Anal. Chem. 1982, 5 4 , 171 R - 1 8 8 ~
Ultraviolet and Light Absorption Spectrometry J. A. Howell’ Western Mlchigan Universlty, Kalamazoo, Michigan 4900 1
L. G. Hargls University of New Orleans, New Orleans, Louisiana 70148
This is a review of the developments in ultraviolet and light absorption spectrometry from December 1979 through November 1981, primarily as documented in Chemical Abstracts and C A Selects, and extends the series of reviews sponsored by ANALYTICAL CHEMI~TRY beginning in 1945 for Light Absorption Spectrometrornetry (52,175,186,321,322) and 1949 for Ultraviolet Absorption Spectrometry (99, 100, 175,180, 181,186,192,461). The subject matter has been divided into sections on Chemistry, ]Physics,and Applications, as was done with previous reviews. The literature on ultraviolet and light absorption spectrometry continues to be extensive and the citations in this review represent an effort on the authors’ part to select those developments which are of most probable interest to analytical chemists. The authors apologize in advance for any error of judgement in omitting certain references. Two reviews of the acronyms used in spectroscopy have appeared; the first classifies and explains the acronyms (105), and the second hts them in alphabetical order along with their meaning (106). An usually large number of reviews have been published. Included in the reviews of photometric reagents for the determination of a particular metal or group of metals are those on Ethyl Violet (190), bisazo derivatives of chromotropic acid (43),hydroxamic acids (4),N-phenylthiosemicarbazones (74), thiopyrazolone derivatives (14),and porphyrins (603). Also reviewed is the use of aminon for determining amines, alkaloids, and quaternary ammonium compounds (610). TWO general reviews of organic analytical reagents have appeared (140,410) along with reviews on the use of thiol chelates in metal determinations with and without separation steps (604) and on substituent effects on analytical reagents containing the 2-pyridylazo group (593). The problems of nonreproducibility and nonuniformity in the determination of elements by complexation with bisazo derivatives of chromotropic acid has been reviewed and suggestions are made for the proper purification of the reagents (44). Reviews of methods for determining particular substances or classes of substances include colorimetric azo dye methods for atmospheric nitrogen dioxide (534), photometric methods for noble metals (478), photometric and fluorometric methods for creatinine phosphotransferase in blood serum and tissues (382),photometric determination of organic substancesin paper processing waters (51), and the use of ultraviolet absorption as an organic pollution parameter (376). Noteworthy reviews d spectrophotometricmethods include three general reviews of trace element determination (29,304, 364) and one of recent developments in trace analysis (204). The use of spectrophotometryin drug metabolite studies (406) and in the determination of pesticides (161) has been reviewed. An excellent summary of spectrophotometric methods based on ternary color systems has appeared (303) and high sensitivity absorptiometry with novel colorimetric reagents has been reviewed (229). The use of spectrophotometryas an analytical tool has been reviewed (54, 392) and two papers describing the problems and techniques of the colorimetry of fluorescent materials have been published (167,417). A brief discussion of the factors affecting the determination and use of the molar absorptivity in the determination of enzymes and substrates has appeared (484). An exceptionally large number of reviews on intrumentation
and instrumental techniques has appeared in the last 2 years, 0003-2700/82/0354-171R$O0.00/0
including those on derivative spectrophotometry (194,612), dual-wavelength spectrophotometry (141,189,278492), ultraviolet difference spectrometry and its use in the determination of proteins and amino acids (276),clinical applications of multiple wavelength spectrophotometry to the centrifugal analyzer (428), fiber-optic colorimetry (349), highspeed spectrophotometry in instrumental analysis (327), and photoacoustic spectroscopy (126, 342, 395 396, 464, 576). Modern instruments and methods (397, 602) and the important considerations in construction of spectrophotometers (605) have been reviewed. Surveys of the instruments exhibited at the 1980 and 1981 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy have been published (83, 84). A report has appeared on the use of spectrophotometry in flow-injection analysis (249). The use of microprocessors in ultraviolet and light absorption spectrometry for control, data acquisition, and data processing (152) and the new perspectives opened by the use of minicomputers in spectrometricanalysis of drug mixtures (19) have been described. Finally, photodetectors in general have been reviewed (284, 618) along with the applications of imaging detectors (394) and diode array detectors with reverse optics (268).
Books, chapters, and bulletins having to do with ultraviolet and light absorption spectrometry are as follows: “Emission and Absorption of Radiant Energy” and “Fundamentals of Spectrophotometry” in “Treatise on Analytical Chemistry” (2nd ed.), Part 1,Vol. 7 (318);“Spectroscopy in Biochemistry”, Vol. 2 (40); “Fundamentals of UV/Visible Spectrophotometry: An Outline” (69); Dual Wavelength Spectrophotometry and Its Use” (493);“Techniques in Visible and Ultraviolet Spectrometry, Vol. 1: Standards in Absorption Spectrometry”(64); “Metal-on-QuartzFilters as a Standard Reference Material for Spectrophotometry” (316);“Didymium Glass Filters for Calibrating the Wavelength Scale of Spectrophotometers” (672);“Spectrophotometry and Fluorometry” in “Methods in Neurobiology” (28%);“Ultraviolet Spectrophotometry” in “Pesticide Analysis” (184); “Photometric and Fluorometric Methods of Analysis: Nonmetals” (51 7); “Colorimetric Chemical Analytical Methods”, 9th ed. (545); “Ultraviolet Absorption Spectra of Organic Nitro en Compounds and S ectrochemical Correlations”, Part 2 f165); “Spectrometric Ifentification of Organic Compounds”,4th ed. (505);“Manual and Automated Spectrophotometric Techniques for the Detection and Assay of Carbohydrates and Related Molecules” (587); “The Sadtler Handbook of Ultraviolet Spectra“ (506); and “Multichannel Image Detectors” (539). As might have been expected due to the increased activity in this area, a new journal entitled “Journal of Photoacoustics” has been started (463).
CHEMISTRY This section of the review deals with the chemistry involved
in the development.of suitable reagents, absorbing systems, and methods of determination. The use of mixed-ligand and extractable, ternary, ion-association complexes seems to have leveled off in popularity. Interest is increasing in all of the techniques that normally require substantial instrument control and data manipulation, such as dual-wavelength, derivative, reaction-rate, and multicomponent techniques, primarily because of the common availability of microprocessor-controlled instruments which not only make the necessary manipulations automatically but do so with a speed 0 1982 American Chemical Society
171R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
and precision not possible manually. Metals. Numerous papers have appeared that report on the spectral properties of a reagent in ita reaction with various metals and its use in spectrophotometric determinations. Direct spectrophotometric determination of the lanthanides has been accomplished by using Arsenazo I (261),Arsenazo I11 (263),and Chlorophosphonazo I11 (72).In the Arsenazo I procedure, transition metal interferences were eliminated by addition of potassium cyanide. In the Chlorophosphonazo I11 procedure, zinc ethylenediaminetetraacetate and zinc cyclopentadiaminetetraacetate were used to enhance the difference of the color forming reactions. Azothiopyrine and methylazothiopyrine react with numerous divalent transition-metal ions in neutral or slightly acidic solution, forming complexes that are insoluble in water but extractable into some organic solvents (541).The high molar absorptivities of the extracted chelates make these ligands promising analytical reagents if suitable means can be found for gaining the necessary selectivity. Biacetyl bis(4-phenyl-3-thiosemicarbazone) reacts with most first row transition metals plus bismuth, mercury, and palladium, and procedures for determining most of these metals have been devised (23). Ethylenediaminetetramethylenephosphonicacid forms stable complexes with a large number of metal ions of different ionic charge and has been proposed as a useful reagent for the ultraviolet spectrophotometricdetermination of lead, mercury, iron, cerium, and thorium (45). At least 10 different metal ions were shown to react with 1,2-naphthoquinone-2-thiosemicarbazone and it was suggested that some of these reactions could be the basis of suitable analytical procedures (292). 2-Quinolinedithiocarboxylic acid (564)and 2-(2-thiazolylazo)-5-diethylaminophenol(503) form stable chelates with the platinum-groupmetals. The carboxylic acid reagent forms 1:2 or 1:4 metal-to-ligand complexes upon heating that are extractable into chloroform and have absorbance maximums ranging from 270 to 555 nm, while the aminophenol reagent forms 1:l complexes with an absorbance maximum near 600 nm and molar absorptivities of 2.4 X lo4 to 4.8 X lo4. Six aromatic aldehyde derivatives of 2-thiohydantoin were compared in their reactions with 10 metal ions and stable complexes that could be measured spectrophotometrically were formed with palladium, gold, silver, and mercury (159). In a reaction study with 18 metals, 2,6-dihydroxyimino-3methylenepiperidine showed good sensitivity but poor selectivity in basic solution and good selectivity but relatively poor sensitivity in acidic medium (455). The reagent was used to determine iron(II1) at 475 nm at concentrations up to 18 ppm. Of nine triazolylhydroxyazo compounds studied as prospective reagents for determining transition metals, five proved suitable for the determination of cobalt, nickel, and copper (209).2-(3’-Sulfobenzoyl)pyridinethiosemicarbazone and phenyl thiosemicarbazone were synthesized and found to form highly colored complexes with transition metals, especially iron(I1) (36). 2,2‘-Dipyridyl ketone Z-quinolylhydrazone (388)and three imino derivatives of dihydroxyanthraquinones (50) have been prepared and are reported to be suitable analytical reagents for numerous metal ions. A study of the reactive capability of 16 metal ions with pyridoxaland salicylaldehyde thiosemicarbazones has resulted in a procedure for determining cobalt at 400 nm and iron(II1) at 430 nm in a pH 4.7 buffer (399). A transparent film of 2(2-thiazolylazo)-4-methylphenol in poly(viny1 chloride), prepared by adding the reagent and poly(viny1 chloride) to a mixture tetrahydrofuran, tributyl phosphate, and acetone followed by solvent evaporation on a glass plate has been used for the rapid, semiquantitative determination of copper, zinc, cadmium, nickel, and cobalt (540).Several new reagents have been synthesized and examined as potential photometric reagents, including 2,2’-dihydroxybenzophenonethiosemicarbazone for copper, cobalt, nickel, and iron (548),2-(2pyridylazo)-l-naphthol-4-sulfonicacid for gallium, indium, and thallium (577),glycinebis(methy1phosphonic acid) for copper and lead (235),benzimidazolylazoderivatives for cobalt, nickel, and copper (248),4,4‘-diacetyl-2,2‘-isopropylidenedi8-quinolinol for nickel, copper, and zinc (597), and disubstituted o-hydroxyacetophenonesfor uranium(VI),vanadium(V), and manganese(I1) (335). 1-(5’-Chloro-2’,3’-dihydroxypyridyl-4’-azo)benzene-4-sulfonic acid has been proposed as an analytical reagent, forming tris complexes with cobalt, nickel, and copper and a bis complex with iron, all with ab172R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
sorbance maxima between 550 and 580 nm (82). A number of ligands forming extractable complexes with metals have been studied. 1-(2-Lepidylaz0)-2-acenaphthylenolformed colored complexes with six transition metals which were extractable into chloroform (508). l-Phenyl-3-methyl-4benzoylpyrazol-5-onehas been suggested as a group extractant for certain transition metals prior to their spectrophotometric determination (328). Rare earth metals can be determined as their highly colored, mixed-ligand complexes with 4-(2pyridy1azo)resorcinoland antipyrine, formed at pH 6.5 and extracted into nitrobenzene (354). The determination of silver and thallium(1) has been proposed based on a study of the formation and extraction of single-charged cations with dibenzo-18-crown-6 and bromphenol blue (433).Niobium and tantalum are reported to form highly colored, mixed-ligand complexes with 4-(2-pyridylazo)resorcinolin the presence of oxalic, tartaric, or citric acids (371).The metal-to-PAR-tohydroxy acid ratio in these complexes was 1:2:1. Several studies of ternary, ion-association complexes have appeared. Cetyltrimethylammoniumbromide reacts with zinc, cadmium, and mercury in the presence of bromopyrogallol (424)and with gallium and indium in the presence of glycinethymol blue (560) forming highly colored, water-soluble complexes. 3,5-Diiodosalicylic acid is reported to be the best of the common salicylic acid derivatives for use with Rhodamine S in the extraction-photometric or extraction-fluorometric determination of rare earths (552). The metal-to-acid-to-Rhodamine stoichiometry of the ternary complexes was 1:1:2. In approximately neutral solution, cobalt, nickel, copper, zinc, and cadmium all form ternary complexes with 4-(2-pyridylazo)resorcinol (I) and diphenylguanidine (11) with a M:I:II ratio of 1:21(300).Optimum conditions for chloroform extraction include a 10-20-fold excess of I and a 500-1000-fold excess of 11, and all had a maximum absorbance in the range of 510-530 nm. Two articles have appeared describing fourcomponent, ion-association complexes. Chrome Azurol o-phenanthroline,and cetyltrimethylammoniumbromide will react with heavier rare earths, in the presence of the lighter rare earths, forming blue-gree, water-solublecomplexes (495). A similar study by a different group using Eriochrome Cyanine R in place of Chrome Azurol S obtained essentially the same results (88). A number of papers comparing or studying several reagents for a specific metal or group of metals have appeared. For example, of 28 anthraquinone derivatives tested with calcium, strontium, and barium in sulfuric acid solution, eight formed colored complexes, four of which were suggested as possible analytical reagents (458). Phloxine (I) was found to be the best of 12 hydroxyxanthenedyes in forming a colored, ternary complex with cobalt and 1,lO-phenanthroline (11) (315).The ternary complex, which was extractable into chloroform,had a Co:I:II ratio of 1:1:3. A correlation was shown to exist between the pK, of various amines and the kind of ternary complex formed with cerium(II1) and methylthymol blue (67). The reactions of six halofluoresceins with cobalt and 1 , l O phenanthroline have been characterized and the optimum conditions for formation and chloroform extraction of the colored product reported (315). A photometric method for determining vanadium has been proposed from a study of the reactions of alizarin green dyes with vanadate in the presence of cetyltrimethylammonium and bis(1,lO-phenanthrolinesilver) cations (367). Cyclohexylfluoronewas selected from six synthesized fluorones as a suitable reagent for the determination of copper (560 nm; 1.6 X lo5) (22).The optimum formation conditions, stoichiometries, and molar absorptivities for a number of platinum-thiazolylazo compounds have been reported (160). N-Phenyl-3-styrylacrylohydroxamicacid was the best of 10 newly synthesized N-arylhydroxamic acids for determining titantium(1V) (415 nm; 1.76 X lo4) (48). A study of eight different reagents commonly used to determine zinc showed that azo dye reagents gave the best combination of sensitivity and reproducibility (1). Spectrophotometric methods using Aluminon and Chromazurol S compared well with an amperometric method for determining aluminum in bauxite ores (553). Aluminum forms 2:l metal-to-ligand complexes with both Sulfonitrophenol S and Sulfochlorophenol S in acetic acid-propanol mixtures (407). p - and o-Nitral green (95)and p - and o-anise green (94) form 1:l water-insoluble, ion-association complexes with tetrachloroaurate ion that are extractable into benzene. The reaction
s,
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY J m A. Hw.I I8 a potsMor 01 chemls by at Westem MlcMgan University and also a sdenco advisa la the b b d t WMR Laboratory 01 the Food and Drug AdminlsbBtiwI. He r&ed M B.A. from Soumet” Illinois University in 1959. M M.S. trom the University 01 Illin& in 1901, and his Ph.0. In anawlcat chemsiry horn Wayns State University in 1964. HI8 particular flakis of interest are In ukavlOCIt and visible abswption spechometry. flame emission and atomic abeaptbn specbwmpy. and six) computer appkatbns to chemical InsbumemaHon. He is the a m of a number 01 research papars and chapters In books. h.Howell Is a member of the ACS. SAS. a Chamlsts.
Lamy 0. Hargb, Aas0~1Bta Prdeoo~01 chenlsby and Dtecta ot the Masta 01 Am In Sclsnur Teaching R w a m at the Unlvasity of New ckbans, graduated trom Wayne State unhemny wm? a B.S. In 1901. an M.S. In 1903. and a PI1.D. in 1904. He was a PwMoctaal R-rd Aaaociate at Purdm University hom 1904 “mil joining the lacuity at UNO In 1905. h.Hargls holds membership in the Amerbn Chemical Society (Analyiical and Education Olvisions). PI11 LamWa Upsilon. and Slgma XI. He served as assmiate Edna 01 Anaty7lml LsmKs la 14 years. h.t k g i s has authored a COBUh e d numerous research papers and an ins0’umemal analvrils lahalwy texmook. His present llekis of research include ~Hravbbtand light abswplbn spmrometry. reaCtion-rate analysis. hateropolymcWdatechemlsby. and on-line computer applications.
of copper with 4-(2-pyridylazo)resorcinoland k(tthiazoly1azo)reaorcinol(I&?),iron(I1) with ketoximea of 2-acylpyridinea (533),platinum p u p metals with substituted phosphinea and phosphine oxides (290).tin(IV) with Astraviolet 3R, Astrazon orange R, and Astrazon orange G (420). and titanium with acetylacetone and phenols (362) have been studied. In an effort to develop a molecblar design of colorimetric reagents, several crown ether dyes have been synthesized and their behavior with alkali metals characterized (598).An evaluation of the u-furyldioxime, 8-mercaptoquinoline, and ammonium thiocyanate methods for rhenium in molybdenum-containing solutions has led the conclusion that a differential variation of the standard thiocyanate method is the preferred method (343i. The effects of molecular structure on the analytical properties of azo compounds for determining hafnium and zirconium (574) and of acyl-substituted phenylhydroxylamine for determining iron(II1) (500) have been discussed. Thiazolylazocatechol was found to be the best of a series of azo derivatives of 1,2-benzenediol evaluated as mixed-ligand reagents for the extraction-photometric determination of titanium(1V) with diphenylguanidine (214). With a 3 1 acetic acid-propanol solvent containing only 2-3% (v/v), water was reported to improve the sensitivity of the Sulfonitmphenol S method for aluminum (336). A number of papers have dealt with finding the optimuin conditions for formation of certain complexes used in analyses, including 2-(2-pyridylazo)-lO-naphthol-4-sulfonicacid with mercury (252), N-benzoylphenylhydroxylamine plus pyridylazoresorcine with niobium (4121, picolinaldehyde azine with palladium (1511, pyrocatechol violet plus tridodecylethylammonium bromide with tungsten (4961,Chromazurol S plus carbethoxypentadecyltrimethylammonium bromide with uranium (233), and 5-hydroxy-3-(2-hydroxy-5-sulfophenylazo)benzo[a]phenazine plus carhethoxypentadecyltrimethylammonium bromide with vanadium (366). The stoichiometry and spectral properties of copper resorcylaldehyde aminoguanidine (781,copper 3-(4methyl-2-thiazolylazo)-2,6dihydroxypyridine (148), gallium 4,4-bis(3,4-dihydroxyphenylazo)biphenyl(477), and nickel l-phenyl-3-amino-5pyrazolone-4-dithiocarhoxylicacid (465) have all been reported. Spectrophotometric studies of the acid-base behavior of 4-(4’-methyl-2‘-thiazolylazo)-2-methylreaorcinol (HR) were used to show that vanadium forms VO,HR in highly acidic ~
~~~~~
~~~
~~~~~
~~~~
~~~~
~~~~~~~
~~~
~
~~
~
~
~~
~
~
~
~~
~
~
~
~
solutions and VOIR in sli htly acidic solutions (28). The spectrophotometric m e t h d for determining uranium(V1) in trialkylamine extracts using PAN was examined with the conclusions that a 1:l complex of uranium and PAN was formed and interferences from other ions in the aqueous solution arose largely from inhibition of the uranium partition into the amine phase (295). Diethylenetriaminepentaacetic acid was found to be the best of the common aminoaceticacids for masking some 35 elements in the Arsenazo I11 method for uranium (527). Although the nickel-anthrapurpurin complex has an absorbance maximum at 545 mn, the greatest difference in absorbance between this complex and the reagent is at 590 nm and this difference remains constant in the pH range 9.&10.8 (459). Hexadecylpyridinium bromide with a monodentate ligand such as nitrite or pyridine changed the nature of the complex formed between copper and phenylfluorone, actually reducing somewhat the sensitivity of the method (469). The absorbance of the cupric thiocyanate complex in acidic solution was shown to vary markedly with the nature and concentration of acid used (221). The effect of hydrocarbon chain length on the nitrogen substituent and of solvent polarity on the position of the analytically important ultraviolet absorption hands of nickel biddithiocarbamate) chelates has been determined (384). New reagents or methods which have been reported since the last review include promazine hydrochloride for osmium (4321, 4-(2-thiazolylazo)resorcinol for iron(I1) (559), and 5(5-bromo-2-pyridylazo)-2,6-dihydroxypyridinefor palladium (215). Antimony(V) has been determined by reacting its chloro complex with 2-nitro-4-methoxyphenylhydrazoneperchlorate, extracting the 1,3,3-trimethyl-2-formylimdolinium resulting complex into toluene, and measuring the absorbance a t 490 nm (27). Iron(I1) has been determined as its complex with 2-thioxo-5-nitroso-l,3-diethylperhydropyimidine-4,6dioue, that has an absorbance maximum a t 650 nm and a molar absorptivity of 2.24 X lo4 (556). Copper has been determined in seawater after its complex with Mdithiocarboxy)sarcosine was sorbed onto a column of Amberlite XAD 2 resin from a pH 7 phosphate buffer and stripged with a pH 9 solution of ammonium chloride in 60% methanol (467). The absorbance was measured a t 432 nm and concentration factors of up to 20 were obtained. A different ion-exchange preconcentration method has been used in the determination of chromium(V1);here the sample was mixed with powdered Amberlyst 15 and A-26 resins in a diphenylcarbazide solution, the coagulated resin collected on filter paper, the color stabilized by dipping in pH 4.6 acetate buffer, and the difference in absorbance at 550 nm (complex plus reagent) and 700 nm (reagent) measured (380). A 400-fold higher sensitivity than the conventional method was reported. 5-(4-Diethylamino2-hydroxyphenylazo)-3-chloro-l,2,4-triazole (609),5-(2,4-diaminophenylazo)-3-carboxy-l,2,4-triazole(210), glycinecresol red ( I O ) , and 2,2’-pyridilbis(2-quinolylhydrazone)(275) have all been proposed as new reagents for determining cobalt. Cobalt has also been determined as its complex with 3-(0acetopheny1)methyltriazene N-oxide, measured a t 460 nm after extraction with chloroform (49). A selective method for bismuth has been reported based on its complex (460 mm; 5.0 x 10‘) with 2,3,4-trihydroxyazobeenzene-4’-sulfonicacid in sulfuric or phosphoric acid (144). A study of two reagents, 2,2’-dihydroxyazobenzene-5-sulfonicacid and 2,2’-dihydroxyazobenzene-5.5’-disulfonicacid, used to determine zirconium, showed neither reagent was superior to the other nor to other commonly used reagenta for zirconium (227). The absorbance difference a t 560 and 480 nm was used to determine nickel as its micellar complex with Z-(Z-thiazolylazo)5-dimethylaminophenol and Triton X-100 (581). Second derivative spectra have been used in the determination of copper as its tetrakis(3-methylpheny1)porphine complex, chromium as its diphenylcarbazide complex, and manganese as permanganic acid (205). Bismuth, thorium, and copper have been determined after complexation with pyrocatechol violet at pH 3-4 using a flow injection analysis technique (26). Nonmetals. The limiations and advantages of the otoluidine, Nfl-diethyl-p-phenylenediamine, and syringaldazine methods for determining chlorine, bromine, and haloamines have been compared to each other and to ultraviolet and voltammetric methods (520). The triphenylmethane dyes, Brilliant Green and Malachite Green, react with molybdophosphate in acidic solution forming complexes with dye-toANALYTICAL CHEMISTRY, VOL. 54, NO. 5. APRIL 1982
173R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
phosphate-to-molybdate ratios of 3:l:lO and 5:1:10, respectively (331). Another study of the reaction of molybdophosphate with basic dyes concluded that Rhodamine B resulted in the most sensitive determination and could be used in the presence of proteins and without purification, while the use of Malachite Green resulted in a lower reagent blank and greater linearity of the working plot, although the dye had to be purified prior to use and proteins had to be absent or removed from the sample (267). In a study of the ability of 1-and 2-aminonaphthalenesdfonicacids to form azo dyes with nitrites, it was determined that the sensitivity of the color reaction could be increased in some cases by partial alkylation of the reagent (585). Cetyltrimethylammonium and cetylpyridinium ions were the best of several cationic surfactants studied at increasing the sensitivity of the dihydroxyfluorescein and salicylfluorone methods for tellurium (363). An experimental evaluation of the methods for determining carboxyhemoglobin in blood using gas chromatography, ultraviolet-visible spectrophotometry, and magnetic circular dichroism showed the spectrophotometric method to be the most satisfactory (588). A novel ultraviolet method for detgrmining sulfate as the FeS04+complex (325 nm) has been suggested that employs an excess of carbonic acid to prevent the interference of sulfite and sulfur dioxide (353). The complex stoichiometries and optimum conditions for determining arsenic and phosphorus as their mixed phos horus-bismuth-molybdenum and arsenic-bismuth-moly&denum heteropoly blues has been determined (191). .The nitrate interference in the determination of boron using carminic acid can be eliminated by adding hydrazine hydrate (462). A new procedure for determining boron as boric acid has been devised based on its ability to decolorize 4-(sdfopheny1azo)-l,%dihydroxynaphthalene (258). Molybdoarsenic acid reacts with Brilliant Green and Malachite Green in acetone forming 1:3 and 1:5 heteropo1y:dye complexes, respectively, either of which can be used to determine arsenic (620 nm; 3.9 X lo6) (236). Tellurium has been determined with isobutyldithiopyrylmekhane(358 nm; 5.1 X lo4) (111). Two indirect methods for chloride and bromide have been developed based on their ability to decolorize the mercury(I1) complexes of 4-diphenylcarbazolesulfonic acid (I) and p-dimethylaminobenzalrhodanine (11) (222). The absorbance of I was measured at 550 nm after 40 min and proved to be suitable for slightly smaller amounts of chloride and bromide than I1 which was measured at 532 nm after 20 min. A procedure for determining thiocyanate in serum and urine without separation has been devised for use in a continuous-flow analyzer (156). The thiocyanate was reacted with chloramine-Tin the presence of ferric chloride catalyst to give cyanogen chloride, which was then treated with a mixture of y-picoline and barbituric acid forming a soluble, colored product (605 nm). A differential spectrophotometrictechnique was reported to compare well with the transmittance ratio and ultimate precision techniques for determining fluoride using the lanthanum alizarine fluorine blue S method (224). The flow-injection analysis technique has been applied to the determination of silicic acid by reacting it with acidic molybdate and measuring the resulting 12-molybdosilicicacid absorbance at 400 nm (179). Organic Constituents. Three recent papers have dealt with characterization of various drugs by direct ultraviolet spectrophotometry. The ultraviolet-visible spectra of 20 drugs containing benzene rin chromophores, recorded in various solvents, have been tatulated and classified according to substituent structure, and optimum absorption bands and concentration ranges for quantitative determinations were suggested (265). Subsituent and solvent effects on the spectral properties of drugs containing pyridine, naphthalene, quinoline, and isoquinoline chromophores have been measured and discussed (266). The ultraviolet spectral properties and solvent effects of six alkaloid narcotics were determined along with the optimum conditions for their qualitative and quantitative determinations (199). The effect of reaction parameters and the rate constants for the pseudo-first-order reactions of cyclic imide drugs with hydroxylamine have been recorded and the data used to develop simple methods for determining the drugs (238). The effects of rea ent concentrations, temperature, reaction time, light, ancfoxygen on the use of N,N’bis(2-naphthyl)phenylene-1,4-diaminein the determination of nine organic peroxides in acne cream and butter were in174R
*
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
vestigated (131). Tosylhydrazine has been proposed as a reductant for drugs such as methaqualone, antipyrine, propranolol hydrochloride, and nitrazepam, that form alcoholsoluble salts with molybdophosphoric acid (473). The catecholic moiety of 16 simple and monosubstituted o-diphenols has been shown to react with nitrite to produce a bright red chromophore (500 nm; (7-10) X lo3)in alkalkine solution while di- and tetrasubstituted o-diphenols, monophenols, and mand p-diphenols do not form visible reaction products under the same conditions (578). Carboxylic acid anhydrides and chlorides, esters, and lactones have been determined by conversion to the corresponding hydroxamic acid with hydroxylamine and treatment with ferric ion (30). The stoichiometric reaction between yellow pyridoxaL5’-phosphate and uncolored compounds containing an aminooxy group, such as hydroxylamine, canaline, and o-aminoserine, has been used as the basis for an indirect method for determining aminooxy-containing compounds (259). The IUPAC Commission on Analytical Reactions and Reagents has described and compared 13 reliable procedures for the determination of aldehydes and ketones, 8 of which made use of the reaction of the carbonyl group with an arylamine, hydrazine, or hydrazone and 2 of which were based on the Hantzsch reaction (212). A comparison of direct ultraviolet spectrometry, dehydration and spectrometry, and HPLC methods for determining vitamin A and its isomers in 23 pharmaceuticals indicated no significant differences in the results, with relative standard deviations of 1.28,1.91, and 1.59%, respectively (526). Six commercial kits for measuring triglycerides in blood serum, one using 3-(p-iodophenyl)-2(p-nitrophenyl)-5-phenyl-( 2H)-tetrazolium chloride and the rest using Nitro Tetrazolium Blue as the color reagent, gave results that were in good agreement when the same standards were used but in poor agreement when different standards were used (216). Among the new papers dealing with the study or modification of existing methods is one describing a modified, ligand-exchange method for determining malathion based on the transformation of bismuth dimethyldithiophosphate,obtained by hydrolysis, into bismuth dithizone or bismuth diethyldithiocarbamate (89). The sensitivity was four times greater when dithizone rather than diethyldithiocarbamate was used. The determination of aromatic sulfonic acid hydrazides with p - (dimethylamino)benzaldehydeis reportedly best performed in hydrochloric acid at pH 0.7 with a 4-fold excess of reagent (573). A baseline correction technique has been described for correcting the absorbance of hemoglobin in plasma at 578 nm for the interference of oxyhemoglobin (228). In a study of the cyanide method for hemoglobin it was demonstrated that glycerate 2,3-diphosphate in erythrocytes interfered with oxygen saturation which should therefore be determined directly rather than by calculation from PO, measurements with a blood gas analyzer (614). Several papers have appeared dealing with the correlation of ultraviolet absorption with analytical data on chemical and biological oxygen demand and totalorganic carbon content in river water (381,446,453,599). Ampicillin has been determined by measuring, at 380 nm, the absorbance of its formaldehyde-hydrochloric acid hy(521) drolysis product, 2-hydroxy-3-phenyl-6-methylpyrazine and carbodiimides have been determined by measuring the absorbance at 230 nm after reaction with aqueous anilinium chloride (590). A new method for 5-substituted isoxazoles is based on their decomposition to P-ketonitriles, followed by condensation with p-dimethylaminobenzaldehydeto form colored products (562). Saccharin and cyclamate have been determined in alcohol-free soft drinks by direct ultraviolet absorption at 235 nm and 314 nm, respectively, after their separation by steam distillation and diethyl ether-methanol extraction (272). A procedure for determiningthe composition of glycerides has been proposed that involves their oxidation, fractionation of the resulting azeleoglyceridesby thin-layer chromatography,and quantitative colorimetric determination of the fractions by reaction with Rhodamine 6G (102). Hydroquinne has been determined indirectly via its reduction of iron(II1) to iron(I1) which was extracted into chloroform as the ferroih-bromphenol blue ion-associationcomplex and measured a t 612 nm (80). The difference between the ultraviolet absorption of phenols at 287 nm and phenol esters at 265 nm was used as the basis for a facile and sensitive technique for determining phenolic end groups in poly-
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
carbonates (487). In a yelated paper, a similar technique was used to assess the concentration of phenolic end groups in polysulfones and polyoxy henylenes (488). Sulfadimidine, after being diazotized nncftr eated with ethyl butylamino-ohydroxybenzylphosphonate,was determined b measuring the absorbance at 4'71 nm (98). In a new methoBfor serum uric acid, allantoin, catalytically formed from the reaction with uricase, was condensed with diacetylmonoxime-thiosemicarbazide in 6 N hydrochloric acid and measured at 525 nm (606). Potentially interfering urea was removed by treatment with urease before the color reaction was initiated. As a demonstration of the analytical capability of photoacoustic spectroscopy in trace determinations, fluorescein on thin-layer chromatography plateei, water in single-cell protein samples, and vinyl acetate in copolymers with vinyl chloride have all been determined with relative standard deviations of less than 0.1% (21). From a survey of normal and second derivative spectra of numerous vitamins, it was established that vitamins B,, BIZ,E acetate, K3, and nicotinic acid are especially suited to determination using their second derivative spectra (481). Simultaneous Amlysis. Hexamethylphosphoramide forms colored complexes with many metal ions in the presence of thiocyanate ion and has been used to simultaneously determine nickel and cobalt, and nickel, cobalt, and iron in alloys (60). A dual-wavelength spectrophotometer was used to determine copper in zinc metal using Cadion and Triton X-100 (582). Copper and nickel were determined simultaneously as their complexes with 2-lnydrox acetophenone oxime in isobutyl methyl ketone extracts (4523: The use of difference spectrophotometry EL^ a means for increasing $sensitivity,improving detection limits, and decreasing noise as compared to conventional absorption spectrophotometry, and for allowing measurements in cases where ligand and complex absorption overlap, has been discuissed and applied to the determination of fluoride using the color change resulting from its reaction with cerium-Alizarine Complexone and to the determination of tungsten-molybdenum, tungsten-vanadium, and tungsten-tin mixtures using pyrogallol red (426). Niobium and tantalum have been determined simultaneously as their complexes with Arsenazo I measured at 530 and 580 nm (515). A simple method for slightly larger than trace amounts of osmium and ruthenium has been reported by measuring the respective absorbances of osmate and ruthenate ions a t 465 and 340 nm following an alkaline fusion (305). The methiomeprazine hydrochlloride complexes of palladium(I1) (480 nm; 3.6 X lo3) and gold(II1) (630 nm; 1.3 X lo4) have been used for their simult,aneous determinations (164). Trace amounts of phosphate have been determined in the presence of large amounts of silicate in river water by measuring the difference in absorbance of the heteropolymolybdate blues at 797.3 and 825.0 nm with a dual-wavelength spectrophotometer (377). A flovv-injection technique for determining nitrite and nitrate has been proposed based on the colorforming reaction of nitrite with sulfanilamide and N-(1naphthy1)ethyleneditnine (13). Nitrate was determined by difference after reduction to nitrite with a copper-coated cadmium reductor. The simultaneous analysis N-acetyl ethyl esters of tryptophan, tyrosine, and phLenylalanine has been accomplished by using differences in their derivative spectra recorded at pH 7 and 13 (195). A five-wavelength method for determining hemoglobin, and ox,y-, carboxy-, methyl-, and sulfoxyhemoglobin in blood has been described by using the absorbances at 500,569,577,620, and 760 nrn and calculating the concentrations by computer solution of the matrix equation (617). The results were said to be in good agreement with the two-wavelength method. The absorbance at two wavelengths having the same initial absorbance (530.1 and 583.0 nm at 22-24' or 530.6 and 583.0 nm a t 27-28'), taken before and after saturation with carbon monoxide, has been used to determine carboxyhemoglobinin blood without interference from oxyhemoglobin and without the use of a standard curve (468). Mixtures of purine ribonucleosides and purine bases or pyrimidine ribonucleosides have been determined by measuring the absorbance of the colored product formed by the first component with orcinol and the direct ultraviolet absorbance of both compounds (237). Gauss' method was used to calculate the concentration of 3,5-diiodotyrosine, 3-iodotyrosine, and Tqresidues in iodinated proteins using absorbance data at 315, 325, and 335 nm (171). Pharmaceutical
amines such as procaine (585 nm), dibucaine (555 nm), and chlorpromazine (570 nm) have been determined simultaneously by an interesting method that relates the amine concentrations to the changes - in absorbance with remect to tempreature (466). Reaction-RateAnalysis. The determination of an alcohol or a binary mixture of alcohols, based on stopped-flow spectrophotometric monitoring of their fast oxidation by silver(II), has been described (323). The difference in the rates of heteropoly blue formation with perchloric acid solutions of molybdenum(V) and molybdenum(VI) mixtures has been used for the simultaneous determination of small amounts of plhosphate and larger amounts of silicate (378). Several reaction-rate methods for metals have appeared based on the catalytic oxidation of a leuco base dye, including: Variamine Blue B with hydrogen peroxide for copper (740 nm) (360) and iron (735 nm) (240), p-fuchsin with potassium periodate in the presence of nitrilotriacetic acid masking agent for manganese (556-580 nm) (269),and Redoxan I1 with ammonium vanadate in 7 M phosphoric acid for copper as an inhibitor (465 nm) (551). Another method for copper has been proposed based on its ability to catalyze the oxidation of p-hydrazinobenzenesulfonic acid by hydrogen peroxide to p-sulfobenzenediazonium ion which was coupled with mphenylenediamine to form a yellow azo dye (454 nm) (359). The formation of a heteropoly blue (650 nm) from the reduction of 12-molybdophosphoricacid by formic acid has been used for the catalytic determination of gold(II1) (112). Mercury has been determined by its catalytic effect on the reaction of manganese(I1) with tetraphenylporphinetetrasulfonate, measuring the decrease in absorbance of the porphine a t 413 nm after a fixed time of reaction (536),and by its inhibitory effect on the peroxidase-catalyzedoxidation of o-dianisidine by hydrogen peroxide (113). The ligand-exchange reaction between pentacyanoammineferrate and Nitroso R salt (319) and the reduction of toluidine blue (638 nm) by sodium hypophosphite (472)are catalyzed by palladium(I1) and have been used for its determination. The catalytic effect of sulfide ion on the reaction of sodium azide with iodine (350 nm) has been proposed as a basis for determining its concentration (470). A study of the catalytic behavior of chromium, manganese, iridium, ruthenium, and osmium on the chemiluminescent reaction of 5-bromosalicylidenehydrazide-p-chlorobenzoicacid with potassium iodate has led tu the development of a reaction-rate method for iridium (544). The rate of reduction of hexacyanoferrate (420 nm), in the presence of the enzyme transketolase, has been used to determine transketolase substrates such as fructose 6-phosphate (565). Other catalytic methods that have appeared include the determination of eight a-aminopolycarboxylicacids and phosphates using their inhibiting affect on the iron-catalyzed oxidation of p-phenetidine with hydrogen peroxide (343, iridium(1V)using the oxidation of N-methyldiphenylamine4-sulfonic acid by ammonium vanadate (170),silver in highpurity gold using the oxidation of sulfanilic acid by potassjum persulfate (279), and tungsten using the oxidation of ophenylenediamine by hydrogen peroxide (270).
PHYSICS This section of the review is devoted to the principles of measuring radiant energy, the treatment of data, and the instrumentation used in acquiring data. Assuming absorbances A, and AI have similar dispersions, the relationships between those values and the photometric error in direct differential analysis have been derived (254). The minimum relative error necessarily occurs when A. = A , but is also shown to be constant over a rather wide range of Ap # AI values. A procedure has been reported for optimizing absorption methods in the 200-800 nm wavelength range and the factors and characteristics necessary to describe exactly a spectrophotometricmethod were listed (519). An evaluation of the effects of wavelength accuracy and spectral bandwidth on sensitivity and linearity in clinical determinations led to the conclusion that most chromogens could be measured successfullywith a spectrophotometer whose spectral bandwidth is no greater than 8 nm (220). The performance of 10 different types of absorption spectrophotometers has been examined by using a single sample of potassium dichromate in the same cells on the same day (298). The reliability of the results with respect to the ANALYTICAL CHEMISTRY, VOL. 54,
NO. 5,
APRIL 1982
l75R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
--
Table I. Spectrophotometric Methods for Metals constituent
material
Ag
AI
nat. water
Au Be Bi
method or reagent [wavelength (nm); molar absorptivity, Sandell sensitivity, concentration range, or detection limit] 4-hydroxybenzalrhodanine [940; 1.47 X l o 4 ] 2-(mercaptoacetamido)pyridine (CC1, and CHC1,) [425; 1.15 X l o 4 ] 4-(2-quinoly1azo)phenol [530 ; 0.15-1.7 ppm] 5,7-dibromo-8-hydroxyquinoline, 9-(5-bromosalicy1)fluorone (i-BuOH) 1535; 6.2 x 1041 Naphthalene Green (C,H,) [645; 0.2-5.0 ppm] 2-pyridyl-l-thienyl Z-ketoxime (C,H,Cl,) [477 ; 2.34 x lo4] 4,8-diamino-1,5-dihydroxyanthraq~inone-2,6-disulfonic acid [645] [( 1,4-dihydroxyanthraquinone-2-ylmethyl)imino]diacet ic acid [475; 0.5-3 ppml 4-morpholinedithioformic acid (molten naphthalene-CHC1,) r365: 4.01 x 1041 ~. prbpyldithiopyrylmethane, C10,- (CHC1, and C,H4C1,) r525; 1.28 x 1 0 4 1 thiobenzoylacetone (C,H,), PhNO,, NaI, methyl green [645; 3.05 x l o 4 ] Chlorindazon C [586; 1.88 X lo4] I-, Crystal Violet (C,H,) [590; 2.25 x lo5] Eriochrome Red B [525; 0.44-4.4 ppml 1,lO-phenanthroline (CHCl,), dithizone [505; 0.0013 pg/cm2] pyruvylidine-2-hydrazinobenzothiazole(C,H, ) [460] 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3~-pyrazol-3-one (C,H,) L0.047 pg/cm*] N-phenyl-2-naphthohydroxamicacid (CHCl,) [470; 5.5 X l o 3 ] biacetyl mono( 2-pyridy1)hydrazone [515; 2.3 X lo4] 4-(5-bromo-2-pyridylazo)-1,3-diaminobenzene, (CHCI,), anthraquinonesulfonate, back ext. aq. HCl [573; 1.16 x lo5] 3-carboxy-1,2,4-triazole-( 5-azo-2)-5-diethylaminophenol [535; 7.0 x 1041 1,2-diaminoanthraquinone-3-sulfonic acid [0.95-3.80 ppm] di-2-pyridylketone-2-pyridylhydrazone (i-AmOH), back ext. aq. [5 P P ~ I 2-[di-(2-pyridyl)methylidenehydrazino]quinoline C4.1 x IO4] 4-hydroxy-2-dimethylamino-5-nitroso-6-aminopyrimidine, H,O, [395; ppb levels] Luminol, acetylacetone, chemilum. [l ng/mL] Solochrome Red B, H,O-i-PrOH [492; 1.68 x l o 6 ] 3-(2-thiazolyla~o)-Z ,6-diaminotoluene [590 ; 0.12 -0.6 ppm ] o-hydroxyhydroquinonphthalein, cetyltrimethylammonium chloride [560; 1.64 X l o 5 ] Eriochrome Red B [505; 0.34-4.6 ppm] direct photoacoustic spectrometry
ref 542 313 31 260 28 37 361 76 430
~
Al, Mg alloys
Ca Cd
wastewater gold films zinc
Ce rock co ores, rocks seawater alloys
Cr
steel
cu
gold films phthalocyanine films
a ,P,r,6-tetrakis(4-~ulfophenyl)porphine,trioctylmethylammonium
EU Fe
alloys
bauxite beer, soft drinks, Ga Ge Hg In
E. coli
Gap-InP semiconductors aluminum
Ir
K
Mn Mo 176R
chloride [0.13 ng/cm2] 6,8,15,17-tetramethyldibenzo-5,9,14,18-tetraazacyclotetradecene ~ 3 8 14.65 ; x 1041 Jones reductor, methylene blue [664] 2-acetoacetyl-1,3-indandione(CHC1,-i-AmOH) [386; 3.20 X l o 4 ] a-N-butylamino-o-hydroxybenzylphosphonicacid, monoethyl ester [32-162 ppml Chrome Azurol S, cetyltrimethylammonium ion [645; 1.35 X lo5] di-2-pyridylglyoxal-2-quinolylhydrazone [ 5 0 0 ; 3.2 X l o 4 ] Eriochrome Cyanine R, cetyltrimethylammonium ion 1.28 x 1051 4-hydroxy-2-dimethyl~ino-5-nitroso-6-aminopyrimidine, “,OH [660; ppb levels] 4-hydroxy-1,lO-phenanthroline [545; 1.19 x lo4] 1,lO-phenanthroline, Bismuthiol (CHC1,) [360; 2.53 X lo4] quercetin-6’-sulfonicacid, antipyrine (C,H,Cl,) [430; 3.8 X l o 4 ] SCN-, hexamethylphosphoramide (CHCl,) [460; 1.33 X lo4] 2-thenoyltrifluoroacetone [338; 4.75 X lo4] 2,4,6-tri[2’-[4’-(p-sulfophenyl)pyridyl] J -5-triazine [2.98 X l o 4 ]
422 283 607 369 8
460 20 3 24 34 608 149 264 513 555 15 124 158 340 369 193 206 546 47 17 616 3 06 274 306 555 414 583 595 87
537 187
Chromazurol S, cetylpyridinium ion [640; 1.03 x l o 5 ]
145
Eriochrome Cyanine R, cetyltrimethylammonium ion [588; 1.20 X lo5] phenylfluorone, benzalkonium chloride 1508; 1.8 X l o 5 ] diazoaminobenzene (C,H,) [410; 2.6 X l o 4 ] Alizarine Green deriv., cetylpyridinium ion [615; 3.02 X l o 4 ]
307 277 101 368 499 286 357 6 176 5 07
N-a-(5-bromopyridy1)-N‘-benzoylthiourea
seawater rock tungsten steel
110
catalytic oxidn. of Cu(I1) by KIO, [0.14ppb] 4‘-picrylaminobenzo-15-crown-5 (CHCl,) [lo-800 ppm] dithizone, 1,lO-phenanthroline (CHCl,) [507; 4.6 X l o 4 ] catalytic, hydrazine sulfate, methylene blue [670; 3 ng/mL] Fe(III), Ferrozine [0.1-1 ppm]
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Table I (Continued) material
constituent
steel Nb ores & granite steel Ni carnallite alloys, wastewater meteorites alloys
water
os
steel platinum
Pb Pd
method or reagent [wavelength (nm); molar absorptivity, Sandell sensitivity, concentration range, or detection limit] Gallein, H,O, [530; 0.0003 pg/cm2] Pyrogallol Red, cetyltrimethylammonium bromide [600; 9.00 X lo4] rutin [400; 2.21 X l o 4 ] SCN', Nitron (CHC1,) [1.52 X l o 4 ] N-(p-chloropheny1)benzohydroxamicacid, SnC1, (PhMe) p 6 5 ; 3.0 X i o 4 ] Tiron. 1.2-diaminocsclohexanetetraaceticacid r450; 1.55 nglmL1 -. SCN-; antipyrine (CiH,) [410; 1.22 X lo4] thiazolylresorcinol, N-benzoylpheny1hydros:ylamine(CHCl,) [570; 2.2 x 1041 l-12-benzothiazolvlazo~-9-phenanthrol.Triton X-100 1590: 5.5 X lo4] .,.
. .
.
'[620;3.30 X lo"] 2-(5-bromo-2-pyridylazo)~~5-diethylaminophenol [560; 1.26 X lo5] Carboxvbenzene S (dimethslsl-voxime-CHCI,) r720; 1.5 X lo5] Crystal-Violet, 4-ch~or0-2-n~t~o~o-l-naphthol~[611; 8.2 X l o 4 ] diacetyl monoxime glycinimine [1.7 X l o 4 ] diammonium ethylenebis(dithi0carbamate) (i-BuCOMe)Bu,PO, [385; 3.65 X lo4] dithizone, 1,lO-phenanthroline (CHCl,) [514; 4.9 X lo4] PAN [0.077 pg/L] phenanthrenequinone monosemicarbazone (CHC1,) [490; 0.0035 ,ug/cm*] quinoline-2-aldehyde thiosemicarbazone (CHCl,) [460; 1.58 X l o 4 ] dithiopyrylmethane, C10,- or SCN- (C,H,Cl,) [600; 2.3 X lo4] methylene blue, SCN- (Me,CO) [655; 2.2 X l o 5 ] OsC1,2- ion assoc. with 1-carbethoxypentadecyltrimethylammonium ion (CHCl,) [340; 1.5 pipml phenanthrenequinone monosemicarbazone, DMF-MeOH [500; 1.85 X lo4] Arsenazo I11 [600; 2.8 X IO4] meso-tetrakisb-sulfopheny1)porphyrin1464:; 2.7 5 X lo5] biacetyl dioxime, (CHCl,)i, Pyrogallol Red, 1-(ethoxycarbony1)pentadecyltrimethylammoniurn bromide 1620; 0.20-3.70 pg/mL] N-a -( 5-bromopyridyl)-N'-benzothiourea
Pd-,asbestos catalysts
Pt Pu rare earths
catiilysts alloys steel
Re Rh
allclys
Ru
3 - h ~ d r o x y - 3 - ( ~ - d i m e t h s l ~- i n o p_h e,n y- l ~ - -l - ~ ~ t e n s l t r i a z e n e
Sb
brass waritewater
sc Sn Ta
ores
Th
Ti
N-butylthiopicolinamide (MePh) [361; 6.24 X l o 4 ] 5-[(3,5-dichloro-2-pyridyl)azo]-2,4-diaminotoluene [590; 8.3 X lo4] 1,5-diphenylcarbazone,cetyltrimethylammonium bromide (i-BuCOMe) [620; 4.8 x lo4] 2,2'-diquinolylketone-2-pyridylhydrazone (CHCl,) [624; 1.95 X l o 4 ] 0-hydroxyhydroquinonphthalein, Me cellulose, cetyltrimethylammonium bromide [625; 1.27 X l o 5 ] isonitrosodibenzoylmethane (C,H,) [420; 1.49 X l o 4 ] 2-mercaptoacetamide [320; 1.85 X l o 4 ] Solochrome Red B [488, 548, or 655; 0.1-50 ppm] succinic acid monothioureide [295; 3 X lo4] 34 2'-thiazolylazo)-2,6-diaminotoluene [590; 5.35 X lo4] perphenazine, Cu catalyst [528; 1.29 X 1041 Aliquat 336 in PhMe,, Xylenol Orange [540; 5.1 X l o 4 ] Arsenazo I11 [650; 0.003-0.017%] Chromazurol S, 1,lO-phenanthroline, cetyltrimethylammonium bromide [0.008 pg/mLl catalytic redn. of Malachite Green by SnCl,, tartaric acid [600-700; 1.86 x 10.' ppm] pptn. with NaBr0,-NaHCIO,, Chromazurol S, Cetylpyridinium bromide [650]
Mn-Zn ferrites seay at er minerals
[490; 215 X - l o " ] 2-methyl-1,4-naphthoquinonemonoxime (BuOH) [470; 2.76 X lo4] Brilliant Green (PhMe) C640; 8.46 X 1041 2-(5-bromo-2-pyridylaz~)-5-(diethylami~o)phenol, 1p 3 0 ; 5.5 x 1041 Chromazurol S, cetyltrimethylammonium bromide [645; 0.04-0.4 ppm] 1-(2-pyridylazo)-2-naphthol (C,H,) [565-70; 1.9 X l o 4 ] pyronine, NaF, tartaric acid (C,H,) [515; 0.33-4 ppm] Clycinecresol Red, cetylpyridinium bromide [546-51; 7.6 X lo4] 24 2-thiazolylazo)-5-dimethylaminophenol, cetylpyridinium chloride, MeOH [570; 8.6 X l o 4 ] Xylenol Orange, cetyltrimethylammonium bromide [600; 5.51 X l o 4 ] diantipyrylmethane, phenylfluorone (CHC1,-AmOH) [535; 1.35 X l o 5 ] 4,4'-diantipyrylmethane,SCN- (CHCl,) [42iO; 6.0 X lo4] diphenylglyoxal bis(2-hydroxybenzoylhydrazone)(benzyl alc.) [ ~ o o1.5 ; x 1041 gallic acid, N-methylaminothioformyl-N'-phenylhydroxylamine [440; 0.26-7.64 pg/mL] 2-(mercaptoacetoamido)pyridine [480; 1.8 X l o 4 ]
ref 341 592 409 257 5 447 491 411 255 387 142 408 547 456 594 7 601 231 247 296 308 55 230 326 580 130 499 518 86 346 183 339 108 311 123 62 338 163 502 530 285
9 177 431 232 262 2 34 226 440 419 561 558 441 344 600 504 314 312
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
177R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Table I (Continued) constituent
material A-Ti alloys
T1 U
monazite sand
granite V
bauxites ash. coal
method or reagent [wavelength (nm); molar absorptivity, Sandell sensitivity, concentration range, or detection limit] Pyrogallol Red, diantipyrylmethane [600; 1.2 X lo4] Victoria Pure Blue BO, Br- (C,H,) [1.1 X l o 5 ] anthranilic acid, Rhodamine 6G [0.04-4.00 ppm] benzoate, Crystal Violet (PhMe, and C,H,) [606; 4.28 X l o 4 ] 2,k-dinitroresorcinol [350-70; (0.84-16.8) X M] Pyrogallol Red, cetyltrimethylammonium bromide [620; 3.3 X lo4] triphenylarsine oxide (CHCI,), back ext. aq. H,C,04, Arsenazo I11 [655; 0.05 ng/mL] anthranilic acid, isopropylidenehydrazide, Me,CO [520; 0.4 ppm] N-benzoyl-o-tolylhydroxylamine(CHC1,) [510; 0.045-1.35 ppm] 5-[2-diethylaminoethylamidobenzoate-4-azo]-8-hydroxyquinoline,
steel minerals, steel steel
w
steel steel
Y
Zn bronze brass soil Zr
antipyrine (CHC1,-BuOH) [460; 3.1 X lo4] Fe(III), Ferrozine [0.1-1 ppm] pyridine-2-acetaldehyde salicyloylhydrazone (CHCl,) 1.87 x 1041 3-N-salicylideneamino-4-hydroxybenzenesulfonic acid [420; 1.14 X lo4] 4-(2-thiazolylazo)resorcinol (Ph,AsCl and Ph4PC1)[555 ; 2.55 X l o 4 ] SCN-, chloropromazine (CHC1,) [406; 1.14 X l o 4 ] 2,3,4-trihydroxy-4’-sulfoazobenzene [460 ; 4.30 X lo4] Sulfochlorophenol S [645; 2.4 X lo4] 2-( 2-thiazolylazo)-4-methylphenol, zephirarnine [610; 3.7 X lo4] bis(2-pyridyl)methanone-2-pyrimidylhydrazone[430; 5.2 X l o 4 ] 5’-(2,3-dimethyl-1-phenyl-5-pyrazolonyl-4-azo)-2’,4’-dihydroxybenzoic acid [ 6 0 0 ; 2.75 X lo4] 2,2’-dipyridyl-2-quinolylhydrazone [480; 0.15-0.88 ppm] Rhodamine GG, KSCN [0.2-2.1 ppm] thiobenzoylacetone (C,H,) [390; 3.7 X lo4] Methylthymol Blue, gelatin [640; 3.4 X lo4] 2-pyridylazoresorcinol [555; 1.34 X l o 4 ]
age of the instrument was discussed. In another study of 27 different instruments, data were collected on potassium dichromate solutions by a single operator, using the same technique throughout, in an effort to isolate and determine the variance between instruments (90). The acid-base properties of 2-hydroxy-t-nitrotoluenesulfonicacid have been proposed as nicely suited for testing wavelength reproducibility in spectrophotometers, due to the fact that six sharp isosbestic points exist between 200 and 360 nm (280). The errors in the determination of a substance in the presence of a nonlinearly absorbing impurity have been evaluated with model mixtures of antibiotics having up to four absorbance maxima (46,294). An excellent report has been published in which the noise levels in ultraviolet and visible spectrophotometers were measured over a wide range of absorbance values and operating conditions in order to determine the fundamental variables upon which noise intensity depends and how those variables should be manipulated to obtain optimum spectrophotometer performance (70). It has been reported that the proper use of sliding-average smoothing of spectrophotometric absorbance data permits the acquisition of high-roder derivative spectra with only modest signal-to-noisedegradation (379). A study of noise and digital resolution in a microprocessor-controlled spectrophotometer has indicated that digital operation affected not only the manner in which data were presented but also the conditions under which optimum performance was achieved (242). A polemic concerning this paper has also appeared (125). By use of specific electronic and optical techniques to reduce the four major sources of noise in low absorbance spectrophotometry, namely, SIN drift, sample defocusing, cell window and sample scatter, and internal reflections, absorbances as small as 5 X have been measured (241). An equation describing wavelength and transmittance errors and their propagation has been developed and verified experimentally (119). Similarly, an equation accounting for both the photometric and sample manipulation errors has been developed for use in the indirect Alizarine Fluorine Blue Sulfonate method for fluoride (225). A study of error propagation in multicomponent analysis by the generalized standard addition technique has led to an alternate experiment design and optimal computation algorithms, which were tested with a four-component determination (223). Using a model that considers the molecules to be at rest while the 178R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
ref 146 93 442 510
439 244 554 5 54 137 332 507 150 611 309 443 143 208 557 512 107 511 448 423 501 301
photon passes a layer of solution, the Bouguer-Lambert expression has been proven without using the term, “differential” (53). A general formula for calculating the signal-to-noiseratio of spectroscopicmeasurement that plainly identifies the effects of easily manipulated parameters has been derived (77). The performance of centrifugal analyzers has been evaluated and reported on in several papers with the general conclusions that no great differences in accuracy and precision existed between the types tested and that their results were in good agreement with those of established clinical laboratory methods (122, 385, 586). The use of inorganic solution standards (398)and of both solid and solution standards (325) for evaluating spectrophotometers has been discussed. Sargent-Welch Scientific has available a set of nine glass filters for use as absorbance standards up to 3A (475). The National Bureau of Standards has published a bulletin describing how its line of metal on fused silica filters for transmittance calibration were selected, produced, tested, and certified (316). Variations in the visible photoacoustic spectra of carbon black samples from different sources has been observed indicating that care must be used in selecting a particular sample for use as a reference (289). The temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine has been suggested as a kinetic standard for measuring temperatures in spectrophotometer reaction cells that are inaccessible to conventional temperature probes (2). None of the three commonly used methods (Bjerrum, Landauer-McConnel, Yatzimirskii) for determining stability constants gave results in good agreement with the preset values for the stepwise formation of 1:l and 1:2 complexes in model system (489). A simplified method for determining equilibrium constants has been proposed, based on calculations of the equilibrium concentrations of ligand from the total concentration and the absorbance before and after reaction (57). A computer program, written in Fortran, has been described for calculating, from absorbance-concentration data, the molar absorptivities and the stoichiometric coefficients of protonated metal-chelate, ion-association complexes formed either in aqueous or organic phases (348). The continuous variations method for determining stoichiometric coefficients has been applied to nonequimolar solutions of systems involving the stepwise formation of stable complexes (579). Three analytical
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
procedures for investigating and characterizing ternary complexes were compared in their application to two model systems (253). A table of mollar absorptivities and 1% absorption values for more than 1801 proteins, along with the conditions used to obtain the values and original literature citations, has been published (251). The fundamental teclhnique and common analytical applications of derivative spectroscopy have been reviewed (68, 71,480). The subtended areas of first- and second-derivatives of absorption bands weire shown to be proportional to the concentrationof absorbing substance (103). Second-derivative spectrophotometry has been used to eliminate base line problems associated with light scattering in determining protein concentration i(218) and up to fourth-derivative spectrophotometry has been used to determine ultramicro concentration levels of copper as its complex with cy,p,y,Btetrakis( 1-methylpyridinium-3-y1)porphinecomplex (207). Numerous papers de,aling with fundamental aspects of photoacoustic spectroscopy (PAS) have appeared including theoretical discussion and treatment of basic measurement principles (250),signal g;eneration for optimized cells (317), energy migration in samples (437), properties of a liquid enclosed in a cylindrical cell (25), and digital simulation of temperature and pressure changes (134. Photoacoustic spectra of solids have been obtained by immersing them in a liquid cell and using a pulsed-laser radiation source (471) and this technique has been applied to the measurement of turbid samples with a 100-fold gain in detection limit (375). Different sample preparation techniques for PAS have been investigated in terms of their ability to give definitive and reproducible spectra (596). A close parallel is said to exist between photoacoustic arid diffuse reflectance spectra of solids leading to the suggestion that theoretical treatments for PAS similar to those used for diffuse reflectance should be examined (139). The circular dichroism effect has been observed with photoacoustic detection (479) and the applicability of PAS in helping to characterize chemically modified surfaces (chemicallybonded chromatographic stationary phases) has been demonstrated (288). Trace concentrations of NADH have been determined by pulse PAS (133) and studies have shown that the photoacoustic signal generated by a single pulse of light deviated from the predicted saw-toothed waveform when the pulse duration exceeded 15 ms, due primarily to the limiting response of the condenser microphone (96). In determining the number of absorbing species in a series of measured spectra by matrix rank analysis, representation of the observed spectra as linear combinations of eigenvectors has led to a significant reduction of the data set, so that a nonlinear least-squares fit could be done with a small computer (297). Design considerations for microprocessor-controlled, single-beam, UV/vis spectrophotometers have been summarized (243) and the advantages derived from using microprocessor-controlled instruments in reaction-rate studies described (153). A simple piezoelectric detection system suitable for performing highly sensitive PAS with liquid samples has been described and applied to the detection of various porphyrins and dyes (575). The performance of PAS detectors in trace analysis has been reviewed (92). A new procedure has been devised for accurately calculating the dead time of a photon counting detector (451). A new silicon p-n junction photodiode has been produced that responds in the range of 200-1000 nm with a reciponsivity of 0.065 A/W a t 200 nm (390). A detector accessory has been described that collects both transmitted and forward-scattered radiation for use in correcting background signals (91). A recent paper on new techniques with IJV detectors in HPLC describes how to stop the flow to obtain the spectrum of a solute peak in a flow cell, change the measurement wavelength during a chromatographic analysis, and dletermine the ratio of absorbances measured at several discrete wavelengths on a single solute peak (415). Spectrophotometern. The increasing use of holographic gratings and microprocessor control, reported on in the previous review, continues unabated. The major advances of the last 2 years have been in the level of sophistication of the interactive microprocessors, a prime example being the new Bausch and Lomb Spectronic 2000, a double-beam, scanning instrument featuring a microprocessor and hard-copy printer with the capability of first- and second-derivative spectra,
automated base line storage and compensation, automatic diagnosis of its own memory, and more (35). The microprocessor with the new Beckman DU-5sets all operating parameters, performs all computations, and prints the results for four different analysis modes and three different diagnostic modes (39). Brinkmnnn Instruments has introduced a line of dipping-probe colorimeters (four different models) using fiber optic bundles, placed directly in the sample solution, to read the transmittance, absorbance,or concentration (56) and Bruins Instruments has announced their Model M.I.T. 30,a nonphotoarray rapid-scanning instrument (58). An inexpensive colorimeter (Model 24) with four readout modes is being marketed by Chemtrix (85). The Gilford Model 260 uv/vis instrument provides acceptable linearity up to 3 absorlbance units, absorbance or concentration LED readouts, and a host of available accessories, including a microprocessor for instrument control (155). The Model 220 spectrophotometer from Hitachi Instruments features automatic base line and background correction, automatic wavelength Calibration, and up to fourth-order derivative spectra (182). The DigiChem 4600 Colorimetric Analyzer from Ionics, Inc., uses positive displacement piston burets, with better than 0.5 KL dispensing accuracy, and thumbwheel selection of up to 99 user- or preprogrammed analyses to perform single or multiple automatic determinationsin up to 200 samples (203). Kontron Analytical, Inc., has introduced a line of high-performance single- and double-beam instruments (256). Two instruments have been marketed by Perkin-Elmer Corp., the moderately priced Lambda 3 UV/vis, double-beam,scanning model (400) and the inexpensive Coleman 35 colorimeter (335-825nm) (403). Pye Unicam LM. has expanded its SP7 and SP8 series with four new models that differ mainly in the options provided (434-436). A continuous flow-through type spectrophotometer (ASP-100)for industrial applications is available from Scientific Instruments Corp. (482). Microcomputer control, background correction, least-squares calibration, automatic wavelength calibration, and sequential or overlay scanning all characterize the UV-240Graphicord from Shimadzu Scientific Instruments, Inc. (497). The Tracor Northern, Inc., Model TN-6050 is a versatile system that can be configured as a TJV/vis/near-IR spectrophotometer, a fluorescence spectral analyzer, a HPLC detector, or a GC detector (549). A new double-pass, double-sided diffraction grating with a wavelength range from 185 to 3152 nm is used in the new dual-microprocessor controlled Varian 2200 and 2300 series spectrophotometers (568). Varian has also introduced the DMS-80 and DMS-90 microprocessor-controlled UV/vis spectrophotometers which can give results in absorbance, transmittance, or concentration on LED displays or generate first- and second-derivative spectra (567). The DMS-90 additionally permits preselection of up to eight wavelengths, repeat scans at chosen intervals, wavelength range to be scanned, and log absorbance readout. A Model DMS 90-Plus uses an Apple I1 computer to provide advantages of laboratory automation (569). Noncommercial spectrophotometers that have been described include one using a charge-coupled device photoarray detector that can access 260 nm of the visible spectrum in as little as 8 ms (449),a highly stabilized, intracavity laser-absorption instrument capable of to 5 X 10" range (498), measuring absorbances in the 1 X a symmetrical, double-beam, wide-range, wavelength-modulated spectrometer suitable for measuring two different samples simultaneouslym well as double derivation of reflectivity (337), a high-sensitivity, wavelength-modulatedspectrometer designed for simultaneous continuous measurements of sulfur and nitrogen oxides in air (217), a microspectrophotometer combining the advantages of the special optics and accurate adjustment system of a microscopephotometer with the easy handling of a normal spectrophotometer (1041, a single-beam temperature-jumpinstrument for studying fast reactions (421), a double beam in time photoacoustic spectrometer using a linear scanner to alternately illuminate sample and reference materials in a uniquely designed cell containing a single microphone (97), and a Fourier-transform photoacoustic spectrometer using H Michelson interferometer with stepand-integrate mirror motion (287). Special Application Instruments and Accessories. A microcomputer-controlled,double-beam, ultraviolet photometer for the determination of ozone has been described (383). A spectrophotometer has been constructed for determining ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
179R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Table 11. Spectrophotometric Methods for Nonmetals method or reagent [wavelength (nm);molar absorptivity, Sandell sensitivity, concentration range, or detection limit] constituent material soil, plants
As
Br' CI -
silver diethyldithiocarbamate [504 or 6001 oxidn. with cloramine-T, fluorescein [517; 1.8 X lo3] as CrO,CI, (CCl,) back ext. aq. I- [288 or 3511 Hg2 ,4-diphenylcar bazonesulfonic acid [550; 20-18 0 pg] 4-methyl-2-pentanone, amiloride Variamine Blue, (NH,),S,O, (PhNO,) [610; 7.8 X lo4] silver 4-(2-quinolylazo)phenol,ligand exch. [530 ; 0.0 13-0.626 ppm ] lithium picrate [500; 25 ng/mg Pruss. Blue] Alizarine [610; 1.09 X lo4] curcumin (10% 2-ethyl-1,3-hexanediolsoln. in CHCI,) [555] 5-isothiocyanato-l,3-dioxo-2-p-tolyl-2,3-dihydro-lH-benz[ de] isoquinoline [0.02-0.3 V O ~%] K,TiO(C,O,),*PH,O [400; 10 pM] catalytic oxidn. of 2-thiosemicarbazone-1,2-naphthoquinone-4-sulfonate by H,O, L0.5 pg/mLI Pd(II), 2-nitroso-5-diethylaminophenol(CHCI,) [486; (0-4) X lo-' MI 4-(2-quinolylazo)phenol,ligand exch. [530; 0.09-1.5 ppm] pH 7, tris(1,lO-phenanthroline)iron(II)(PhNO,) [516] [Fe(NH,)(CN),I3-[555; 0.42-4.2 ppm] chemilum. O,, CO 4-aminosalicylic acid, 1-naphthol [520; 1.47 x lo4] 4,5-dihydroxycoumarin [410; 0.14-3.50 ppm] p-nitroaniline, 8-quinolinol [550; 3.88 X lo4] Rivanol [525] direct ultraviolet detn. MOO:-, Malachite Green [640; 9.60 X lo4] Sb, ascorbic acid, HONH3CI [0.8 pg P,O,/mL] Methylene Blue, molybdate, zephiramine [660; 2.5 X lo5] molybdate, SnCl, in Me,CO-water [800; 0.03-1.0 ppm] molybdate, triethylamine [320; 2.09 X lo'] C U ~ +[ m ; 2 x 1031 p-phenylenediamine [0.02 ppm] redn. of Fe(III), 2,2'-dipyridil [525; 0.2 ppm] 2-aminoperimidine hydrobromide, HNO, [540; 3-55 ppm] Ba chloranilate, aq. i-PrOH, Crystal Violet (PhCI) [595; 6.8 X lo4] Ba methylthymol blue [460; 0.9 pg/mL] flow injection turbidimetry [4-15 mmol/L] Chromopyrazole I1 (CHC1,-C,H,) [548; 4.00 X lo4] silver sol acetothioacetanilide (CHCI,) [400; 0.05-100 ppml Chromopyrazole I, I-, indirect [645; 6.3 X l o 4 ] methiomepyrazine hydrochloride, H3P0, [644; 2.98 X lo4] morpholine-4-carbodithioate [410; 58 pg] molybdate, Malachite Green (Me,CO) [620; 3.2 X l o 5 ] molybdate, Methylene Blue [4.3 X l o 5 ] morpholine-4-carbodithioate [415; 7.5 pg] +
c10,wastewater CNHF H3BO3 H2O
Prussian Blue air boron powder org. solvents
HZO, I'
N3Ni(CO), NO,-
air water
NO P
water water, soil gases uranium silicates
Poloil cakes p,0,4H,S so2
so:-
s,o,2Se
Si Te
PO,3- solns. air air air, water urine photogr. gelatin sulfur steel. alkalis
trace concentrations of sulfur dioxide in air that, with modifications, can also be used to determine nitrogen oxides, ammonia, and benzene vapors (528). An instrument designed to detect very small differences in transmittance or reflectance of two adjacent areas of a substrate has been constructed using a light beam of variable wavelength which is deflected between two areas by an oscillating mirror (483). Hewlett-Packard's Model 8450A diode-array spectrophotomter has been utilized as a liquid chromatography detector (219). A gas-phase, ultraviolet absorption detector with a 50-1L cell volume and variable wavelength capability has been used for the detection of aromatic solutes from wide-bore capillary gas chroamtography columns (370). A low-cost spectrophotometer was interfaced to a microcomputer to follow the progress of slow (u to 100 h) reactions of up to three independent samples ( 1 3 8 The popular Apple 11+ computer has been interfaced to several different spectrophotometers providing different degrees of automation (201,334,391) and the Hewlett-Packard 9815A desktop computer has been used to control the collection and treatment of data from a Varian Superscan 3 spectrophotomter (273). A new 16-bit, 64K spectral acquisition-management system for spectroscopy has been introduced featuring digital and analog inputs, 9-in. video monitor, built-in scaler, full pro amability with alphanumeric displays and plotting, floppy g k , and digital plotter (202). PerkinElmer's LC-75 variable-wavelength liquid chromtography detector, Autocontroller, Model 420 Autosampler, and Sigma 10 data station can be configured for use as a UV/vis spec180R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
ref 324 386 185 222 65 169 32 589 200 166 246 485 197 173 31 198 320 525 136 358 355 490 118 12 584 494 429 281 11
523 522 345 351 563 566 120 129 393 613 162 509 330 329 509
trophotometer to obtain spectral information automatically on up to 42 samples (109). An 8-channel,l2-bitA/D converter linked to a microcomputer was used to automate data acquisition with an ultraviolet spectrophotometer (333). The use of an unsegmented solution storage coil in an automated stopped-flow analyzer reportedly improves the throughput of the system while retaining the measurement advantages of the regular stopped-flow analyzer (299). A nanosecond laser spectrophotometer has been described which used a tunable dye laser probe pulse continuously delayed with respect to the N-laser pump pulse, and a time-scale synchronization technique to reconstruct the time-resolved transient absorption spectrum (221). The design and applications of the Rofin Model 6000 scanning monochromator have been discussed (16) and incorporated into an optical spectrum analyzer (457). The construction, from commercial components, of an automated UV/vis spectrophotometer for collecting reaction-rate data on high-temperature reactions has been described (147). A microcomputer-controlled, photodiode-array, spectrophotometric titrator has been constructed and its utility demonstrated via several titrations (591). The electronic circuitry and performance of a spectrometer system using a silicon photodiode array has been reported (61). A report has appeared describing the use of a gel electrophoresis scanning accessory with a conventional spectrophotometer (291). GCA/Precision Scientific has announced its McPherson 275 0.2-m portable monochromator (154) and Hewlett-Packard its 89007A
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
--
Table 111. Spectrophotometric Methods for Organic Compounds constituent acetals alcohols, aliph. aldehydes a1ky nes amino acids amines amines, prim. aryl amines, sec. & tert. aliph. antihistamines benzodiazepines
material alkyl phosphates air
method or reagent [wavelength (nm); molar absorptivity, Sandell sensitivity, concentration range, or detection limit]
ref
chloranil, diethylamine [640-601 KOH, HNO, (hexadecane) [347] p-Rosaniline.HC1, dichlorosulfitomercurate catalytic hydration, 2,4-dinitrophenylhydraz ine [0 .O 15-3.0 rng of C/m3] 2 - a ,0-dinitrostilbene (CHCl,) [37 51 tetracyanoquinodimethane [430-680; (0.78-2.10 ) X lo3] metol, N-bromosuccinimide [520-5301
374 404 524 42 114 373 476
NaNO,, KBr [508] chemilum. with Bz peroxide [sec, 0.2-0.6; tert, 0.1-0.45 ~ o l / m L ]
213 63
12-molybdophosphoric acid, hydrazine hydrate 47 4 direct derivative spectrometry 310 pharm. prepns. HC1, phenylacetaldehyde (CHCl,) 41 benzoic acid Tornato preserves Na,WO,, HCl (Et,O) [272] 615 bile acids serum oxamic acid, Nitro Blue Tetrazolium, P-NAD, 1-methoxyphenazine 350 met hosul fate [525 ] carbohydrate, total 418 anthrone [590] carboxylic acids 1-cyclohexyl-3-(2-morpho1inoethy1)carbodiitnide metho-p-toluenesulfonate, 538 Fe(II1) NH,OH*‘HCl,dicyclohexylcarbodiimide, EtOlH, FeC1,.6H20 [510-20 ; 168 5-80 ppm] corticosteroids Cu(OAc),, 3-methylbenzothiazol-2-onehydrazone [394] tablets 174 creatinine differential absorbance at 2 diff. pH values [238] urine 405 diphenylamine K,Fe(CN), [570-90; 2 x 7 041 352 ethylene glycol KMnO,, H,SO,, Chromotropic acid [575; 10-40 pg/mL] 196 serum fatty acids Cu, soap [0.1-4.0 mmol/L] 59 formal dehy de N-methylacetamide Chromotropic acid [45 pg/cmZ] 550 Cu(II), oxalyldihydrazide tO.8-2.8 ppm] 356 gallic acid dimethylamine [2-240 pg] 450 glycerol anthrone [510] 418 L-histidine o-diacetylbenzene [6 1 0 ; 5.5-21.46 ppm] 75 hydroquinone vinyl chloride 4-aminoantipyrine [490] 81 oxidn. with MnO,, 2,4-dinitrophenylhydrazine[515; 2.59 X l o 4 ] 127 indole 2,6-dichloroquinone-4-chlorimide 302 lactose CuCO,.Cu(OH),, NaOH, i-PrOH [670; 0.24-3.6 mg/mLl 128 malathion hydrolyze t o Bi dimethyldithiophosphate, ligand exch. with Bi 89 diethyldithiocarbamate complex [495] L-malic acid plaints enzymic rxns. [492] 157 DL-methionine o-diacetylbenzene [550; 72-192 ppm] 75 methylene blue Bromothymol Blue (CHC1,) [656; 4.42 X l o 4 ] 293 nitrocresols nitrotoluene Et,NOH, aq. dioxane [430; 1.2 X l o 4 ] 454 nitroparaffins NaOH, vanadium(V) [2.1 )( t o 4.5 X M] 516 N-nitrosamines ami nophenazone sulfanilamide, N-( 1-naphthy1)ethylenediamine [545] 132 penicillin acid hydrolysis, Cr(VI), rnletol sulfate 514 phenol 4-aminoantipyrine [490] vinyl chloride 81 serum NaNO,, p-nitroaniline [SO01 416 phenothiazines arsenic acid [1-10 ppm] 529 molybdoarsenic acid drugs 444 12-tungstophosphoric acid [510-5401 pharmaceuticals 44 5 picolinic acid Fe ,+ [420] Ag plating baths 79 proteins chloranil [1.71X los] 438 Nessler’s reagent [420] plants 73 serum Bromophenol Blue [605] 532 pyrogallol dimethylamine [3-200 pg] 450 quinine drugs Chromazurol S (CHCl,) [510] 389 hydrochloride saccharin plating soln. direct derivative (1st) spectrometry [0.1 ppm] 135 strychnine nitrate Chromazurol S (CHCl,) [510] drugs 389 sugars, reducing K,Fe( CN), , phenolphthalin [ 5001 486 sulfides, aliph. tetracyanoethylene (CHC1,) 372 tetracyclines Cr(VI), metol [390; 16-56 ppm] 27 1 thioketones mercury(11)ammonium (2‘-amino-3’-hydroxy-4’-pyridylazo)-4-benzoate 570 [5351 thiols p - (dialky1amino)phenylmercury acetate, diphenylcarbazone (C,H,) 66 2-a,@-dinitrostilbene(CHC1,) [350-3601 114 K,Fe(CN),, 4-aminoantipyrine, phenol (CHCI,) [454] 33 thiosemicarbazide mercury(11) ammonium (2’-amino-3’-hydroxy-4’-pyridylazo)benzene-4-57 1 arsonate, indirect [535; 0.23-4.84 ppm] triglycerides serum sodium isopropylate, I O 4 - , acetylacetone, NH40Ac [412; 0.35-1.7 172 mmol/L] serum PrOH-KOH, IO4-, acetylacetone, autoanalyzer [425] 117 urea salicylate, urease, nitroprusside, NaOCl [580-7 001 535 uric acid serum, urine K,Fe(CN), [295] 365 ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
181 R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Specular Reflectance Accessory for the HP8450A spectrophotometer (178). New or modified cells that have been used for special applications include a IO-cm cuvette, using a variable amount of internal reflection to generate an apparent path length of 30-50 cm, for use in enzyme kinetics studies (543), a 5-mL volume, 1.31-cm path length cell, capable of withstanding temperatures of 325 “Cand pressures of 28 MPa, for hydrothermal solutions (531), a microcell, suitable for 8-80 pL of solution, that can be used in both absorption and fluorescence experiments (413))a set of variable path length cells from Precision Cells, Inc.,that can be varied from 10 mm to 5 pm (427),a photoacoustic cell from Princeton Applied Research, for use in Fourier transform infrared and in UV/vis spectrometry, that includes a built-in condensor microphone, matching preamplifier, and adjustable, valved input output ports (121),a general purpose PAS cell for condense matter (115), a cell designed for simultaneous photoacoustic and fluorescence measurements (239),and a variable temperature PAS cell that can be used a t temperatures from 90 to 320 K (38). A simple, compact, and inexpensive light-dark attachment for scanning spectrophotometers has been constructed to allow the use of an actinic light source for cross illumination of samples in UV/vis s ectrophotometers (245).Finally, three papers have been puilished describing the Perkin-Elmer Model 3500 and 3600 data stations (116, 401, 402).
i
APPLICATIONS Methods of Analysis. Despite the development of many competitive analytical techniques, spectrophotometry continues to be very popular. The inherent ease and simplicity of spectrophotometric methods coupled with the availability of inexpensive, reliable, and now automated instruments are undoubtedly important reasons for this popularity. The chemistry and physics sections of the review survey the recent developments in methodology. This section, comprised of Tables I, 11, and I11 attempts to note the many spectrophotometric methods used to determine specific constituents in both real and synthetic samples. Given the limited format of the tables, it is impossible to cite unique preliminary sample treatments, tolerances to diverse constituents, and other noteworthy features of the methods. LITERATURE CITED (1) Ackermann, G.; Koethe, J. Talanta 1979, 26, 693-703. (2) Adams, P. A,; Berman, M. C. Clin. Chem. 1981, 27, 753-755. (3) Agrawal, Y. K. Bull. Acad. Pol. Scl., Ser. Scl. Chim. 1979, 27, 681687; Chem. Abstr 1980, 93, 125143a. (4) Agrawal, Y. K. Rev. Anal. Chem. 1980, 5(1-2), 3-28. (5) Agrawal, Y. K.; Patel, S. A. Bull. SOC. Chim. Be@. 1980, 89, 9-14; Chem. Abstr. 1980, 92, 190730h. (8) Akalwa, H.; Kawamoto, H.; Kogure, S. Bunsekl Kagaku 1979, 28, 498500; Chem. Abstr. 1979, 91, 2 0 3 7 3 6 ~ . (7) Akalwa, H.; Kawamoto, H.; Konishl, M. Bunseki Kagaku 1979, 28, 690695; Chem. Abstr. 1980, 92, 513532. (8) Akalwa, H.; Kawamoto, H.; Yoshimatsu, E. Bull. Chem. Soc. Jpn. 1979, 52, 3718-3720; Chem. Abstr. 1980, 92, 84789n. (9) Akberdina, E. S.; Pavolova, L. G.; Speranskaya, E. F. Khlm. Khim. Tekhno/. (Alma-Ata, 1962-) 1977, 22, 52-56; Chem. Abstr. 1980, 92, 121205d. (10) Akhemdll, M. K.; Ayubova, A. M.; Azimov, S. R. Azerb. Khim. Zh. 1979, (3), 120-124; Chem. Abstr. 1980, 92, 100311~. (11) Aleksandrov, A. 8.; Begak. 0. Yu. Zh. Anal. Khim. 1980, 35, 922925; Chem. Abstr. 1980, 93, 3 6 4 1 2 ~ . (12) Aleksandruk, V. M.; Pushlenkova, N. I.Zavod. Lab. 1960, 46, 294296; Chem. Abstr. 1980. 92, 226076r. (13) Anderson, L. Anal. Chim. Acta 1979, 110, 123-128. (14) Andzhaparidze, D. I.; Dzlshlshkarlanl, G. I.; Aklmov, V. K.; Busev, A. I. Zzv. Akad. Nauk Gruz. SSR, Ser. Khlm. 1980, 6 , 295-301; Chem. Abstr. 1981, 94, 2 0 2 0 5 3 ~ . (15) Angelova, G.; Panova. A.; Bakurdzhieva, D. Metalurgiya (Sofia) 1979, 34, 27-29; Chem. Abstr. 1980, 92, 190678~. (16) Angus, B. Opt. Spectra 1980, 18, 49-51. (17) Apsitis, A,; Mucenlece, D. Latv. PSR Zinat. Akad. Vestis, Klm . Ser. 1979, (6),661-663; Chem. Abstr. 1980, 92, 103750~. (18) Arias, J. J.; Jlmenez, F.; Garcia Montelongo, F. An. Qulfh., Ser. B 1980, 76, 452-459; Chem. Abstr. 1981, 94, 128404t. (19) Arnaud, P.; Metayer, C.; LeGall, N. Labo-Pharma-Probl. Tech. 1980, 28 (2983, 360-383; Chem. Abstr. 1980, 93, 173789n. (20) Arora, H. C.; Venkateswarlu, C.; Rao, G. N. Zndlan J . Chem., Sect. A 1980, 19A, 500-501; Chem. Abstr. 1980, 93, 60502~. (21) Ashworth, C. M.; Castledon, S. L.; Klrkbright, G. F. Anal. Proc. (London) 1981, 18, 14-16. (22) Asmus, E.; Kossmann, U.; Ortlepp, W. Fresenlus’ 2 . Anal. Chem. 1979, 298 (2-3), 150-154. (23) Asuero, A. G.; Gonzalez-Balairon, M. Microchem. J . 1980, 25, 14-45. (24) Asuefo, A. G.; Rodriguez, M. M. Analyst (London) 1980, 105 (1248), 203-20s.
182R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
(25) Atalar, A. Appl, Opt. 1980, I 9 (18), 3204-3210. (26) Baban, S. Anal. Proc. (London) 1980, 1 7 , 535-537. (27) Bagdasarov, K. N.; Shchemeleva, G. G.; Rubtsova, 0. K.; Shelepln, N. E. Zawod. Lab. 1980, 46, 583-565; Chem. Abstr. 1980, 93, 142291q. (28) Baloiu, L. M.; Calin, C. G.; Diamandescu, E. Rev. Chim. (Bucharest) 1980, 3 1 , 298-299; Chem. Abstr. 1980, 93, 106366j. (29) Bartieson, C. J. Opt. Radlat. Meas. 1980, 2, 33-148; Chem. Abstr. 1980, 93,837742. (30) Bartos, J. Talanta 1980, 27, 583-590. (31) Barua, S.; Garg, 6. S.; Singh, R. P. Analyst (London) 1980, 105 (1255), 996-998. (32) Barua, S.; Varma, Y. S.; Singh, I.; Garg, B. S.; Slngh, R. P. Curr. Scl. 1980, 49 (24), 938-939. (33) Baslle, G.; DI Bello, C.; Gambaretto, G. Atti Mem. Accad. Patav. Sci Lett. Arti 1978, 90, 87-94; Chem. Abstr. 1980, 92, 3 3 4 3 3 ~ . Marone, C. B. Anal. Chlm. Acta 1980, 119, 393-399. (34) Baudlno, 0.; (35) Bausch & Lomb Am. Lab. (Fairfield, Conn.) 1980, 12, 15. (36) Bautista Rodriguez, J. M., Can0 Pavon, J. M., Talanta 1980, 27(11A), 923-926. (37) Beaupre, P. W.; Holland, W. J. Mlkrochlm. Acta 1979, 2 (5-6), 433-436. (38) Bechthold, P. S.; Campagna, M.; Chatzipetros, J. Opt. Commun. 1981, 36, 369-372. (39) Beckman Instruments, Inc., Bulletin 7700, 1981. (40) Bell, J. E., Ed. ”Spectroscopy in Biochemistry”; CRC Press: Boca Raton, FL, 1981; Vol. 2. (41) Beltagy, Y. A.; Issa, A. S.; Mahrous. M. S. EgyptJ. Pharm. Scl. 1978, 19 (1-4), 115-120; Chem. Abstr. 1981, 94, 180764~. (42) Beltschewa, R.; Pankova, M. Chem. Tech. (Leiprig) 1980, 32, 533534; Chem. Abstr. 1980, 93, 230329~. (43) Berge, H.; Rohde, K. H. Wiss. 2. Wllhem-Pieck-Unlv. Rostock, Math.-Naturwiss. Reihe 1978, 27, 623-627; Chem. Abstr. 1981, 94, 105922. (44) Berge, H.; Rohde, K. H. Wlss. 2. Wilhelm-Pleck-Unlv. Rostock, Math.-Naturwlss. Reihe 1978, 27, 633-638; Chem. Abstr. 1981, 94, 10593a. (45) BermeJoBarrera, A.; Bermejo Martinez, F. Acta Qulm. Compostelana 1979, 3 , 107-114; Chem. Abstr. 1981, 94, 113767q. (46) Bershteln, 1. Ya.; Lupashevaskaya, D. P.; Kotomin, E. A. Zh. Prlk/. Spektrosk. 1980, 32, 1123; Chem. Abstr. 1980, 93, 125036t. (14) Bhattacharya, S.; Lyle, S. J.; Maghzlan, R. Talanta 1980, 27, 59-60. (46) Bhura, D. C.; Powar, P. K. Analusis 1980. 8, 106-109; Chem. Abstr 1980, 93, 60337~. (49) Biswas, N. R.; Ray, B. C.; Lahlri, S. Indian J. Chem., Sect. A 1980, 19A, 58-61; Chem. Abstr. 1980, 92, 208384k. (50) Blanco, M.; Barbosa, J. Talanta 1980, 27, 371-373. (51) Boettger, J.; Krause, T. Wochenbl. Papierfabr. 1980, 108, 263-268; Chem. Abstr. 1980, 93, 1730171. (52) B o k , D. F.; Mellon, M. G. Anal. Chem. 1964, 36, 256R 1986, 38, 317R; 1988, 40, 255R; 1970, 42, 152R; 1972, 44, 300R; 1974, 46, 227R; 1976, 48, 216R. (53) Botev, I. Fresenius’ 2. Anal. Chem. 1979, 297(5), 419. (54) Bouvier, A. Oesterr. Chem. 2. 1980, 81, 236-237; Chem. Abstr. 1981, 94, 57362q. (55) Bozkov, 0.; Cermakova, L.; Malat, M. Anal. Lett. 1979, 12 (A12), 1259-1266. (58) Brlnkmann Instruments, Inc. Anal. Chem. 1981, 53, 462A. (57) Brown, K. L. Znorg. Chim. Acta 1979, 3 7 , L513-L516. (58) Bruins Instruments Chem. 8, Eng. News 1981, 59 (12), 64. (59) Brunk, S. D.; Swanson, J. R. Clin. Chem. 1981, 27, 924-926. (60) Bruno, P.; Caselli, M.; Gatti, C.; Tralnl, A. Anal. Lett. 1980, 13 (A17), 1497- 15 12. (61) Bubert, H.; Hagenah, W. D.; Stuewer, D. Spectrochim. Acta, Part B 1979, 348, 389-392. (62) Buhl, F.; Ciba, J.; Piwowarska, 6. Chem. Anal. (Warsaw) 1980, 25, 335-343; Chem. Abstr. 1981, 94, 57451t. (63) Burguera, J. L.; Townshend, A. Talanta 1979, 26, 795-798. (64) Burgess, C., Knowles, A., Eds. “Techniques In Visible and Ultravlolet Spectrometry, Vol. 1: Standards in Absorptlon Spectrometry”; Chapman and Hall: London, 1981. (65) Burns, D. T.; Hanprasopwattana, P. Anal. Chim. Acta 1880, 118, 185-189. (66) Busev, A. I.; Teternikov, L. I.Otkrytiya, Zzobret., Prom. Obraztsy, Tovarnye Znakl 1980, (13), 219; Chem. Absfr. 1980, 93, 60626~. (67) Cabrera-Martin, A.; Cartagena, M. C.; Peral-Fernandez, J. L. An. Quim., Ser. B 1980, 76, 294-299; Chem. Abstr. 1980, 93, 2148801. (68) Cahill, J. E. Am. Lab. (Fairfleld, Conn.) 1979, 1 1 , 79-80, 82-85. (69) Cahlll, J. E. “Fundamentals of UV/Vlsible Spectrophotometry: An Outline”; Perkln-Elmer Corp.: Norwalk, CT, 1980; Applications Data Bulletin, ADS 123. (70) Cahlll, J. E. “Noise I n Double-Beam UV-Vis Spectrophotometers”; Perkin-Elmer Corp.: Norwalk, CT, 1980; Applications Data Bulletln, ADS 121. (71) Cahill, J. E.; Padera, F. G. Am. Lab. (Fairfield, Conn.) 1980, 12, 101-102, 104, 106, 109-110, 112. (72) Cai, R-X.; Luo, 0-Y.; Li, X-Y, Ll, 0-X, Kao Teng Hsueh Hslao Hua Hsueh Hsueh Pa0 1980, 1 , 53-60 Chem. Abstr. 1981, 94, 149563r. (73) Calleja, A.; An. Fac. Vet. Leon, Univ. Owiedo 1978, 24, 179-181; Chem. Abstr. 1980, 93, 163789~. (74) Can0 Pavon, J. M. Mlcrochem. J. 1981, 26, 155-163. (75) Canto de Santos, A.; Schenkel, W. F.; Lopes, W.: Vlnade, M. E. do C.; Bernelra, 2. da C. Rev. Cent. Clenc. Saude 1979, (1-2), 97-119; Chem. Abstr. 1980, 93, 106525k. (78) Capitan, F.: Gukraum, A,; Vilchez, J. L. Ars Pharm. 1980, 21, 349360; Chem. Abstr. 1981, 95, 125471~. (77) Cadi, B.; Natale, V. Appl. Opt. 1979, 18 (23), 3954-395s.
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (78) Carsky, J.; Beno, A.; Lazarova, M. Acta f a c . Rerum Nat. Univ. Comenlannae, Chlm. 1080, 28, 77-83; Chem. Abstr. 1080, 93, 234305a. (79) Chai, H-I. f u Tan Hsueh F'ao, Tzu Jan K ' o Hsueh 1978, (3), 120-124; Chem. Absfr. 1980, 92, 332501. (80) Chalaya, 2. 1.; Mlnenko, Ni. I. Zavod. Lab 1979, 45, 891-894; Chem. Abstr. 1980, 92, 334362. (81) Chalaya, 2. I.; Poiischchuk, 0. M. Ukr. Khlm. Zh. (Russ. Ed.) 1979, 45, 661-664; Chem. Abstr 1980, 92, 3 3 4 1 9 ~ . Garg, B. S.;Singh, R. P. Ann. Chim. (Rome) (82) Chauhan, 0. S.; Singh, I.; 1979, 69 ( 5 4 ,363-366; Chem. Abstr. 1880, 92, 3 3 2 7 4 ~ . (83) Chem. Eng. News 1980, 58 (12). 38. (84) Chem. Eng. News 1981, 59 (12), 43-74. (85) Chemtrix, Inc. Anal. Chern. 1980, 52, 660 A. (86) Chen, M.; Liu, Y.; Tang, T. Fen Hsl Hua Hsueh 1979, 7 , 263-268; Chem. Abstr. 1980, 92, 773886~. (87) Chowdhury, R. P.; Pal, 8. K.; Mira, B. K. Mlkrochlm. Acta 1979, 2 (5-81 5 - 15-522 - --(88) Ci, Y-X.; Hu, K-R.; Zheng, C-X.; Tan, YJ. K ' o Hsueh T'ung Pa0 197% \-
-,I
24 (19). 879-881; Chem. Abstr. lg80, 92, 6 8 9 6 3 ~ . (89) Clark, E. R.; Qazl, I.A. Analyst (London) 1980, 705 (1251), 564-587. (90) Ciewes, E. N. UV Spectrom. Group Bull. 1079, 7, 35-48; Chem. Absh. 1980, 93, 196978n. (91) Clougherty, L. E.; Kohler, V. A. Znd. Res./Dev. 1980, 22, 133-136. (92) Coiies, M. J.; Geddes, N R.; Mehdlzadeh, E.; Kay, P. J. A. Keynote Lect-Colloq. Spectrosc. Int., 27st 1978, 199-208; Chem. Abstr. 1980, 93, 362219. (93) Constantinescu, C.; Constcintlnescu, G. C. Rev. Roum. Chlm. 1980, 25 (9-lo), 1411-1420; Chem. Abstr. 1981, 94, 1496170. (94) Constantlnescu, G. C. Rev. Roum. Chlm. 1980, 25 (E), 1249-1258; Chem. Abstr. 1981, 94, 149618f. (95) Constantinescu, G. C.; Constantlnescu, C. Rev. Roum. Chlm. 1980, 25 (E), 1259-1267; Chem. Abstr. 1981, 94, 1 3 1 6 2 5 ~ . (96) Cox, M. F.; Coleman. G. N. Anal. Chem. 1981, 53, 2034-2036. (97) Cox, M. F.; Coleman, G. 14.; McCreary, T. W. Anal. Chem. 1980, 59, 1420- 1424. (98) Creanga, S.; Zuchi, G.; IMorait, G. Farmacia (Bucharest) 1980, 28, 85-92; Chem. Absb. 1081, 94, 20498n. (99) Crummett, W . B. Anal. Chem. 1968, 38, 404r. (100) Crummett, W. B.; Hummei, R. A. Anal. Chem. 1988, 40,330R; 1970, 42, 239R. (101) Danet, A. F.; Dreptu, R.; Nicoiae, G. Rev. Roum. Chim. 1979, 24 (8), 1229-1235; Chem. Abstr. '1980, 92, 69013~. (102) Dasgupta, J.; Bhattachaiyya, D.; Chakrabarty, M. M.; Adhlkari, S. J . Am. OllChem. SOC. 1981, 58,613-617. (103) Defrancesco, F.; Seppl, A. Rlv. SOC. Ital. Sci. Aliment. 1979, 8 , 111-116; Chem. Abstr. 1079, 97, 203880~. (104) De Josselln de Jong, J. 1% HartwiJk. P. J. M.; Van de Giessen, H. P.; Gaijaard, H. Anal. Biochem. 1980, 706, 397-401. (105) Deiaey, L.; Arkens, 0. Spectrochim. Acta, Part B 1981, 368, 351-360. (106) Deiaey, L.; Arkens 0 Spectrochlm. Acta, Part B 1981, 368, 361-372. (107) Demchenko, V. Ya.; Paviova, V. K.; Piiipenko, A. T. Ukr. Khlm. Zh. (Russ. M.) 1980, 46, 650-656;Chem. Abstr. 1081, 94, 40773b. (108) Desai, B. J.; Shinde, V. M. Fresenlus' 2.Anal. Chem. 1979, 298 (2-3). 158. (109) DICesare, J. L.; Vandemark, F. L. Chromatogr. News/. 1980, 8 , 82-64. (110) Doigorev, A. V.; Lysak Ya. G. Zavod. Lab. 1878, 45, 984-985; Chem. Abstr. 1980, 92, 51383J. (111) Dolgorev, A. W.; Zlbarova, Y. F. Zavod. Lab. 1980. 46, 17-19; Chem. Abstr. 1980, 92, 173908e. (112) Dolmanova, I.F.; Antul'skaya, N. L.; Ii'icheva, I. A,; Petrukhina, L. A. Zh. Anal. Khlm. 1979, 34, 2322-2325; Chern. Abstr. 1980, 92, 190660k. (113) Dolmanova, I. F.; Ershova, E. V.; Nad, V. Yu.; Shekhovtsova, T. N. Zh. Anal. Khlm. 1979, 34, 1644-1647; Chem. Abstr. 1980, 92, 14790~. (114) Dubols, P.; Levlillan, P.; Vlel, C. C. R. Hebd Seances Acad. Scl., Ser. C 1980, 290, 21-23; (:hem. Abstr. 1980, $2, 157306b. (115) Ducharme, D.; Tessler, 14.; Leblanc, R. M. Rev. Scl. Instrum. 1979, 50, 1461-1462. (116) Duclos, J. Am. Lab. (fairfield, Conn.) 1980, 72, 133-137. (117) Dude, H.; Knorr, A. 2.M .Laboratoriumsdlagn. 1980, 27, 364-367; Chem. Abstr. 1981, 94, 79674~. (118) Durand, J. P.; Beilet, J. C AGARD Conf. Proc. 1980, AGARD-CP-281, 16/1-16/10; Chem. Abstr. 1981, 94, 179835s. (119) Ebel, S.;Steffens, U. Fresenius' 2. Anal. Chem. 1980, 301 (5), 398-401. (120) Efremenko, 0. A.; Esenina, 0. B.; Ovesnova, N. A.; Schemyakin, F. M. Izv. Vyssh. Uchebn. Zaved, Khim. Khlm. Techno/.1979, 22, 927-928; Chem. Abstr. 1979, 97, 221900~. (121) EGBG Princeton Applied' Research Anal. Chem. 1981, 53, 842 A. (122) Eisenweiner, H. G.; Kindbelter, J. M.;Keller, M.; Guetlln, K. Methods Lab. M e d . 1980, 7 , 29-50; Chem. Abstr. 1981, 95, 111174r. (123) Elslrafy, A. A. Analyst (Llondon) 1980, 705 (1254), 912-915. (124) Elslrafy, A. A. Fresenlus 2.Anal. Chem. 1980, 307 (l), 26-27. (125) Eno, R. Anal. Chem. 1981, 53, 1721. (126) Era, K. Oyo Butsurl 1979, 48, 985-990; Chem. Abstr. 1980, 92, 223356~. (127) Eremeev, A. P. Zzv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1980, 23. 648-649; Chem. Abstr. 1980, 93, 60618n. (128) Esplnosa flores, M.; Checon Morux, M. E. Ing. Cienc. Qulm. 1979, 3 , 117-122; Chem. Abstr. 1980, 92, 5 1 4 8 7 ~ . 1980, 8 , 275(129) Ewa, F; Kiss, I. J. J. S~nalaufzeichnungsmaterlallen 283; Chem. Abstr. 1981, 94, 93526e.
(130) Fantova, I.; Klir, L.; Cermakova, L.; Suk, V. Chem. Listy 1980, 7 4 , 291-294; Chem. Abstr. 1980, 93, 18502~. (131) Ferracini, V. L.; DeLima, C. 0. Analyst (London) 1981, 706 (1262), 574-583. (132) Ferrarl, P. N-Nihmmmine Alimenti, Ambient8 Farm. 1979, 117-127; Chem. Absfr. 1980, 92, 190807~. (133) Fisher, M. R.; Nogar, N. S.;Schuster, S. M. Anal. Biochem. 1981, 773, 112-117. (134) Flshman, V. A.; Bard, A. J. Anal. Chem. 1980, 52, 1723-1729. (135) Fix, G. L.; Pollack, J. D. Anal. Chem. 1980, 52, 1589-1592. (136) Flamerz, S.;Bashir, W. A. Analyst (London) 1981, 706 (1259), 243-247. (137:l Fogi, J.; Urner, Z.; Sucha, L. Sb. Vys. Sk. Chem.-Techno/.Praze, Anal. Chem. 1980, H75, 139-149; Chem. Abstr. lg81, 95, 1 7 5 9 1 ~ . (138) Fornlll, S.L.; Mlgllore, M. J . Phys. E. 1981, 74, 426-428. (139) Freeman, J. J.; Friedman, R. M.; Reichard, H. S. J . Phys. Chem. 1980, 84, 315-319. (140) Furukawa, M.; Shibata, S. Bunseki 1980, (3, 330-338; Chem. Abstr. 1980, 93, 60283t. (1411 Furukawa. M.; Shibata, S.Bunseki 1980, (9), 606-1319; Chem. Abstr. 1980, 93, 157969r. (142) Fu-Sheng, W.; Pel-Hila, Qu.; Nai-Kui, S.; Fang, Y. Talanta 1981, 2 8 ,
i.._m - i .-.. ai
(143) Gambarov, D. G.; Guseinov, A. G. Zavod. Lab. 1980, 46, 297-299; C,hem. Abstr. 1980, 93, 185244. (144) Gambarov, D. G.; Guselnov, A. G.; Akhmedli, M. K. Zavod. Lab. 1979, 45,794-796; Chem. Abstr. 1979, 97, 221926n. (145) Ganago, L. I.; Ishchenko, N. N. Zh. Anal. Khim. 1980, 35, 17181724; Chem. Abstr. 1980, 93, 214926a. (148) GanagO, L. I.; Mosina, L. A. Vests/ Akad. Navuk BSSR, Ser. Khim. Navuk 1980, (l), 64-68; Chem. Abstr. 1980, 92, 157211s. (147) Gangwer, T.; Shoener, G.; Smol, B. Am. Lab. (Fairfield, Conn.) 1981, 73#37-38, 40. (148) Garcia Monteiongo, I:.; Arias Leon, J. J.; Perez Pont, M. L.; Jimenez Moreno, F. An. Qulm. 1979, 75, 557-564; Chem. Abstr. 1980, 92, 3:3255q. (149) Garcia Sanchez, F.; Bosch Reig, F.; Esteia, J. M. An. Quim., Ser. B 1980, 76, 273-276; Chem. Abstr. 1080, 93, 214878m. (150) Garcia-Vargas, M.; Gallego, M.; De la Guardia, M. Analyst (London) 11880, 705 (1255), 965-073. (151) Garcia-Vargas, M.; Valcarcel, M. An. Qulm., Ser. B 1980, 76, 471479; Chem. Abstr. 1981, 94, 113847r. (152) Gaugiitz, G. GIT Fachz. Lab. 1981, 25, 549-554; Chem. Abstr. 1981, 95, 125590k. (153) Gauglitz, G.; Kilnk, T.; Larch, A. Spektrometeragung, [ Vortr.], 73th 1980, 137-151; Chem. Abstr. W81, 95, 176523~. (154) GCAlPreclsion Sclentlflc Group Ind. Res. Dev. 1981, 23, 170. (155) Gilford Instrument Laboratories Anal. Chem. 1981, 53, 579 A. (156) Giraudl, G.; Grlllo, C. Anal. Chim. Acta 1981, 728, 169-175. (15711 Girotti, S.;Budini, R.; Tonelli, D.; Paganelli, P. Ann. Chlm. (Rome) 1980, 70 (5-6),247-253; Chem. Abstr. 1980, 93, 88231e. (158) Gonzaiez Diaz, V.; Toiio Gonzalez, C. R.; Carcia Montelongo, F. Ann. Qulm., Ser. B 1980, 76, 285-289; Chem. Absb. 1980, 93, 21487911. (159) Gonzalez. M. T. Montana; Ariza, J. L. Gomez Talanta 1980, 27, 813-814. .. . .. . . (160) Gorbunova, G. N.; Ivanov, V. M. Zh. Anal. Khlm. 1980, 35, 705-712; Chem. Abstr. 1980, 93, 87828t. (1611 Goto, S. Nippon Noyaku Gakkaishi 1979, 4 , 239-246; Chem. Abstr. 1980. 92. 18945~. (162) Gowda, H. S.;Achar, B. N. Indian J . Chem., Sect. A 1980, 19A, 1'78-179; Chem. Abstr. 1980, 92, 173939r. (163) Gowda, H. S.;Padmaji, K. A. J . Indian Chem. SOC.lg7g, 56, 5685'71; Chem. Abstr. 1979, 97, 221968~. (1641 Gowda, H. S.; PadmaJI, K. A.; Thlmmaiah, K. N. Analyst (London) 1981, 706 (1259), 198-205. (165) Grammatlcakls, P. "Spectres d' Absorption Uitravioiets de Composes Organiques Azotes et Correlations Spectrochimlques, Fascicuie 2"; Librairie Lavoisier-Technique et Documentation: Paris, Fr., 1978. (166) Grother, E. W. Anal. Chem. 1078, 57,2402-2403. (167) Grum, F. Opt. Radiat. Meas. 1980, 2 , 235-288; Chem. Abstr. 1980, 99, 83778b. (188) Grzegrzolka, E. Chem. Anal. (Warsaw) 1979, 24, 711-713; Chem. Abstr. 1980, 92, 690641r. (189) Gusakova, N. N.; Mushtakova, S. P.; Frumina, N. S. Zavod. Lab. 1980, 46, 22-23; Chem. Abstr. 1980, 92, 157205t. (170) Gusakova, N. N.; Mushtakova, S.P.; Frumina, N. S.Zh. Anal. Khim. 1079, 34, 2213-2216; Chem. Abstr. 1980, 92, 1 4 0 0 5 5 ~ . (171) Gussakovsky, E. E.; Babaev, T. A. J . Mol. med. 1980, 4 (1-2), 247-249. (172) Haase, P.; Peters, J. .:I 2.Med. Laboratoriumsdiagn. 1980, 27, 361363; Chem. Abstr. 1981, 94, 99127~. (173) Hamada, S.:Motoniizu. S.:Toei. K. Analvst (London) 1979. 704 (1242), 880-882. (174) Hansen, J.; Bundgaard, H. Arch. Pharm. Cheml, Sci. Ed. 1981, 9 , 34-39; Chem. Abstr. 1981, 94, 180765a. (175) Hargls, L. G.; Howell, J. A. Anal. Chem. 1980, 52, 306R-323R. (176) Henrion, G.; Scholz, i:. 2.Chem. 1980, 20, 150-151; Chem. Abstr. 1080, 93, 18522b. (177) Herrmannova-Kieckova, M.; Klir, L.; Malat, M.;Cermakova, L. Chem. Listy 1979, 73, 969-973; Chem. Abstr. 197g, 97, 203793n. (178) Hewlett-Packard Co. Ind. Res. Dev. 1981, 23, 199. (179) Hlral, Y.; Yokoyama, T.; Yoza, N.; Tarutani, T.; Ohashl, S. Bunseki Kagaku 1981, 30, 350-351; Chem. Abstr. 1981, 95, 5 4 1 5 9 ~ . (180) Hirt, R. C. Anal. Chern. 1958, 28, 579R; 1958, 30, 589R; 1980, 32, 225R; 1962, 34, 276R. I
,
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
183R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
(181) Hirt, R. C.;Vandenbelt, J. M. Anal. Chem. 1984,3 6 , 308R. (182) Hitachi Instruments Chem. & Eng. News 1981, 59 (12),64. (183) Holland, W. J.; Sieier, R. A. Mikrochim. Acta 1979,2 [5-6),479-485. (164) Holmes, M. G.;Reddy, G. S.Pestic. Anal. 1981,203-229. (185) Hon, P.; Townshend, A. Anal. Chim. Acta 1980, 115, 395-399. (186) Howell, J. A.; Hargls, L. Q. Anal. Chem. 1978,50, 243R. (187) Hoyle, W. C.; Benga, J. Talanta 1980,27 (1 lB), 963-969. (188) Hrdllcka, A.; Langova, M. Collect. Czech. Chem. Commun. 1980,45, 1502-1524;Chem. Abstr. 1980,9 3 , 87994~. (189) Hslamen University Fen Hsi Hua Hsueh 1978, 6 , 224-231;Chem. Abstr. 1980,9 2 , 103610~. (190) Hsu, S-C. Fen Hsl Hua Hsueh 1979,7 , 235-239;Chem. Abstr. 1980, 92, 103606f. (191)Huang, c. Fen HslHua Hsueh 1979,7 , 200-203 Chem. Abstr. 1980, 9 2 , 173874r. (192) Hummel, R. A.; Kaufman, D. C. Anal. Chem. 1973,4 4 , 535R;1974, 46, 354R;1978,48, 268R. (193) Hursh, D.; Kuwana, T. Anal. Chem. 1980,5 2 , 646-650. (194) Ichlkawa, T. ShimadzuHyoron 1980,37, 55-67;Chem. Abstr. 1980, 9 3 , 212470~. (195) Ichikawa, T.; Terada, H. Chem. Pharm. Bull. 1981,2 9 , 438-444. (196) Igarashl, S.Bunsekl Kagaku 1980,29, 150-152;Chem. Abstr. 1980, 9 2 , 190802h. (197) Igov, R. P.; Jaredlc, M. D.; Pecev, T. G. Mikrochim. Acta 1979, 2 (3-4),171-179. (198) Iicheva, L.; Todorova, G. Acta Chim. Aced. Sci. Hung. 1979, 102, 113-120;Chem. Abstr. 1980,9 2 , 173924g. (199) Iiiev, L. Farmatsiya (Sofia) 1980,30, 1-7; Chem. Abstr. 1981,9 5 , 12659~. (200) Ii'inskaya, 0.I.; Mudrolyubova, N. S. Zh. Anal. Khlm. 1979, 34, 1306-1308;Chem. Abstr. 1979,91 215896m. (201) Interactive Microware, Inc. Anal. Chem. 1981,5 3 , 576 A. (202) Instruments SA, Inc. J. Chem. Educ. 1981,5 8 , A19. (203) Ionics, Inc. Anal. Chem. 1981,5 3 , 572 A. (204) Iordanov, N. Hlgh Puri?yMater. Sci. Technol., Int. Symp., froc., 5th 1980,2 , 43-56;Chem. Abstr. 1981,9 4 , 218892e. (205) Ishil, H., Kenkyu Hokoku-Asahl Garasu Kogyo Gijutsu Shorlkai 1980, 3 7 , 339-353;Chem. Abstr. 1981,9 5 , 49012f. (206) Ishii, H.; Satoh, K.; Koh, H. Bunseki Kagaku 1980, 2 9 , 276-277; Chem. Abstr. 1980,9 3 , 87855~. (207) Ishll, J.; Koh, H. Nlppon Kagaku Kaishi 1980,(2),203-208;Chem. Abstr. 1980,9 2 , 208370~. (208) Ishlkura, F.; Tonosaki, K. Scl. Rep. Hirosaki Univ. 1979,26, 123128;Chem. Abstr. 1980,9 2 , 225998f. (209) Israllov, M. A.; Yusupov, M. Yu.; Pachadzhanov, D. N. Izv. Akad. Nauk Tadzh. SSR, OM.Flz.-Mt. Geoi.-Khlm. Nauk 1981,(l),45-51; Chem. Abstr. 1981,9 5 , 143427s. (210) Israllov, M. A.; Yusupov, M. Yu.; Pachadzhanov, D. N.; Revazov, B. I
A.; Dusmatova, A. D. Otkrytlya, Izobret., Prom. Obraztsy, Tovarnye Znakl 1979,(42),97;Chem. Abstr. 1980,9 2 , 69040e. (211) Issa, R. M.; Sammour, H. M.; Abdei Gawad, F. M.; Aly, F. A. J. Drug Res. 1978, 10 (1-2),159-169. (212) IUPAC Commission on Analytical Reaction and Reagents Pure Appl. Chem. 1979,51, 1603-1814. (213) Ivakhnenko, P. N.; Lyasheva, N. N. Khim. Prom-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khlm. Prom-sti. 1981,(9, 20-25;Chem. Abstr, 1981,9 5 , 54379k. (214) Ivanov, V. M.; Nguen, K. V. Zh. Anal. Khim. 1980,3 5 , 2124-2131; Chem. Abstr. 1981,9 4 , 95211~. (215) Ivanov, V. M.; Semln, A. N. Vestn. Mosk. Univ. Ser. 2 : Khlm. 1980, 27, 197;Chem. Abstr. 1980,9 3 , 878622. (216) Iwata, Y.; Uete, T. K#ano Byoin Kiyo 1980,2 5 , 65-73;Chem. Abstr. 1981,9 4 , 188146~. (217) Izuml, T.; Nakamura, K. J. fhys. E . 1981, 14, 105-112. (218)Jackson, C.M.; Pautler, E.; Lavlne, K. Varian Instr. Appiic. 1981, 15,
14-15. (219) James, G. E. Can. Res. 1981, 13, 39-43. (220)James, 0.P.; Djang, M. H. Am. J. Med. Technol. 1981,47, 477-483. (221) Jasny, J.; Seplol, J. J. Phys. E. 1981, 74, 493-497. (222) Jenik, J.; Renger, F. Sb. Ved. Pr., Vys. Sk. Chemlckofechnol. Pardubice 1979,40, 153-169;Chem. Abstr. 1980,9 3 , 214844~. (223) Jochum, C.; Jochum, P; Kowalski, 8. R. Anal. Chem. 1981, 5 3 , 85-92. (224) Jordan, C. Anal. Proc. (London) 1980, 77, 18-21. (225) Jordan, C.;Leonard, M. A. Microchem. J. 1979,2 4 , 560-576. (226) Jurkeviciute, J.; Malata, M. Collect. Czech. Chem. Commun. 1979, 44, 3236-3240;Chem. Absh. 1980,9 2 , 87455~. (227) Kabrt, L.; Uhrova, M. Sb. Vys. Sk. Chem.-Technoi. Praze, Anal. Chem. 1980,H15, 69-90;Chem. Abstr. 1981,9 5 , 72583b. (228) Kahn, S.E.; Watklns, B. F.; Bermes, E. W., Jr. Ann. Clin. Lab. Scl. 1981, 7 1 , 126-131. (229) Kamada, H. Bunseki 1979,(lo),669-881;Chem. Abstr. 1980,9 2 , 87308~. (230) Kamil, F.; Sindhwanl, S. K.; Slngh, R. P. Mikrochim. Acta 1980, 1 (5-6).345-351. (231)Kamll, F.; Slndhwani, S.K.; Singh, R. P. Ann. Chlm. (Rome) 1980,70 (7-8),421-424;Chem. Abstr. 1980,9 3 , 178985h. (232) Kamlnl, M.; Kamll, F.; Slndhwanl, S. K.; Singh, R. P. Fresenius' Z . Anal. Chem. 1979,299 (2),128. (233) Kanlcky, V.; Havei, J.; Sommer, L. Collect. Czech. Chem, Commun. 1980,45, 1525-1554;Chem. Abstr. 1980,9 3 , 106396~. (234) Kao, C-L.; Hu, T-T. Fen Hsl Hua Huseh 1978, 6 , 165-169;Chem. Abstr. 1980,9 2 , 103712n. (235) Karadakov, B.; Ivanova, H. Dokl. Bolg. Akad. Nauk. 1979,3 2 , 325328;Chem. Abstr. 1979,9 1 , 217713~. 184R
ANALYTICAL CHEMISTRY, VOL. 54,
NO. 5,
APRIL 1982
(236) Karapetyan, 2 . A.; Mirzoyan, F. V.; Tarayan, V. M.; Mushegyan, L. G. Arm. Khim. Zh. 1980,3 3 , 206-213;Chem. Abstr. 1980,9 3 , 18542h. (237) Karkllna, V.; Laurs, J.; Mikstais, U.; Veveris, A.; Alberta, B. Khim.Farm. Zh. 1980, 14, 114-117;Chem. Abstr. 1980,9 3 , 217443b. (238) Karllcek, R.; Solich, P. Cesk. Farm. 1980, 2 9 , 128-130;Chem. Abstr. 1981,9 4 , 90437r. (239) Kato, K.; Sugitani, Y. Bull. Chem. SOC.Jpn. 1979,5 2 , 3733-3734; Chem. Abstr. 1980,9 2 , 857771. (240)Kawashima, T.; Hatakeyama, N.; Kamada, M.; Nakano, S. Nippon Kagaku Kaishl 1981,(l),84-90;Chem. Abstr. 1981,9 4 , 95304e. (241) Kaye, W. Anal. Chem. 1981,5 3 , 369-374. (242) Kaye, W.; Barber, D. Anal. Chem. 1981,5 3 , 366-369. (243)Kaye, W.; Barber, D.; Marasco, R. Anal. Chem. 1980,52, 437 A-442 A.
(244)Kell, R. Fresenius' 2.Anal. Chem. 1979,297(5), 384-387. (245) Kendall-Tobias, M.; takernoto, J. Rev. Scl. Instrum. 1981, 52, 141-142. (246) Khalaf, H.; Rimpler, M. Fresenlus' 2. Anal. Chem. 1980, 302 (3), 204-205. (247) Khasnls, D. V.; Shlnde, V. M. Talanta 1979,2 6 , 593-595. (248) Khater, M. M.; Issa, Y. M.; Shoukry, A. F.; El-Seify, F. A. A. Mikrochim. Acta 1979,2 (5-6),501-506. (249)Kina, K.; Ueno, K. Kagaku(Kyot0) 1980,3 5 , 662-665;Chem. Abstr. W- -E-1 94. 1 1. 3708~ (250) Kirkbr'ight, G. F. Opt. Pura Apl. 1978, 1 1 , 125-136;Chem. Abstr. 1980.92. 1210570. (251)-Kirschenbaum,b. M. rnt. J. Blochem. 1980,11, 487-500. (252) Koblizkova, V.; Kuban, V.; Sommer, L. Chem. Zvesti 1979,33, 485498; Chem. Abstr. 1980,9 2 , 690142. (253) Koch, S.; Ackermann, G.;Winkler, G. Talanta 1979, 2 6 , 821-626. (254) Kokovkin-Shcherbak, N. I.; Maslennlkov, Yu. N. Zh. Anal. Khim. 1980,35, 1689-1676;Chem. Abstr. 1981,9 4 , 38410~. (255) Komlnaml, B.; Okawa, S.;Kawase, A. Bunsekl Kagaku 1979, 28, 572-574;Chem. Abstr. 1979,9 1 , 221846m. (256)Kontron Analytical Am. Lab. (Fairfield, Conn.) 1981, 73, 22. (257) Koralewski, T. J.; Parker, G. A. Anal. Chim. Acta 1980, 713, 389-392. (258) Korenaga, T.; Motomlzu, S.;Toei, K. Anal. Lett. 1980, 13 (A@, 455-464. (259) Karpeia, T. K.; Makela, M. J. Anal. Blochem. 1981, 710, 251-257. (260)Kostenko, I. G.;Biryuk, A. E. Khim. Teckhnol. Vody 1980,2 , 34-35; Chem. Abstr. 1980,9 3 , 191722q. (281) Kosturlak, A. Chem. Zvestil980, 3 4 , 653-661;Chem. Abstr. 1981, 9 4 , 24422f. (262) Kosturiak, A. Hutn. Listy 1980,3 5 , 58-61;Chem. Abstr. 1980,9 2 , 140069d. (263) Kosturiak, A.; Kalavska, D. Chem. Zvesti 1981,3 5 , 255-262;Chem. Abstr. 1981,9 5 , 17596h. (264) Kouimtzis, T. A.; Apostolopoulou, C.; Staphllakls, I.Anal. Chim. Acta 1980, 173, 185-188. (265) Kracmar, J.; Kracmarova, J. Cesk. Farm. 1980,297 (1-2),19-31; Chem. Abstr. 1980,9 3 , 192094~. (268) Kracmar, J.; Kracmarova, J. Cesk. Farm. 1980, 29 (3-4),57-66; Chem. Abstr. 1981,9 4 , 52780q. (267) Kratochvlla, J.; Sommer, L. Scr. Fac. Sci. Nat. Univ. Purkynianae Brun. 1980, 10(1-2),53-70;Chem. Abstr. 1981,9 4 , 1714p. (268) Krcma, R. Oesterr. Chem. Z . 1980, 8 1 , 237-239;Chem. Abstr. 1981,9 4 , 76027a. (269)Kreingol'd, S. U.; Sosenkova, L. I.; Neien, I. M. Khlm. Prom-st., Ser.: Reakt. Osobo Chist. Veshchestva 1980,(l), 46-48;Chem. Abstr. 1980, 9 3 , 178866~. (270)Krelngd'd, S.U.; Vasnev, A. N. U.S.S.R. 691,751(C1 GOlN31/10),15 Oct. 1979, Appl. 2,607,422,24 Apr. 1978, Chem. Abstr. 1979, 9 1 , 22199913. (271) Krlshna, R. R.; Slraj, P.; Sastry, C. S.P. Indian J . fharm. Sci. 1980, 42, 82-84; Chem. Abstr. 1980,9 3 , 245561g. (272) Krueger, G. Lebensmitteiindustrie1980,2 7 , 264-266;Chem. Abstr. 1980,9 3 , 1844020. (273) Kuban, V. Chem. Listy 1980, 74, 862-868;Chem. Abstr. 1980,9 3 , 178815~. (274) Kulshreshtha, H.; Garg, B. S.; Slngh, R. P. J. Chin. Chern. SOC.1979, 2 6 . 129-131;Chem. Abstr. 1980,9 2 , 87454~. (275) Kulshreshtha, H.; Slngh, R. B.; Slngh, R. P. Analyst (London) 1979, 104 (1239),572-575. (276) Kyo, Y-C., Sheng Wu Hua Hsueh Yu Sheng Wu Wu Li Chin Chan 1980,34, 23-28;Chem. Abstr. 1981,9 4 , 43450e. (277) Kurihara, H.; Kuwabara, H.; Kurlhara, T. Bunsekl Kagaku 1980,2 9 , 560-562: Chem. Abstr. 1980.93. 214882h. (278)Kurolshl, T.; Motokawa, T.; Shlbata, S.Nihacho Bunko Kodoho to Sono Oyo 1979,26-99;Chem. Abstr. 1980,9 2 , 873122. (279) Kwiatkowska, I.; Badkowska, 2.; Dobrowlski, J. Chem. Anal. (Warsaw) 1979,2 4 , 987-991;Chem. Abstr. 1980,9 2 , 208362b. (280) Lachmann, H. Fresenlus' Z . Anal. Chem. 1980,301 (2),148-149. (261) Laguna, R.; DeLaFuente, G. Mikrochlm. Acta 1979,2 (3-4),181-185. (282) Lahue, R. Methods Neurobiol. 1981, 7 , 339-423. (283) Lau, 0.W.; Cham, S. F. Mikrochim. Acta 1980, 1 (5-6), 465-474. (284) Lee, T. P.; LI, T. Opt. Fiber Telecommun. 1979,593-626. (285) Liu, J-R.; Ma, H-J.; Ren, D-W.; Hu, K-R. Kang T'leh 1980, 15. 37-40, 45;Chem. Abstr. 1981,9 4 , 218977m. (286) Liu, W-I. Fen H$i Hua Hsueh 1978, 6 , 12-15;Chem. Abstr. 1980, 9 2 , 121182~. (287)Lloyd, L. B.; Riseman, S. M.; Burnham, R . K.; Eyring, E. M.; Farrow, M. M. Rev. Scl. Instrum. 1980,5 1 , 1488-1492. (288) Lochmuller, C. H.; Marshall, S. F.; Wilder, D. R. Anal. Chem. 1980, 5 2 , 19-23.
-.
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (289) Lochmuller, C. ti.; Rohl, IR.; Marshall, D. B. Anal. Leff. 1981, 74 (Al), 41-46. (290) Lomaklna, L. N.; Ignat'eva, T. I.; Plsareva, S. A,; Medved, T. Ya.; Kabachnik, M. I.Zh. Anal. Khim. 1980, 3 5 , 86-91; Chem. Abstr. 1980, 9 2 , 208352~. (291) Long, E. C. "Gel Scannlnig by UV-Vis Spectrophotometry"; Varlan/Instrument Group: Palo Alto. CA; Varian Instruments Application Report, OPT-234 1. (292) Lugue de Castro, M. D.; Cosano, E.; Perez-Bendlto, D.; Valcarcel, M. An. Quim. 1979, 7 5 , 861-1364 Chem. Abstr. 1980, 9 2 , 2259361. (293) Luk'yanchikova. G. I.; Dukkardt, L. N.; Musael'yants. V. Ya. Khim. PrOm-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti. 1979, (IO), 71-73; Chem. Abstr. 1980, 9 2 , 1572972. (294) Lupashevskaya, D. P.; Elershteln, I.Ya. Zh. Prikl. Spektrosk. 1980, 33, 374; Chem. Abstr. 198,0, 93, 214782a. (295) Lyle, S. J; Tamlzl, M.; Faure, A. Fresenius' 2.Anal. Chem. 1981, 307 (3), 194-196. (296) Lysak, Ya, 0.; Dolgorev, A. B. Zavod. Lab. 1980, 46, 104-106; Chem. Absh. 1982, 9 2 , 100702a. (297) Maeder, M.; Gampp, H. Anal. Chlm. Acta 1980, 722, 303-313. (298) Majer, J. R.; Azzouz, A. S. P. Talanta 1980, 2 7 , 549-556. (299) Malmstadt, H. V.; Walczak, K. M., Koupparls, M. A. Am. Lab. (FanfieM, Conn.) 1980, 72, 27, 29-30, 32, 34-35, 37-38, 40. (300) Mamullya, S. G.; Pyatnitcikii, I.V.; Kolomlets, I_. L.; Grlgalashvili, K. I. Z h . Anal. Khim. 1980, 515, 1306-1309; Chem. Abstr. 1980, 9 3 , 194936~. (301) Mandzhgaladze, 0. V.; Mgeladze, N. S.;Bazierashvlll, K. G. Izv. Akad. Nauk Gruz. SSR, Ser. Khin?. 1980, 6 , 27-32; Chem. Abstr. 1980, 9 3 , 178879b. (302) Manzar, A. Q. N.; Kosl, A. N. Pak. J . Sci. Ind. Res. 1980, 2 3 , 245-249; Chem. Abstr. I9lB1, 9 5 , 54386n. (303) Marczenko, 2. Chem. Anal. (Warsaw) 1979, 2 4 , 551-567; Chem. Abstr. 1980, 92, 68879~. (304) Marczenko, 2. CRC Cfit. Rev. Anal. Chem. 1981, 7 7 , 195-260. (305) Marczenko, 2.; Balcerzak, M.; Kus, S. Talanta 1980, 2 7 , 1087-1089. (306) Marczenko, 2.; Kalowsks, H. Anal. Chim. Acts 1981, 723,279-287. (307) Marczenko, %.; Kalovvska, H. Mlkrochim. Acta 1979, 2 (5-6), 507-514. (308) Marczenko, 2.; Usclnska, J. Anal. Chim. Acta 1981, 723, 271-277. (309) Mark, L.; Slrokl, M.; Stefanac, 2.; Herak, M. J. Microchem. J . 1979, 2 4 , 536-544. (310) Martlnez, D. Glmenez, M. P. J . Anal. Toxlcoi. 1981, 5 , 10-13. (311) Mathur, S.P.; Jaln, K. K ; Bhandarl, C. S . Nat. Appl. Sci. Bull. 1977, 2 9 , 69-72. (312) Mathur, S. P.; Mehta, V. P. Hasan, M. Bull. Inst. Chem. Acad. Sln. 1979, 2 6 , 105-106; Chem. Abstr. 1979, 97, 221939~. (313) Mathur. S.P.; Mehta, V. P.; Hasan, M. Chem. Anal. (Warsaw) 1979, 2 4 , 921-922 Chem. Abstr. 1980, 9 2 , 157217~. (314) Mathur, S. P.; Trakur, R S.;Bhandarl, C. S . Afhidad 1980, 36 (364), 499-500; Chem. Abstr. 1980, 93, 36355~. (315) Matveets, M. A.; Akhmetova, S.D.; Shcherbov, D. R. Zh. Anal. Khim. 1980, 35. 1640-1644; Chern. Abstr. 1980, 9 3 , 214892m. (316) Mavrodlneanu, R.; Baldwin, J. R. "Metal-on-Quartz Fllters as a Reference Material for Spectrophotometry - SRM 2031"; Government Printing Office: Washington DC, 1980; NBS Spec. Publ. 260-68. (317) McDonald, F. A. J. App!. Phys. 1981, 52(3,R. I), 1462-1463. (318) Meehan, E. J. I n "Treatise Anal. Chem. (2nd ed.)"; Elvlng, P. J., Meehan, E. J., Kolthoff, I . M., Eds.; Wlley: New York, 1981; 1(7), 1-51; 53-118. (319) Mehra, M. C.; Garvle, R. J. Less-Common Met. 1979, 6 8 , P17-PI2. (320) Mehra, M. C.; Garvle, R. Microchem. J . 1980, 2 5 , 223-227. (321) Mellon, M. G. Anal. Chem. 1945, 77. 81; 1949, 27, 3; 1950, 2 2 , 2; 1951, 2 3 , 2; 1952, 2 4 , 2; '1954, 26, 2. (322) Mellon, M. G.; Boltz, D. F. Anal. Chem. 1958, 2 8 , 559R; 1958. 30, 554R; 1960, 3 2 , 194R; 1962, 3 4 , 232R. (323) Mentasl, E.; Balocchl, C Anal. Chim. Acta 1980, 779, 91-97. (324) Merry, R. H.; Zarclnas, B. A. Analyst (London) 1980, 705 (1251), 558-563. (325) Mlchallk, A. Pr. Nauk. Inst. Metro/. flektr. Politech. Wroclaw. 1979, 79, 82-83; Chem. Abstr. 11980, 9 3 , 87607k. (326) Mlchaylova, V.; Kuleva, N. Talanta 1980, 2 7 , 63-66. (327) Mlnaml, S. Kagaku to Kogyo (Osaka) 1981, 55, 20-24; Chem. Abstr. 1981, 9 5 , 70006s. (328) Mlrza, M. Y.; Nwabue, F. 1. Taianta 1981, 2 8 , 49-53. (329) Mlrzoyan, F. V.; Tarayan, V. M. Zh. Anal. Khim. 1980, 3 5 , 12931300; Chem. Abstr. 1980, 9 3 , 197095j. (330) Mlrzoyan, F. V.; Tarayan, V. M9; Karapetyan, 2. A. Arm. Khim. Zh. 1981, 3 4 , 122-132; Chem. Abstr. 1981, 9 4 , 167031~. (331) Mlrzoyan, F. V.; Tarayan, V. M.; Myshegyan, L. G.; Karapetyan, 2. A,; Sarksyan, L. G. Arm. Khim. Zh. 1980. 33. 295-302; Chem. Abstr. 1980, 9 3 , 206134~. (332) Mlshcheryakova, N. G.; Bogdanova, E. S. I z v . Vyssh. Uchebn. Zaved., Khlm. Khim. Teckhnol. 1979, 2 2 , 1210-1212; Chem. Abstr. 1980. 9 3 , 18446e. (333) Mitchell. A. D.; Llnnett, P. E. f u r . Spectrosc. News 1980, 3 2 , 49-50. (334) Mitchell, N. Varian Instrum. Appl. 1981, 75, 8-9. (335) M h l . M.; Malhotra, S.R.; Lal, K.; Gupta. S. P. Natl. Acad. Sci. Left. 1979, 2 , 381-382. (336) Mongush, K. D. Deposifed Doc. 1978, VINITI 1805-78, 123-127; Chem. Abstr. 1979, 9 7 , 203747a. (337) Montegu, 8.; Laugler, A.; Fournler, J. M. J. Phys. E . 1979, 72, 1153-1 158. (338) Montelongo. F. F.; Olaz, V. 0.; Gonzalez, C. R. T. Analyst (London) 1979, 704 (1244), 1091-1094. (339) Morl, I.; Fujlta, Y.; Enokl, T. Bunseki Kagaku 1979, 28, 885-690; Chem. Abstr. 1980. 92, 51352~.
(340) Mori, I.; Fujita, Y.; Enokl, T. Bunseki Kagaku 1979, 28, 707-710; Chem. Abstr. 1980, 9 2 , 51354a. (341) Morl, I.; Fujita, Y; Sakaguchl, K.; Enokl, T. BunseklKagaku 1980, 2 9 , 413-416; Chem. Abstr. 1980, 9 3 , 125079j. (342) Morlda, M. Oyo Butsurl 1979, 48, 966; Chem. Abstr. 1980, 9 3 , 15753s. (343) Morosanova, S.A.; Pronlna, N. B. Vestn. Mosk. Univ., Ser. 2 : Khim. 1980, 2 7 , 197; Chem. Abstr. 1980, 9 3 , 60402n. (344) Mosina, L. A.; Kovaleva, L. V.; Ganago, L. I.; Ezerskaya, T. V.; Kartashova, G. I.; Fomenko, G. V. Vesti Akad. Navuk BSSR, Ser. Khlm. Navuk 1979, (5),121-122; Chem. Abstr. 1980, 9 2 , 33312f. (345) Mu, S-F.; Chi, T-Y.; Liu, K-N.; Hung, S-C. Huan Ching K ' o Hsueh 1979, (4), 41-45; Chem. Absh. 1980, 9 2 , 33257s. (346) Mudakavl, J. R.; Ramakrlshna, T. V. J. Indian Inst. Sci. 1979, 67, 151-162; Chem. Abstr. 1980, 9 3 , 142274m. (347) Mueller, H.; Schurig, H.; Werner, G. Talanta 1979, 26, 785-790. (348) Mullerova, L.; Vrchlabsky, M; Havel, J. Scr. Fac. Sci. Nat. Univ. Purkynianae Brun. 1980, 70 (1-2), 13-22; Chem. Abstr. 1980, 9 3 , 2 I 1064g. (349) Munslnger, R. A. Electro-Opt. Syst. Des. 1981, 73, 43-47. (350) Mura, T.; Ikawa, S.; Yamanlshi, Y. Igaku no Ayumi 1980, 775, 331333; Chem. Abstr. 1981, 9 4 , 99103m. (351) Murakaml, T.; Kamaya, M.; Akazawa, T. Bunseki Kagaku 1980, 2 9 , 483-486; Chem. Abstr. 1980,'93, 125100j. (352) Murallkrishna, U.; Ram, T. V. R.; Sayl, Y. V. S. K. S. Indlan J. Chem., Sect. A 1979, 78A, 372-373; Chem. Abstr. 1980, 9 2 , 1 4 9 2 2 ~ . (353) Muratbekov, M. B.; Dalrabaeva, A. E.; Beremzhanov, B. A. Zh. Anal. Khim. 1979, 3 4 , 2278-2280; Chem. Abstr. 1980, 9 2 , 140057~. (354) Murthy, M. V. K.; Satyanarayana, D. Mlkrochim. Acta 1980, 7 (1-2), 97-105. (355) Nalr, J.; Gupta, V. K. Anal. Chlm. Acta 1979, 7 7 7 , 311-314. (356) Nalr, J.; Gupta, V. K. Talanta 1979, 2 6 , 962-963. (357) Nakamura, H.; Takagl, M.; Ueno, K. Talanta 1979, 2 6 , 921-927. (358) Nakamura, M.; Mirrata, A. Analyst (London) 1979, 704 (1243), 985-988. (359) Nakano, S.; Enokl, H.; Kawashlma, T. Chem. Left. 1980, (9), 1173-1176. (360) Nakano, S.; Kuramoto, K.; Kawashlma, T. Chem. Left. 1980, (7), 849-852. (361) Navas, A.; Garcia Sanchez, F. An. Qulm. 1979, 75, 514-516; Chem. Abstr. 1980, 9 2 , 14768t. (362) Nazarenko, A. Yu.; Pyatnitskii, I.V. Ukr. Khim. Zh. (Russ. Ed.) 1980, 46, 1218-1221; Chem. Abstr. 1981, 9 4 , 24430g. (363) Nazarenko, V. A.; Shitareva, 0. G.; Poluektova, E. N.; Veshchikova, N. A. Zh. Anal. Khim. 1979, 3 4 , 2359-2363; Chem. Abstr. 1980, 92, 190662n. (364) Neeb, R. Tech. Rep. S e r . 4 . A . E . A . 1980, 797, 253-280. (385) Nemeth, I.;Boda, 0. Kiserl. Orvostud. 1980, 3 2 , 306-312; Chem. Abstr. 1980, 9 3 , 1 6 3 7 9 4 ~ . (366) Nguyen Truong Son; Kotoucek, M.; Ruzicka, E. Collect. Czech. Chem. Commun. 1980, 45, 819-825; Chem. Abstr. 1980, 9 3 , 60382f. (367) Nguyen Truon Son; L.asovsky, J.; Ruzlcka, E.; Slmek, J.; Szotkowska, J. Collect. Czech. Chem. Commun. 1979, 44, 1568-1580; Chem. Abstr. 1980, 9 2 , 190624b. (368) Nguyen Truong Son; Ruzicka, E. Collect. Czech. Chem. Commun. 1980, 45, 703-714; Chem. Abstr. 1980, 9 3 , 60381e. (369) Norkus, E. Liet. TSH Mokslu Akad. Darb., Ser. B 1981, (2), 53-58; Chem. Abstr. 1981, 9 5 , 143509~. (370) Novotny, M.; Schwende, F. J.; Hartigan, M. J.; Purcell, J. E. Anal. Chem. 1980, 5 2 , 738-740. (371) Nurtaeva, G. K. Deposlted Doc. 1978, VINITI, 1805-78, 258-260; Chem. Abstr. 1979, 9 7 , 199759m. (372) Obtemperanskaya, 8. I.; Buzlanova, M. M.; Zhukovskaya, 0. S.; Zhlkhareva, M. G. Zh. Anal. Khim. 1979, 3 4 , 1618-1820; Chem. Abstr. 1980, 9 2 , 14911j. (373) Obtemperanskaya, 8. 1.; El-Kafrawi, A. E. Vestn. Mosk. Univ., Ser. 2 ; Khim. 1981, 2 2 , 311-312; Chem. Abstr. 1981, 9 5 , 108141~. Mohamed, E. R. Vestn. Mosk. Univ., Ser. 2 : (374) Obtemperanskaya, S. I., Khim. 1980, 27, 508-509; Chem. Abstr. 1980, 9 3 , 215080g. (375) Oda, S.;Sawada, T.; Moriguchl, T.; Kamada, H. Anal. Chem. 1980. 52, 650-653. (376) Ogura, N. Mizu Shorl Oilutsu 1980. 27, 601-607; Chem. Abstr. 1981, 9 4 , 1088222. (377) Ohashl, K.; Enomoto, T.; Yamamoto, K. Bull. Chem. SOC.Jpn. 1981, 5 4 , 1889-1890; Chem. Abstr. 1981, 9 5 , 54253q. (378) Ohashl, K9; Kawaguchi, H.; Yamamoto, K. Anal. Chim. Acta 1979, 7 7 7 , 301-306. (379) O'Haver, T. C.; Begley, T. Anal. Chem. 1981, 5 3 , 1876-1878. (380) Ohzeki, K.; Sakuma, T.; Kambara, T. BunseklKagaku 1979, 28, 713714; Chem. Abstr. 1980, 9 2 , 5 1 3 5 6 ~ . (381) Ohzekl, M.; Mlzushima, Y.; Kobayashi, T.; Mltsuya, A,; Yuki, 0. Niigata rikagaku 1978, 4 , 32-35; Chem. Abstr. 1980, 9 3 , 191741~. (382) Okabe, H. Kensa to Gilutsu 1981, 9, 32-39; Chem. Abstr. 1981. 9 4 , 98453~. (383) Okikura, M. PPM 1980, 7 7 , 33-43; Chem. Abstr. 1981, 9 4 , 40746~. (364) Oktavaec, D.; Slles, 6.; Stefanec, J.; Korgova, E.; Garaj, J. Collect. Czech. Chem. Commun. 1980, 45, 791-799; Chem. Abstr. 1980, 9 2 , 223560h (385) Oliver, R. W. A.; Stott, A. Methods Lab. Med. 1980, 7 , 71-82; Chem. Abstr. 1981, 9 5 , 111175s. (386) Oostlng, M.; Reljnder, H. F. R. Fresenius' 2.Anal. Chem. 1980, 307 (I), 28-29. (387) Ostrovskaya, V. M.; Cklomko, V. M.; Panteleimonova, A. A.; Bigma, V. Usatenko, Yu. I. Zh. Anal. Khim. 1979, 34, 1548-1552; V.; Bolko, A. I.; Chem. Abstr. 1980, 9 2 , 121113~.
.
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
185R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (388) Otomo, M. Anal. Chim. Acta 1980, 116, 161-168. (389) Ottis, M.; Malat, M. Cesk. Farm. 1980, 2 9 , 131-133; Chem. Abstr. 1981, 9 4 , 53027m. (390) Ouchl, H.; Mukai, T.; Kamel, T.: Okamura, M. Trans. Electron Devices 1979, ED-26, 1965-1969. (391) Owen, G. S.; Travis, D.; Green, T. J. Chem. Educ. 1981, 5 8 , 690-691. (392) Padhi, K. K.; Pandey, L. P. NML Tech. J. 1980, 22 (1-2), 24-28; Chem. Abstr. 1981, 9 4 , 149506t. (393) Pal, T.; Das, J. J. Indlan Chem. SOC. 1979, 56, 791-793; Chem. Abstr. 1980, 9 2 , 190685~. (394) Pardue, H. L. Top. Autom. Chem. Anal. 1979, 1, 163-207. (395) Patel, C. K. N. Keynote Lect. - Colloq. Spectrosc. Int., 21st 1979, 182-198; Chem. Abstr. 1980, 9 2 , 223392e. (396) Patel, C. K. N.; Tam, A. C. Springer Ser. Opt. Sci. 1979, 21 (Laser Spectrosc. 4), 646-648. (397) Pearson, M. Opt. Radlat. Meas. 1980, 2 , 337-366; Chem. Abstr. 1980, 9 3 , 8 3 7 7 7 ~ . (398) Perel'son, M. E.; Sokolov, S. D. Khim.-Farm. Zh. 1980, 14, 96-99; Chem. Abstr. 1981, 9 4 , 71572q. (399) Perez Eendlto, D.; Valcarcel, M. Aflnldad 1980, 37 (366), 123-126; Chem. Abstr. 1981, 94, 40793h. (400) Perkin-Elmer Corp. Anal. Chem. 1980, 5 2 , 792 A. (401) Perkln-Elmer Corp. Anal. Chem. 1981, 5 3 , 842 A. (402) Perkin-Elmer Corp., Bulletln, 1981. (403) Perkin-Elmer Corp., Eulletln 6-73, 1981. (404) Perov, P. A.; Tember, 0. A.; Geraslmova, N. T. Neftepererab. Neftekhlm. (Moscow) 1981, (3), 43-44; Chem. Abstr. 1981, 9 4 , 167177r. (405) Perronl, 0.; Clcero, L.; Giannl. V. Rass. Chim. 1980, 3 2 , 79-86; Chem. Abstr. 1980, 9 3 , 2343311. (406) Pesez, M.; Eartos, J. Drug. Fate Metab. 1979, 3 , 193-245. (407) Petrova, T. V.; Mongush, K. D.; Akimova, T. G.; Sawin, S. B. Zh. Anal. Khim. 1979, 34, 1291-1298; Chem. Abstr. 1979, 9 1 , 203712k. (408) Petrova, T. V.; Sawin, S.E.; Dzherayan, T. G. Zh. Anal. Khlm. 1980, 35, 395-701; Chem. Abstr. 1880, 9 3 , 87906s. (409) Pfendt, L. E.; Krunz, M. M.; Janjlc, T. J. Mikrochlm. Acta 1980, 1 (5-6), 385-392. (410) Plllpenko, A. T. Zh. Vses. Khim. 0 - v a . 1980, 2 5 , 651-662; Chem. Abstr. 1881, 9 4 , 40727q. (411) Plllpenko, A. T.; Patratii, Yu. V.; Zul'flgarov, 0. S.; Grlgorlsh, Yu. V. Zavod. Lab. 1980, 46, 389-390; Chem. Abstr. 1980, 9 3 , 36402s. (412) Plllpenko, A. T.; Patratli, Yu. V.; Zul'figarov, 0. S.;Petrushko, G. P. Ukr. Khim. Zh. (Russ. Ed.) 1980, 46, 980-982; Chem. Abstr. 1980, 93, 211045b. (413) Plllal, G. C.; Patel, R. C. Anal. Biochem. 1980, 106, 506-511. (414) Poe, D. P.; Eppen, A. D.; Whoolery, S.P. Talanta 1980, 2 7 , 368-370. (415) Polle, A. F.; Conlon, R. D.; Ettre, L. S. Ind. Res. & Dev. 1981, 2 3 , 147-153. (416) Pomerants, 0. G.; Kvltsinskaya, E. A,; Durovlch, P. G. Lab. Del0 1981, (6), 341-343; Chem. Abstr. 1981, 9 5 , 57480~. (417) Pons, A.; Corrons, A. Opt. Pura Apl. 1977, 10, 1-6; Chem. Abstr. 1980, 9 2 , 118589b. (418) Pons, A.; Roca, P.; Agullo, C.; Garcia, F. J.; Alemany, M.; Palou, A. J. Blochem. Blophys. Methods 1981, 4 (3-4), 227-231. (419) Popa, G.; Cruceru, D.; Tanase, A. Bul. Inst. Pollteh. "Gheorogrhe Gheorghiu-Del" Bucuresti, Ser. Chim.-Metal. 1979, 41 I 49-53; Chem. Abstr. 1980, 9 3 , 106375m. (420) Popa, G.; Nutescu, R. Rev. Chim. (Bucharest) 1979, 30, 686-689; Chem. Abstr. 1980, 9 2 , 3 3 2 6 1 ~ . (421) Prabhananda, E. S. Fast React.-Chem. Meas., Proc. Symp. 1977 1878, 317-343; Chem. Abstr. 1980, 9 2 , 135322. (422) Prabhu, B. N.; Khopkar, S. M. Bull. Bismuth Inst. (Brussels) 1979, suppl. 24; Chem. Abstr. 1880, 9 2 , 68952s. (423) Prabhu, E. N.; Khopkar, S. M. J. Indian Chem. SOC. 1979, 5 6 , 10341036; Chem. Abstr. 1980, 9 2 , 208441b. (424) Prakash, 0.; Gupta, R. C.; Mushran, S. P. Indlan J. Chem., Sect. A 1979, 18A, 535-536 Chem. Abstr. 1980, 92, 121173s. (425) Prakash, 0.; Kumar, S.; Mushran, S. Talanta 1979, 2 6 , 1167-1169. (426) Prange, T.; Lechner-Knoblouch, U.; Umland, F. Fresenius' Z. Anal. Chem. 1981, 306 (2-3), 201-207. (427) Precislon Cells, Inc. Anal. Chem. 1981, 53, 224 A. (428) Prlce, C. P., Spencer, K. Methods Lab. Med. 1980, 1 , 213-229; Chem. Abstr. 1981, 9 5 , 93158g. (429) Ptushklna, M. N.; Lebedeva, L. I.; Petrokanskaya, I.Yu., Zh. Anal. Khim. 1980, 35, 2132-2136; Chem. Abstr. 1981, 9 4 , 95212~. (430) Purl, E. K.; Gautam, M. Zh. Anal. Khim. 1980, 35, 1024-1026; Chem. Abstr. 1980, 9 3 , 87970h. (431) Purohlt, D. N.; Nlzamuddin, N.; Rcdrlguez, J. S. Fresenius' Z. Anal. Chem. 1979, 298 (2-3), 160. (432) Puzanowska-Taraslewlcz, H.; Kojlo, A,; Zawadzka, L. Microchem. J., 1981, 2 6 , 360-364. (433) Pyatnltskii, I.V.; Nazarenko, A. Yu. Zh. Neorg. Khim. 1980, 2 5 , 1064-1067; Chem. Abstr. 1980, 9 3 , 6 0 3 5 2 ~ . (434) Pye Unlcam Ltd. Anal. Chem. 1980, 5 2 , 786 A. (435) Pye Unlcam Ltd. Anal. Chem. 1981, 53, 988 A. (436) Pye Unicam Ltd. Anal. Chem. 1981, 53, 1372 A. (437) Quimby, R. S.;Yen, W. M. J. Appl. Phys. 1980, 51, 4985-4989. (438) Rahim, S.A.; ACGhabsha, T. S. Egypt. J. Chem. 1980, 2 0 , 627-634. (439) Rajamoorthi, K.; Mohan, S. V.; Balasubramanian, G. R. Analyst (London) 1981, 106 (1263), 841-646. (440) Rakhmatullaev, K.; Zaklrov, E. G. Zh. Anal. Khlm. 1980, 35, 284288; Chem. Abstr. 1980, 9 2 , 208396t. (441) Ramakrishna, T. V.; Murthy, R. S. Talanta 1979, 2 6 , 499-501. (442) Ramakrishna, T. V.; Murthy, R. S. S. Talanta 1980, 2 7 , 442-444. (443) Ramappa, P. G.; Gowda, H. S.;Manjappa, S. Curr. Sci. 1979, 4 8 , 1016- 1017.
188R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
(444) Ramappa, P. G.; Gowda, H. S.; Nayak, A. N. Analyst (London) 1980, 105 (12521. 663-668. (445) Ramappa, P. G.; Gowda, H. S.;Nayak, A. N. Dev. Neurosci. (Amsterdam) 1980, 7 , 141-144; Chem. Abstr. 1981, 9 4 , 145444~. (446) Randow, F. F. E. Acta Hydrochim. Hydrobiol. 1980, 8 , 389-391; Chem. Abstr. 1980, 9 3 , 225401b. (447) Rao, C. V.; Srlnivasulu, K. Natl. Acad. Sci. Lett. (India) 1980, 3, 29-30; Chem. Abstr. 1980, 9 3 , 142306~. (448) Rao, T. P.; Ramakrlshna, T. V. Analyst (London) 1980, 105 (1252). 674-878. (449) Ratzlaff, K. L. Anal. Chem. 1980, 53, 916-920. (450) Rawat, J. P.; Singh, J. P.; Muktawat, K. P. S. Ann. Chim. (Rome) 1979, 69 (7-8), 449-455; Chem. Abstr. 1980, 9 3 , 88223d. (451) Rebolledo, M. A.; Abad, J. C. Opt. Pura Apl. 1978, 11, 113-118; Chem. Abstr. 1980, 9 2 , 119533r. (452) Reddy, T. S.;Rao, S. E. Talanta 1979, 2 6 , 968-969. (453) Reid, J. M.; Cresser, M. S.;MacLeod, D. A. Water Res. 1980, 14, 525-529. (454) Rlster, I.A.; Chernyshov, A. N. Zavod. Lab. 1979, 45, 707-709; Chem. Abstr. 1979, 9 1 , 2 0 3 8 8 7 ~ . (455) Rlus, J.; Mongay, C.; Cerda, V. Afinldad 1981, 38 (373), 235-240; Chem. Abstr. 1981, 9 5 , 143425q. (456) Riyazuddin, P. Analyst (London) 1980, 105 (1257), 1196-1199. (457) Rofln Inc. Anal. Chem. 1981, 53, 1105 A. (458) Roman Ceba, M.; Fernandez-Gutlerrez, A.; Cardenas, F. An. Qulm., Ser. B 1980, 76,442-446; Chem. Abstr. 1981, 9 4 , 149551d. (459) Roman, M.; Arrebola, A.; Gonzalez, D. V. Rev. SOC. Quim. Mex. 1979, 2 3 , 358-361; Chem. Abstr. 1981, 9 4 , 574642. (460) Roquette-Pinto, C . L. S.;Libergott, E. K. Anal. Chlm. Acta 1980, 117. 349-35 1. (461) Rosenbaum, E. J. Anal. Chem. 1949, 21, 16; 1950, 2 2 , 14; 1951, 2 3 , 12; 1952, 2 4 , 14; 1954, 2 6 , 20. (462) Rosenfeld, H. J.; Selmer-Olsen, A. R. Analyst (London) 1979, 104 (1243), 983-985. (463) Rosencwalg, A., Ed. Journal o f Photoacoustics 1982, 1 (1); Marcel Dekker Journals. (464) Rosencwaig, A. Report, UCRL-82598, CONF-790819-3, 1979; Chem. Abstr. 1980, 9 2 , 49511f. (465) Rudzitis, 0.; Baltgaive, I.; Viksna, A. Latv. PSR Zhat. Akad. Vestis, Kim. Ser. 1979, (4), 452-457; Chem. Abstr. 1979, 9 1 , 203725s. (486) Sakai, T. Bunseki 1981, (6), 421-423; Chem. Abstr. 1981, 9 5 , 156651k. (467) Sakal, Y. Talantia 1980, 2 7 , 1073-1076. (468) Sakata, M.; Haga, M. J . Toxlcol. Sci. 1980, 5, 113-121. (469) Sakuraba, S.;Kojima, M. Nlppon Kagaku Kaishl 1980, (2), 209-214; Chem. Abstr. 1980, 9 2 , 1739191. (470) Sakuragawa, A.; Harada, T.; Okutanl, T.; Utsurni, S. Bunseki Kagaku 1980, 2 9 , 264-266; Chem. Abstr. 1980, 92, 226035b. (471) Sam, C. L.; Shand, M. L. Opt. Commun. 1979, 31, 174-177. (472) Sanchez-Pedreno, C.; Hernandez Cordoba, M.; Martinez Tudela, G. An. Qulm. 1979, 75, 536-539; Chem. Abstr. 1980, 9 2 , 14769~. (473) Sanghavl, N. M.; Ballur, Y. V. Indian J. Pharm. Sci. 1980, 42. 169171; Chem. Abstr. 1981, 9 5 , 12642k. (474) Sanghavl, N. M.; Kotwaney, H. N.; Chandramohan, H. S.Indian Drugs 1980, 18, 25-28; Chem. Abstr. 1981, 9 4 , 20511m. (475) Sargent-Welch Scientific Company Anal. Chem. 1980, 5 2 , 1447 A. (476) SaStry, C. S. P.; Rao, B. G.; Reddy, E. S.;Murthy, S. S. N. Indian Chem. SOC. 1981, 5 8 , 655-658; Chem. Abstr. 1981, 9 5 , 103404a. (477) Savos'kina, L. N.; Oskotskaya, E. R.; Yampol'skii, M. 2. Zh. Anal. Khim. 1979, 34, 1465-1470; Chem. Abstr. 1980, 9 2 , 51313m. (478) Sawln, S. B.; Gur'eva, R. F. Zh. Anal. Khlm. 1980, 3 5 , 1818-1830; Chem. Abstr. 1980, 9 3 , 249307b. (479) Saxe. J. D.; Faulkner, T. R.; Richardson, F. S. Chem. Phys. Lett. . 1979, 8 8 , 71-76. (480) Schmin, A. Angew. UV-SRektrOSk. 1977, 1; Chem. Abstr. 1980, 9 3 , 160536~. (481) Schmitt, A. Angew. UV-Spektrosk. 1977, 3; Chem. Abstr. 1980, 9 3 , 210343k. (482) Sclentlflc Instrument Corp. Anal. Chem. 1981, 53, 1518 A. (483) Seki, H.; Itoh, U. Rev. Scl. Instrum. 1980, 5 1 , 22-26. (484) Sekiguchl, M. Kensa to Gyutsu 1981, 9 , 472-477; Chem. Abstr. 1981, 9 5 , 205821. (485) Sellers, R. M. Analyst (London) 1980, 105 (1255), 950-954. (486) Shahlne, S.;Mahmoud, R. Mikrochim. Acta 1980, 1 (1-2), 119-122. (487) Shchori, E.; McGrath, J. E. Polym. Prepr., Am. Chem. SOC. Div. Polym. Chem. 1978, 19, 494-499. (488) Shchorl, E., McGrath, J. E. Polym. Prepr., Am. Chem. SOC., Div. Polym . Chem. 1878, 19, 500-505. (489) Sheinker, V. N., Petrova, I.V.; Oslpov, 0. A. Zh. Obshch. Khlm. 1981, 51, 1716-1722; Chem. Abstr. 1981, 9 5 , 139638~. (490) Shen, N-K.; Tsln, H-H. Fen Hsi Hua Hsueh 1977, 5 , 332-334; Chem. Abstr. 1980, 9 3 , 162029~. (491) Shesterova, I.P.; Talipov, Sh. T.; Mukhamedzhanova, D. Deposited Doc. 1978, VINITI 3572-78; Chem. Abstr. 1980, 9 2 , 51403r. (492) Shlbata, S.; Furukawa, M. Nlhacho Bunko Kodoho to Sono Oyo 1979, 100-119 Chem. Abstr. 1980, 9 2 , 87313a. (493) Shlbata, S.,Sakal, K., Hasegawa. N., Eds. "Nlhacho Bunko Kodoho to Sono Oyo"; Kodansha: Tokyo, Japan, 1979; Chem. Abstr. 1980, 9 2 , 157239g. (494) Shida, J.; Matsuo, T. Bull. Chem. SOC.Jpn. 1980, 53, 2868-2870; Chem. Abstr. 1980, 9 3 , 214942~. (495) Shih, H-M., Ho, H-W., Chang J-H.; Fang, Y-F. Fen Hsl Hua Hsueh 1980, 8 , 38-43; Chem. Abstr. 1981, 9 4 , 407859. (496) ShiJo, Y.; Shimlzu, T.; Sakai, K. Bull. Chem. SOC. Jpn. 1981, 54, 143-145; Chem. Abstr. 1981, 9 4 , 9121911. (497) Shimadzu Scientific Instruments, Inc. Ind. Res. Dev. 1981, 23, 65.
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (498) Shirk, J. S.; Harris, 7. D.; Mitchell, J. W. Anal. Chem. 1980, 52, 1701-1 705. (499) Shome, S.C.; Hakler, .'F K. Int. SolventExtr. Conf., [ R o c . ] 1980, 2 , Paper 80-87; Chsm. Abstr. 1981, 94, 184941~. (500) Shpak, E. A.; Pilipenko, A. T.; Shpak, A. V. Zh. Anal. Khim. 1979, 34,2014-2021; Chem. Abstr. 1980, 92, 1036582. (501) Shtokaio. M. L.; Ostrovskll, M. S.; Ryzhenko, V. L.; Mai'chik, T. I.Izv. Vyssh. Uchebn. Zaved.. Khlm. Khlm. Tekhnol. 1980, 23,51-54; Chem. Absfr. 1980, 92, 173925h. (502) Shukla, J. P.; Subramanian, M. S. India, A . E . C . , Bhabha At. Res. Cent. [Rep.] 1979, B. A. R. C. 1005, 85-67; Chem. Abstr. W80, 92, 190718k. (503) Shurupova, T. 19; Ivanov, V. M.; Goiubtsov, I. V. Vestn. Mosk. Univ., Ser. 2: Khlm. W79, 20,459-464; Chem. Abstr. 1980, 92,51290b. (504) Silva, M.; Valoarcel, M. Microchem. J . 1080, 25, 117-123. (505) Siiverstein, R. M.; Basrier, G. C.; Morriil, T. C. "Spectrometric Identification of Organln: Compounds", 4th ed.; Wlley: New York, 1981. (508) Simons, W., E:d. "The Sadtler Handbook of Ultravloiet Spectra"; Sadtier Research Latioratorles: Phlladelphia, PA, 1979. (507) Simonzadeh, N.; Muraskas, E.; Jaselskls, B. Talanta 1979, 26, 935-939. (508) Singh, I.; Sharma, J. L.; Garg, B. S.; Slngh, R. P. J . Chin. Chem. SOC. 1979, 26, 121-124; Chern. Abstr. 1980, 92,8 7 4 5 3 ~ . (509) Slngh, N.; Rarrtogi, K.; Kumar, R.; Srlvastava, T. N. Analyst (London) 1081, 106 (1262), 599-602. (510) Singh, N. S. El.; Mohan, S. V.; Balasubramanlan, G. R. J . Radioanal. Chem. 1079, 52,319-327. (51 1) Singh, R. B.; Jain, P.; Garg, B. S.; Singh, R. P. Analyst (London) 1979, 104 (1245), 1188-1191. (512) Singh, R. B.; IKulshreshtha, H.; Garg, B. S.; Singh, R. P. Bull. Chem. SOC. Jpn. 1979, 52, 3131-3132; Chem. Abstr. 1979, 91, 2 2 1 9 4 8 ~ . (513) Singh, R. B.; Ray, H. l..;Garg, B. S.; Singh, R. P. Talanta 1979, 26, 898-900. (514) Slraj, P.; Reddy, B. S.; Sastry, C. S.P. Acta Cienc. Indlca, [Ser.] Chem. 1980, 6 , 150-152; Chem. Abstr. 1981, 94, 1 4 5 4 3 5 ~ . (515) Slzonenko, N. T.; Egorova, L. A.; Tlmchenko, A. K. Zh. Anal. Khim. 1979, 34,2182-2185; Chem. Abstr. 1980, 92, 121133d. (516) Slavcheva, Yu.; Mladenov, I.Fresenius' 2.Anal. Chem. 1981, 305 (5), 413-414. (517) Snell, F. D. "Photometric and Fluorometric Methods of Analysis: Nonmetals"; Wlley: New York, 1981. (516) Solozhenkin, P. M.; Vasilenko, L. F.; Baratova, 2. 8.; Bukhadze, E. G. Izv. Akad. Nauk Tadzh. SSR, O M . Fiz.-Mat. Geol.-Khim. Nauk 1979, (2), 48-51; Chem. Absfr. 1980, 92, 121139k. (519) Sommer, L.; Langova, M.; Kuban, V.; Ackermann, G.; Koethe, J.; Koch, S. Scr. Fac. Scl. Nat. Univ. Purkynlanae Brun. 1880, 10 (1-2), 71-80; Chem. Ahstr. 1981, 94, 10614h. (520) Soulard, M.; Bloc, F.; Hatterer, A. Analusis 1981, 9 (1-2), 35-46; Chem. Abstr. 1981, 94, 131620r. (521) Squeila, J. A.; Nunez-Yergara, L. J., Aros, M. J. Assoc. Off. Anal. Chem. 1980, 63,1049-1051. (522) Stan, T.; Antonescu, V.; Balalu, D.; Stefanescu, E.; Maftei, E. Farmacla (Bucharest) 1979, 27, 141-145; Chem. Abstr. 1980, 92,98772a. (523) Stan, T.; Antonescu, V.; Stefanescu, E.; Feraru, E. Farmacla (Bucharest) 1979, 27,8,549; Chem. Abstr. 1980, 9.2,81366e. (524) Stankova, 0. Acta Univ. Palecki, Olomuc., Fac. Rerum Nat. 1980, 61/65(CHEMICA 18-19), 199-205; Chem. Abstr. 1981, 94, 167169q. (525) Stedman, D. Hi.; Tammaro, D. A.; Branch, D. K.; Pearson, R., Jr. Anal. Chem. Ig70. 51. 2340-2342. (526) Steinigen, M.'Pharm. Z t i . 1981, 126 (la), 868-893; Chem. Abstr. 1981. 95. 304651. (527) Strelow, F. fi. E.; Van der Walt, T. N. Talanta 1979, 26, 537-542. (528) Stojek, J. W., Tramer, A. Pf. Nauk. Inst. Metro/. Electr. Politech. Wroclaw. 1979, 19, 176-177; Chem. Abstr. 1980, 93, 172813d. (529) Sugawara, N.; Furuno, J.; Irlzawa, Y.; Nakayasu, K.; Kanemaru, T. Yamaguchl Igaku 1981, 30, 161-165; Chem. Abstr. 1981, 95, 175884e. (530) Surin, I. G.; Spltsyn, P. K. Zavod. Lab. 1980, 46,888; Chem. Abstr. 1980, 93,249452~. (531) Susak, N. J.; Crerar, D. A.; Forseman, T. C.; Haas, J. L., Jr. Rev. Scl. Instrum. 1981, 52,428-431. (532) Suzuki, Y.; Ivlno. T.; Maehata, E. Kiyo-Saitamakenritsu Else/ Tanki Dalgaku 1979, 4 , 1-7; Chem. Abstr. 1981, 95,57478~. (533) Suzuki, T.; Mori, K. Jpn. Kokal Tokkyo Koho 79,97,489 (Cl. G01N31/ 22), 01 Aug. 197'9, Appl. 7814,521, 19 Jan. 1978; Chem. Abstr. 1979, Q- l. , 203843d - - - .- - . (534) Szonntagh, E. L. Ric. Clln. Lab. 1979, 9 , 207-215; Chem. Abstr. 1980. 93. 52817)~. (535) Tabacco,A.; Meiattlnl, F. Ger. Offen. 2,93, 322 (CI. GOlN33/16), 20 Mar. 1980, Ital. Appl. 78127,718 15 Sep. 1978, Chem. Abstr. 1980, 93, 36489a. (536) Tabata, M.9; Tanaka, M. Anal. Len. 1980, 13 (A6), 427-438. (537) Taketatsu, T.; Sato, A. Bull. Chem. SOC.Jpn. 1980, 53,3713-3714; Chem. Abstr. W81, 94,95244k. (538) Takeguchl, T.; Horikawa, R.; Tanimura, T. Anal. Len. 1980, 73 (A7), 803-609. (539) Taimi, Y. "Mulilchannei Image Detectors"; American Chemical Soclety: Washington, DC, 1979; ACS Symp. Ser., No. 102. (540) Tanaka, T.; Hiiiro, K S Kawahara, A. Bunseki Kagaku l W 0 , 29,494496; Chem. Abstr. 1980, 93, 160585t. (541) Tanaka, T.; Tanaka, K. Chem. Pharm. Bull. 1981, 29,445-450. (542) Tanaka, Y.; Saito, Y.; Odo, J.; Omorl, H. Bunsekl Kagaku 1980, 29, 381-384; Chem. Absfr. IWO, 93, 1250770. (543) Taylor, K. B., Cleland, W. W. Anal. Biochem. 1981, 112,244-248. (544) Terletskaya, A. V.; Lukovskaya, N. M.; Anatlenko, N. L. f h Anal. Khim. 1979, 34, 1480-1464; Chem. Ab.&. 1980, 92, 14787~.
-
(545) Thomas, L. C.; Chamberlin, G. J. "Colorimetric Chemical Analytical Methods", 9th ed.; Wiley: New York, 1980. (546) Toda, T.; Miyata, H.; Toel, K. Bunseki Kagaku 1979, 28, 440-442; Chem. Abstr. 1979, 511, 221850h. (547) Toei, K.; Motomizu, S.;Yokosu, H. Anal. Chim. Acta 1979, 110, 329-334. (548) Torlbio, F.; Lopez Fernandez, J. M.; Bendito, D. P.; Valcarcel, M. Mlcrochem. J . Ig80, 25,338-347. (549) Tracor Northern, Imc. Anal. Chem. 1981, 53,458 A. (550) Tran Thl, T. H.; Koulkes-Pujo, A. M. Analysis 1980, 8, 163-165; Chem. Abstr. 1980, 93,18644t. (551) Troflmov, N. V.; Knnaev, N. A.; Busev, A. I.Zavod. Lab. 1980, 4 6 , 19-22; Chem. Absb. 1980, 92,1 9 0 6 9 1 ~ . (552) Tseiik, E. I.; Poluektov, N. S.; Mishchenko, V. T. Zh. Anal. Khlm. 1979, 34, 1962-1968; Chem. Abstr. lg80, 92,6 8 9 6 2 ~ . (553) Tserkovnitskaya, I.A.; Lansana, D. Vestn. Lenlngr. Univ. Flz., Khim. 1979, (2), 70-73; Chem. Abstr. 1980, 92,33301b. (554) Tserkovnltskaya, I.A.; Lansana, D. Vestn. Lenlngr. Univ. Flz., Khim. 1979, (3), 95-97; Chem. Abstr. 1980, 92, 103709s. (555) Tsuchlya, M. Jpn. Kokal Tokkyo Koho 79,145,189 (CI. G01N33/20), 13 Nov. 1979, Appl 78/63,090, 02 May 1978: Chem. Abstr. 1980, 92, 157246g. (556) Tsuchiya, M.; Iwanami, Y. Nlppon Kagaku Kaishi 1980, (a), 12561259; Chem. Abstr. 1980, 93, 197084e. (557) Tsurumi, C.; Furuya, K.; Kamada, H. Anal. Len. 1980, 73 (A4), 319-330. (558) Tsurumi, C.; Furuyu, K.; Kamada, H. Bunsekl Kagaku 1979, 28,754759; Chem. Abstr. 1980, 92, 1037021. (559) Udea, K.; Yamamoto, Y. Chem. Lett. 1880, (5), 557-558. (560) Ueda, J. Kanazawa Daigaku Kyolkugakubu Klyo: Shlzen Kagaku Hen 1977, 25, 11-16; Chem. Abstr. 1970, 91,203802q. (561) Ueda, J. Kanazawa Daigaku Kyolkugakubu Kiyo: Shizen Kagaku Hen 1977, 26, 5-10; Chem. Abstr. 1979, 91,203603r. (562) Umeda, T.; Imanishi, H.; Hirai, E. Chem. Pharm. Bull. 1980, 28, 1230-1236. (563) Urner, 2 . ; Sucha, L. Sb. Vys. Sk. Chem.-Techno/. Praze, Anal. Chem. 1979, H14, 197-208; Chem. Abstr. 1981, 94, 40839~. (504) Uskllnge, 2.; Mezaraups, G.; Jansons, E. Deposited Doc. 197% VINIT I 3782, 69-71; Chem. Abstr. 1981, 94, 131538~. (565) Usmanov, R. A.; Kochetov, G. A. Biochem. Int. 1981, 3, 33-39. (566) Van Staden, J. F.; Basson, W. D. Lab. Pract. lg80, 29, 1279-1280. (567) VarianlInstrument Group Anal. Chem. 1980, 52, 266 A. (5W) VarianlInstrument Group Varian Instrum. Applic. 1881, 15,3-5. (509) VarianlInstrument Group Varlan Instrum. Applic. 1981, 15, 10. (570) Varma, Y. S.; Singh, I.; Garg, B. S.; Singh, R. P. J . Chin. Chem. SOC. (Taipel) 1981, 26, 107-109; Chem. Abstr. 1981, 95, 143804~. (571) Varma, Y. S.; Singh, I.; Garg, B. S.; Slngh, R. P. J . Chln. Chem. SOC. (Talpel) 1981, 28, 165)-171; Chem. Abstr. 1981, 95, 180325~. (572) Venable, W. H., Jr. Eckerle, K. L. "Didymium Glass Filters for Calibratlng the Wavelength Scale of Spectrophotomters - SRM 2009, 2010, 2013, and 2014"; Nal. Bur. Stds.: Washington DC, 1979; NBS Spec. Publ. 260-66. (573) Veseiov, V. Ya; Urovskli, L. F.; Grekov, A. P. Zh. Anal. Khim. 1981, 36,738-741; Chem. Abstr. 1981, 95,72776s. (574) Viikova, 0. M.; Ivanov, V. M. Vestn. Mosk. Univ., Ser. 2: Khim. 1980, 21, 199; Chem. Abstr. 1980, 93,6040313. (575) Volgtman, E.; Jurgonsen, A.; Winefordner, J. Anal. Chem. 1981, 53, 1442-1 446. (576) Vowlgaropoulou, A. N. Chem. Chron., GenikeEkdose 1981, 46, 4650; Chem. Abstr. 1981, 95,34668a. (577) Vomica, P.; Havei, J.; Sommer, L. Collect. Czech. Chem Commun . W80, 45,54-79; Chem. Abstr. 1980, 92,208317r. (578) Walte, J. H.; Tanzer, M. L. Anal. Biochem. 1981, 1 1 1 , 131-136. (579) Walvekar, A. P.; Rnmanathan, P. S. Indian J . Chem., Sect. A 1981, ZOA, 154-182; Chem. Abstr. 1981, 94,163516~. (580) Wang. W-L.; Charig, C-A.; Fan, C.; Tung, S-Y. Fen Hsi Hua Hsueh 1880, 8 ,310-314; Chem. Abstr. 1981, 94,202103n. (5E11) Watanabe, H.; Ohmori, H. Bunsekl Kagaku 1980, 29, 137-140; Chem. Abstr. 1980, 92, 173903~. (582) Watanabe, H.; Ohmori, H. Talanta 1979, 26,959-961. (583) Watanabe, K.; Yorrhizawa, H.; Kawagaki, K. Bunsekl Kagaku 1980, 29,233-238; Chem. Abstr. 1980, 93, 18497~. (584) Watkins, P. J. Anawst (London) 1979, 104 (1245), 1124-1 128. (585) Werner, W. Fresenius' 2.Anal. Chem. 1980, 304 (2-3), 117-124. (586) West, P. S.; Nlsbet, J. A.; Owen, J. A. J . Autom. Chem. 1981, 3, 88-92. (5E17) White, C. A,; Kennedy, J. F. Tech. Life Scl., [Sect.]: Biochem. 1981, 8311-8312; Chem. Abstr. 1981, 94,204645q. (588) Wigfield, D. C.; Hollubone, B. R.; MacKeen, J. E.; Seiwin, J. C. J . Anal. roxicoi. 1981, 5, 122-125. (589) Wiilekens, G. J.; Van Den Bulcke, A. Analyst (London) 1979, 104 (1239), 525-530. (5910) Williams, A.; Hill, S. V.; Ibrahim, I.T. Anal. Biochem. 1981, 774, 173-1 76. (591) Wu, A. H. B.; Rotunno, T.; Malmstadt, H. V. Am. Lab. (Falrfleld, Conn.) 1981, 13, 16-:34. (592) Wyganowskl, C. Microchem. J . 1980, 25, 147-152. (593) Xie, S-C. Fen HslHua Hsueh 1981, 9,238-243; Chem. Abstr. 1981, 95, 143381~. (594) Yamamoto, D.; Tsukada, M.; Hiraoka, S. Bunsek Kagaku 1980, 29, 396-399; Chem. Abstr. 1980, 93, 125078h. (595) Yamamoto, K.; Ozaki, M.; Ohashi, K. BunseklKagaku 1980, 29,253258; Chem. Abstr. 1980, 93,603839. (596) Yamamoto, M.; Oda. S.; Goshi, Y.; Kamata, H. Koen Yoshishu. Shunkl Koenkai, Sekigai Ramtrn Kenkyubukai Shinpojumu , Nlppon Bunko Gakkai 1979, 26;Chem. Abstr. 1980, 92,49749q.
.
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
187R
Anal. Chem. 1982, 5 4 , 188R-203R (609) Yusupov, M. Yu.; Israilov, M. A.; Skrebtsova, N. V.; Pachadzhanov, D. N. Tashbaev, G. Otkrytiya, Izobret ., Prom. Obraztsy, Tovarne Znakl 1979, (42). 97; Chem. Abstr. 1980, 9 2 , 69037j. (610) Zal’tsberg, V. Kh.; Bogoslavskaya, 0. N. Org. Reagenty Anal. Khirn 1980, 3 , 54-62; Chem. Abstr. 1981, 94, 113947~. (611) Zenkl, M.; Iwaki, K. Bunseki Kagaku 1979, 28, 710-712; Chern. Abstr. 1980. 9 2 , 51355b. (612) Zhang, 2-X. TzuJan Tsa Chlh 1980, 3 , 540-541; Chem. Abstr. W81, 9 4 , 92667q. (813) Zhivopistsev, V. P.; Bondareva, E. G.; Potemkina, S. R.; Osokina, G. P. Org. Reagenfry Anal. Khim. 1980, 3 , 47-49; Chem. Abstr. 1984, 9 4 ,
(597) Yamamoto, Y.; Shibahara, K.; Takei, S. Bull. Chem. SOC.Jpn. 1080, 5 3 , 809-810; Chem. Absfr. 1980, 9 2 , 225818~. (598) Yamashlta, T.; Nakamura, H.; Takagi, M.; Ueno, K. Bull. Chem. SOC. Jpn. 1980, 53, 1550-1554; Chem. Absfr. 1980, 9 3 , 9 6 7 7 1 ~ . (599) Yan, F-X., Li, X-M. Huan Chlng K ’ o Hsueh 1080, 7 , 24-28; Chem. Absfr. 1980, 9 3 , 19176Oa. (600) Yang, C. Y.; Shih, J. S.; Yeh, Y. C. Analyst (London) W81, 706 (1261), 385-388. (601) Yoshimura, K.; Toshimttsu, Y.; Ohashi, S. Taknta 1980, 2 9 , 693-697. (602) Yotsuyanagi, T. Bunseki 1979, (e), 592-597; Chem. Absfr. 1980, 9 2 , 14700q. (603) Yotsuyanagi, T. Kagaku (Kyofo) 1980, 3 5 , 233-236; Chem. Absfr. 1981, 9 4 , 131494~. (604) Yotsuyanagi, T.; Matsunaga, H. Dojin Nyusu 1980, 76, 1-16; Chem. Abstr. 1881, 94, 113712t. (605) Young, E. F. Opt. Spectra 1980, 78, 44-48. (608) Yuki, H.; Yajlma, T.; Kawasaki, H. Chem. Pharm. Bull. 1980, 28, 3375-3380. (607) Yunan University Fen Hsl Hue Hsueh 1978, 8 , 281-283; Chem. Absfr. 1980, 9 2 , 993512. (608) Yusupov, M. Yu.; Israllov, M. A.; Pachadzhanov, D. N.; Panova, E. V. Zavod. Lab. 1080, 46, 390-392; Chem. Abstr. 1980, 9 3 , 160576r.
131582e. . .. .. - -.
(614) Zijlstra, W. G.;Van Kampen, E. J. J . Clln. Chem. Clln. Blochem. 1981, 79, 521-523. (815) Zorawski, A.; Woiinski, J. Przem. Spozyw. 1980, 34, 301-302; Chem. Absfr. 1981. 94. 82342r. (618) Zuchi, G. Fariacla (Bucharest) 1980, 28, 21-30; Chem. Absfr. 1080, 9 3 , 163791t. (617) Zwart, A.; Buursma, A.; Van Kampen, E. J.; Oeseburg, B.; Van der Ploeg, P. H. W.; Zijlstra, W. G. J . Clin. Chern. Clln. Blochem. 1981, 79, 457-463. (618) Zwicker, H. R. Top. Appl. Phys. 1980, 79 (2nd ed.), 149-196.
Emission Spectrometry Walter J. Boyko, Peter N. Kellher,” and Joseph M. Patterson 111 Chemistry Department, Villanova University, Villanova, Pennsylvania 19085
This is the 18th article in the series of biennial reviews in the field of emission spectrometry/spectroscopy and is the second written by the Villanova author group. This year Joseph M. Patterson I11joins us as coauthor replacing James M. Malloy who assisted with the 1980 review (14A). This review article will survey selectively the emission spectrochemical literature of 1980 and 1981. By agreement, however, flame emission publications are reviewed in the section of this review issue entitled “Atomic Absorption, Atomic Fluorescence, and Flame Spectrometry” authored by Gary Horlick. This follows previous custom (5A,I4A, 55A). Because of the late arrival of some journals appearing in December 1981, we may have missed some references of importance, and it is hoped that these will be discussed in the next biennial review. In general, we are following the format that we had previously used (14A),this is essentially the format that had been used by the previous author of this review, R. M. Barnes (5A). Because of space constraints in this review issue, however, Analytical Chemistry has asked us to be particularly selective and not to attempt to provide an all-inclusive bibliography. In this fundamental review, the emphasis will be on developments in theory, methodology, and instrumentation. Applications will be cited only insofar as they advance the state of the art or have particular current relevance. References will be cited only if they are of particular importance to analytical chemists and spectroscopists; articles of primary interest to astronomers and/or physicists are not, in general (with some exceptions in Section B), cited. Readers should note that detailed and specific application information is available from Analytical Abstracts, Chemical Abstracts, and also the more specific Atomic Absorption and Emission Spectrometry Abstracts published by the PRM Science and Technology Agency (3A). In addition, the latest Application Reviews issue of Analytical Chemistry (2A) contains many recent spectrochemical application references. Readers should also note the excellent annual series Annual Reports on Analytical Atomic Spectroscopy (24A,86A) published by the Royal Society of Chemistry, Burlington House, London, W1V OBN, United Kingdom. These annual reports provide detailed information on emission spectrometry and are absolutely hi hly recommended to those with an interest in the field. &ereas our biennial selective reviews provide several hundred references, each of these annual reviews provides over 2000 references including a wealth of information on meeting 188 R
0003-2700/82/0354-188R$06.00/0
presentations. Volume 10, reviewing 1980, has just appeared (86A) and the Editor, Barry L. Sharp, is commended for his outstanding effort. In going through the 1980-1981 literature, we have selected the following publications as being most relevant and most emission spectrometry papers published in these journals are cited in this review: Analyst (London), Analytica Chimica
Acta, Analytical Chemistry, Analytical Letters, Applied Optics, Applied Spectroscopy, Applied Spectroscopy Reviews, Atomic Spectroscopy, Canadian Journal of Spectroscopy, CRC Critical Reviews in Analytical Chemistry, Environmental Science and Technology, Fresenius’ Zeitschrift fur Analytische Chemie, ICP Information Newsletter, International Journal of Environmental Analytical Chemistry, Journal of Chemical Education, Journal of the Optical Society of America, Journal of Quantitative Spectroscopy and Radiative Transfer, Microchemical Journal, Optica Acta, Progress i n Analytical Atomic Spectroscopy, Review of Scientific Instruments, Science, Spectrochimica Acta, Part B , Spectroscopy Letters, Talanta, and Water Research. Papers published in unreviewed magazines such as American/International Laboratory, Industrial Research and Development, Laboratory Practice, etc. are not generally cited. However, where we feel that a publication is of fundamental importance, it is cited whatever the source. Readers should note that Atomic Spectroscopy is the new name for the old Atomic Absorption Newsletter, the new name reflects the trend toward optical emission (read “plasma emission”)as we move into the 80s.
BOOKS AND REVIEWS 1980 saw the publication of a most important work, “Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectrometry”,a two-volume set compiled by P. W. J. M. Boumans (IIA). This publication consists of coincidence tables for inductively coupled plasma (ICP) atomic emission spectrometry for which appropriate (semi) quantitative data on line interferences are still lacking. Sixty-seven chemical elements and 896 “prominent” (most sensitive) spectral lines are covered. A separate coincidence table is provided for each prominent line which lists the potentially interfering lines of other elements within a spectral ran e of 0.25 nm from the peak of the prominent line. These tatles should enable ICP users to predict whether or not the choice of particular analysis 0
1982 American Chemical Society