294, 356 (1979); Chem. Abstr.. 91, 13023p (1979). (227) Hummel, R. A.. Kaufman. D. C., Anal. Chem., 44, 535R (1972); 46, 354R (1974); 48, 268R (1976). (228) Humphrey, R. E., Ingram, G. S.,Waah, D. A,, Microchem. J . , 24, 92 (1979). . (229) Ichinose, N.. Yamada, S., Sakurai, N., Fujiyama, T., Masuda, N.. Fresenius' Z . Anal. C h e m . , 293. 23 (1978). (230) Igarashi, S.,BunsekiKagaku, 27, 245 (1978); Chem. Abstr., 89, 362142 (1978). (231) Igarashi. S.,Itoh, J., Yotsuyanagi, T., Aomura, K., Nippon KagakuKaishi, 212 (1978); Chem. Abstr., 89, 52746e (1978). (232) Igarashi, S., Yotsuyangai, T., Aomura, K., Bunseki Kagaku, 27, 66 (1978); Chem. Abstr., 89, 359801 (1978). (233) Igov, R., Vajgand, V., Glas. Hem. Drus., Beograde, 43, 233 (1978): Chem. Abstr., 89, 2 0 8 5 2 7 ~(1978). (234) Il'icheva, I.A., Degtereva, I.F., Doimanova, I.F., Petrukhina, L. A , , Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti., 65 (1978); Chem. Abstr., 89, 190385n (1978). (235) Indo, J., Naganuma, M., Fujieda, K., Fujimoto. N., Shinozaki, T., J . Nihon Univ. Sch. Dent., 18, 21 (1976); Chem. Abstr.. 89, 2086872 (1978). (236) Ingman, F., Still, E., Essays Anal. Chem., 183 (1977). (237) Ishii, Hajime, Koh, H., BunsekiKagaku, 28, 473 (1979); Chem. Abstr., 91, 1 8 6 0 3 2 ~(1979). (238) Ishii, H., Koh. H.. Talanta, 24. 417 (1977). (239) Ishii, H., Koh, H., Mizoguchi, T.. Anal. Chim. Acta, 101, 423 (1978). (240) Ishii, H., Koh, H., Okuda, Y.. Nippon KagakuKaishi, 686 (1978); Chem. Abstr.. 89, 703721 (1978). (241) Ishii, H., Miura, J., Watanabe, H., Bunseki Kagaku, 26, 252 (1977); Chem. Abstr., 87, 1931151.1(1977). (242) Ito, S.. Haraguchi, K., Nakagawa. K., BunsekiKagaku, 27, 334 (1978): Chem. Abstr., 90, 334212 (1979). (243) Ito, S., Haraguchi, K., Nakagawa, K., Yamada. Y., BunsekiKagaku, 26, 554 (1977); Chem. Abstr.. 88, 163250n (1978). (244) Ivanov, N., Zh. Anal. Khim., 32, 1688 (1977); Chem. Abstr., 88, 181851~ (1978). (245) Ivanov, N.. Radeva, M., Dokl. Bolg. Akad. Nauk, 32, 461 (1979); Chem. Abstr., 91, 116765m (1979). (246) Izquierdo, A,, Calmet, J.. Talanta, 25, 56 (1978); Chem. Abstr, 89, 139787t (1978). (247) Jablonski. B. B., Leyden, D. E., Anal. Chem., 5 0 , 404 (1978). (248) Jain, P., Katyal, M.. Singh, R. P., Sci. Cur?., 44, 85 (1978); Chem. Abstr., 89, 122466q (1978).

(249) Janica. K., Handb. Anal. Synth. Polym. Plast., 64 (1977). (250) Janik B., Wachulec, M.. Wajda, E., Fresenius' Z . Anal. Chem., 296, 414 (1979). (251) Jercan, E., Musat, C., Mainerici, M., Rev. Chim. (Bucharest). 28, 470 (1977); Chem. Abstr., 88, 130248q (1978). (252) Jezorek, J. R., Freiser, H., Anal. Chem., 51, 373 (1979). (253) Johansson, A., Ingman, F., Essays Anal. Chem., 189 (1977). (254) Kabrt, L., Radii, V., Suchanek, M., Uhrova, M., Urner, Z., S b . Vys. S k . Chem.-TechnOl. Praze, Anal. Chem., H-12, 251 (1977); Chem. Abstr., 90, 15790q (1979). (255) Kakac, B., Vejdelek, 2 . J., "Handbuch. der Photometrischen Analyse Organischer Verbindungen, Ergaenzungsband 1", Verlag Chemie Weinheim, Ger:, 1977; Chem. Abstr., 89, 84404h (1978). (256) Kalenchenko, T. Ya., Butenko. G. A,, Dedkov, Yu. M., Vopr. Khim. Khim. Tekhnol., 46, 78 (1977); Chem. Abstr., 88, 114765a (1978). (257) Kalinina, V. E., Lyakushina, V. M., Petrova, N. V.. Zh. Anal. Khim., 33, 959 (1978); Chem. Abstr., 89, 1 9 0 3 4 2 ~(1978). (258) Kalyanaraman, S., Khopkar, S. M., Anal. Chim. Acta. 97, 181 (1978). (259) Kamil, F., Sindhwani, S. K., Singh, R. P., Ann. Chim. (Rome), 68, 71 (1978). (260) Kandrac, J., Kuchar. E., Collect. Czech. Chem. Commun., 42, 3016 (1977); Chem. Abstr., 88, 1632981 (1978). (261) Kanstad, S. O., Nordal, P. E.. Opt. Commun., 26, 367 (1978). (262) Karayannis, M. I..Nikolels, D. P., Microchem. J . . 22, 356 (1977). (263) Karpova, 0. I.. Pilipenko, A. T., Lukachina, V. V., Zh. Anal. Khim., 32, 1142 (1977); Chem. Abstr.. 88, 57920w (1978). (264) Kaslina, N. A., Lukin, A. M., Fadeeva, V. I., Petrova. G. S., Zavod. Lab., 44, 520 (1978); Chem. Abstr., 89, 99120m (1978). (265) Kasterka, B., Chem. Anal. (Warsaw), 24, 329 (1979); Chem. Abstr., 91, 150619b (1979). (266) Kato, T.. Sasahara, T., BunsekiKagaku, 28, 73 (1979); Chem. Abstr., 90, 179576a (1979). (267) Kawamoto, S.,Yokoyama, Y., Ikeda, S., Bunseki Kagaku. 28, 142 (1979); Chem. Abstr.. 90, 214657b (1979). (266) Kawamura, F., Akama, Y., Meisei Daigaku Kenkyu Kiyo, Rikogakubu, 11, 17 (1975); Chem. Abstr., 88, 15478c (1978). (269) Kawashima, T.. Kozuma, Y . , Nakano, S., Anal. Chim. Acta, 106, 355 (1979). (270) Kaya, A., Ohuchi, Y., Sakai, F., BunsekiKakaku, 28, 401 (1979); Chem. Abstr., 91, 16781 l a (1979). (271) Kettrup, A., Ex?. Abstr. - Int. Symp. Anal. Chem. Explor. Min. Process. Mater., 488 (1976); Chem. Abstr., 90, 3345511 (19791. (272) Kettrup, A., Grote, M., Fresenius' Z. Anal: Chem.. 293, 115 (1978); Chem. Abstr., 90, 969572 (1979). (273) Khalaf, H., Rimpler. M., Fresenius' Z. Anal. Chem , 294, 286 (1979); Chem. Absk.. 90. 132366s (1979). (274) Kim, S., Dkosimo, R., San Filippo. T., Anal. Chem., 51, 679 (1979). (275) Kirkbright, G. F., Adams, M. J., Eur. Spectrosc. News, 14, 22 (1977). (276) Kirschenbaum, D. M., Anal. Biochem., 8 0 , 193 (1977). (277) Kirschenbaum, D. M., Anal. Biochem., 81, 220 (1977). (278) Kirschenbaum, D. M., Anal. Biochem., 82, 83 (1977). (279) Kirsten, W. J., Mikruchem. Acta,, 2, 403 (1978). (280) Kish, P. P., Balog, I. S., Org. Reagenfy Anal. Khim., Tezisy Dokl. Vses. Konf. 4th., 2, 101 (1976); Chem. Abstr., 88, 663794 (1978). (281) Kish, P. P., Spivakov, B. Ya., Roman, V. V., Zolotov. Yu. A,, Zh. Anal. Khim., 32, 1942 (1977); Chem. Abstr.. 88, 163288f (1978). (282) Kitagawa, T., Fujikawa, K., Nlppon Kagaku Kaishi, 998 (1977): Chem. Abstr.. 88, 57938h (1978). (283) Kleckova, Z., Langova. M., Havel, J., Collect. Czech. Chem. Commun., 43, 3163 (1978). (284) Klein, R. Jr., Hach, C,, Natl. Bur. Stand. ( U . S . ) ,Spec Pub/., 464, 61 (1977); Chem. Abstr. 88. 98581e (1978). (285) Klika, Z., Sommer, L., Scr. Fac. Sci. Nat. Univ. Purkynianae Brun., 8 , 53 (1978); Chem. Abstr., 89, 84248k (1978). (286) Klochkovskii, S. P., Noskov, V. V., Kir'yanova, L. A,. Mel'tser, L. V., Lukashenko, R. D., Tsinman. I.D., Gig. Sanit, 55 (1977): Chem. Abstr., 8 8 , 78161q (1978). (287) Koblizkova, V., Kuban, V., Sommer, L., Collect. Czech. Chern. Commun., 43, 2711 (1978). (288) Koh, T., Aoki, Y., Iwasaki, I., Analyst (London), 104, 41 (1979). (289) Koh, T., Katoh. M.. Anal. Chim. Acta. 109, 107 (1979). (290) Koh, T., Katoh, M., Nippon Kagaku Kaishi, 695 (1978); Chem. Abstr., 89, 122497a (1978). (291) Koh, H., Kawamura, K., Ishii, H., Nippon Kagaku Kaishi, 591 (1979); Chem. Abstr., 91, 32338m (1979). (292) Koh, T., Miura. Y., Katoh, M., Talanta, 24, 759 (1977). (293) Koh, T., Taniguchi. K., Miura, Y . , Iwashi, I., Nippon Kagaku Kaishi, 348 (1979); Chem. Abstr., 90, 1 7 9 5 7 4 ~(1979). (294) Kolthoff, I.M., Elving, P. J., Eds., "Treatise on Analytical Chemistry", Part 2, Voi. 10, 2nd ed., John Wiley and Sons, New York. 1979. (295) Konusova, V. V., Tsykhanskii, V. D.. Ezheg., Inst. Geokhim., Sib. Otd.. Akad. Nauk SSSR 1974, 365 (1976); Chem. Abstr., 89, 35947d (1978). (296) Korany, M. A., AbdeCSalam. M., Wahbi, A. M., Analyst(London), 102, 683 (1977). (297) Korenaga, T.,Mikrochim. Acta, 2, 419 (1977). (298) Korenman, I. M.. Ganina, V. G., Kiznetosva. E. E., Fiz.-Khim. Metody Anal., I,49 (1976); Chem. Absfr., 8 8 , 6854d (1978). (299) Korobkov, M. E., Zh. Prikl. Spektrosk., 28, 1053 (1978): Chem. Abstr., 88, 1 2 0 6 2 7 ~(1978). (300) Kostromina, N. A . , Krashnevskaya, L. N.,Kirillov, A . I.. U k r . Khim. Ah. (Russ Ed.), 44, 231 (1978); Chem. Abstr.. 89, 31689y (1978). (301) Kotelyanskaya, L. I . , Shestidesyatnaya, N. L., Zh. Anal. Khim., 33, 1095 (1978); Chem. Absb., 89, 139819e (1978). (302) Kotrly, S.,Vytras, K., Essays Anal. Chem., 259 (1977). (303) Kotsuji, K., Kameyama, Y., Arikawa, M., Havashi. S., Bunseki Kagaku. 26, 475 (1977); Chem. Abstr., 8 8 , 83096b (1978). ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

319R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (304) Kovalenko, E. V., Fomina, A. I., Saginashvili, R. M., Khim. Istochiniki Toka, 65 (1977); Chem. Abstr., 89, 99077 (1978). (305) Krakowski. J., Prezegel, Papier, 33, 416 (1977); Chem. Abstr.. 89, 16004c (1978). (306) Kreingoi'd, S. U., Martskoha, V. I., Fiz.-Khim. Metw'yAnal., 1, 51 (1976); Chem. Abstr., 88, 83073s (1978). (307) Krichevskaya, A. M., Federov, A. A,, Zh. Anal. Khim., 32, 1149 (1977); Chem. Abstr., 88, 68550b (1978). (308) Krishna, R. R., Sastry, C. S. P., Fresenius' 2. Anal. Chem., 296, 46 (1979). (309) Kritchman, E., Shtrikman, S., Slatkin, M., J . Opt. SOC. A m . , 88, 1257 (1978). (310) Krzek, J., Lechniak, A., Chem. Anal. (Warsaw), 22, 755 (1977); Chem. Abstr., 88, 278501 (1978). (31 1) Krzyzanowska, M., Kozinska, E., Skorko-Trybula, Z., Chem. Anal. (Warsaw), 24, 19 (1979); Chem. Abstr., 91, 32236b (1979). (312) Kudryavtseva, L. M., Chernova, R. K., Zavod Lab., 44, 522 (1978); Chem. Abstr., 89, 99121n (1978). (313) Kurzawa, Z.,Kurzawa, J., Swit, Z.,Chem. Anal. (Warsaw), 23, 409 (1978); Chem. Abstr., 89, 208497 (1978). (314) Kuwada, K., Motomizu, S.,Toei, K., Anal. Chem., 50, 1788 (1978). (315) Kuwada, K., Motomizu, S., Toei, K., BunsekiKagaku, 26, 609 (1977); Chem. Abs.fr., 88. 1632682 (1978). (316) Kuznetsov, V. I . , Arapova, G. A,. Teor. Prakt. Vopr. Org. Reagentov Anal. Miner. Ob'ektov, 106 (1976); Chem. Abstr., 87, 193161f (1977). (317) Kwiatkowski, E., Int. Symp. Specific Interact. Mol. Ions., [ R o c . ] , 3rd, 2, 350 (1976); Chem. Abstr., 88, 80004j (1978). (318) Laboratory Data Control, Anal. Chem., 50, 466A (1978). (319) Labyntsev, V . V., Bashigin, V. I., U.S.S.R. Patent 572,688 (CI. GOlN21/24), 15 Sep. 1977, Appl. 2,304,015, 22 Dec. 1975; Chem. Abstr., 88, 163389q (1978). (320) Lachat Chemicals, Inc., Anal. Chem., 51, 500A (1979). (321) Lal, K., Singh. J., Gupta, S. P., Chlm. Acta Turc., 6, 11 (1978); Chem. 'Abstr., 89, 2 2 5 6 3 4 ~(1978). (322) Lam, C. F., Forst, A., Bank, H., Appl. Spectrosc., 33, 273 (1979). (323) Lambert, J. L., Chejlava, M. J., Paukstelis, J. V., Liu, A. T., Anal. Chim. Acta, 99, 379 (1978). (324) Lang, L., "Absorption Spectra in the Ultraviolet and Visible Region", Vol. 22, R. E. Krieger Publishing Co., New York, 1978. (325) Lazarev, A. I.. Lazareva, V. I., Zh. Anal. Khim., 32, 751 (1977); Chem. Abstr., 87, 2105272 (1977). (326) Lazarou, L. A.; Siskos, P. A.; Koupparis, M. A,; Hadjiioannou, T. P.; Appleman, E. H.. Anal. Chim. Acta, 94, 475 (1977). (327) Levin, R., Ronen, S., Report 1977, NRCN-433, Avail. INIS Atomindex. 1978. Abstr.. NO. 372894: Chem. Abstr.. 89. 8 4 2 7 2 ~(1978). (328) Li; J. S., Han, S. S., Kim, S. A., Punsok Hwahak, 15, '70 (1977); Chem. Absb., 88, 1 1 4 6 8 8 ~(1978). (329) Li. K. P., Arrington. J.. Anal. Chem., 51. 287 (1979). (330) Lin, C. L., Niple, E., Shaw, J. H., Calvert, J. G., Appl. Spectrosc., 33, 481 11979). (331) Ljn, J. W., Dudek, L. P., Anal. Chem., 51, 1627 (1979). (332) Litsov, N. I., Voitenko, V. A,, Kachan, A. A., Zh. Anal. Khim., 33, 1855 (1978); Cbem. Abstr., 90, 33447n (1979). (333) Longworth, J. W., Photochem. Photobiol., 26, 665 (1977). (334) Lopez Fernandez, J. M., Perez-Bendito, Valcarcel, M., Analyst (London), 103, 1210 (1978). (335) Luc, P.,Gerstenkorn, S., Appl. Opt., 17, 1327 (1978). (336) Lukovskaya, N. M., Bilochenko. V. A., Ukr. Khim. Zh. (Russ Ed.), 43, 756 (1977); Chem. Abstr., 88, 83093y (1978). (337) Macemon, J. H., Soodak, C., Ger. Offen, 2,727,664 (CI. G01N21/02). 12 Jan 1978. ADDI. 702.473. 06 Jul 1976. Chem. Abstr . 89. 16267r (1978). (338) Maeda, Y ,'Matsumoto, K , Kamitake, S , Ger Offen, 2,747,387, (CI GOlN21/22), 03 May 1978, JaDan. ADD . . 76/126,201. 22 Oct 1976; Chem Abstr., 89, 138296; (1978). (339) Mahgoub, A. E., Darwish. N. A,, Shoukry, M. M., Analyst(London), 103, 879 119781 -, (340) Maiti, B., Sathe, R . M., Analyst(London), 103, 1173 (1978). (341) Malakhova, N. M., Olenovich, N. L., Krainyakova, M. M., Zavod. Lab., 43, 917 (1977); Chem. Abstr., 88, 114711e (1978). (342) Malone, J. P.. Raines, S. D., Tuzzeo, T. M., Ind. Res./Dev., 20, 59 (1978). (343) Mamuliya, S. G., Pyatnitskii, I. V., Grigalashvili, K. I., Ukr. Khim. Zh. (Russ. Ed.), 44, 410 (1978); Chem. Abstr., 89, 1 2 2 4 7 8 ~(1978). (344) Mandai, S. K., Das, J., J . Indian Chem. SOC., 55, 845 (1978). (345) Marczenko, Z.,Mikrochim. Acta, 2, 651 (1977); Chem. Abstr., 88, 985482 (1978). (346) Marczenko, Z.,Kalowska, H., Chem. Anal. (Warsaw), 22, 935 (1977); Chem. Abstr.. 88. 1818881 11978). (347) ~Marczenko,2.:Krasiejko: M., &arnecka, I., Chem. Anal. (Warsaw), 22, 275 (1977); Chem. Abstr., 87, 193128a (1977). (348) Marczenko, Z.,Maruszak, J., Chem. Anal. (Warsaw), 24, 341 (1979); Chem. Abstr., 91, 1 1 6 6 9 5 ~(1979). (349) Martynov, A. P., Novak, V . P., Reznik, B. E., Mal'tev, V. F., Deposited Doc. 1975, VINITI 68-76; Chem. Abstr., 88, 98549a (1978). (350) Mathur, S.P., Thakur, R. S., Bhandari, C. S., Sogani, N. C., Talanta, 25, 592 (1979). (351) Matsusaki. K., Yamaguchi Daigaku Kogakubu Kenkyu Kokoku, 28, 249 (1978); Chem. Abstr., 89, 70378r (1978). (352) Matveets, M. A., Shcherbov, D. P., Akhmetova, S. D., Issled. v Ob/. Khim. i F i r . Metodov Andira Mineral'n. Syr'ya, 3 (1976); Chem. Abstr., 88. 130169q (1978). (353) Maute, A,, Teitz, K.. Baier, K., Heid, H., Ger. Offen. 2,651,086 (CI. GOlN21/26), 18 May 1978, Appl. 09 Nov. 1976: Chem. Abstr., 89, 2256465b (1978). (354) Mazzucotelli. A., Frache. R. Dadone. A., Baffi, F., Cescon. P.. Anal. Chim. Acta, 99, 365 (1978). -

320R

\

-

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5. APRIL 1980

(355) McMinn, D. G., Kratochvil, B., Can. J . Chem., 55, 3909 (1977). (356) Mellon, M. G., Anal. Chem., 17, 61 (1945): 21, 3 (1949); 22, 2 (1950); 23, 2 (1951); 24, 2 (1952): 26, 2 (1954). (357) Mellon, M. G., Boltz, D. F., Anal. Chem., 28, 559R (1956); 30, 55413 (1958); 32, 194R (1960); 34, 232R (1962). (358) Men'kova, A. A.,Nepomnyashchaya. N. A,, Zh. Anal. Khim., 32, 1409 (1977); Chem. Abstr., 88, 66383a (1978). (359) Michaiowski, T., Chem. Anal. (Warsaw), 23, 789 (1978); Chem. Abstr., 90. 968922. (360) Micromeritics Instrument Corp., Anal. Chem., 51, 1216A (1979). (361) Mieling, G. E., Pardue, H. L., Anal. Chem., 50, 1611 (1978). (362) Minami, T., Yamamoto, Y., Ueda. S.. BunsekiKagaku, 27, 419 (1978): Chern. Abstr.. 89, 208503m (1978). (363) Minczewski, J., Skorko-Trybula, Z.,Krzyzanowska, M., Chem. Anal. (Warsaw), 24, 361 (1979); Chem. Abstr., 91, 1166968 (1979). (364) Mirza, M. Y . , Talanta, 25, 685 (1978). (365) Mirzoyan, F. V., Tarayan, V. M., Airiyan, E. K., Arm. Khim. Zh., 32, 106 (1979); Chem. Abstr., 91, 1 8 5 9 9 9 ~(1979). (366) Mirzoyan, F. V., Tarayan, V. M., Karapetyan, 2. A,, Zavod. Lab., 44. 1184 (1978); Chem. Abstr., 90, 661151 (1979). (367) Mirzoyan, F. V.. Tarayan, V. M., Petrosyan, A. A,, Arm. Khim. Zh., 31, 397 (1976); Chem. Abstr., 90, 66128n (1979). (368) Mitra, M., Mitra, B. K., Talanta, 25, 597 (1978). (369) Miura, J.. Satake, M., Fukui Daigaku Kogakubu Kenkyu Hokoku, 26, 259 (1978); Chem. Abstr., 90, 47899y (1979). (370) Mizuniwa, T., Iwano, K., Matsuoka, I., Hotta, Y., Nippon Kogyo Kaishi, 93, 435 (1977); Chem. Abstr.. 88, 1820672 (1978). (3711 Moiski, M.. Plesinska, M.. Microchem. J . . 24, 117 11979). (372) Moii, I., Fujita, Y., Enoki, T., Bunseki Kagaku, 26, 480 (1977); Chem. Abstr., 88, 83097c (1978). (373) Mori, I., Fujita, Y., Kamata, Y., Enoki, T., Bunseki Kagaku, 27, 259 (1978): Chem. Abstr.. 89. 99133t (1978). (374) Mori, I., Fujita, Y., Nakamura, N'., Enoki, T., BunsekiKagaku, 26, 344 (1977); Chem. Abstr., 88, 15432h (1978). (375) Motomizu, S.,Toei, K., Anal. Chim. Acta, 97, 335 (1978). (376) Munemori, M., Tamamoto, Y., Hiiro, K., Tanaka. T., Kumamaru, T.. Hayashi, Y., Toko. H., BunsekiKagaku, 27, 519 (1978): Chem. Abstr., 89, 99140t (1978). (377) Muraoka, M.. Yamamoto. T.. Takeshima, T., Analyst(London). 104, 87 (1979). (378) Murray, L. A., Electro-Opt. Syst. Des., 10, 38 (1978). (379) Murti, M. V. R., Khopkar, S. M., Chem. Anal( Warsaw). 23, 593 (1978). (380) Murti, M. V. R., Khopkar, S. M., Chem. Era, 13, 404 (1978). (381) Murti, M. V. R., Khopkar, S. M., J . Indian Chem. Soc., 55, 735 (1978). (382) Murti. M. V. R., Khookar. S. M.. Sci. Gun.. 44. 336 (1978): Chem. Abstr.. 89, 225593h (1978). (383) Nachev, I.,Tekhnol Mashinostr. ( S o h ) , 43 (1976); Chem Abstr , 89. 7 0 0 1-, 8 ~119781 (384)-Nagashima, S., Anal. Chim. Acta, 99, 197 (1978). (385) Nagorski, B., Borguslawska, M., Chem. Anal. (Warsaw), 22, 127 (1977); Chem. Abstr., 88, 1 1 4 8 6 0 ~(1978). (386) Nakano, S., Sakai, M.. Tanaka, M., Kawashima, T., Chem. Lett., 473 '

119781 \ . - . - I .

(387) Nakashima, K., Hirahara, H., Bunseki Kagaku, 26, 798 (1977); Chem. Abstr., 88, 202492q (1978). (388) Nakashima, K.. Hirahara, H., Akiyama, S.. Bunseki Kagaku, 27, 529 (1978): Chem. Abstr.. 90. 15751c (1979). (389) Nakashima, K., Nakano, Y., Akiyama,'S., Yakugaku Zasshi, 98, 1077 (1978); Chem. Abstr., 89, 1 7 3 0 4 9 ~(1978). (390) Namigohar, F., Makhani, M., Khorrami, J., Bull. Trav. SOC. Pbarm. Lyon. 21, 14 (1977); Chem. Abstr., 89. 70525m (1978). (391) Nath, Devlina, Singh, A. K., Katyal, M., Singh, R . P., Indian J . Chem., Sect. A , 16 457 (1978). (392) Navaratna, M. R., Iyer, C. S. P., Talanta, 24, 396 (1977). (393) Nazarenko, A. Yu., Pyatnitskii, I . V., Ukr. Khim. Zh. (Russ. Ed.), 44, 1108 (1978); Chem. Abstr., 90, 33461n (1979). (394) Nazarenko, V. A., Antonovich, V. P., Ibragimov, G. I.,. Fiz-Khim. Metody Anal., 2, 11 (1977); Chem. Abstr., 89, 208405f (1978). (395) Nazarenko, V. A., Biryuk, E. A., Rubel, A. P., Ui'yanova, T. N., Zh. Anal. Khim., 33, 903 (1978); Chem. Abstr., 89, 1 3 9 8 0 2 ~(1978). (396) Nazarenko. V. A., Flyantikova, G. V., Zh. Anal. Khim., 32, 1217 (1977); Chem. Abstr., 88, 57820p (1978). (397) Nazarenko, V. A., Poluektova, E. N., Shitareva, G. G., Ibragimov, G. I., Zavod Lab., 44, 929 (1978); Chem. Abstr., 89, 208537a (1978). (398) Nazarenko, V. A., Shustova, M. B., Chernvsheva, M. A,, Fiz.-Khim. Metody Anal., 1, 41 (1976); Chem. Abstr., 88. 68544c (1978). (399) National Bureau of Standards (U. S.) Announcement SRM 2032, Fall, 1979. (400) Nenova. P., Kantcheva, D., Karadadov, B., Talanta, 25, 691 (1978). (401) Neves. E . A.. Franco, D. W., Romanelli, P. F., Anal. Chim. Acta, 93, 393 (1977). (402) Nikoleis, D. P., Hadjiioannou. T. P., Anal. Chem. 50, 205 (1978). (403) Nishida, H., Nishida, T., BunsekiKagaku, 26, 645 (1977); Chem. Abstr., 88, 1 6 3 2 7 1 ~ (1978). (404) Noonan, J. A., Munroe, D. M., Opt. Spectra, 13, 28 (1979). (405) Norwitz, G., Farino, J.. Keliher, P. N., Anal. Chem., 51, 1632 (1979). (406) Norwitz, G., Farino, J., Keliher, P. N., Anal. Chim. Acta, 105, 335 (1979). (407) Norwitz, G., Keliher, P. N., Anal. Chim. Acta, 98, 323 (1978). (408) Norwitz. G.. Keliher, P. N., Anal. Chim. Acta. 109, 373 (1979). (409) Navopol'tseva, V . M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol, 20, 793 (1977): Chem. Abstr., 88, 98625x (1978). (410) NSVHitachi Scientific Instruments, Inc., Anal. Chem., 51, 236A (1979). (411) Nunn, W. G.. Diss. Abstr. Int. 6, 39, 1730 (1978). (412) Nunn, W. G., Dessey, R. E., Reynolds, W. R., ACS Symp. Ser., 102, 135 (1979). (413) Obtemperanskaya, S. I., Speranskaya, T. N., Velichko, V. B., Bukhtenko,

ULTRAVIOLET A N D LIGHT ABSORPTION SPECTROMETRY L. N., Vestn. Mosk. Univ., Serv. 2: Khim. 19, 96 (1978); Chem. Abstr. 89, 362072 (1978). (414) Oda, S., Sawada, T., Kamada. H., Bunseki Kagaku, 27, 269 (1978): Chem. Abstr., 89, 99135v (1978). (415) Oda, S., Sawada, T., Nomura. M., Kamada, H., Anal. Chem., 51, 686 ( 1979). (416) Odashima, T., Ishii, H., BunsekiKagaku, 26, 678 (1977); Chem. Abstr.. 88. 18189e (1978). (417) O'Haver, T. C.. Contemp. Top. Anal. Clin. Chem., 2, l ( 1 9 7 8 ) . (418) Ohmori. T., Kogyo Yosui, 240, 32 (1978); Chem. Abstr., 90, 47936h (1979). (419) Okura, Y., BunsekiKagaku, 27, 477 (1978); Chem. Abstr., 89, 2 0 8 5 4 0 ~ (1978). (420) Olenovich, N. L., Bazilevich, A. A,, Nazarenko, V. A,, Chebanova, V. I . , Zh. Anal. Khim., 32, 2346 (1977); Chem. Abstr., 89, 35923t (1978). (421) . . Omenotto. N.. "Anaidica Laser Soectroscooy". . . John Wiley & Sons, Inc.. New York. 1979. (422) Onishi. H., Koshima, H., BunsekiKagaku, 27, 726 (1978); Chem. Abstr., 90. 11979) ~~, 66171w ~. > - -, (423) Opasova, R. G.. Savostina, V. M., Lobanov, F. I., Zh. Anal. Khim., 32, 974 (1977); Chem. Abstr., 88, 15440) (1978). (424) Otomo, M., Noda, H., Microchem. J , , 23, 297 (1978). (425) Ozawa, T., Tokyo-toritsu Kogyo Gijutsu Senta Kenkyu Hokoku, 5, 71 (1975); Chem. Absfr., 88, 181833j (1978). (426) Pacific Precision Instruments, Anal. Chem., 51, 1444A (1979). (427) Pande, K. R., Tandon, S.G., Croat. Chem. Acta. 51, 353 (1978); Chem. Abstr., 90, 179561s (1979). (428) Pangarova, R., Mosheva, P., Topalova, E., Dokl. Bolg. Akad. Nauk. 30, 859 (1977); Chem. Abstr.. 87, 21063d (1977). (429) PaO, Y. H., "Optoacoustic Spectroscopy and Detection", Academic Press, New York, 1977. (430) Parczewski. A.. Chem. Anal. (Warsaw). 22, 27 (1977); Chem. Abstr.. 88, 83042f (1978) (431) Patel, K S , Deb, K K Mishra R K Bull Chem SOC Jpn , 52 595 11979) ( 4 3 2 ) ~Patratii, Yu. V., Pilipenko, A. T., Ukr. Khim. Zh. (Russ. Ed.), 44, 752 (1978); Chem. Abstr.. 89. 190347b (1978). (433) Patratii, Yu. V., Pilipenko, A. T., Shpak. E. A., Ukr. Khim. Zh. (Russ. Ed.), 44, 974 (1978): Chem. Aostr., 90, 47837b (1979). (434) Patrina, E. A., Kutepova, A. I . , Yakovleva, P. F., Ovsyannikova, L. V., Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti., 29 (1978); Chem. Abstr., 89, 1 9 0 3 8 6 ~(1978). (435) Pelletier, O., Brassard. R. J., Food Sci.. 42 1471 (1977). (436) Perez-Bendno, D., Valcarcel, M., Ternero. M., Pino, F., Anal. Chim. Acta, 94, 405 (1977). (437) Perkin-Elmer Corp.. Anal. Chem., 50, 564A (1978). (438) Perkin-Elmer Corp.. Anal. Chem.. 50, 888A (1978). (439) Perkin-Elmer Corp.. Anal. Chem., 50, 1126A (1978). (440) Perkin-Elmer Corp.. Anal. Chem., 51, 1363A (1979). (441) Perkin-Elmer Corp., Bulletin 8-65, 1979. (442) Peshkova, V. M., Luft, B. D., Gromova, M. I..Orlov, Yu. F., Probl. Anal. Khim., 4, 52 (1977); Chem. Abstr., 88, 1 4 5 4 2 5 ~(1978). (443) Pichugina, G. V., Khvostova, V. P., Alimarin, I.P., Izv. Akad. Nauk SSSR. Ser. Khim., 2190 (1977); Chem. Abstr.. 88, 831089 (1978). (444) Pilipenko, A. T., Zavod Lab, 43, 1179 (1977): Chem. Abstr.. 88, 145423s (1978). (445) Pilipenko, A. T., Danilova, V N., Suieimanova, M. G.. Shokol, V. A,, Zavod. Lab., 44, 927 (1978); Chem. Abstr., 89, 2085362 (1978). Lukachina, V. V., Zh. Anal. Khim., 32, (446) Pilipenko, A. T., Karpova. 0. I.. 1369 (1977); Chem. Abstr., 88, 83092x (1978). (447) Pilipenko, A. T., Maksimenko, T. S., Zh. Anal. Khim., 32, 2186 (1977); Chem. Abstr., 88, 1 8 1 9 0 9 ~(1978). (448) Pilipenko, A. T., Skorokhod, E. G., Zh. Anal. Khim., 34, 126 (1979); Chem. Abstr., 90, 179518h (1979). (449) Pinaeva, S. G.. Pyatnitskii. I . V., Demutskaya, L. N., Ukr. Khim. Zh. (Russ. Ed.), 44, 978 (1978); Chem. Abstr.. 90, 4 7 8 3 8 ~(1979). (450) Pirozhkova, E. A., Kikolaeva, E. M., Proizvcd. Pirazolona Anal. Reagenty, Metody Fiz-Khim. Anal., 140 (1976); Chem. Abstr., 89, 35946c (1978). (451) Pleniceanu, M., Rusu, O., An. Univ. Craiova, [Ser.]: Mat. Fiz., Chim., Elecfroteh., 3 , 58 (1975); Chem. Abstr.. 86, 316371 (1978). (452) Podchainova, V. N., Freidenzon-Druzhinina,L. N., Organ. Reagenty Anal. Khim.. 35 (1978): Chem. Abstr., 90, 80232y (1979). (453) Poirier, J. M.. Verchere, J. F., Talanta, 26, 341 (1979); Chem. Abstr., 91, 167806h (1979). (454) Poirier, J. M.. Verchere. J. F., Talanta. 26, 349 (1979); Chem. Abstr., -26 _ , 349 - - (19791 I - . - I .

(455) Popa. G., Patroescu, C., Tasca, A., Rev. Chim. 28, 886, (1977); Chem. Abstr.. 88. 5798w 119781. (456) Pouradier, J.. 6ull. SOC. Chim. Fr., 1977, 455: Chem. Abstr.. 88, 130476n (1978). (457) Prakash. I., Saxena, H. C., Chandra, S., Prakash. D.. Acta Cienc. Indica, 4. 150 (1978); Chem. Abstr., 90, 66160s (1979). (458) Prakash, O., Malat, M., Cermakova, L., Collect. Czech. Chem. Cornmun., 43, 2536 (1978); Chem. Abstr., 90, 33458s (1979). (459) Princeton Applied Research Bulletin T390-15M-6/78-RP. 1978. (460) Puri, B. K., Burman, S., Fresenius' Z. Anal. Chem.. 286, 253 (1977); Chem. Abstr., 87, 2106279 (1977) (461) Puri, B. K.. Gautarn, M., Talanta, 25, 484 (1978). (462) Pustovar, P. Y., Zh. Anal. Khim.. 34, 511 (1979); Chem. Abstr., 91, 678719 (1979). (463) Puzanowska-Tarasiewicz. H. Grudniewska, A.. Tarasiewicz, M., Anal. Chim. Acta, 94, 435 (1977). (464) Pye Unicam Ltd.. Anal. Chem.. 51, 500A (1979). (465) Radil, V., Grammetbauer, P., Rudy. 26, 277 (1978); Chem. Abstr., 90, 66126k (1979). (466) Radushev, A. V.. Ackermann, G.. Zavod. Lab., 44, 1431 (1978): Chem.

Absb., 90, 114297r (1979). (467) Rahim, S. A., Bashir, W. A., Analyst(London), 104, 466 (1979). (468) Raines, S.D., Anal. Chern., 50, 680 (1978). (469) Ramakrishna, T. V., Balasubramanian, N., Fresenius' Z. Anal. Chem., 287, 313 (1977); Chem. Abstr.. 88, 83147u (1978). (470) Ramasamy, J., Lambert, J. L., Anal, Chem., 51, 2044 (1979). (471) Rao, G.N., Chouhan, V. S., Chem. Era, 14, 395 (1978); Chem. Abstr., 91, 101393q (1979). (472) Rao. G. R.. Kaniilal. G.. Hohan. K. R.. Curr. Scl.. 46. 636 (1977); Chem. Absb , 87, 189539t (1977) (473) Rao. P V K , Rao, R S , Rambabu, C Acta Cienc I n d m , 4 13 (1978), Cbem. Abstr., 89, 1 9 0 5 5 8 ~(1978). (474) Ratzlaff, K . L., Anal. Chem., 51, 232 (1979). 1475) Ratzlaff. K. L.. Chuana. F. S.. Natusch. D. F. S.. O'Keefe. K. R.. Anal. h e m . , 50,' 1799 (1978):' (476) Ratzlaff, K. L., Darus, H., Anal. Chem., 51, 256 (1979). (477) Ratzlaff, K. L., Natusch, D. F. S.. Anal. Chem.. 49, 2170 (1977). (478) Ratzlaff. K. L., Natusch, D. F. S., Anal. Chem., 5 1 1209 (1979). (479) Rawat, J. P. Bhattacharji, P., Talanta, 28, 283 (1979). (480) Rawat, J. P., Singh, J. P., Indian J. Chem., Sect. A , 16. 551 (1978); Chem. Abstr., 89, 1 7 3 1 5 8 ~(1978). (481) Rawat, J. P., SinQh, J. P., Bhattachariee, P., Fresenius' Z . Anal. Chem., 293, 416 (1978). (482) Ray, H.. Garg, B. S., Singh, R. P., Curr. Sci., 48. 346 (1979). (483) RCA Specification Sheet C30839, C30842, Apr., 1978. 1484) Reddv. T. S.. Rao. S. 6.. Curr Sci.. 47. 84 (1978). (485j Redd;, T. S.; Rao, S. 6.: Curr. Scl., 48, 439 (1979). (486) Reeves, R. R., Williams, H. P., Bedenbaugh, H. H., Mikrochim. Acta, 489 (1977). (487) Ridder, G. M., Margerum, D. W., Essays Anal. Chem.. 515 (1977). (488) Rim, S. K., Han, C. H., Punsok Hwahak, 16, 141 (1978); Chem. Abstr., 90, 80301v (1979). (489) Roa, G. N., Chouhan, V. S., Food Farming Agric., 9. 19 (1977). (490) Robin, M. B., Optoacoust. Spectrosc. Detect., 167 (1977). (491) Roebisch, G. Bauer, P., Z. Chem., 17, 421 (1977): Chem. Abstr., 88, 579952 (1978). (492) Roman, C. M.. Munoz Leyva, J. A.. Berzas Nevado, J. J., Anal. Lett., A l l , 523 (1978). (493) Roman, C. M., Munzo Leyva, J. A.. Berzas Nevado. J. J., An. Quim., 74, 620 (1978); Chem. Absfr., 89, 156866k (1978). (494) Rosenbaum, E. J., Anal. Chem., 21, 16 (1949): 22, 14 (1950); 23, 12 (1951); 24, 14 (1952); 26, 20 (1954). (495) Rosenberg, S., Kirsch, J. F., Anal. Chem., 51, 1379 (1979). (496) Rosencwaig. A., Optoacoust. Spectrosc. Detect.. 133 (1977). (497) Rosencwaig, A., Proc. SOC. Phot-Opt. Instrum. f n g . , 99, 2 (1977). (498) Ruzicka, E., Ctveracek, P., Acta Univ. Palacki. Olumuc., Fac. Rerum Nat., 53 (Chem 16), 117 (1977); Chem. Abstr.. 90, 80292t (1979). (499) Sahai, R., Badoni, V. N., Indian J . Chem., Sect. A,, 15, 731 (1977). (500) Saito, T., Hagiwara, K., Murakami, Y., Higashi, K., Osaka Kogyo Gijutsu Shikensho Kiho. 28, 185 (1977); Chem. Abstr., 88, 141241h (1978). (501) Saitoh, K., Suzuki, N., Anal. Chem., 51, 1683 (1979). (502) Sakai. T., Ishida, N., Bunseki Kagaku, 27, 410 (1978); Chem. Abstr., 90, 66248b (1979). (503) Sakai, Y.. BunsekiKagaku, 28, 10 (1979); Chem. Abstr., 90, 161629k (1979). (504) Sakamoto, M., Takamura, K., Mlchrochem. J . , 23, 374 (1978). (505) Sakuraba, S., Kojima. M., Nippon Kagaku Kaishi, 208 (1978): Chem. Abstr., 89, 35985q (1978). (506) Sandell, E. B., Onishi, H., "Photometric Determination of Traces of Metals: General Aspects", 4th ed. of Part 1, John Wiley & Sons, Inc., New York, 1978. (507) Sane, R. T., Honavar, P. P., Deshpande, B. R., J. Indian Chem. SOC.. 55, 290 (1978); Chem. Absfr., 89, 122617q (1978). (508) Sane. R . T., Vaidya. U. M., Curr. Sci.. 47, 853 (1978). (509) Sanke, G. H., Shakuntha, R., Analyst (London), 103, 1215 (1978): (510) Sanz-Medel, A.. Gutierrez Carreras, A. M., Analyst(London), 103, 1037 (1978). (511) Sarker, A. M.,Maiek, A., Nucl. Sci. Appl., Ser. B . I O , 91 (1977). (512) Satake, M., FukuiDaigaku Kogakubu Kenkyu Hokoku, 26, 239 (1978): Chem. Abstr., 90, 47900s (1979). (513) Satake, M., Fukui Daigaku Kagakubu Kenkyu Hokoku, 26, 247 (1978): Chem. Absfr., 90, 47898x (1979). (514) Sataki, M., Matsumura, Y., Fujinaga, T., Takagi, Y., Bunseki Kagaku, 27, 486 (1978); Chem. Abstr., 89, 2 0 8 5 4 2 ~(1978). (515) Satake, M., Suzuki. T., Tanaka. Y., Yokota, T., FukuiDalgaku Kogakubu Kenkyu Hokoku, 26, 253 (1978); Chem. Abstr., 90, 47902u (1979). (516) Satyanarayana, K., Mishra, R. K.. J. Indian Chem. SOC.,55, 787 (1978). (517) Sawin, S. B., Chernova, R. K., Kudryavtskaya, L. M., Zh. Anal. Khim., 33, 2127 (1978); Chem. Abstr., 90, 80303x (1979). (518) Savvin, S. B., Chernova, R. K.. Kudryavtseva, L. M.. Zh. Anal. Chem., 34, 66 (1979); Chem. Abstr., 90, 161620a (1979). (519) Savvin, S. B., Petrova, T. V., Dzherayan, T. G., Zh Anal. Khim., 33, 516 (1978); Chem. Abstr., 89, 70204f (1978). (520) Sawin, s. E., Petrova. T. V., Mongush, K. D.. Kh. Anal. Khim., 33, 1152 (1978); Chem. Abstr., 90, 15749h (1979). (521) Sawicki, E., Sawicki, C. R., "Aldehydes-Photometric Analysis, Vol. 5, Formaldehyde Precursors", Academic Press Inc., New York, N.Y., 1978. (522) Saxberg. B. E. H., Kowalski, B. R.. Anal. Chem., 51, 1031 (1979). (523) Schmidt, U., Huber, F.. Anal. Chlm. Acta, 98, 147 (1978); Chem. Abstr., 89, 703569 (1978). (524) Schoene, K., Steinhanses, J., Fresenius' Z . Anal. Chem.. 292, 29 (1978); Chem. Abstr., 89, 190538q (1978). (525) Selig, W., Mikrochim. Acta, 1, 435 (1978). (526) Sergeev, G. M.. Korenman, I.M.. KoordKhim., 4, 1300 (1978); Chem. Abstr., 89, 208476e (1978). (527) Shakhtakhtinskaya, N. G., Azerb. Khim. Zh., 91 (1976): Chem. Abstr.. ~

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

321 R

ULTRAVlOLET AND

LIGHT

ABSORPTION SPECTROMETRY

87, 1 9 3 1 2 4 ~(1977). (528) Shanghai Institute of Organic Chemistry, Hua Hsueh Hsueh Pao, 35,61 (1977); Chem. Abstr.. 88,202599e (1978). (529) Shaulina, L. P., Kiriilov, A. I . , Viasov, N. A,, Org. Reagenty Anal. Khim., Tezisy Dokl. Vses. Knof., 4th, 2, 100 (1976); Chem. Abstr., 88, 15444p (1978). (530) Shimada, K., Ikeda, M., Nagese, Y., Yakugaku Zasshi, 98, 1417 (1978); Chem. Absfr., 90, 15829) (1979). (531) Shkarupa, V. S., Doronina, V. N.. Linzina, I.V.,Generalova, L. I., Mefcdy Anal. Kontrolya Proizvod. Khim. Prom-sti., 1 1 , 18 (1977); Chem. Abstr., 89. 70157t (1978). (532) Shtokalo, M. I., Kyzhenki, V. L., Ostrovskaya, T. V., Zavod. Lab., 44, 925 (1978): Chem. Abstr., 89, 190443e (1978). (533) Shtokalo, M. I., Shilina. G. V.,Suleimanova, M. G.. Khristiansen, M. G., Kaban, A. P., Feshchenki, N. G., Fedorova, G. K., Moskalevskaya, L. S., Ukr. Khim. Zh. (Russ. Ed.), 44,418 (1978); Chem. Abstr., 89,841809 (1978). (534) Siddiqi, I., Suva, T., Roehrich, C., Ger. Offen, 2,648,859 (Ci. G01N21/02), 12 May 1977, Swiss Appi., 75113,984, 29 Oct., 1975; Chem. Abstr., 89, 36099r (1978). (535) Sidran, M.. A m / . Oot.. 16,2791 (1977). (536) Sierra Jimenez,'F., Hernandez Cordoba, M., An. Ouim., 74,261 (1978); Chem. Abstr., 79, 33427f (1979). (537) Sikorska-Tomicka, H., Chem. Anal. (Warsaw), 22,761 (1977); Chem. Abstr.. 88. 176880t 119781. (538) Silva, M.,Pino, F:, Valcarcel, M., An. Quim., 74, 65 (1978); Chem. Abstr., 90, 47825w (1979). (539) Silva, M., Valcarcel, M., Mikrochim Acta, 2, 121 (1977). (540) Singh, A., Singh, R . P., Katyai, M., Indian J . Chem., Sect. A , 15,257 (1977); Chem. Abstr., 87, 193146e (1977). (541) Singh, A. K., Katyal, M., Singh, R. P., Rev. Roum. Chim., 23, 1153 (1978); Chem. Abstr., 90,47839d (1979). (542) Singh, R. B., Garg, B. S.,Singh, R. P., Talanta, 26, 425 (1979). (543) Singh, R. B., Jain, P., Garg, 8 . S., Singh, R. P., Anal. Chim. Acta, 104, 191 . _ 119791 . ~ (544) Smock, P. L., Orofino, T. A., Wooten. G. W., Spencer, W. S.,Anal. Chem.. 51. 505 (19791. (545) Snell, F . D., ~ '"Photometric and Fluorometric Methods of AnaiysisMetals", Parts I and 11, John Wiley & Sons, Inc., New York, 1978. (546) Sol, C. S., Yun, S. I., Sae Mulii, 18, 64 (1978); Chem. Abstr., 89, 207146k (1978). (547) Soloniewicz, R., Tecdorczyk, M., Chem. Anal. (Warsaw),23,645 (1978); Chem. Abstr.. 90,66250w (1979). (548) Sommer, L., Langova, M.. Kuban, V., Scr. Fac. Sci. Nat. Univ. Purkynianae Brun., 8, 13 (1978); Chem. Abstr., 89, 84071x (1978). (549) Sommer, L., Valchova-Vostova, J., Vomica, P., Kelckova, Z., Collect. Czech. Chem. Commun., 42, 2862 (1977); Chem. Abstr., 88, 163297h (1978). (550) Sone, K., Bunseki. 362 (1978); Chem. Abstr., 89, 2 2 3 2 3 5 ~(1978). (551) Sonoda, K., Otomo, M.. Kodama, K., Bunseki Kagaku, 27,429 (1978); Chem. Abstr., 89, 2 0 8 5 0 5 ~(1978). (552) Spectra Physics, Anal. Chem., 50, 888A (1978). (553) Speranskaya, E. F., "Opticheskie Metody Analiza, Chast 1: Spektrofotometriua", Kazanskii Gosudarstvennyi Universitet, Alma-Ata, USSR, 1977, 72 pp. (554) Spurlin, S., Hinze, W., Armstrong D. W., Anal. Lett., 10, 997 (1977). (555) Stankova, O., Matyskova, D., Acta Univ. Paiacki. Olomuc., Fac. Rerum Natl., 53 (Chem. le), 177 (1977); Chem. Abstr., 90, 47991x (1979). (556) Stefancu, E., Rev. Chim. (Bucharest), 30, 220 (1979); Chem. Abstr., 91, 1 1 6 5 5 9 ~(1979). (557) Steinfeld, J. I., Ed., "Laser and Coherence Spectroscopy", Plenum Publishing Corp., New York, 1978. (558) Stolyarov, K. P., Firyulina, V. V.. Zh. Anal. Khim., 33, 2102 (1978); Chem. Abstr., 90, 47931c (1979). (559) Sturis, A., Bankovskis, J., Org. Reagenty Anal. Khim., Tezisy Kokl. Vses. Konf., 4th, 98 (1976); Chem. Abstr., 88, 31500j (1978). (560) Sugawara, M.,Hanagata, G., Kambara, T.,Bunseki Kagaku, 27,683 (1978); Chem. Abstr., 90,803052 (1979). (561) Suzuki, M., Kanbe, K., Asabe. Y . , Takitani, S., BunsekiKagaku, 27,525 (1978); Chem. Abstr., 90, 15821a (1979). (562) Sychev. A. Ya., Isak, V. G.. Pfannmeller, U., Z h . Anal. Khim., 33, 1351 (1978); Chem. Absrr., 89, 190357e (1978). (563) Szetey, E., Inzelt, G., Horanyi, G., Magy. Kem. Foly. 84, 138 (1978); Chem. Abstr., 89,8 4 3 7 1 ~(1978). (564) Takagi, M., Nakamura. H., Ueno, K., Anal. Lett., 10, 1115 (1977). (565) Talipov, Sh. T., Karibyan, E. E., Shesterova, I.P., Smol'kova, 0. A,. Zh. Anal. Khim., 32, 724 (1977); Chem. Abstr., 87, 1 9 3 1 1 9 ~(1977). 1566) Taimi, Y., A m . Lab.. 10, 79 (1979). (567) Talmi, Y "Multichannel Imaae Detectors", American Chemical Society. Washington, D.C., 1979, 351 pp. (568) Talsky, G., Mayring, L., Fresenius' Z . Anal. Chem., 292,233 (1978); Chem. Abstr.. 89. 20845w (19781. (569) Talsky, G.. Mavrina, L.. Kreuzer. H.. Anaeew. Chem.. 90. 563 (1978): Chem Absb , 89; 82370h (1978) (570) Talsky, G I Mayring, L , Kreuzer, H I Angew Chem , 90, 840 (1978); Chem Abstr 89. 2 2 5 3 9 6 ~(19781. (571) Tamhina, E., Maul, V., H&ak, M. J., Microchem. J . , 22, 275 (1977). (572) Tamhina, B., Vojkovic, V., Herak, M. J., Croat. Chem. Acta, 49,533 (1977); Chem. Abstr.. 87,210615b (1977). (573) Tanaka, H., Asai, T., Mizuno, T., Nippon Dojo-Hiryogaku Zasshi, 48,444 (1977); Chem. Absb., 89, 16136x (1978). (574) Tanaki, T., Bunseki Kagaku, 27, 148 (1978); Chem. Abstr., 89,70223m ( 1978). (575) Tananaiko. M. M., Vodovenko. 0. P., Org. ReagenfyAnai. Khim., Tezisy Dokl. Vses. Konf., 4th. 1, 145 (1976); Chem. Abstr., 88, 15438q (1978). (576) Tarafdar, S. A,, Nucl. Sci. Appl., Ser. B . I O , 102 (1977). (577) Tarankova, E. A., Gavrilov, V. P.,Tumanov, A. A,, Fiz.-Khim. Metody

..

322R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

Anal., 3, 1'14 (1978); Chem. Abstr., 91, 150784b (1973). (578) Tarbet, C. S. C., UV Spectrom. Group Bull., 5 , 36 (1977). (579) Tataev, 0. A., Guseinov, V. K., Org. Reagenty Anal. Khim., Tezisy Doki. Vses. Knof., 4th, 1, 72 (1976)); Chem. Abstr., 88,830671 (1978). (580) Tataev, 0. A., Magaramov, M. N., Fiz-Khim. Metody Anal. Kontrolya Provizvd., Mezhvuz. Sb., 2,60 (1976); Chem. Abstr., 88,181822e (1978). (581) Tataev, 0. A., Magaramov, M. N., Zavod. Lab., 44, 1324 (1978); Chem. Absfr., 90,80309d (1979). (582) Tatobe, F., Ozaki, M., Hosoda, K., Suzuka Kogyo Koto Semmon Gakko Kiyo, 8, 117 (1975); Chem. Abstr., 88, 94606u (1978). (583) Thomas, L. C., Chamberlin, G. J., "Colorimetric Chemical Analytical Methods", 8th ed., John Wiley & Sons, Inc., New York, 1977. (584) Tikhonov, V. N., Petukhova, E. A,, Vashurkina. E. A,, I z v . Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 21,43 (1978); Chem. Abstr., 88, 145626k (1978). (585) Tikhonov, V. N., Samarkina, T. V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 21, 1116 (1978); Chem. Abstr., 89, 2085502 (1978). (586) Tikhonov, V. N., Sherstneva, T. L., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 20, 1258 (1977); Chem. Abstr.. 88. 1303139 (1978). (587) Tkachenko, V. I., Gritsaenko. V. M., Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti., 14 (1978); Chem. Abstr., 89. 173139t (1978). (588) Tobia, S. K., El-Shahat, M. F.. Saad, E. A,, Microchem. J . , 23, 525 (1978). (589) Toei, K., Miyata, H., Yamawaki, Y., Anal. Chim. Acta, 94,485 (1977). (590) Toei, K.. Motomizu, S., Hamada, S . , Anal. Chim. Acta, 101, 169 (1978). (591) Toullec, J., El-Aiaoui, M., Anal. Chim. Acta, 109, 187 (1979). (592) Trimble, L. E., Voorhoeve. J. J. H., Analyst(London). 103, 759 (1978). (593) Trofimenko, E . M., Krikova, N. I . , I z v . Sev.-Kavk. Nauchn. Tsentra Vyssh. Shk. Ser. Estestv. Nauk., 103 (1977): Chem. Abstr., 89.36208a (1978). (594) Tsuchiya, M., Nippon Kagaku Kaishi, 1844 (1977); Chem. Abstr., 88. 2 0 2 4 9 8 ~(1978). (595) Tsuchiya, M., Nippon Kagaku Kaishi, 1641 (1978); Chem. Abstr., 90, 114417e (1979). (596) Tsuchiya, M., Nippon Kagaku Kaishi, 597 (1979); Chem. Abstr., 91, 32339n (1979). (597) Tsuchiya, M., Sasaki, H., Nippon Kagaku Kaishi, 1474 (1977); Chem. Abstr., 88, 130323k (1978). (598) Tsukahara, I . , Talanta, 24, 633 (1977). (599) Tsukahara. I., Sakakibara, M., Tanaka, M.. Anal. Chim. Acta, 92, 379 (1979). (600) Turner Associates, Anal. Chem., 51, 231A (1978). (601) Turner Associates, Anal. Rev., July, 1978. (602) Tyson, J. F., West, T. S., Proc. Anal. Div. Chem. SOC.,15,64 (1978). (603) Tze. Y., Yin, M., Pei-ching Ta Hsueh Hsueh Pao, Tzu Jan K ' o Hsueh Pan, 53 (1977); Chem. Abstr., 89, 1688099 (1978). (604) Uesugi, K., Shigematsu, T., Talanta, 24, 391 (1977). (605) Uhlemann, E., Morgenstern, R., Z . Chem., 17, 405 (1977): Chem. Abstr., 88,57849e (1978). (606) Usatenko. Yu. I.. Klimkovich, E. A , . Penchenko. I . S.. Levchenki. N. I., Org. Reagenty Anal. Khim., Tezisy Dokl. Vses. Konf., 4th, 131 (1976); Chem. Abstr., 88,31509u (1978). (607) Usatenko, Y . I., Meshcheryakova, N. R., Pedan, V. P., Zh. Anal. Khim., 34. 1211 119791: Chem. Abstr.. 91. 1678260 (1979). (608) Utsumi,'S., Okutani, T., Sakurazawa, A,, Keimotsu, A,.Bull. Chem. SOC. Jpn., 51, 3496 (1978). (609) Utsumi, S., Okutani, T., Sato, Y., BunsekiKagaku, 26.383 (1977); Chem. Abstr., 88,830708 (1978). (610) Uttawar, R. M.. Joshi, A. P., Chem. Anal. (Warsaw). 23, 719 (1978). (611) Uttawar, R. M., Joshi, A. P., Microchem. J . . 23, 151 (1978). (612) Uttawar, R . M., Joshi. A. P.,Microchim. Acta, 421 (1977). (613) VanLoon, J. C., Ext. Abstr.-Int. Symp. Anal. Chem. Explor. Min. Process. Mater.. 16 (1976). (614) Varian Instrument Division, Anal. Chem., 51, 244A (1979). (6 15) Varian Instruments, Bulletin OPT-2275, 1979. (616) Varian Instruments, Catalog No. 16, 15, 1979. (617) Vasilikiotis, G. S . , Papadopoulos, C., Sofoniou, M., Themelis, D., Microchem. J . , 22, 541 (1977). (618) Verma, B. C., Kumar, S., Sharma, V., J . Indian Chem. SOC.,55, 626 119781 - -, (619) Verma, Y. S., Singh, I., Garg, V. S., Singh, R. P., Microchim. Acta, 1, 445 (1979). (620) Vetrov, V. S., Kaiyazin, E. P., Petryaev, E. P., VestsiAkad. NavukBSSR, Ser. Khim. Navuk, 123 (1978); Chem. Abstr., 89,2 2 5 7 0 4 ~(1978). (621) Vil'denkhain, M.. Adamovich, L. P.,Gershuns, A. L., Deposited Doc., VINITI 2724-76 (1976): Chem. Abstr., 90, 15779t (1979). (622) Viikova, 0. M., Ivanov, V. M.,Zh. Anal. Khim.. 33, 1785 (1978); Chem. Abstr., 90,33445k (1979). Lebedeva, N V.. Fiz.-Khim. Metody Anal., 1, 54 (1976); (623) Vinarova, L. I., Chem. Abstr., 88. 68546e (1378). (624) Vrbsky, J., Fogl, J., Sb. Vyx. Sk. Chem.-Technol. Praze, Anal. Chem., H12, 273 (1977): Chem. Abstr., 90,33490w (1979). (625) Wakamatsu, Y., Bunseki Kagaku, 26,470 (1977); Chem. Abstr., 88. 254822 (1978). (626) Wand, H., Rudel, M.. Dautzenberg, H., Z. Chem., 18,224 (1978); Chem. Abstr., 89, 122678k (1978). (627) Watanabe. H., Tanaka, H.. Bunseki Kagaku, 26, 635 (1977); Chem. Abstr., 88, 163269a (1978). (628) Watanabe, H., Tanaka, H., Talanta, 25, 585 (1978). (629) Watanabe. K., Horikawa. S., Kawagaki, K., Bunseki Kagaku, 26, 570 (1977); Chem. Abstr., 88, 1 3 0 2 8 2 ~(1978). (630) Watanabe, K., Kawazaki, K.. Bunseki Kagaku, 27,467 (1978); Chem. Abstr., 90, 96945u (1979). (631) Welcher, F. J.$Boschmann, E., "Organic Reagents for Copper", Robert E. Krieger Publishing Co., Huntington. N.Y., 1979, 614 pp. (632) Wong. K . Y., J . Appl. Phys., 49,3033 (1978). \

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (633) Wyganowski, C., Microchim. Acta, 1, 229 (1978). (634) Wyganowski, C., Mlcrochim. Acta, 1, 399 (1979). (635) Yamamoto, K., Bunseki, 240 (1978); Chem. Abstr., 90, 47743t (1979). (636) Yamamoto, K., Takano, Y., Bunseki Kagaku, 27, 460 (1978); Chem. Abstr., 89, 208508s (1978). (637) Yamamoto, T., Kanchiku, Y., Fresenius' Z . Anal. Chem., 294, 284 (1979). (638) Yamamoto, Y., Murata, H., Veda, S., Taianta. 25, 696 (1978). (639) Yamamoto, T., Muto, H., Kato, Y., Bunseki Kagaku, 26, 515 (1977); Chem. Abstr.. 88. 181841k (1978). (640) Yamamoto. Y., Shimomura, S., Hiiro, K., Tanaka, T., Kumamaru, T., Hayaski, Y., Toho, H., BunsekiKagaku, 27, 515 (1978): Chem. Absfr., 89, 991392 (1978). (641) Yamane. T., Fukasawa, T., Bunseki Kagaku, 26, 300 (1977); Chem. Abstr., 88, 68533y (1978). (642) Yatirajam, V., Arya. S. P., Talanta, 26, 60 (1979). (643) Yeole, V. V., Patil, P. S.,Shinde, V. M., Fresenius' Z. Anal. Chem., 294, 46 (1979). (644) Yeole, V . V. Shinde, V. M.. Fresenius' Z . Anal. Chem., 286, 251 (1977).

(645) Yokoyama, Y., Bunseki, 781 (1978); Chem. Abstr., 90, 66017a (1979). (646) Yokoyama, Y., Nakamura, N., BunsekiKakaku, 28, 97 (1979); Chem. Abstr., 90, 1 7 9 5 7 1 ~ (1979). (647) Yoskimura, C . , Miyamoto, K., BunsekiKagaku, 28, 1 (1979); Chem. Abstr., 90, 2147711 (1979). (648) Yoshio, M., Ugamura. M., Nojuchi, H., Nagamatsu, M., Anal. Lelt., A l l , 281 (1978). (649) Yotsuyanagi, T., Itoh, J., Kagaku No Ryoiki, 31, 146 (1977); Chem. Abstr., 88, 6 6 3 5 7 ~(1978). (650) Yusupov, M. Yu., Alikhodzhaev, A. Kh., Pachadzhanov, D. N., Dokl. Akad. Nauk Tadzh. SSR,21, 34 (1978): Chem. Abstr., 89, 2 2 5 4 8 3 ~(1978). (651) Zenki, M., Anaiyst(London), 104, 323 (1979). (652) Zenki, M., Hori, K., Enomoto, N., BunsekiKagaku, 27, 570 (1978); Chem. Abstr., 90, 13220h (1979). (653) Zhantalai, B. P., Sukhareva, 2 . I., Metody Opred. Zugryaz, Veshchestv Poverkhn Vodakh, 138 (1976); Chem. Absh., 89, 94577f (1978). (654) Ziobin, V. K., Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti, 32 (1978); Chem. Abstr., 89, 225518n (1978). (655) Zuchi, G.. Oprescu, C., Rev. Chim. (Bucharest),29, 574 (1978); Chem. Abstr., 89, 225532n (1978).

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

323R