Anal. Chem. 1986, 58, 108R-124R (138) Randall, J. C.; Hsieh, E. T. ACS Symp. Ser. 1984, No. 247, 131-51. (139) Hunt, D. F.;Shabanowitz, J.; Harvey, T.M. Comm. Eur. Communities, [Rep.] EUR, 1984 EUR 5818, Anal. Org. Micropollut. Water, 53-67. (140) Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L. Anal. Chem. 1984, 56, 1667-70. (141) Ivanov, V. N.; Pravshin, Yu S.Zavod. Lab. 1985, 51, 6-8; Chem. Abstr. 1985, 103,72880e. (142) Koller. H.; Wernicke. R. Kontakte (Darmstadt) 1985, 40-8; Chem. Abstr. 1985, 703, 110495t. (143) Ichida, A.; Shibata, T.;Okamoto, I.; Yaki, Y.; Namikoshi. H.; Toga, Y. Chromatographia 1984, 79, 280-4; Chem . Abstr. 1985, 103, 1 15358k.
(144) Hinze, W. L.; Riehl, T. E.; Armstrong, D. W.; DeMond, W.; Alok, A,; Ward, T. Anal. Chem. 1985, 57, 237-42. (145) Armstrong, D. W.; DeMond, W.; Alak, A,; Hinze, W. L.; Riehi, T. E.; Bui, K. H. Anal. Chem. 1985, 57,234-7. (146) Koscielski, T.; Sybilska, D.; Jurczak, J. J . Chromatogr. 1983, 280, 131-4. (147) Oi, N.; Nagase, M.;Sawada, Y. J . Chromatogr. 1984, 292, 427-31. (148) Daeppen, R.; Meyer, V. R.; Arm, H. J . Chromatogr. 1984, 295, 367-76. (149) Yang, S.K.; Weems, H. B. Anal. Chem. 1984, 56,2658-62. (150) Schurig, V.; Wlstuba, D. Tetrahedron Lett. 1984, 26,5633-6.
Ultraviolet and Light Absorption Spectrometry J. A. Howell* Western Michigan University, Kalamazoo, Michigan 49008
L. G. Hargis University of New Orleans, New Orleans, Louisiana 70148
This review reports the developments in ultraviolet and light absorption spectrometry from December 1983 through November 1985, primarily as documented in the Ultraviolet & Visible Spectroscopy section of CA Selects, and extends the series of reviews sponsored by Analytical Chemistry initiated in 1945 for Light Absorption Spectrometry (46, 176, 195, 317, 318) and 1949 for Ultraviolet Absorption Spectrometry (81,82,176,189,195,199,403). Following the format of previous reviews, the subject matter has been divided into sections on chemistry, physics, and applications. The literature on ultraviolet and light absorption spectrometry continues to be so extensive and varied in scope that citations in this review are limited to those developments which the authors believe are of greatest interest to analytical chemists. The authors wish to apologize in advance for any errors of judgement made in the omission of various references. An IUPAC committee has reported on the names, symbols, and units recommended for use in optical spectroscopy (207) and the nomenclature, symbols, and units used to describe spectrochemical radiation sources have been reviewed (59). The number of review articles appearing during each two-year period seems to be increasing. Reviews of reagents used in the determination of a particular substance or group of substances include those on crown ethers (336, 483), 8quinolinol and its derivatives (401),quinoxaline derivatives (22),and pyridinecarboxyaldehydes (280). The syntheses and absorption properties of various substituted naphthoquinones that may have applications as spectrophotometric reagents have been reviewed (311). Reviews of methods for determining particular substances or classes of substances include ultraviolet spectrophotometric methods for nitrate (287), UV-vis methods for determining unsaturated fatty acids, fat-soluble vitamins, pigments, preservatives, and antioxidants in fats and oils (247),and the determination of hemoglobin and hemoglobin derivatives (517,582). In addition, the usefulness of absorption spectrophotometry in the characterization of transcurium halides (114) and the use of ninhydrin reagent for determining amino acids in AutoAnalyzers (134)have been reviewed. Several general reviews have appeared (221,258,368,565) along with an overview of spectroscopic methods used to characterize inorganic substances (459)and a review of solvent effects on the shape and position of optical absorption and emission bands (269). Also, the use of heteropoly compounds in analytical chemistry (277) and of ion-association and mixed-ligand complexes in extraction-photometric determinations (354)have been reviewed. The following reviews of spectrophotometry applied to specific types of samples have been published: light elements in semiconductors (4811, vertebrate photoreceptors (51), gases in metals (376), fer108 R
0003-2700/86/0358-108R$06.50/0
mentation solutions (576),foods (77),water pollutants (577), and pharmaceuticals (50,121,148,174,432,465,555,554,561). A review on the use of molar absorptivity to determine concentration has appeared (335). Computer programs used to interpret spectral bands of substances important to biomedical applications have been summarized (284). A number of reviews dealing with spectrophotometric techniques have been published including methods of modulation spectroscopy (2961, the Fourier transform technique simultaneous determinations in multicomponent systems (532),differential spectrometry (157, 312), and superhighsensitivity methods (197) and the use of optical fibers for remote sensing (44). The use of photoacoustic spectrometry continues to grow a~ evidenced by the large number of reviews of this technique. Eight general reviews have appeared (54, 55, 244, 434, 467, 468, 487, 536) along with reviews on its applications in biological samples (27,52, 309) and surfaces (500). Devices used to monitor spectral signals transmitted through optical fibers (282)and spectral filtering devices using optical fibers (83) have been reviewed. Surveys of the instruments and components displayed at the 1984 and 1985 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy have been published (70). Instrument components have been the subject of several reviews including the principle and application of echelle gratings (231), linear photodiode array detectors (222,223),imaging detectors (361), and variable-wavelength UV detectors for liquid chromatographs (101). Two papers have appeared reviewing stray radiant energy in UV-vis spectrophotometers, including its origins and effect on the accuracy of optical measurements (232,438). An excellent summary of the utility of signal-tonoise treatment in analytical spectroscopy has appeared (115). Finally, a brief review of the factors to be considered in selecting the measurement wavelength in absorption spectrophotometry has been published (435). Several books, chapters, and bulletins dealing with some aspect of spectrophotometry have appeared since the previous review. Four books deal with general methodology and applications: “Absorptiometry: Organic Analysis” (214), “Techniques in Visible and Ultraviolet Spectrometry, Vol. 3: Practical Absorption Spectrometry. Ultraviolet Absorption Group” (256),“Comprehensive Analytical Chemistry, Vol. 2 0 Photometric Methods in Inorganic Trace Analysis” (511),and “Spectroscopic Methods in Organic Chemistry” (544). Papers in published proceedings include “The Application of Surfactants in the Spectrophotometric Determination of Metal Ions: the Interaction between Cationic Surfactants and Some Organic Dyes” (68),which is a discussion of the mechanisms of interaction between surfactants and triphenylmethane dyes, many of which are used to determine metal ions as ternary
(a,
G
1986 American Chemical Society
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
J m m A. nore#is a Roleof chsm)b by at Wealern Michigan Unbrsny and ako a science adulsa la me bbDn Msmct Laboratory 01 the Food and Drug AdmlnbbaWOn. He , W e d hls B.A. h m Southern Illin& Univsrsny in 1959. hls M.S. ham me Universny 01 Illinois in 1961. end hh ph 0.h amlvticai demkby from Wayn, Slate Univsrsny in 1964. His particular Ilalds 01 inlaresf are In umavbltrl and vkibla absorption specIrMIY)try. llame emiselon and a l m k abaorptbn spechoscopy. and also computer applhxHMlr Io Chemical ins l ~ n t a l l M I .He k me a01 a number 01 rawarch p a w s and chapters In m s . Dr Howell is a member 01 Me ACS. SAS. and the A~socialionof Analytical
111
Chemists
sny 01 NW w a n < graduatsd t o m Wayne state unkersny w m a 8,s. in 1961, an M.S. In 1963. and a ph.D. In 1964. He was a
f
Patdoctaal Research A ~ w l a I eat Fwdwr Univerrny horn 1964 until joining Ihe lacuty at UNO in 1965. Dr. Hargir holds member- , ship in me Amarican Chemical Soclely (Analytical and Educatbn Divlslons). phi Lambda Uwibn. and Sigma X I . He sewed
f ,
fl
complexes. and Tontamination Control in Routine Ultratrace Analysis of Toxic Metals" (341) which describes the various considerations and measurea necessary for assuring low blank values and verification of analyticd procedures. How accuracy in spectrophotometric measurements can be evaluated is described in a National Bureau of Standards bulletin, 'NBS Special Publication, No. 260-81: Accuracy in Analytical Spectrophotometry" (57).
CHEMISTRY This section of the review deals with the chemistry involved in the development of suitable reagents, absorbing systems, and methods of determination. A significant decrease in the number of papers devoted to inorganic constituents has been offset hy a dramatic increase in the number of papers devoted to organic compounds, especially those of interest in clinical and pharmaceutical chemistry. The interest in derivative spectrophotometry continues to rise due, almost certainly, to the ease and accuracy with which computers can generate derivative spectra from the recorded data. Despite their considerable advantages over equilibrium methods in certain situations, new reaction-rate methods have appeared in fnr smaller numbers over the period of the last two reviews than the preceeding ones. Two papers do not fall into the normal categories of this review. One describes a means of tabulating spectrophotometric data for easy computerized storage and retrieval, illustrated for the determination of niobium in the presence of other elements with Sulfonitrazo E (549 nm; 1.6 X lo4) (352). The other describes a method for determining metals in water or seawater based on electrodeposition, stripping into a colorimetric reagent, and measurement of ahsorhanre, wherein the optical beam is directed along a path parallel to the flat electrode surface, and is illustrated for the determination of copper a t a concentration of 0.03 ppm (505). Metals. Papers dealing with the properties of reagents used in the spectrophotometric determination of various metals continue to he relatively abundant. rn-Dinitrophenylazohydroxybenzene-7-crown-4 in chloroform-methanol-triethylamine solvent has been proposed as a reagent for determining Rh at 575 nm (0.03-2.5 ppm) and Cs a t 580 nm (0.25-3.0 ppm) (337). A patent has been granted for the use of a similar class of crown compounds for determining various
metals, including Li, Mg, and Ca, (322). A study of the extraction behavior of ligands analogous to 7-[a-(O-carhomethoxyanilino)henzyI]quinolin-8-olhas shown that their complexes with periodic group I1 (2 in 1985 notation) and 111 metals plus Bi, Co, Mn, and P b are hidentate and not tridentate as previously suggested (400). Ternary complexes of periodic group 111 metals with eriochrome black T and diphenylguanidine and their extraction into butanol were studied and methods were developed for AI in steel and AI and Ir in the presence of other metals (29). 2-(3',4'-Dihydroxyphenyl)azo-3-cyano-4-methyl-5-ethoxycarhonylthiophene has been proposed as a spectrophotometric reagent, forming 1:l complexes with AI, Ti, Ge, and Zr in 30% (v/v) acetone at pH 5.5 (103.104). All of the complexes displayed absorbance maxima between 540 and 560 nm. 1-(2Pyridylazo)-2-naphthol has been applied to the determination of Cd, Zn, and Mn in mixtures (525). Manganese was oxidized with H202in KCN to noninterfering hexacyanomanganate(II1) and, after demasking with HCHO, the Cd + Zn total was determined with the reagent. Finally, Cd alone was determined by the decrease in absorbance following addition of sodium diethyldithiocarbamate. The presence of a-hromocaproic acid has been shown to improve selectivity in the determination of In, Ga, Zn, Cd, Cs, Ni, and Cu with 4-(2pyridylazo)resorcinoI, through the formation of ternary complexes (377). The reagent, 5-aminoorotic acid, has been investigated as a spectrophotometric reagent and found to form suitable complexes only with Cu(II), Co(II), and Os(VII1) (405). In the presence of ammonia or pyridine, copper formed a ternary complex with a higher molar ahsorptivity than the binary complex. Butylenediaminotetramethylenetetraphosphonic acid has been synthesized and, based on an evaluation of its reaction with 22 metal ions a t pH 2,7, and 11,the reagent shows promise for the determination Ph(lI), Cu(II), Co(III), and Pd(11) (39). 2-(5-Bromo-2-pyridylazo-5diethylaminophenol forms ML,-type complexes with Cu(II), Zn, Cd, and Hg(I1) that are extractable into chloroform and have absorbance maxima between 535 and 540 nm (343). Beer's law was obeyed over the concentration range of 0.14.6 ppm Cu and Zn, 0.2-1.2 ppm Cd, and 0.4-2.4 ppm Hg. Divalent transition-metal ions form 1:2 metal-to-ligand complexes with 2,2'-dihydroxyazohenzenethat are quantitatively extractable into methyl isobutyl ketone with absorbance maxima between 420 and 560 nm (236, 237). Methods are proposed for determining Co, Mn, Fe. and Cu as binary complexes and Ni, Cd. and Zn as ternary complexes with Zephiramine. Other ligands that have been studied and proposed as reagents for determining a variety of metals include sodium dihutyldiselenocarhamate (191), 1.2-napthoquinone-4-sulfonate 2-semicarhazone (330), 6-(1.2,3.4-tetrazolyl-5-azo)-2,4-dimethylphenol (XW, and I .IO-phenanthroline with Cadion (378). The color reactions of ten suhstituted carhoxyazochromotropic acids with the rare earths has been studied (570). Two other reagents. p-hromoarsenazo (2.W) and chlorophosphonazo-mN (71). have heen proposed as suitable colorimetric reagents for determining rare earths a t concentrations from 0.1 to 1.0 ppm. Several studies of ternary complexes of the rare earths have heen reported. Chlorophosphonazo 111 and M O W ) from 1:l:l complexes with maximum absorhance at 600 nm (560).Warming the solution to 80 OC in the presence of sodium sulfite at pH 6 . M . 2raiises a marked decrease in the ahsorhanre, whirh is proportional to the concentration of rare earth. rn-Cresolphthalexon S A (R) and cetyltrimethylammonium hromide (I.) form MRL,-type complexes with maximum ahrorhnnre at 580 nm (439). Xylenol orange and Chrome Anirol S (R) form MR:,Iqt. and MR,L,-type complexes. respertively. where 1. is cetylpyridinium hromide, cetylpyridinium rhloride, or cetyltri. methylammonium hromide (340). A number of papers rompnring or studying several rengents for a specific metal or group of metals have nppenred. Nnphthylazopyrocatechol was found to he the hest nf six n m . pyrocatechols studied for the determinntinn nf molyhdeniini, forming 1:l and 1:2 molybdenum-lignnd complexes a1 pH 1 and 4, respectively, each with a mnlnr ahsorptivitv of ahnut IO' (167). A comparative study of the rendion nf monw and dirhloro-substituted phenylazochrnm~,lropiracids with iron(111) showed that the meta and para drriwtiws were the hest for determining iron in the 0.5-5.0 ppm ronrentration range (204). The complexes. whirh form inrtantanenusly and are ANALYTICAL CHEMISTRY, VOL. 58. NO 5. A W I l l 1986 * IOOR
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
stable for 24 h, have formation constants of lo9 and molar absorptivities of about 5 x lo3at the wavelengths of maximum absorbance (575 for meta and 585 for para isomer). Arsenazo reagents have been the subject of three separate studies: the effects of functional group, auxochromic groups, and substituent position on the color reactions of 11 asymmetric arsenazo compounds with the rare earths has been made (64); a similar study of seven substituted arsenazo reagents with chromium(II1) showed little difference between the colored products (469);and bromopyrogallol red was preferred over arsenazo 111, carboxyarsenazo, chlorophosphonazo 111, and xylenol orange for determining lanthanum and the cerium subgroup elements in binary alloys (454). l-Amino-7-(8quinolylazo)-8-hydroxynaphthalein-3,6-disulfonic acid was the best of 23 quinolylazo derivatives compared as analytical reagents for determining cobalt (c = 3.6 X lo4) (286). This paper also reports that the 2-(8-quinolylazo)-7-phenylazo1,8-dihydroxyderivative had the best analytical characteristics with the alkaline-earth metals and is a promising reagent for their determination. The ability of water-soluble azo dyes to complex copper and zinc was studied and, in those cases where both metals were complexed, the copper complex was much less labile (371). A method was proposed for copper and nickel in steel, that is almost free from interferences. A study of six arylazo-2-hydroxynaphthalene-3,6-disulfonic acids showed that all of the reagents can be used to determine palladium(I1) in weakly acidic solution but that the 1-(phenylazo)derivative formed the complex of greatest stability (205). 1-(1Phthalazinyl)-3,5-diphenylformazanwas reported the best of five substituted phthalazinylformazans for determining mercury in waters and copper-zinc ores (520; 6.4 X lo4) (28) and chlorophosphonazo-m-sulfonic acid produced the most sensitive determination of thorium in acidic solution (670; 1.0 X lo5) among a group of bisazo derivatives of chromotropic acid (360). Lastly, the use of chloro and methyl derivatives of acetonedicarboxylic acid dianilide to determine iron(II1) (568) and various rhodamine dyes to determine lead in semiconductor materials (248) have been studied. A number of specific reagents and complexes have been studied, providing new insight into their use in spectrophotometric determinations. Cationic surfactants are reported to increase the acid dissociation of bromopyrogallol, thereby facilitating its reaction with various metals, especially antimony (338),and to increase the molar absorptivity and shift the absorbance maximum of gadolinium Chrome Azurol S to longer wavelengths (254). Cobalt(I1) has been shown to react with hydroxyzine dihydrochloride in dimethylformamide a t pH 4-6 to form a 2:l cobalt-to-ligand complex with absorbance maxima a t 615 and 695 nm (331). The complexation of copper(I1) with dithizone (3-mercapt~-l,5-diphenylformazone) in mixed solvents (348)and the use of mixed-ligand (tungsten and molybdenum) heteropoly complexes of arsenic and germanium (503) have been studied rather extensively. Urotropine is recommended as a buffer in the determination of rare earths with arsenazo I to ensure constant absorbance in the presence of small amounts of mineral acids (466). A study of the ultraviolet absorption of vanadate ion indicated the best sensitivity was obtained by measuring the absorbance at 266 nm in neutral solution (175). Less sensitive but stable measurements were obtained at 200 nm in solutions made basic with sodium carbonate or sodium hydroxide. A mathematical model has been used to obtain the equilibrium concentrations and absorption spectra of the various dissociation products of the yttriumhexamolybdate heteropoly anion (406). A carbon-13 NMR study of four azoresorcinols in organic solvents indicates that 4-(2-thiazolylazo)resorcinol has an azo structure while 4-(2-pyridylazo)resorcinol is present in a hydrazone-quinone form (220). The protonation constants of 2-methyl-3,3-dimethyl-,and 3-methyl-3-phenyldithiocarbazate have been determined from potentiometric and spectrophotometric data (210). New reagents or methods appearing since the last review include 4’-(pmethoxypheny1)-2,2’:6’,2’’-terpyridine lus sodium tetraphenylbonate for cobalt (518 nm; 3.3 X 10B) (333), 4-methyl-2-(2-hydroxy-l-naphthylazo)thiazole for copper (600 nm; 7.8 X lo4) (372), disodium 3-(2-pyridyl)-5,6-bis(2-(5furylsulfonic acid))-1,2,4-triazine for iron(I1) ( I % ) , 2,2’-dipyridyl-2-benzothiazolylhydrazonefor iron(I1) (427 nm, 3.4 x 10 ; 615 nm, 1.2 X lo4) (453), ethylenediaminetetramethylenephosphonic acid for iron(I1) (250 nm; 0.55-8.6 ppm) 110R
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
(38),N-substituted 4,6-diphenylpyridine-2-thiones for mercury in pharmaceuticals (314 nm) (366),bis(2-ethylhexyl) dithiophosphate for palladium (295 nm) (506),and Eriochrome Azurol B plus cetyltrimethylammonium or cetylpyridinium bromide for uranium(V1) (624 nm, 1.4 X lo5) (374). A method has been reported for determining alkali metals in protein-containing liquids such as blood serum as ternary complexes with 18-crown-6 ether and bromocresol green that are extractable with carbon tetrachloride (405 nm, 0-20 mM) (547). A ternary complex of tin(IV), o-nitrophenylfuorone, and cetyltrimethylammonium bromide (1:2:4) has been reported and used to determine tin in metals and alloys without a separation step (512 nm; 2.0 X lo5) (441). Iron(I1) and total iron have been determined with a flow-injection system by splitting the flow so that part of the sample passes through a Jones reductor and a delay coil rejoining the other stream behind the unreduced portion of the sample followed by treatment with 1,lO-phenanthroline which produces two peaks, the first being a measure of iron(II), the second of the total iron (118). Three new water-soluble porphines (202),five alkylthiazolylazo derivatives (135), five ortho-substituted 6,7-dihydroxyl-2-phenylbenzopyrylium chlorides (489),and six substituted hydrazidines (107) have been prepared and studied as potential chromophors for various metals. A procedure has been published for determining the platinumgroup metals using successive ethylene dichloride extractions with di(o-toly1)thiourea for the separation and determination of palladium (410 nm), zinc dithizonate for platinum (730 nm), di(o-toly1)thiourea after reduction with stannous chloride for rhodium (410 nm), and a chloroform-butanol extraction with mercaptobenzothiazole for iridium (410 nm) (379). Lastly, procedures have been published for determining the components in three-component alloys of antimony with arsenic, iron, manganese, or tin (463). Nonmetals. Relatively few investigations have focused on inorganic nonmetals since the last review. The hydrides of boron plus a number of group IV and V elements have been determined in binary gas mixtures by direct ultraviolet absorption (396). Various hydroborates such as BH4-, B3H8-, and BllH14- have been determined indirectly by their ability to reduce 12-molybdophosphate to the highly colored blue to 8 X 10“ M) (79). The closed borane form (725 nm; 1 X anions Bl0HlO2-and B12H122-do not react with the reagent. In a study of distillation procedures for the separation of cyanide, the procedure recommended by the American Public Health Association produced quantitative recoveries in the largest variety of samples (460). Titanium 2-((5-bromopyridyl)azo)-5-(N-propyl-N-sulfopropylamino)phenolis reduced to a highly sorbent red-purple complex by hydrogen peroxide in the pH range of 6.3-8.0 (539 nm; 5.7 X lo4) (310). A method for determining orthophosphate at pH 5 where many organphosphates are not rapidly hydrolyzed relies on the reduction of 12-molybdophosphate in the presence of zinc ion and measurement of the blue complex a t 850 nm (411). A new sample pretreatment procedure for determining arsenic in natural waters involves reduction to the hydride, separation, and reoxidation with iodine monochloride before determination by a standard heteropoly blue method (190). A formaldehyde-potassium phthalate buffer has been proposed as a thermally stable, nontoxic absorption medium to be used in place of tetrachloromercurate solution for absorption of sulfur dioxide (571). A mathematical model has been developed to determine the ion-association constants of various alkylpyridinium iodides in mixed ethanol solvents using spectrophotometric data obtained with different solvent compositions (357). Organic Constituents. The number of papers dealing with the determination of organic constituents remains high. Many of these are devoted to the use of a single reagent to determine one or more substances. Tetracyanoethylene has been used as a charge transfer reagent for thiophosphoryl compounds (61)and unstable tertiary phosphines, the latter first being converted to a thiooxide with elemental sulfur in chloroform (62). A similar reagent, 7,7,8,8-tetracyanoquinodimethane, has been applied to the determination of nitrogen bases (110), unsaturated compounds (346),and antihistamines (3). A number of drugs such as terbutaline, isoxsuprine, and vitamin B, have been determined through their ability to reduce 12-molybdophosphate to a heteropoly blue measured at 660-690 nm, depending on the particular drug (419).
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Phenothiazines have been determined in a similar manner using 12-molybdophosphoric acid (510-525 nm) (152), 12tungstophosphoric acid (510-540 nm) (383), and sodium vanadate (500-640 nm) (382). Phenothiazines also have been determined by oxidation with potassium bromate to yield colored radical cations (496-532 nm) (381) and phenols have been determined by oxidation with periodic acid (388). The yellow color (325 nm) produced by reaction with sodium carbonate is the basis of a simple method for reducing sugars such as glucose, galactose, sorbose, and maltose (446). pHydroxybenzoicacid hydrazide and 2-thiobarbituricacid have been used as color reagents for reducing sugars and fructose, respectively, in the concentration range of 1-30 ppm (490), and barbituric acid diazotized with primary aromatic amines was used to determine seven sulfonamide derivatives (36). The various tranquilizers and antidepressants, such as promazine, perphenazine, thioridazine, and impiramine, have been determined by their colored reaction product (550 nm) with chloranil in dioxane-ethanol solvent (201). p-Chloranil has been used to determine primary and secondary amines based on the formation of a colored monoamine-quinone (458). Methods utilizing periodate oxidation followed by addition of m-phenylenediamine (387) and dimethyl-m-phenylenediamine (386) for phenols and brucine (504) for tryptophan and thiols have been published. The red (500-520 nm) antipyrine dye formed by alkaline oxidation with potassium ferricyanide in the presence of 4-aminoantipyrine has been used for the determination of 8-hydroxyquinolineand its 5-chloro-7-iodo-, acid derivatives 5,7-diiodo-, and 8-hydroxy-7-iodo-5-sulfonic (34) and of terbutaline sulfate, amoxycillin, isoxsuprine hydrochloride, and salbutamol in pharmaceutical preparations (420). Reserpine, amidopyrine, diazepam, and other benzodiazepine tranquilizers have been determined by extraction into chloroform with alizarin violet 3B or alizarin brilliant violet R and measurement at 560 nm (305). Reagents used to determine groups of drugs include 1,4-benzoquinone chlorimine for quinozole, quiniofon, noradrenaline, phenylsalicylate, and others (17), sodium cobaltinitrite for phenothiazines (500-530 nm), tetracyclines (243-296 nm), and chloramphenicol (240 nm) (301), 3-a,P-dicarboxyethylrhodanine for novocaine, novocainamide, and anesthesia (321), and acetic acid plus p-(dimethy1amino)cinnamaldehyde for phenylbutazone (540 nm), oxyphenbutazone (525 nm), and sulfinpyrazine(540 nm) (111). The analytical parameters have been established for the determination of L-(+)-arginine, L-(-)-asparagine, and L-(+)-lysineusing o-diacetylbenzene (14). Vitamin B,, and y-aminobutyric acid interfered while vitamins B1, B Be, folic acid, and nicotinamide did not. Quinones such as p-$enzoquinone, tetrachloro-p-benzoquinone, and 1,4naphthoquinone have been determined by reaction with 3phenylthiazolidine-2,4-dionein ammoniacal solution (567). Unsaturated hydrocarbons and other unsaturated compounds with electron attracting substituents sufficiently removed from the site of unsaturation have been determined by epoxidation with rn-chloroperbenzoic acid in chloroform followed by addition of 2,4-dinitrobenzensulfonicacid and piperazine (512). Concentrations as low as 1 pmol/mL can be determined at the absorbance maximum of 390 nm. A simple method for determining trithiocarbonates and mercaptans (through trithiocarbonate formation by reaction with carbon disulfide) has been reported based on the formation of yellow 1:3 (metal-ligand) complexes with Bi3+that are extracted into chloroform for measurement at 420 nm (521). Equally simple methods for flavone 0- and flavone c-glycosides have been reported based on addition of aluminum chloride and boric acid-oxalic acid, respectively (143). Primary aromatic amines have been determined by their color reaction at pH 3 with N-alkylaminophenol plus iodine (426) and simple aldehydes have been determined with 4-amino-5-hydrazino-3mercapto-l,2,4-triazole in alkaline solution (24). An indirect method for determining carbonyl and sulfonyl chlorides has been published in which the sample is treated with a known excess of sodium azide in acetone-water solvent, the mixture is allowed to stand for 10 min, and the excess azide is measured after conversion to red FeNS2+ (448). Titanium 2-((5bromopyridy1)azo)-5-(N-propyl-N-sulfopropylamino) phenol has been used for the determination of glucose through its color-forming reaction (539 nm) with the hydrogen peroxide released on addition of glucose oxidase (310). Two methods have been described for the determination of proteins. One
method uses the reaction between the protein, pyrogallol red, and molybdenum(V1) to produce a colored product (127). In the case of albumin, the calibration plot was linear over the concentration range of 0-40 ppm when the absorbance measured at 600 nm. The second method, applied to immobilized proteins, is based on the reversible binding of Coomassie Blue G-250 (7). After incubation of the immobilized protein with the reagent in 10% acetic acid, the sample is rinsed, the bound dye freed with methanolic sodium hydroxide, and the absorbance measured at 605 nm. The catecholamines, adrenaline, noradrenaline, and ispropylnoradrenaline, have been determined by measuring of the absorbance at 485 nm of the products formed by oxidation with ceric sulfate (531). A similar approach using perchloric acid in nitromethane as the oxidizing agent was used to determine six similar phenothiazines (505-653 nm) (580). A variety of phenazone derivatives can be determined in low concentrations by direct ultraviolet spectrophotometric measurement after partial photolytic decomposition by irradiation at 254 nm (307). A number of substances have been determined with methods utilizing absorbance measurements made a t two different solution conditions. 1,2-Diphenolicdrugs such as adrenaline, isoprenaline, and methyldopa measured in pH 7 phosphate buffer with and without boric acid had a maximum absorbance difference at 292 nm (88). In a related study, the same drugs were determined by using the bathochromic shift of the absorbance maximum from about 280 to 287 nm and the concomitant increase in absorbance caused by addition of germanium dioxide (89). A third paper reports on the study of some 30 catechols that exhibit absorbance differences in 0.1 M hydrochloric acid and 0.1 M sodium borate (528). The optimum concentration range was typically 2-60 ppm, with iron(II1) and polyphenols such as hydroquinone and phloroglucinol interferrin . A six-point quadratic order of orthogonal polynomials was eveloped to determine concentrations of mefenamic and flufenamic acids using the absorbance differences at six wavelengths between 322 and 386 nm induced by changing the solution from 0.01 M HCl to 0.01 M NaOH (181). Lastly, the absorbance difference before and after addition of sodium dithionite has been used to determine the concentration of haptoglobin in hemolyzed serum (443). Despite the fact that most or anic substances have been determined by a variety of metho s, relatively few comparative studies have appeared since the last review. Three colorimetric methods (Lowry, et al., 1951; Bradford, 1976; and Buzun, 1982) were compared in terms of their sensitivities, precisions, accuracies, and analysis times (94). The older Lowry method had the poorest sensitivity and precision but the best accuracy and shortest analysis time. Thirteen procedures have been described for the colorimetric and fluorometric determination of amines, including ones selective for primary, secondary, and tertiary alkyl amines (206). Other methods that have been compared includes those for bile acids (294), essential oils (390),and 8-liproproteins (479). A kit for spectrophotometric determination of bile acids based on enzymatic dehydrogenation prior to measurement has been evaluated in terms of precision and for its ability to detect elevated bile concentrations in patients with liver disease (319). In some cases the kit method proved to be simpler and to give better results than the standard radioimmunoassay method. In a comparative study of the determination of barbituates, direct ultraviolet spectrophotometry and HPLC were equally sensitive and accurate when the concentrations were high, but HPLC was better at low concentrations (515). The determination of blood glucose using a flow-injection manifold incorporating a dialysis unit and wall-coated enzyme reactor was studied using spectrophotometric and chemiluminescence detection with the conclusion that chemiluminescence detection yielded better day-to-day precision and accuracy (549). A number of previously published methods have been studied, in most cases leading to improvements in either sensitivity, selectivity, or analysis time. A study of background correction techniques for the determination of ascorbic acid by direct ultraviolet absorption reported that the alkali treatment method was the best for the concentrations normally encountered in soft drinks (132). The spectral characteristics of oxy-, azidomethyl-,and cyanomethylhemoglobin have been recorded and discussed in terms of their application in the determination of hemoglobin (289). A similar study of the spectra of substances of the vitamin B6 group has been
d
d
ANALYTICAL CHEMISTRY, VOL. 58,
NO. 5,
APRIL 1986
111R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
made (293). Two papers have appeared that discuss the use of ultraviolet spectrophotometry in drug control: one dealing with the prediction of spectral behavior of drugs with phenothiazine chromophores (267) and the other with substituent and solvent effects on drugs with benzene chromophores (268). The amido black 10B method has been modified to enable the determination of proteins in the presence of high lipid concentration (224). Two studies of the Coomassie Brilliant Blue G-250 method for determining urinary proteins report that the color produced depends on the type of protein present (295,442).Establishing the optimum conditions has been the goal of several studies including the determination of pentose using indole in hydrochloric acid (122), hemoglobin using o-tolidine (240) and thiobarbituric acid (350),medazepam using eriochrome black T and tropaeolin OOO (43),pyruvic acid using hydroxylamine (74),and a-keto1 steroids using tetrazolium blue (252). The thiobarbituric acid method for determining glycosated hemoglobins was reported to compare well with a chromatographic method using BiO-Rex 70 (102). Matrix constituents have been the focus of attention in several papers including the effect of valproic acid on the determination of free fatty acids using the Duncombe method (80), the effect of salts, acids, bases, and buffer solutions on the color development of the cadmium-ninhydrin-amino acid reaction (84),the need for bichromatic blanking in the bromocresol purple method for determining albumin in plasma and serum samples from premature human infants (299),and the need for different calibration procedures in the bromocresol green method for determining serum albumin in lyophilized animal and human sera (509). Five enzymic methods (four colorimetric and one ultraviolet) for determining serum triglycerides were studied and compared to standard nonenzymic methods in terms of precision, accuracy, and linearity of the working curve (76). No significant difference in accuracy or precision was noted, but the enzymic methods generally could be performed more rapidly. New methods that have appeared since the last review include the determination of corticosteroid drugs based on the formation of their phenylhydrazones and subsequent charge-transfer complexation with either iodine or chloranil (W),proteins using pyrocatechol violet with molybdenum(V1) (680 nm) (128)and bicinchoninic acid (562 nm) (457), carboxyl com ounds using diethylanilinophosphite (242 nm; 1.4 X lo4) (149K y-cyclodextrin using bromocresol green (630 nm) (230), amoxycillin using imidazole and mercuric chloride (325 nm) (292),lignosulfonic acids in ore-dressing wastewater by dirrct ultraviolet absorption a t 282 nm after masking or removing iron(II1) (315),lipid hydroperoxides using a lecomethylene blue derivative in the presence of hemoglobin (666 nm) (349), and 2-oxoglutaric acid using 3-methyl-2-benzothiazolinone hydrazone in the presence of ferric chloride (410). The Coomassie Brilliant Blue G-250 method for cerebrospinal fluid protein has been adapted for use with a continuous-flow analyzer (142). Another paper reports the use of this reagent for determining up to 8 g of protein/L (380). Vitamin A has been determined by measuring the absorbance before and after its destruction by ultraviolet irradiation in the presence of benzoyl peroxide (234). A new method for the determination of hydroxamic acid has been reported in which the analyte is oxidized by iodine to produce nitrous acid which is used in a diazocoupling reaction to form a colored product (257). Low concentrations of dissolved proteins and the amino acids tryptophan and tyrosine have been determined based on their reaction with copper(I1) to produce a complex that reduces a molybdophosphate-molybdotungstate reagent to a heteropoly blue (534). Triglycerides in the concentration range of 400-4000 ppm have been determined by extraction with 2-propanol-heptane, saponification to release glycerol, oxidization of the glycerol with a known excess of periodate, and determination the excess periodate with 5,5-dimethyl1,3-cyclohexanediol-bisthiosemicarbazone (415 nm) (65). Dicyclohexylcarbodiimide has been suggested as a cleaving agent for pyridyl and pyrimidinyl compounds, leading to glutaconaldehyde and malonaldehyde, which then reacts with dimethylbarbituric acid to form highly absorbing products (73). A scheme for identifying and determining microgram quantities of 26 phenols has been reported, based on the colored products formed by the silver(1)-catalyzed oxidation with potassium peroxydisulfate (166). A solution to the common problem of determining proteins in the presence of 112R
e
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
tryptophan has been reported based on modification of the tryptophan with 2-hydroxy-5-nitrobenzyl bromide (304). Absorbance of the treated solution in the pH range 4-11 can be used to correct the protein absorbance at 280 nm. A rapid, sensitive, and accurate method for D-aminO acids has been reported in which the analyte is converted to an a-keto acid by D-amino acid oxidbase and determined as the corresponding hydrazone (495 nm) (334). Prostaglandins (100) and phenols (183) have been determined by postcolumn, reversed-phase HPLC detection, the former by ultraviolet absorption after oxidation with pyridinium dichromate and the latter after addition of a variety of chromophores. A mixture of sulfonated dichlorophenol, 4-aminoantipyrine, and imidazole has been reported to eliminate the interference of bilirubin in the enzyme-spectrophotometric determination of uric acid and triglycerides (156). The first photoacoustic spectra of polycyclic aromatic compounds isolated in vapordeposited, low-temperature matrixes have been reported (194). The ultraviolet spectra bands observed for matrix-isolated quinoline (in nitrogen) and 2,6-dimethylquinoline (in xenon) were 2- to 4-fold sharper than their room temperature counterparts, leading to detection limits of approximately 0.5-1.0 kg. Several new enzymatic methods have been reported. Phosphatidylglycerol in amniotic fluid was determined by addition of a lipase enzyme to produce glycerol, phosphorylation, and oxidation giving hydrogen peroxide, and measurement of the intense red chromogen of the peroxidasecatalyzed coupling of 4-aminoantipyrene with 2-hydroxy3,5-dichlorobenzenesulfonate(18). Serum triglycerides have been determined by measuring the absorbance of the product of complicated coupled-reaction schemes, the final step of which is reaction between titanium(I1) chloride and 4-(2pyridylazo)resorcino1(508 nm) (327),4-aminoantipyrine and N,N-diethyl-m-toluidine (540 nm) (498),and 4-aminoantiand potassium ferrocyanide pyrine N,N-dimethyl-m-toluidine (545 nm) (499). D- and L-2-chloropropionic acids have been determined in mixtures by addition of L- or ~L-2-chlorocarboxylic acid dehalogenase, reaction of the liberated chloride ion with mercuric thiocyanate and ferric potassium sulfate, and measurement of the absorbance at 460 nm (510). Lastly, a rapid and convenient method for determining aminopenicillins such as ampicillin, amoxycillin, and cyclacillin has been published based on their conversion to the corresponding piperazine-2,bdione derivative with a diethanolamine-zinc reagent followed by treatment with sodium hydroxide to yield a highly absorbing product (322 nm) (60). Simultaneous a n d Dual-Wavelength Analysis. By use of the simultaneous determination of chromium and manganese as an example, it has been demonstrated that the generalized standard addition method, which combines the multicomponent determination and standard addition concepts to eliminate interference and matrix effects, produces comparable results to the traditional multicomponent determination method (389). A least-squares computational method has been applied to the simultaneous determination of cobalt, nickel, copper, zinc, and cadmium using the absorbance of their colored products with 2-(5-bromo-2pyridylazo)-5-(diethylamino)phenol(95)and binary mixtures of rare earths have been determined by measuring the absorbance of their quaternary complexes with eriochrome azurol B, 5-nitro-l,lO-phenanthroline,and dodecyltrimethylammonium bromide at two wavelengths (628-638 nm; 1.67 X 105-1.95 X lo5) (474). The following organic substances have been determined in mixtures based on their direct ultraviolet absorption and subsequent solution of simultaneous equations: amodiaquine and primaquine a t 282 and 342 nm (180),sulfaguanidine and sulfadimidine at 240 and 259 nm (402),clopamide and pindalol at 233 and 264 nm (539),caffeine and sodium benzoate a t 223,230, and 238 nm (572),benzocaine and chlohexidine (573),acetylsalicyclic acid, phenacetin, and caffeine a t 223, 261, and 279.5 nm (69), and phenacetin, quinine, and caffeine a t 250, 273, and 332 nm (421). A computer-processed, least-squares method was used to resolve the individual ultraviolet spectral components of a complex spectrum and simultaneously determine acetylsalicyclic acid, phenacetin, and caffeine in a mixture (482). A similar approach has been applied to the determination of four ribonucleotides (AMP, CMP, GMP, and UMP) in a mixture (40). p-Acetylarsenazo has been used as the color-developing reagent for the determination of the light rare-earth elements
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
by dual wavelength measurements at 542 and 620 nm (557). The results correlated very well with those obtained using the chlorophosphonazo(II1) method. A dual wavelength, absorbance difference method has been reported for the simultaneous determination of scandium (626 and 656 nm) and any of the rare-earth elements (673 and 689.5 nm) using chlorophosphonazo as the color-forming reagent (164). Various antipyretic drugs have been determined by nitrosation and subsequent measurement of the absorbance of the reaction products in two different solvents. Differences in absorbance at 430 and 370 nm were used for paracetamol, 380 and 340 nm for oxyphenbutazone, and at 398 nm for salicylamide (5). Other substances that have been determined using the difference in absorbance at two wavelengths are 1,4-dien-3-one steroids in the presence of 4-en-3-one steroids (232 and 253 nm) (72),timolol in ophthalmic films containing berberine (252 and 281 nm) (556), and protein in skimmed milk (235 and 280 nm) (393). Derivative Spectrophotometry. The use of derivative techniques for the determination of inorganic constituents is rare, perhaps because there are many selective methods already in existence. Two reports of the determination of metals have appeared one for various rare earths using first, second, third, and fourth derivatives of the absorption spectra of their chloride salts (462)and the other for ruthenium and palladium using first- and second-derivative spectra of their 2-thiobarbituric acid complexes (325). A second-derivativemethod for nitrate in water is reported to be free of interference from organic matter and nitrite ion (451). Biguanide derivatives (234 nm) in pharmaceuticals (144); cinchocaine, oxyphenbutazone, phenylbutazone, and saccharin in pharmaceuticals (262); and salicylic acid in aspirin tablets (472) have been determined as single components by first-derivative, direct ultraviolet spectrophotometry. First-derivative spectra were used to eliminate formulation-matrix interferences in the simultaneous determination of phenobarbitone and acepifylline at 262 and 283 nm, caffeine and procaine at 282 and 306 nm, sulfamethoxazole and trimethoprim at 237 and 265 nm, and phenylbutazone and amidopyrine at 245 and 267 nm (261). Two papers have appeared in which three components were determined simultaneously using f i t derivatives of their ultraviolet spectra: antazoline, phenylephrine, and ephedrine in eye drops and acepifylline, phenobarbitone, and paperavine in suppositories (263); and anthracene, pyrene, and naphthalene in coal tars (543). A combination of first- and second-derivative spectrophotometry has been used to simultaneously determine various cephalosporins (113), phenylthiohydantoin derivatives of amino acids (279),and indomethacin, naproxen, and ibuprofen in pharmaceutical preparations (302). The number of papers reporting determinations based on the use of second-derivative spectra has increased markedly from the 2-year period covered in the previous review. Single-component determinations based on direct ultraviolet absorption have been reported for clonazepam (252-232 nm), diazepam (265-236 nm), and medazepam (256-235 nm) (I); chlordiazepoxide, diazepam, and oxazepam (2);various benzenoid drugs (4, 90); diphenhydramine (220-240 nm) and ephedrine (210-220 nm) (533); L-tryptophan (287 nm) and L-phenylalanine (257 nm) (574);oxyhemoglobin (578 nm) in plasma (418); and eugenol (268-287 nm), thymol (265-283 nm), and anethole (257-270 nm) in essential oils (260). Hemoglobin has been determined by conversion to its reduced form and relating the magnitude of the zero-order spectral shift of the reduced hemoglobin peak at 430 nm to the carboxyhemoglobin peak at 418 nm, determined by a secondderivative spectrum analysis technique, to the concentration (362). The alkaloids, atropine, hyoscine, and benztropine have been determined by second-derivative spectrophotometryafter extraction of their tetraphenylborate salts with 1,2-dichloroethane (179)as have sorbic and benzoic acid in fruit juices after extraction with chloroform (10). Second-derivative ultraviolet spectra over the 250-320 nm wavelength range have been used to identify a variety of alkyl and alicyclic ketones at the 5 ppm concentration level (314). Four papers have appeared in which second-derivative spectrophotometry has been used for the simultaneous determination of two components in a sample. They are the determination of norethisterone (240-260 nm) and ethinylestradiol(280-295 nm) (66), acetylsalilcylic and salicylic acids (250), heroin and morphine (276), and sinestrol(220-240 nm and 270-290 nm)
and octestrol (222-230 and 265-285 nm) (520). A method has been reported for determining neodymium holmium, erbium, and thulium in mixtures using third-derivative spectra of their complexes with thenoyltrifluoroacetone (394). Fourth-derivative ultraviolet spectra were used to simultaneously determine acetanilide and aniline in culture media (548). Reaction-Rate Analysis. Iron(II1) and copper(I1) in blood serum have been determined by measuring the rate of formation of green N,N-dimethyl-N’-(p-diphenylamine)-1,4benzoquinonediiminonium salt from p-aminodiphenylamine and N,N-dimethylaniline in the presence of the metal ions (96). Hydrogen peroxide was added to maintain the metals in their higher oxidation state. The reaction between nitroso-R salt and pentacyanoammineferrate(I1) is accelerated in the presence of mercury(II), silver(I), or gold(II1) and has been used to determine sub-partiper-millionconcentrationsof these metals (316). The reaction rate was determined by measuring the absorbance of the green product at 625 nm. The determination of manganese(VI1) and the simultaneous determination of manganese(VI1) and vanadium(V) have been reported based on the decrease in absorbance at 490 nm during their reaction with pyrogallol red over a fixed time interval (437). The constant signal method has been applied to the determination of sulfonamides based on a stopped-flow mixing procedure and the reaction with nitrite and N-(lnaphthy1)ethylenediamine (552).
PHYSICS Topics primarily related to the principles of measuring radiant energy, treatment of data, and instrumentation used in acquiring data are included in this section of the review. Optimization. Information theory has been used in simulation experiments designed to compare and evaluate curve-smoothing techniques (461). The conditions of optimizing the signal-to-noise ratio or for minimizing the systematic error are easily obtainable. An excellent general discussion of multivariate calibration has appeared and includes such topics as advantages of multivariate over conventional univariant calibration, direct vs. indirect calibration, and methods for detecting abnormal samples (332). A paper has appeared describing the principle of bi- and polychromatic blank value corrections and their applications in bilirubin, phosphate, and calcium determinations (541). The discussion and evaluation of data processing methods for use in the simultaneous determination of two or more components in mixtures has been topic of several papers (105,182,241,409). Two related papers describe and compare various methods for simultaneously determining two components in drug mixtures by direct ultraviolet spectrophotometry in favorable cases, when both components absorb strongly at all the measurement wavelengths (3631,and in unfavorable cases, when one component absorbs much less than the other at the measurement wavelengths (364). Multiwavelength first- and second-derivative spectra and matrix least-squares data processing to resolve mixtures of components with overlapping absorption spectra have been described and shown to yield greater selectivity and signal-to-noise ratios than single-wavelengthderivative spectra of mixtures of polynuclear aromatic hydrocarbons (480). A method using partial least-squares analysis in latent variables reportedly overcomes many of the limitations of ordinary multiple regression schemes with chemical systems of low spectral selectivity (355). The practical utility of the method was demonstrated for the simultaneous determination of copper, nickel, cobalt, iron, and palladium as their diethyldithiocarbamate complexes. Three papers have appeared that discuss how to go about selecting the best measurement wavelengths for use in simultaneous multicomponent determinations (98,124,492). A simplex approach to establishing the optimum conditions for an extraction-spectrophotometric determination has been described and tested with the cobalt(II)-1,3-dipheny1-5-(W-1,2,4-triazol-3-yl)formazan system (160). An established description of photoacoustic signal generation in liquids was used to analyze photoacoustic signal detection and predict the optimal geometrical conditions for a cylindrical, direct-coupling PAS cell (251). Errors. A blank correction factor has been developed for use in absorbance difference methods where the absorbance of the blank at the end of the reaction is less than its initial value (270). The problem of background signals in multiANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
113R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
component determinations using the linear additive model has been discussed, and two distinct solutions to the problem are proposed (353). The source of stray raidant energy and its effect on the accuracy of results obtained with spectrophotometers employing photomultiplier tube (109)and diode array detectors (545) have been reported. Two companion papers describe the use of data from both single- and double-beam spectrophotometers to interpret the sources of error in high precision, differential methods (158,159). Differential ultraviolet spectrophotometry has been proposed for studying temperature-induced changes in the absorption spectra of compounds (155). Finally, the effects of excess reagents whose absorption bands overlap that of the analyte have been shown to affect the observed molar absorptivities, distort the linear relation between absorbance and analyte concentration, and cause (in some cases) considerable analysis error (579). Precision a n d Accuracy. Eight benzenoid drugs, including ephedrine and atropine, had positive temperature coefficients of 0.06-0.33% A per degree at the wavelength minima between the vibrational bands of the fine structure in the zero order but negative coefficients of 0.60-1.12 and 0.7-1.2% A per degree in the second- and fourth-derivative amplitudes, respectively (87). The implications of these high temperatures coefficients on the accuracy and precision of derivative assay procedures were discussed. Concentration modulation used with picosecond lasers has been reported to be capable of markedly extending sensitivity limits in absorption spectrophotometry (274). An examination of the factors that determine the compatibility between chemical systems and instrumental characteristics has led to the development of a new basis for comparing sensitivities that is superior to the Sandell sensitivity factor (177). A mixture of neodymium and samarium has been proposed as a wavelength calibration standard (233)and a solution of cobalt ammonium sulfate in aqueous sulfuric acid is reported to be a suitable standard for checking the accuracy and linearity of response of a spectrophotometer (473). Stoichiometry a n d Physical Constants. The pK,’s of drugs such as ibuprofen (507) and of cr-santonin (538) have been determined, the former with a diode array spectrophotometer and the latter from absorbances at two or more wavelengths. Accurate partition coefficients of absorbing solutes in chloroform-aqueous ammonia have been obtained by measuring the absorbance of the aqueous layer, replenishing with fresh aqueous solvent, and measuring the absorbance after reequilibration (407). A new differential method for determining association constants, illustrated with 3 3 diethylselenocarbocyanine in ethanol, is described in another paper (524). Stability constants of metal complexes have been determined by using a least-squares algorithm in which the constant is refined by a numerical search method (illustrated with the copper-imidazole complex) ( 4 3 , a factor analysis of the absorption curve (illustrated with o,o’-dihydroxyphenylazo dye, solochrome violet, and 2-a-[ (2-hydroxyphenyl)azo]-aacetonitrile complexes of nickel) (392),and measurements at the isosbestic points (illustrated with the copper-2,2’-bipyridine-eriochrome cyanine R ternary complex) (581). In another paper, a mathematical modeling method was used to define the criteria for the limits of applicability of linear approximations for calculating stability constants from absorbance data obtained at a wavelength at which only the complex absorbs (208). The molar absorptivities of various carotenoids and chlorophylls in different solvents have been determined (542) and an addition to a large compilation of molar absorptivities and Ala1% values for proteins at selected wavelengths in the visible and ultraviolet spectral regions has appeared (246). I n s t r u m e n t a l Techniques. The usefulness of two- and three-wavelength methods is suppressing interferences and correcting nonzero base lines arising from turbidity in the sample has been discussed and illustrated for the determination of tryptophan and tyrosine in a mixture (56). The operating principle of three-wavelength spectrophotometry has been described and its advantages over the dual-wavelength technique are illustrated in the simultaneous determination of scandium and lanthanum oxides with 3-[ [7-[(4chloro-2-phosphonylphenyl)azo]-1,8-dihydroxy-3,6-disulfo-2naphthaleneyl] azo]- 1,5-naphthalenedisulfonicacid ( I 63). Ultraviolet difference spectrophotometry has been examined as means of studying drug binding parameters by means of 114R
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
determining the concentrations of free and bound ligands (344). A method for determining as little as 2% carboxyhemoglobin in the presence of other hemoglobins in fresh blood has been developed by using absorbance difference measurements at the isosbestic points for oxy-, carboxy- and reduced hemoglobin (447). Schemes for accomplishing oneand two-component determinations when Beer’s law is not obeyed have been developed and applied to the determination iodine and salicylic acid at 285 and 296 nm (527). A somewhat more general discussion of multicomponent determinations appeared in another report, with examples of applications in clinical, inorganic, and pharmaceutical chemistry (540). It has been demonstrated that the shape of absorption bands can be described by an adjustable Cauchy-Gauss product function and simple parameters measured on the zero- and second-order bands are theoretically related to the Cauchy percentage (323). Second-derivative spectra have proven quite useful as a means of characterizing and monitoring the formation and evolution of PVC (424). In a study of high-order derivative techniques for determining rare earths with dibenzoylmethane, acetylacetone, and thenoyltrifluoroacetone (TTA), third-derivative spectra of the TTA complexes produced the best results and the sensitivity ranged from 130 to 580 times better than that obtained using nonderivative spectra (395). The Newton-Raphson iteration method for solving mass-balance equations has been used in conjunction with absorption data and equilibrium constants to determine the concentration of substances in solution (281). A modified matrix approach has been described and used for the simultaneous determination of acetylsalicylic acid, phenacetin, and caffeine (563). Two papers dealing with the flow injection technique have appeared: the first describes a method for determining uranium at 578 nm with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol in which a tight coil of Teflon tubing proved to be the most efficient mixer (450),and the second describes a flow-injection cell coupled to a light-emitting-diode source and phototransistor detector for the determination of bismuth with Xylenol Orange (502). Calculations have indicated that Fourier transform visible spectroscopy should be capable of a sensitivity about 2 orders of magnitude better than that attainable with dispersive spectroscopy when using a photoacoustic cell detector (92). Surface area apparently plays an important role in determining the amplitude of photoacoustic signals as evidenced by the fact that a decrease in the particle size of potassium chromate and potassium ferricyanide led to an increase in the P A signal amplitude (91). This is in contrast with the behavior expected if reflectance properties of the sample material are important in determining the signal amplitude. Photoacoustic detection limits of polycyclic aromatic hydrocarbons and n-heterocycles of 50-500 ng have been achieved by isolating the substances in rare gas matrixes at 5-10 K (440). The use of impulse response measurements for signal recovery (245) and of differential techniques (320)in photoacoustic spectroscopy has been discussed. Data from a photoacoustic study of iron in calcium boroaluminate glasses revealed continuous changes in the symmetry of iron(II1) from tetrahedral to octahedral oxygen coordination and the colloidal nature of iron in the glass (475). The application of laser intracavity absorption and thermal lens calorimetry has been described for the determination of weak absorbers in dilute solution (178). Finally, a method has been reported for estimating the spectral features of both components in a two-component chromatographic peak recorded with a diode-array detector (518). The calculation relies on the assumption that the front of the fused peak consists of a single pure component and the spectrum of this component is used to calculate the concentration profile of the other component, from which the solution band for the spectrum of the second component can be determined. Instrument Components. A simple piezoelectric detector consisting of a ceramic wafer glued to a metal disk has been constructed and evaluated for use in photoacoustic spectroscopy (53). Coating silicon-silicon dioxide photodetectors with thin films (30 nm) of silver greatly decreases their sensitivity to radiation longer than 400 nm by reflecting that radiation (255). Gold fiis of the same thickness did not alter much the quantum efficiency of the detector toward visible radiation but reflected almost all of the near-infrared energy. An excellent paper has appeared describing the precautions that should be considered when designing data acquisition
’
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Table I. Spectrophotometric Methods for Inorganic Substances constituent
material
method or reagent [wavelength; molar absorptivity, sensitivity, or concentration range]
Chrome Azurol S, cetylpyridinium chloride [640; 1.25 X lo5] N-(2-acetamido)iminodiaceticacid [265; 9.1 X lo3] 1,3-bis[(2-pyridyl)methyleneamino]urea, alk. [430; 1.6 X lo4] KI adsorbent, Z~I(CN)~ [485-496; 0.3 mg/m3] Rhodamine S (CC14-MeEtCO) [570; 1.25-200 pg/5 mL ext.] 2-aminobenzoic acid, HC1 [310; 0.01-2 mM] blood plasma bis(2-ethylhexyl) phosphate (C6H5CH3)[585; 2.18 X lo5] 2,6-diamino-4-hydroxy-5-nitrosopyrimidine [370; 0.25-2.5 ppm] 2-(5’-ethyl-l’,3’,4’-thiadiazolyl-2’-azo)-4-methoxyphenol [0.30-2.21 ppm] low alloy steel SCN-, alk. crystal violet [545; 2.21 X lo5] water pyridine, aniline, acetic acid [485-496; 0.2 mg/m3] air C0Cl2 cyclohexane-1,3-dione bis(thiosemicarbazone).HCl [370; 1.2 X lo4] alloy steel Cr20,2resacetophenone oxime, Fe(NH4)&30&, pH 5.0 [450; 1.3 X lo4] 5,7-dibromo-8-quinolino1, pH 10 (CHC1,) [420; 6.80 X lo3] ores cu 1-(5-nitro-2-pyridy1)-3,5-diphenylformazan, Triton X 100 [630] body fluids l-(2-quinolylazo)-2,4,5-trihydroxybenzene [550; 2.54 X lo4] foodstuffs 2-(2-benzothiazolylazo)-4-methoxyphenol(CHCl,) [815; 1.47 X lo4] natural waters Fe bis(2-pyridyl)-N,N-bis[(8-quinolyl)amino]methane(CHC1,) [693; 1.71 X lo5] blood serum 2-[2-(3,5-dibromopyridyl)azo]-5-dimethylaminobenzoic acid (CHC1,) [615; 9.36 X A1 alloys Fe 1041 l-(2-quinolylazo)-2,4,5-trihydroxybenzene [510; 1.86 X lo4] foodstuffs tetrabromosalicylfluorone, cetylpyridinium ion [520; 1.30 X lo5] coal ash Ge 3-hydroxy-2-naphthaloylhydrazone, pH 3 [410; 0.5-3.5 pg of Hf/mL] Hf resacetophenone oxime, Fe(NH4)2(S04)2, pH 5.0 [540; 4.6 X lo3] 10,thoron in alk. acetone [480] blood serum Li resacetophenone oxime, Fe(NH4)2(S04)2, pH 5.0 [450; 1.1 X lo4] Mn04K2SzOB+ NaOH, autoclave at 121 “C for 30 min, H2S04,measd AA [220 and wastewater N(tota1) 240; 0.05-5 mg of NOfN/L] 2-[2-(3,5-dibromopyridyl)azo]-5-(dimethylamino)benzoic acid (CHCl,) [blue Ni coal fly ash complex measured] 3-(4-methoxyphenyl)-2-mercaptopropenoic acid (octanol) [415; 1.9 X lo4] steels measd abs., reduction with Zn, remeasd abs. [210; 5 2.0 pg of NO,--N/mL] soil NO; measd AA [223 and 232; 0.1-6.0 mg/L] river water perphenazine2HC1, H,PO4 [528; 0.2-7.8 ppm Os(VI), 0.1-5.2 ppm Os(VIII)] ores os I-, ethyl violet (C,H,) [618; 7.87 X lo4] semiconductors Pb 2-thiobarbituric acid [374; 1.0 x lo4] Pd 2-[(5-bromopyridyl)azo]-5-(diethylamino)phenol[550-580; (1.05-1.26) X lo5] rare earths (Y sub group) Chlorophosphonazo 111, aq-EtOH [655; (1.14-1.92) X lo5] cast iron rare earths tribromoarsenazo [630; lo5] rice benzohydroxamic acid [340-350; 4.5 X lo3] alloys Re thermocouple wire SCN-, Rhodamine 6G, gelatin [565; 1.3 X lo5] Rh 2-thiobarbituric acid [327; 1.04 X lo4] table wine H2S04 [210; 3 pg of S02/mL] resacetophenone oxime, Fe(NH4)2(S04)2, pH 5.0 [450; 4.5 X lo4] 3-hydroxy-2-naphthaloylhydrazone, pH 2.7 [430; 0.5-7.0 pg of Ti/mL] N-phenyllaurohydroxamic acid, phenylfluorone, isoamyl alc., HCl (CHCl,) [540; 2.33 X lo6] hydroxyethylidenediphosphonic acid, pH 1.5 [269; 3.82 x IO4] U V aluminate solns carminic acid, cetylpyridinium ion, pH 3.8 [570; 1.8 X lo4] 2-[2-(3,5-dibromopyridyl)azo]-5-dimethylaminobenzoic acid, aq-acetone [640; fuel oil 5.95 x 1041 ores 5,7-dibromo-8-quinolino, pH 2 [410] prochloroperazine bis(methanesulfonate),H3P04[529; 1.24 x lo4] steel Yb glycinethymol blue, cetylpyridinium ion, benzylthiourea, pH 8.5 [660, 53.0 wg/mLl Zn body fluids 1-(5-nitro-2-pyridyl)-3,5-diphenylformazan, Triton X 100 16301 pyridoxal-3-hydroxy-2-naphthaloylhydrazone, pH 2.7 [41$ 0.5-2.5 pg of Zr/mL] Zr A1
Bi Ca Cl2 c10, CNOco
dialysis fluid pharm. prep. water, drugs air
-
systems for use with photodiode array detectors (313). Numerous papers have appeared describing various types of cells including a reflective helical design that behaves as a multipath cell and extends the dynamic range of absorbance measurements (86),a total-reflection long capillary cell producing absorbances 2-8 times larger than that predicted by the linear cell length (133),a liquid-core optical fiber totalreflection cell for use in flow-injection analysis (130),a variable-path to 80 m) low-temperature (118-300 K) cell capable of withstanding pressures of 0-1 MPa (278),a flowthrough cell with a unique means of protecting the windows from contamination (455),a cell with several light inlet and exit locations corresponding to different path lengths (433), a U-shaped cell with numerous leading surfaces (slots) in the internal wall and at defined distances, into which suitably selected entrance and exit windows can be inserted (430),a cell using braided fibers to hold liquid samples (523),a flow
ref 417 146 93 37 566 161 173 218 16 569 37 391 200 154 488 452 508 116 226 452 15 168 200 501 200 203 228 209 184, 562 229 150
247 326 288, 537 291 285 486 215 324 283 200 168 162 367 26 227 154 151 243 488 168
cell for receiving successive liquid samples for measurement of absorbance or fluorescence (67),an optically transparent thin-layer electrochemical cell contained entirely within a standard quartz cuvet (429),and a photoacoustic detection cell for use at temperatures between 5 and 300 K (253). A cell has been designed for use in reaction rate studies that allows separate reactants to temperature equilibrate in the cell compartment of the spectrophotometer before being rapidly mixed (-5 s) with a siphon mixing tube (138). Lastly, a gas-driven stirrer motor has been used to rotate very small magnetic stirring bars coated with Teflon in square, 1-cm cuvettes (527). Spectrophotometers. Fewer new instruments have appeared during the period covered by this review than the periods covered by the two preceding reviews. The conversion to holographic gratings and on-line microprocessors or computers is virtually complete and most of the new instruments ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
115R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
Table 11. Spectrophotometric Methods for Organic Substances
constituent P-adrenergic blocking drugs albumin amines amines, prim. arom. amino acids aminoglycoside antibiotics apramycin aspartame y-carboxyglutamic acid catecholamines CC1, cephalosporins chloropromazine collagen corticosteroids debenzazepines diprophylline droperidol 17a-ethynyl steroids fatty acids (free) flavonoids flufenamic acid fluocinolide acetate furfural gentamicin 3a-hydroxy bile acids 7a-hydroxy bile acids kanamycin ketoses mefenamic acid meperidin methyldopa methyltestosterone metoclopramide metronidazole minocycline neomycin B niacinamide nicotinamide nikethamide noradrenaline orciprenaline peroxides phenazopyridine phenols phenothiazines @-phenylpyruvicacid piperazine piroxicam protein quinolinium oximes saccharin spermadine spermine sulbactam sulfonamides terbutaline tetrabutylammonium ion tetracyclines theobromine thiolactams thiols thiol substituted heterocyclic compds thiram residues tobramycin tryptophan vanillic acid ll6R
material
method or reagent [wavelength; molar absorptivity, sensitivity, or concentration range]
ref
tablets
AcH, 2,5-dichlorobenzoquinone [645-6901
259
blood serum
chrome azurol S, Brij-35, lactic acid [550; 3.1 X IO5] Crystal Violet, hexachloroantimonate, pH 8 (C6H&H3) [660] o-aminophenol, KIO3, pH 1.7 [520-530; 50-200 pg] Crystal Violet, hexachloroantimonate, pH 8 (C6H5CH3)[660] complexon 111, “,OH, AcOH, Acid Black S [575; 0.05-100 pg]
412 435 425 435
drugs blood
11
pharmaceut
Bromthymol blue (CHC1,) [430; 1-5 mM] 1,4-benzoquinone, pH 6.5 [480; 25 pg/mL] prot hydro1 4-diazobenzenesulfonic acid [530; 3.51 X lo3] pharmaceut NaOH, p-phenylenediamine, pH 7.4 [540; 0.04-0.07 mg] wastewater NaOH, EtOH, Hg(SCN),, Fe(II1) [460] injections ninhydrin, HzSO4 [458; 2.5-30 pg/mL] W(VI), pyrocatechol violet [36 ppm] Sirius Red F3BA, indir. meth. [l-50 pg] sodium bismuthate, oxalylhydrazide, Cu(I1) [610; 6 X lo3] tablets 2,2-diphenyl-l-picrylhydrazyl[520] NaOH (CHCI,) [278] MeOH [233 or 281.5; 0.5-4 mg % ] tablets sodium tert-butoxide, 1,3-dinitrobenzene [512; 5-25 pg/mL] membranes extn. with pentane, sepn. of phospholipids, Rhodamine 6 Zh in C&&15151 calendula tinc hydrolyze with H2S04[370; 2-25 pg/mL] capsules K3Fe(CN)6, NaOH [464; 2.9 X lo3] ointments isoniazid, MeOH [400; 5-30 pg/mL] H2C204,aniline [510; >20 pg] wastewater acetylacetone, HCHO serum enzymic reag. Enzabile [540] NADH, 7a-hydroxy steroid dehydrogenase, diaphorase, Nitro Blue Tetrazolium pharmaceut Bromothymol blue (CHClJ [430; 1-5 mM] phenol, acetone, H3B03,H2S04[568] capsules K3Fe(CN)6,NaOH [464; 1.9 X lo3] Bromocresol green (CHClJ [425; 2-10 pg/mL] pharmaceut vanillin [420; 0.12-1.44 mg] oxalyldihydrazide, MeOH [300; 2.16 X lo4] tablets dir. UV meas [304] tablets HCl [277] pharmaceut ZrC14, NaF, SDS, o-hydroxyhydroquinonephthalein[515; 0.5-4.0 pg/mL] chloranil, pH 910 [350; 4.69 X lo5] injections HC1 [261.5] Br,, I-, starch 1600; 0.08-0.4 mg] injections H2S04[263] vanillin [420; 0.085-1.854 mg] 3-methyl-2-benzothiazolone hydrazoneaHC1, FeC1, [478] polysorbate 60 I- 13601 2,6-dichloroquinone chlorimide, 2,6-dibromoquinone chlorimide, NaOAc [700; 2-25 pg/mL] tablets Crystal Violet, hexachloroantimonate, pH 8 (C6H5CH3)[660] pharmaceut Eriochrome Blue Black R (CHCl,) [525; 3-60 wg/mL] tablets eosin, poly(viny1 alc) [535-545; 0.5-14.0 pg/mL] p(dimethy1amino)benzaldehyde 1515-6451 urine [570; 8.4 X t lo4] A(III), 9-(2’-carboxyphenyl)-4,5-dibromo-2,3,7-trihydroxy-6-fluorone chloraniline acid, CHC13-i-PrOH [345; 1-10 pg/mL] tablets EtOH [258; 0.004-0.020 mg/mL] NaOH, NaCl, sodium citrate, Triton X 100, AgN03,dithizone [555; 0.2-4 pg/mL] HCl [1-36 pg/mL] Br,, I-, starch [600; 20-80 mg] Azure B, Na2HP04-citric acid (CHC13)[2.4 X lo3] soft drinks o-hydroxyhydroquinonephthalein,Cu(I1) [585; 3.0 X lo5] o-hydroxyhydroquinonephthalein,Cu(I1) [585, 7.0 X IO5] 1,2,4-triazole,pH 10 1326; 10.2 ~ g / m L ] pharmaceut NaOH 12581 7,7,8,8-tetracyanoquinodimethane, MeZSO-MEK [424-850; (4.20-10.5) X lo3] 3-methyl-2-benzothiazolone hydrazoneHC1, FeCI, [478] Fe(III), SCN- (CHCl,) [510; (0.4-8.0) X MI blood
p-N,N-dimethylphenylenediamine, Chloramine T (BuOH) [640] Br,, I-, starch [600; 50-400 mg]
Cu(II), PAR (CHCI3) [0.25-4.0 pg/mL] 2,2’-dithiobis(5-nitropyridine),pH 5.9 [480] 2,6-dichloroquinone-4-chlorimide [440 and 490; (4.03-10.23) X
grain pharmaceut infusions
CuC104.4MeCN, MeCN (CHC13)[420; 58 wg of thiram/mL] Bromothymol blue (CHCI,) [430; 1-5 mM] NaOH [280; 0.006-0.030 mg/mL] HCl, EtOH [260; 22-157 pg/mL]
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
MI
47 513 85
30 217 300 516 308 399 415 559 464 529 342 264 303 219 216 358 108
75 47 49 303 119 414 530 535 117 125 398 471 235 470 414 122 297 35 435 385 578 165 129 397 359 48 225 235 384 116 116 171 478 345 112 186 99 235 449 12 306 522 47 575 145
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
differ from their predecessors largely in terms of the level of sophistication of the software. Bausch and Lomb has introduced two low-priced spectrophotometers, the Spectronic 501 (visible range) and the Spectronic 601 (ultraviolet-visible range) (32). Both are single-beam instruments operating with spectral slit widths of 5 nm or less and are compatible with a diverse line of accessories. Beckman has introduced a new line of ultraviolet-visible spectrophotometers, the DU-50 series, which incorporates the modern stable beam technology found in the higher performance DU-7 and DU-8B instruments (33). The DU-20, available for vis only or UV-vis, is a simple nonscanning model for routine measurements. The DU-30, also available for either vis or UV-vis, is nonscanning but step programmable. The DU-40 and DU-50 are UV-vis range scanning instruments, with the latter model being step programmable as well. A wide choice of sampling accessories and IBM PC compatible software is available for all of the models. A research-grade UV-vis-near-IR instrument, the Bruins Omega 10,can scan the entire 800-190 nm wavelength range in 200 ms at 0.1 nm resolution (70). The instrument features automatic wavelength calibration and base line correction, a large sample compartment, and numerous accessories. LKB recently announced its NovaSpec model, a nonscanning low-cost,visible range instrument, and UltroSpec I1 model, an upgraded version of the original UltroSpec UVvis instrument (70). An automated, high-speed spectrophotometer (Chem-Stat) capable of measuring in the range of 340-600 nm has been marketed by Ocean Scientific (347). The instrument is designed for clinical applications and can sequentially measure up to 114 samples a t a rate of less than 1 s per sample. Perkin-Elmer has made two additions to its Lambda series of spectrophotometers: the Lambda 4 and the Lambda 9 (370). The Model 4 is a double-beam, scanning instrument for the UV-vis spectral region that is available in three versions: the 4A, which uses a simple keyboard and alphanumeric display; the 4B, which includes the features of the 4A plus a high-resolution graphics monitor for displaying spectra; and the 4C, which is interfaced to the powerful PE 7000 professional computer. The Lambda 9 is a research grade UV-vis-near-IR instrument covering the wavelength range from 185 to 3200 nm. Perkin-Elmer also has introduced a UV-vis range, diode array-detection instrument, the Model 3840 (369). In survey mode, a full-range spectrum can be obtained with 1.5-nm resolution and displayed on the monitor in less than 2 s. Scanning is slower in the high performance mode but resolutions from 0.25 to 8.0 nm can be selected. Also new are Pye Unicam’s 8650 and 8660 visible range spectrophotometers (422). These low-cost instruments can accommodate up to ten stored programs. The Model 8660 is a kinetics version that sells for slightly more than the Model 8650. Shimadzu has introduced the UV-160 (70) and UV-260 (445) UV-vis, double-beam, scanning spectrophotometers. The UV-160 can scan the entire 1100-200-nm range and display the spectrum of a CRT in only 25 s. The UV-260 is a programmable, research-grade instrument capable of taking difference spectra, and first- through fourth-derivative spectra. Varian has upgraded their DMS 80 and DMS 100 UV-vis spectrophotometers with a holographic grating and new powerful software, respectively (519), and Technicon has combined their AutoAnalyzer with an IBM PC computer to produce the Technicon GT pc system (491). A few papers have appeared in which the operation and performance characteristics of a commercial instrument are described, including the use of a Beckman DU-50 for protein and vitamin A determinations (45), a Gilford spectrophotometer coupled to an Apple IIe microcomputer for data acquisition and processing in enzyme kinetics studies (431), data processing with a Hitachi 150-20 spectrophotometer (242), Perkin-Elmer Lambda 5 and Lambda 7 instruments to obtain difference spectra of amino acids, derivative spectra of liver extracts, determine the sugar content of beer, and study the decomposition of crystal violet (526), and a Perkin-Elmer Lambda 3840 diode-array spectrophotometer as an HPLC detector (63). Noncommercial spectrophotometers that have been described include one in which the output from the photomultiplier is equivalent to an output of two times the frequency modulated signal created by a vibrating slit (IS),a computer-controlled rapid scanning spectrophotometer using
a dissector tube as the radiation detector (21), a near-UV-vis parallel-access instrument with microprocessor control for single and multicomponent determinations (41), a high-precision instrument for multicomponent determinations using a modulator consisting of a shutter and four-slotted diaphragm (328), a prototype instrument with single optical fibers and a white-light source for use in on-line measurements (188), a continuous photometric analyzer in which the light source and detector are in sealed tubes immersed directly in the sample solution (15.9, a system for making photon correlation measurements in the heterodyne mode (423), and a highly accurate dye-laser-based system for measuring the spectral transmittance of filters (427). The interest in diode arrays and similar devices as detectors remains high as evidenced by the appearance of numerous papers concerning their use. A two-dimensional spectrophotometer having a special raster resolution of 512 X 512 picture elements with 256 gray levels and a time resolution of 30 images per minute has been assembled (329). An optical-feedback system has been employed for the stabilization of a rapid-scanning spectrophotometer using a solid-state photodiode-array detector (404) and a dispersion element has been used with a polychromatic light source, flow cell, and photodiode-array detector to decrease absorbance errors and the occurrence of photochemical processes due to sample irradiation (497). Two papers have reported on the development of a Fourier transform spectrometer using self-scanning photodiode-array detectors, one employing a Michelson inteferometer with a tilted rather than moving mirror (19) and the other using a triangle commonpath interferometer with no moving parts (351). Two other Fourier transform instruments using Michelson interferometers have been designed to operate in the visible region (58, 494). A new type of single-beam photoacoustic spectrometer suitable for measuring the optical absorption of condensed powdered material (238) and a thermal lens spectrometer using a double-beam optical design with a single laser source for real-time monitoring situations, such as flow-injection or chromatographic analysis (213), hae been reported. Finally, a rather extensive discussion of instruments used in clinical analysis including the impact of microprocessors on those instruments, laboratory automation, and robotics has appeared (123). Special Application I n s t r u m e n t s a n d Accessories. A commercially available single-vial enzymic method for determining triglycerides has been successfully adapted for use on the KDA analyzer using a sample dispensing volume of 15 pL and detection at 505 nm (187), a microcomputer-controlled stopped-flow analyzer has been applied to the routing determination of albumin in serum using its reaction with bromocresol green or purple (266), a microcomputer-controlled dual-wavelength spectrophotometer has proven suitable for automated phytochrome assays (375), two photometric analyzer systems have been devised for the selective determination of hydrogen sulfide in gas streams based on its ultraviolet absorption (416),and a guided-wave spectroscopic sensor using fiber-optic components has been developed for measuring oxygen saturation of hemoglobin in situ (428). A variety of sugars have been determined after HPLC separation by heating with boric acid solution containing arginine and measuring the absorbance or fluorescence (444). An HPLC detection system that displays three-dimensional patterns of retention time, absorbance, and wavelength has been used to detect various glucosides in plant extracts (484). A UV-vis diode-array HPLC detector has been applied to the determination of polycyclic aromatic hydrocarbons isolated from the emissions of biomass gasifiers (97). The design, operation, and performance characteristics of several absorbance detectors for HPLC have been reported, including a unit capable of simultaneously detecting at 436 wavelengths throughout the ultraviolet and visible region (413),a multichannel photodiode-array unit that can record and display three-dimensional chromatograms (485), the Varian Polychrom 9060 multichannel, diode-array-based detector (9),and the stopped-flow wavelength-scanning system in the Varian Model 5560 HPLC (495, 496). Three reports of flow-through absorption cells have appeared: one designed for use in an HPLC detector (198), and the other two for use in a spectrophotometer (6, 141). A system for introducing sample between two air bubbles in the ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
117 R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY
flow manifold of a continuous-flowanalyzer has been described and evaluated for the spectrophotometric determination of ammonia, phosphate, and chromium(V1) (365),and a microcomputer-controlled flow-injectionanalyzer has been evaluated for the determination of iron(II1) with ammonium thiocyanate and ascorbic acid with 2,6-dichlorophenolindophenol(265). The excellent versatility of the new microprocessor-controlled spectrophotometers has greatly diminished the need for specialized accessories and techniques for acquiring reaction-rate data (140). A programmable analog-to-digital converter unit has been adapted for use with the Perkin-Elmer 450 double-beam recording spectrophotometer (137). Accelerated-flow profiles (velocities of 2-13 m/s) in conjunction with the method of integrating the observed signal for continuous flow have been used to measure rapid rates of reactions in solution with a pulsed-flow instrument employing a high-resolution digital-positioning syringe ram (212). A dual-beam reflection spectrophotometer has been developed that is capable of measuring diffuse only or combined diffuse and direct reflected light (8). In other papers, the design and construction of an absolute spectral reflectance attachment capable of measurements in the 185-850 nm wavelength range is described (211),and a cell and new arrangements for simultaneous photoacoustic transmittance and/or reflectance measurements were tested to gain more information concerning excitation energy transfer during a single sample mounting (456). A highly accurate and sensitive rapid-scanning spectrophotometer has been described that can accumulate spectra and simultaneous kinetic data in either the transmission or reflection mode (273). Another rapid-scanning instrument uses a special fiber optic spectroelectrochemical cell that enables both spectrophotometric and coulometric curves to be recorded for a linear or stepped sweep of the electrode potential (275). The instrument was used to study the kinetics and mechanisms of electrode processes of chlorpromazine and trifluoroperazine. In an evaluation of a vidicon and a silicon photodiode array as multichannel image detectors for UV-vis absorption spectroelectrochemical measurements both performed well but the diode array produced twice the spectral resolution and dynamic absorbance range of the vidicon detector (131). A compact, differential amplifier attachment has been developed enabling first- and second-derivative spectra to be recorded directly with a Specord UV-vis spectrophotometer (271). A simple instrument operating on two different wavelengths has been designed to compensate for turbidity in the sample solution for routine analysis (553). Visible absorption spectra (350-650 nm) of various hemoglobins electrofocused in polyacrylamide tube gels have been recorded by use of a diode-array rapid-scan spectrophotometer (298). A method for calorimetric absorption spectroscopy is claimed, wherein a cooled sample a t 0.3-1.5 K is irradiated with a measuring light pulse and the absorbance at a specific wavelength is measured as a function of the heating of the sample (42). Finally, an inexpensive interface for a DEC LSI-11/2 minicomputer has been constructed for the acquisition of noise power spectra (551).
APPLICATIONS Software Development. The characteristics and applications of two general software packages for instrument control, data acquisition, and data manipulation have been reported (170, 356), along with an interface to an Apple I1 microcomputer for continuous digital recording and storage of spectra obtained by photon counting techniques (546). A distributed microcomputer network system has been developed for central control of automated spectroscopy equipment in a large laboratory (476,477)and a Hewlett-Packard 9825 desktop computer has been used to acquire and analyze data for 50-80 determinations from an H P 8450 UV-vis spectrophotometer (239). Algorithms have been developed for determining several components in a mixture when their absorption bands are overlapped by background absorption (20, 153). Other algorithms have been written to determine individual components in a mixture when the spectra overlap (196,136,558,564),deconvolute overlapping peaks (220,408), and optimize the wavelength selection in multicomponent determinations (373,550). The effectiveness of digital filters a t different data densities has been evaluated (106). Algor118R
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
ithms for calculating derivative spectra from recorded zeroorder data have been described (139,183,249)as well as those for determining acidity constants of dibasic acids (172). The improper use of digital signal processors has been discussed, particularly in regard to the types of errors that can occur and their avoidance in the observed absorption spectrum and the Fourier transform power spectrum (493). Methods of Analysis. Despite the rapid development of HPLC and its use in determining a wide variety of organic compounds, the applications of spectrophotometry continue to be extensive. This is due in part to the high quality of the current spectrophotometers along with their automated features and powerful software. The chemistry and physics sections of the review survey the recent developments in methodology. This section, comprised of Tables I and 11, attempts to note the many spectrophotometeric methods used to determine specific constituents in both real and synthetic samples. Given the limited format of the tables, it is not feasible to cite unique sample treatment procedures, tolerances to diverse constituents, and other noteworthy features of the methods. LITERATURE CITED (1) Abdel-Hamid, M. E.; AbdeCKhalek, M. M.; Mahrous, M. S. Anal. Lett. 1984, 17(B12), 1353-71. (2) Abdel-Hamid, M.; Korany, M. A. T.; Bedair, M. Acta Pharm. Jugosl. 1984, 34(3), 183-90; Chem. Abstr. 102, 100862a. (3) AbdeCKhalek, M. M.; Abdel-Hamid, M. E.; Mahrous, M. S. j . Assoc. Off. Anal. Chem. 1985, 68(5), 1057-9. (4) Abdel-Hamid, M. E.; Mahrous, M. S.; AbdeCSalam, M. A. Anal. Lett. 1985, 18(B7), 781-92. (5) Abou El Kheir, A.; Belal, S.; El Shanwani, A. Pharmazie 1985, 40(1), 62; Chem. Abstr. 102, 172754q. (6) Adkinson, J. T.; Evans, J. C. Anal. Chem. 1983, 55(14), 2450-1. (7) Ahmad, H.; Saleemuddl, M. Anal. Biochem. 1985, 148(2), 533-41. (8) Akiyama, 0. Ger. Offen. DE 3,311,954 (Cl.GOIN21/55), 01 Mar 1984, JP Appl. 82/151,046, 30 Aug 1982; 24 pp. (9) Alfredson, T.; Sheehan, T. A m . Lab. (Falrfieid, Conn.) 1985, 17(8), 40, 43-4, 46, 48, 51-4. (10) Almela, L.; Lopez-Roca, J. M. Sci. Aliments 1984, 4(1), 37-44; Chem. Absfr. 100, 2079672. (1 1) Alykov, N. M. Antibiotiki (Moscow) 1984, 29(5), 336-8; Chem. Abstr. 101, 65395f. 12) Anisimov, A. V.; Panov, S. M.; Viktorova, E. A. Zh. Anal. Khim. 1984, 39(12), 2248-50; Chem. Abstr. 102, 89424m. 13) Anritsu Electric Co., Ltd. Jpn. Tokkyo Koho JP 59 10,464 [84 10,4841 (CI. GOlJ3/04), 09 Mar 1984, Appl 76/33,095, 27 Mar 1976, 9 pp. 14) Antoniazzi, E. M. M.; Vinade, M. E. do Canto Cienc. Nat. ( S t . Maria, Bra.?.) 1982, 4 , 37-48; Chem. Abstr. 100, 56900~. 15) Antonovich, V. P.; Suvorova, E. N.; Golik, N. N.; Nazarenko, V. A. Zh. Anal. Khim. 1985, 40(5), 834-9; Chem. Abstr. 103, 152794~. 16) Arias, J. J.; Perez Trujillo, J. P.; Reyes, J. P.; Sosa, 2.; Garcia Montelongo, F. Qulm. Anal. (Barcelona) 1984, 3(3), 211-18; Chem. Absfr. 102, 178299s. 17) Artemchenko, S. S.; Petrenko, V. V.; Zhovna, N. P.; Tsilinko, V. A. Zh. Anal. Khim. 1985, 40(4), 744-6; Chem. Abstr. 103, 27392m. (18) Artiss, J. D.; McGowan, M. W.; Strandbergh, D. R.; Epstein, E.; Zak, B. Ciin. Chem. (Winston-Salem, N . C . ) 1984, 30(4), 534-7. (19) Aryamanya-Mugisha, H.; Williams, R. R. Appi. Spectrosc. 1985, 39(4), 693-7. (20) Aryutkina, N. L.; Vasil'ev, A. F. Zavod. Lab. 1983, 49(10), 53-6; Chem. Abstr. 99 224404s. (21) Astaf'ev, P. N.: Slavnyi, V. A. Z h . Anal. Khim. 1984, 39(2), 366-70; Chem. Abstr. 100, 150193n. (22) Asuero, A. G.; Navas, M. J.; Jimenez-Trillo, J. L. Microchem. J . 1985, 31(1), 81-93. (23) Atkins, C. E.; Park, S. E.; Blaszak, J. A,; McMillin, D. R. Inorg. Chem. 1984, 23(5), 569-72. (24) Avigad, G. Anal. Biochem. 1983, 134(2), 499-504. (25) Ayad, M. M.; Belal, S.; Ei Adl, S. M.; AI Kheir, A. A. Analyst (London) 1984, 109(11), 1417-22. (26) Babenko, N. L.; Blokh, M. Sh.; Busev, A. I. Kornpleksn. Ispol'z. Miner. Syr'ya 1983, (9), 22-6; Chem. Abstr. 100, 79022~. (27) Balasubramanian, D. Biosci. Rep. 1983, 3(11), 981-94. (28) Barbina, T. M.; Podchainova, V. N. Z h . Anal. Khim. 1983, 38(7), 12229; Chem. Absfr. 99, 205176~. (29) Basargin, N. N.; Kafarova, A. A. Zavod. Lab. 1984, 50(1), 14-17; Chem. Abstr. 101, 2215409. (30) Basyoni Salem, F. J . Pharm. Be@. 1985, 40(3), 185-90; Chem. Abstr. 103, 129175k. (31) Baudais, F. L.; Buijs, H. A m . Lab. (Farifleid, Conn.) 1985, 77(2), 31-2. 35-6, 38, 40-1. (32) Bausch & Lomb, Bulletin 33-6199, 1984. (33) Beckman Instruments, Inc., Bulletin 7761, 1984; Bulletin 7863, 1985. (34) Belal, F. Taianta 1984, 31(8), 848-50. (35) Belal, F.; Metwally, M. El-Sayed Anal. Lett. 1984, 77(B14), 1637-46. (36) Belal, S.; Soliman, A. S.; Bedair, M. J . Drug Res. 1983, 74(1-2), 195-201. (37) Belyakov, A. A,; Kunilova, L. V. Gig. Tr. Prof. Zaboi. 1985, (4), 53-5; Chem. Abstr. 102* 208492~. (38) Bermejo Barrera, A,; Gomez Doval. M. A,; Bermejo Martinez, F. Acta Quim. Compostelana 1982, 6(3), 134-40; Chem. Abstr. 100, 131602d. I
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (39) Bermejo Barrera, A.; Luaces Pazos, M. C.; Bermejo Martinez, F. Acta Quim. Compostelana 1983, 7(4), 108-15; Chem. Abstr. 102, 124688~. (40) Besson. J. E.; Veillas, G.; Radisson, J. Arch. Int. Physiol. Biochlm. 1983, 91(4), 293-6 Chem. Abstr. 100, 2059592. (41) Bettens, L. Report 1982, CENTEXBEL-TN-16; Order No. PB84-146414, 47 pp.; Chem. Abstr. 101, 65034n. (42) Bimberg, D. H.; Bubenzer, A.; Dransfeld, K. F. K.; Hunklinger, S. U S . US 4,429,999 (Cl. 356-432; G01N21/00), 07 Feb 1984, Appi. 278,181, 22 Jun 1981; 9 pp. (43) Blazsek-Bodo, A.; Kiss, I.; Jozsa, J. Farmacia (Bucharest) 1985, 33(1), 15-21; Chem. Abstr. 103, 110018q. (44) Boisde, G.; Perez, J. J. Proc. SPIE-Int. SOC. Opt. Eng. 1984, 514(Conf. Proc. OFS '84, Int. Conf. Opt. Fiber Sens. 2nd), 227-31. (45) Boland, M. D.; Scott, M. J. Am. Lab. (FairfieM, Conn.) 1985, 17(3), 68, 70-5. (46) Boltz, D. F.; Meilon, M. G. Anal. Chem. 1984, 36, 256R; 1986, 38, 317R; 1988, 40, 255R; 1970, 42, 152R; 1972, 44, 300R; 1974, 46, 227R; 1978, 4 8 , 216R. (47) Bonchev, P.; Papazova, P. Konfino, M.; Dimova, D. Mikrochlm. Acta 1984, 3(5-6), 459-65. (48) Boratynski, J. Anal. Biochem. 1985, 148(1), 213-19. (49) Boratynski, J. Anal. Blochem. 1984, 137(2), 528-32. (50) Bouche, R. Labo-Pharma-Probl. Tech. 1983, 336, 848-53; Chem. Abstr. 100 126948s. (51) Bowmaker, J. K. Vision Res. 1984, 24(11). 1641-50. (52) Braslavsky, S. E. NATO ASI Ser., Ser. A 1985, 85(Primary Photo-Processes Biol. Med.), 147-58. (53) Breuer, H. D. Photoacoust. Eff.: Princ. Appl., R o c . Int. Conf., 1st 1981 1984, 115-28. (54) Brisset, J. L. Analusis 1983, 11(5), 203-15; Chem. Abstr. 99, 224190~. (55) Brisset, J. L. Bull. Union Physiclens 1983, 78(659), 373-83; Chem. Abstr. 100, 1288982. (56) Bruna Garcia, J. M. Tec. Lab. 1984, 9(119). 458-83; Chem. Abstr. 103, 4 7 5 8 3 ~ . (57) Burke, R. W.; Mavrodineanu, R. National Bureau of Standards Special Publication, No. 260-81, 1983; 128 pp. (58) Burton, N. J.; Parker, T. J. InfraredPhys. 1984, 24(2-3), 291-5. (59) Butler, L. R. P.; Laaua, K.; Strasheim, A. Pure Appl. Chem. 1985, .. 57(10), 1453-90. (60) Buur, A.; Bundgaard, H. Arch. Pharm. Cheml, Scl. Ed. 1983, 11(3), 91-9; Chem. Abstr. 100, 26057g. (61) Bystryakov, V. P. Deposited Doc. 1982, VINITI 3676-83, 115-18; Chem. Abstr. 101, 239620t. (62) Bystryakov, V. P.; Obtemperanskaya, S. 1. Vestn. Mosk. Unlv., Ser. 2: Khim. 1984, 25(3), 319; Chem. Abstr. 101, 122319k. (63) Cahill, J.; Retzik, M. A m . Lab. (Fairfield, Conn.) 1984, 16(11), 47-52, 54-5. (64) Cai, R.; Liu, D.; Yu, X.; Zeng, Y. Kexue Tongbao (Foreign Lang. Ed.) 1984, 29(10), 1348-51; Chem. Abstr. 102, 19702211. (65) Callejon Mochon, M.; Munoz Leyva, J. A. Clin. Chim. Acta 1984, 142(21. 281-5. (66) Cao:'Y.; Zhang, J. Yaowu FenxiZazhl 1984, 4(1), 31-4; Chem. Abstr. 100. 145074~. (67) Carey, G. A,; Hydo, S. J. Can. CA 1,189,354 (Cl. GOlH21/05), 25 Jun 1985. US Appl. 378,598, 17 May 1982; 17 pp. 4th 1982 (68) Cermakova, L. Surfactants Solution, [ Proc. Int. Symp 1984. (69) Cha, J.; Wana. Y.; Liu. Y. Yivao Gonave -. 1985, 16(2). 73-7; Chem. Abstr. 102, 191253s. (70) Chem. Eng. News 1984, 62(12), 31-85; 1985, 63(10), 34-46. (71) Chen, D.; Liu, X. Fenxi Huaxue 1983, 11(8), 617-19; Chem. Abstr. 100, 61012k. (72) Chen, J. Fenxi Huaxue 1983, 11(10), 721-5; Chem. Abstr. 100, 132666q. (73) Chen, S. C. Anal. Chem. 1985, 57(7), 1461-4. (74) Choi, Y. S.; Jo, K. Y.; Seok, K. S. Yakhak Hoechi 1985, 29(3), 117-23; Chem. Abstr. 103, 156662e. (75) Christiansen, C.; Belsnes, K. Proc. Int. Symp . Bile Acids Hepatobiliary Gastrointest. Dls., 1st 1983 1984, 37-43. (76) Ciuti, R.; Lisi, M. Lab (Milan) 1983, 10(3), 263-7; Chem. Abstr. 99, 172194b. (77) Clydesdale, F. M. Food Anal. 1984, 1, 95-150. (78) Cogan, E. 8. LC, Liq. Chromatogr. HPLC Mag. 1984, 2(6), 470-2. (79) Colombier, M.; Musset, P.; Vigot-Vieillard, C.; Mongeot, H. Analusis 1984, 12(5), 269-72; Chem. Abstr. 102, 55306). (80) Coude, F. X.; Grimber, G. Clin. Chem. (Winston-Salem, N . C . ) 1985, 31(6), 1101. (81) Crummett, W. 8. Anal. Chem. 1986, 38, 404R. (82) Crummett, W. B.; Hummel, R. A. Anal. Chem. 1988, 4 0 , 330R; 1970, 42, 239R. (83) Dakln, J. P. Anal. Proc. (London) 1985, 22(7), 214-17. (84) D'Anielio, A.; D'Onofrio, G.; Pischetoia, M.; Strazzulo, L. Anal. Biochem. 1985. 14412). 610-11. (85) Danielson,'N. 0:; Wu, Y. P.; Morgan, D. K.; Glajch, J. L. Anal. Chem. 1985, 57(1), 185-8. (86) Dasgupta, P. K. Anal. Chem. 1984, 56(8), 1401-3. (87) Davidson, A. G. Ana/yst (London) 1983, 108(1287), 728-32. (88) Davidson, A. G. J . Pharm. Biomed. Anal. 1984, 2(1), 45-52. (89) Davidson, A. G. J . Pharm. Scl. 1984, 73(11), 1582-4. (90) Davidson, A. G.; Hassan, S. M. J . Pharm. Sci. 1984, 73(3), 413-16. (91) Davidson, R. S.; King, D. Anal. Chem. 1984, 56(8), 1409-11. (92) Debarre, D.; Boccara, A. C.; Fournier, D. Photoacoust. Eff.: Prim. Appl., Proc. Int. Conf., 1st 1981 1984, 147-53. (93) De la Rosa, F. J. Barragan; Gomez Arlza, J. L.; Pino, F. Mikrochmim. Acta 1984, l(3-4), 171-82. ~
.I,
(94) Demlrevska-Kepova, K.; Pencheva, N. Fizlol. Rast. (Sofia) 1985, 11(1), 94-104; Chem. Abstr. 103, 156684g. (95) Deng, I.; Gao, J.; Zhang, M. FenziKexue Yu Huaxue Yanjiu 1983, 3(4), 51-6; Chem. Abstr. 100, 95744r. (96) Denkl Ka aku Kelkl Co., Ltd. Jpn. Kokai Tokkyo Koho JP 58,174,834 [83,174,834 (CI. GOIN21/75), 13 Oct 1983, Appl. 82/58,735, 08 Apr 1962; 5 pp. (97) Desilets, D. J.; Kissinger, P. T.; Lytie, F. E.: Horne, M. A,; Ludwiczak, M. S.; Jacko, R. B. Environ. Sci. Techno/. 1984, 18(5), 386-91. (98) DiTusa, M. R.; Schiit, A. A. J. Chem. Educ. 1985, 62(6), 541-2. (99) Divakar, T. E.; Prasad, U. V.; Sastry, C. S. P. Indian Drugs 1985, 22(8), 328-9; Chem. Abstr. 103, 166226~. (100) Doehl, J.; Greibrokk, T. J. Chromatogr. 1983, 282, 435-42. (101) Doian, J. W.; Berry, V. V. LC, Liq. Chromatogr. HPLC Mag. 1984, 2(6),439-40, 442-4. (102) Dosheva, I.Sci. Works Higher Med. Inst.-Pleven 1984, 6(2), 31-3. (103) Drliie, M.; Ezergalie, I.; Putnins, J. Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1983, (5), 610-13; Chem. Abstr. 99, 224310h. (104) Drille, M.; Putnins, J.; Ezergaile, I.Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1983, (5), 604-9; Chem. Abstr. 99, 224309q. (105) Dubasov, Yu. V.; Khramov, N. N. Radiokhimiya 1985, 27(3), 376-8; Chem. Abstr. 103, 115254~. (106) Dubrovkin, I . M. Deposited Doc. 1982, VINITI 5740-82, 16 pp; Chem. Abstr. 100, 131549s. (107) Dudareva, G. N.; Dolgorev, A. V.; Kitaev, Yu. P.; Buzykin, B. I.; Sysoeva, L. P. Zh. Anal. Khim. 1984, 39(7), 1285-91; Chem. Abstr. 101, 22 1519g. (108) Dworsky, E.; Cornellussen, L.; Wold, K.; Krutnes, M. B. Proc. Int. Symp. Bile Acids Hepatobiliary Gastrointest. Dls ., 1st 1983 1984, 25-36. (109) Eifler, K. J.; Sharpe, M. R. Laborpraxis 1984, 8(11), 1178-80, 1182-3; Chem. Abstr. 102,' 105175~. 10) El-Kafrawi, A. E.; Obtemperanskaya, S. I.Deposited Doc. 1982, VINIT1 3676-83, 204-6; Chem. Abstr. 101, 239602~. 11) El-Kommos, M. E. Analyst (London) 1983, 108(1290), 1144-7. 12) El-Yazbi, F. A.; Abdel-Hay, M. H.; Korany, M. A. Farmaco, Ed. f r a t . 1985, 40(2), 50-7; Chem. Abstr. 102, 154873~. 13) El-Yazbi, F. A.; Barary, M. H. Anal. Lett. 1985, 18(B5), 629-40. 14) Ensor, D. D.; Young, J. P.; Haire, R. G.; Peterson, J. R. Rev. Inorg. Chem. 1983, 5(4), 383-406. 15) Epsteln, M. S.; Winefordner, J. D. Prog. Anal. At. Spectrosc. 1984, 7(1), 67-137. 16) Escobar, R.; Can0 Pavon, J. M. Analyst (London) 1983, 108(1288), 821-6. 17) Fabayo, A. B.; Grudzinski, S. K. Acta Pol. Pharm. 1985, 42(1), 49-54; Chem. Abstr. 103, 129161~. (118) Faizuiiah, A. T.; Townshend, A. Anal. Chim. Acta 1985, 167, 225-31. (119) Farsam, H.; Nadjari-Moghaddam, M. R. J . Pharm. Biomed. Anal. 1984. 213-4). 543-7. >- - .(12O)-Fedorov, L. A. Z h . Anal. Khim. 1985, 40(1), 29-35; Chem. Abstr. 102, 159609b. (121) Fell, A. F.; Clark, B. J.; Scott, H. P. J . Pharm. Biomed. Anal. 1983, 1141. 557-72. (122j 'Fernandez de Arcuri, B.; Fernandez de Recondo, M. E.; Rodriquez Montelongo, L.; Recondo, E. F. An. Asoc. Quim. Argent. 1984, 72(4), 379-89; Chem. Abstr. 101, 203656~. (123) Franklin, M. L. Clin. Biochem. 1984, 3 , 153-214. (124) Frans, S. D.; Harris, J. M. Anal. Chem. 1985, 57(13), 2680-4. (125) Fujita, Y.; Mori, I.; Kitano, S. Chem. Pharm. Bull. 1983, 31(11), 4016-21. (126) Fujita, Y.; Mori, I.; Kitano, S.;Kamada, Y. Bunseki Kagaku 1984, 33(3), E103-EIO6; Chem. Abstr. 100, 2 0 2 8 2 9 ~ . (127) Fujita, Y.; Mori, 1.; Kitano, S. Bunseki Kagaku 1983, 32(12), E379E386; Chem. Abstr. 100, 82260e. (128) Fujita, Y.; Mori, I.; Kitano, S. Chem. Pharm. Bull. 1984, 32(10), 4 161-4. Kitano, S.; Koshiyama, Y. Chem. Pharm. Bull. (129) Fujita, Y.; Mori, I.; 1985, 33(1), 242-8. (130) Fujiwara, K.; Fuwa, K. Anal. Chem. 1985, 57(6), 1012-16. (131) Fultz, M. L.; Durst, R. A. Talanta 1983, 30(12), 933-9. (132) Fung, Y. S.; Luk, S. F. Analyst (London) 1985, 110(2), 201-4. (133) Fuwa, K.; Lei, W.; Fujiwara, K. Anal. Chem. 1984, 56(9), 1640-4. (134) Ganno, S. Kagaku, Zokan (Kyoto) 1984, (102), 3-12; Chem. Abstr. 101, 509132. (135) Gao, J.; Chen, T.; Gu, G.; Llu, X.; Hui, F.; Huang, Y. Huaxue Shui 1984, 6(4), 199-202; Chem. Absh. 101, 221500~. (136) Gao, J.; Deng, Y.; Zhang, M. Gaoden Xuexiao Huaxue Xuebao 1983, 4(5), 557-64; Chem. Abstr. 100, 44496d. (137) Gaplovsky, A. Chem. Listy 1984, 78(8), 865-7; Chem. Abstr. 101, 180821d. (138) Gaplovsky, A. Chem. Listy 1985, 79(7), 760-1; Chem. Abstr. 103, 113075s. (139) Gartzke, J.; Nolte, K. D.; Berka, K. Jena Rev. 1984, 29(4), 170-2. (140) Gauglitz, G.; Klink, T.; Lorch, A. Fresenius' 2. Anal. Chem. 1984, 319(4), 364-70; Chem. Abstr. 102, 39183m. (141) Geissler, M.; Weber, H. Ger. (East) DD 203, 975 (CI. GOIN21/05), 09 Nov. 1983, Appl. 234,699, 09 Nov 1981; 11 pp. (142) Gillery, P.;Locre, F.; Malgras, A.; Borel, J. P. Clin. Chem. (WinstonSalem, N.C.) 1985, 31(6), 1092-3. (143) Glasl, H. Fresenius' 2.Anal. Chem. 1985, 327(4), 325-30; Chem. Abstr. 103, 92934d. (144) Goizman, M. S.; Sarkisyan, S. 0.; Sarkisyan, A. A,: Persianova, I. V. KhimXarm. Zh. 1985, 19(7), 884-9; Chem. Abstr. 103, 1291720. (145) Gong, R. Zhongcaoyao 1985, 76(4), 154-5; Chem. Abstr. 103, 42714m. (146) Gonzalez-Portal, A.; Bermejo-Martinez, F.; Baluja-Sanots, C.; Diez-Rodriguez, M. C. Microchem. J . 1985, 31(3), 368-74.
-.
. I .
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
ll9R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (147) Gorczynska, K.; Krollk, M. Rocr. Inst. h e m . Mlesn. Tluszczowego 1982, 19, 139-55; Chem. Abstr. 99, 174280a. (148) Gorog, S.; Lauko, A.; Renyei, M.; Hegedus, B. J . Pharm. Biomsd. Anal. 1983, 1(4), 497-506. (149) Gorog, S.;Renyei, M. Acta Chlm. Hung. 1984, 115(1), 65-70. (150) Gowda, A. T.; Gowda, H. S.;Gowda, N. M. M. Analyst (London) 1984, 109(5), 651-3. (151) Gowda, H. S.; Gowda, A. T. Analyst (London) 1984, 109(3), 381-3. (152) Gowda, H. S.;Ramappa, P. G.; Nayak, A. N. Anal. Chim. Acta 1979, 108, 277-83. (153) Grachev, I.D.; Salakhov, M. Kh.; Fishman, I.S. Z h . frikl. Spektrosk. 1984, 41(1), 110-16; Chem. Abstr. 101, 182714~. (154) Grigor'eva, M. F.; Teran, E.; Tserkovnitskaya, I.A. frobi. Sovrem. Anal. Khim. 1983, 4 , 70-87; Chem. Abstr. 100, 790501. (155) Grigor'ev, Ya. M.; Sverdiova, 0. V.; Bogacheva, 0. 1. Spekfrokhim. Vnutri-Mezhmoi. Vzalmodeistvii 1983, 3. 206-28; Chem. Abstr. 100 76660~. (156) Grillo, F.; Murador, E. Fr. Demande FR 2,520,381 (CI. C12Q1/28), 29 Jul 1983, GB Appl. 82/2,441, 28 Jan 1982; 21 pp. (157) Grossmann, 0. Fresenlus' 2. Anal. Chem. 1985, 320(2), 112-16; Chem. Abstr. 102, 142292~. (158) Grossmann, 0. Fresenlus' 2. Anal. Chem. 1985, 320(3), 225-8; Chem. Abstr. 102, 159544b. (159) Grossmann, 0. Fresenius' Z . Anal. Chem. 1985, 320(3), 229-32; Chem. Abstr. 102, 142330f. (160) Gruberova, A.; Suchanek, M. Sb. Vys. S k . Chem.-Technol. fraze, Anal. Chem. 1983, H18, 167-77; Chem. Abstr. 101, 2214563. (161) Guilloton, M.; Karst, F. Anal. Biochem. 1985, 749(2), 291-5. (162) Gunawardhana, H. D. Analyst (London) 1983, 108(1289), 952-8. (163) Guo, N.; Luo, Q.; Chem, 2.; Zeng, Y. FenxiHuaxue 1983, 17(6), 40813; Chem. Abstr. 100, 444782. (164) Guo, N.; Luo, Q.; Chen, 2.; Zeng, Y. Gaoden Xuexiao Huaxue Xueboa 1983, 4 ( 5 ) , 637-9; Chem. Abstr. 100, 131591~. (165) Gupta, R . P.; Gulati, R.; Zutshi, A,; Singh, G. N. Indian J. Pharm. Sci. 1984, 46(6), 216-18; Chem. Abstr. 103, 129162d. (166) Gupta, V. K.; Srivastava, S. P. J . Indian Chem. SOC. 1983, 60(6), 594-5; Chem. Absb. 100, 16969s. (167) Guseinov, I.K.; Allakhverdieva, E. G.; Askerov, D. N.; Kerimov, G. N. Arerb. Khim. Zh. 1983, (2), 112-19; Chem. Abstr. 101, 65077d. (168) Gutierrez, M. C.; Gomez-Hens, A.; Valcarcel, M. Mikrochim. Acta 1984, 3(1-2), 17-27. (169) Haase, P.; Peters, J. E. Z. Med. Laboratoriumsdiagn. 1980, 21(6), 361-3; Chem. Abstr. 94, 9 9 1 2 7 ~ . (170) Hage, D. S.; Tayier, P. J. Cornput. Appi. Lab. 1984, 2(2), 100-8. (171) Haginaka, J.; Wakai, J.; Yasuda, H.; Uno, T.; Nakagawa, T. Analyst (London) 1984, 709(8), 1057-9. (172) Haidna, U. EestiNSV Tead. Akad. Tolm., Keem. 1984, 33(1), 46-9; Chem. Abstr. 100, 127597~. (173) Han, C. S.;Herrmann, E. Z . Chem. 1983, 23(10), 381; Chem. Abstr. 100, 444580b. (174) Hao, Y.; Wang, C.; Sun, 6.; Zhao, Y. Yaoxue Tongbao 1984, 19(11), 652-3; Chem. Abstr. 103, 11562f. (175) Hara, N. Ind. Health 1984, 22(3), 223-6. (176) Hargis, L. G.; Howell, J. A. Anal. Chem. 1980, 52, 302R; 1984, 56(5), 225R-241R. (177) Harris, T. D.; Williams, A. M. Appl. Spectrosc. 1985, 39(1), 28-32. (178) Harrls, T. D.; Williams, A. M. froc. S f I E - I n t . SOC. Opt. Eng. 1983, 426, 110-15. (179) Hassan, S. M.; Davidson, A. G. J . Pharm. fharmacol. 1984, 36(1), 7-10. (180) Hassan, S. M.; Metwally, M. E. S.; Ouf, A. M. A. J . Assoc. Off. Anal. Chem. 1983, 66(6), 1433-5. (181) Hassan, S. M.; Shaaban, S. A. M. fharmazie 1984, 39(10), 691-3; Chem. Absfr. 102, 119753n. (182) He, X.; Li, Y.; Shi, H. Fenxi Huaxue 1985, 13(5), 344-9; Chem. Abstr. 103, 115136m. (183) Heidecke, G.; Kropf, J.; Stork, G. Fresenius' Z . Anal. Chem. 1983, 316(4), 405-8; Chem. Abstr. 100, 61129d. (184) Heinzmann, F. X.; Miyazawa, M.; Pavan, M. A. Rev. Bras. Cienc. Solo 1984, 8(1), 159-63; Chem. Abstr. 101, 150593~. (185) Hennessay, D. J.; Reid, G. R.; Smith, F. E.; Thompson, S. L. Can. J. Chem. 1984, 62(4), 721-4. (186) Hernandez Mendez, J.; Gonzalez Perez, C.; Cascon Sanz, M. J.; Bernal Melchor, A. Quim. Anal. (Barcelona) 1984, 3(2). 129-37; Chem. Abstr. 103, 61798r. (187) Higgins, T. J . Clin. Lab. Autom. 1984, 4(3), 162-5. (188) Hilliard, L. A. Anal. R o c . (London) 1985, 22(7), 210-11. (189) Hirt, R. C. Anal. Chem. 1956, 28, 579R; 1958, 30, 589R; 19B0, 32 255R; 1962, 34, 276R. (190) Hladikova, J.; Skrivan, P. Acta Mont. 1984, 85,75-89; Chem. Abstr. 101, 235297~. (191) Honjo, T. Bull. Chem. SOC. Jpn. 1984, 57(2), 591-2. (192) Horiba, Ltd. Jpn. Tokkyo Koho JP 59 23,380 [84 23,3801 (CI. GOlN21/59), 01 Jun 1984, appl. 79/87,283, 07 Jul 1979; 4 pp. (193) Hostettmann. K.; Domon, B.; Schaufelberger, D.; Hostettmann, M. J. Chromatogr. 1984, 283, 137-47. (194) Howell, H. E.; Mamantov, G.; Wehry. E. L.; Shaw, R. W. Anal. Chem. 1984, 56(4), 821-3. (195) Howell, J. A.; Hargis. L. G. Anal. Chem. 1978, 50(5),234R: 1982, 54(5), 17 1R-188R. (196) Hu, X.; Wang, G.; Tan, 2.; Zhu, R.; Song, L. Kexue Tonbao (Foreign Lang. Ed.) 1985, 30(4), 562-3; Chem. Abstr. 103, 47366). (197) Huang, R.; Zhang, D. Vankuang Ceshi 1983, 2(2), 148-53; Chem. Abstr. 100, 44471s. (198) Hulme, A. K. Ger. Offen. DE 3,322,488 (CI. G01N21/05), 22 Dec 1983, GB Appl. 82/18,107, 22 Jun 1982; 11 pp. I
120 R
ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
(199) Hummel, R. A,; Kaufman, D. C. Anal. Chem. 1972, 4 4 , 535R; 1974, 46, 354R; 1978, 48, 268R. (200) Huq, G. A.; Rao, S. B. J . Inst. Chem. (India) 1984, 56(4), 167-8; Chem. Abstr. 102, 16784~. (201) Ibrahim, E. S. A.; Issa, A. S.; Abdel Salam, A. S.; Mahjrous, M. S. Taianta 1983, 30(7), 531-3. (202) Igarashl, S.;Yotsuyanagi, T. Chem. Lett. 1984, ( l l ) , 1871-4. (203) Ishitani, H.; Okawa, K.; Kuge, Y.; Nakamoto, M. Suichitsu Odaku Kenkyu 1983, 6(1), 51-8; Chem. Abstr. 99, 218285n. (204) Issa, Y. M.; Badawy, S. S.; Ibrahim, M. B. An. Quim., Ser. B 1985, 81(1), 56-9. (205) Issa, Y. M.; Shoukry, A. F.; El-Ansary, A. L.; Okdah, M. S. An. Quim., Ser. 8 1983, 79(2), 207-10. (206) IUPAC Analytical Chemistry Division (UK) Pure Appl. Chem. 1984, 56(4), 467-77. (207) IUPAC Commisslon on Molecular Structure and Spectroscopy; IUPAC Commission on Quantities and Units (UK) Pure Appi. Chem. 1985, 57(1), 105-20. (208) Ivanova, T. V.; Ivanov, Yu. V.; Zubhov, A. V. Z h . Fiz. Khim. 1985, 59(7), 1729-32; Chem. Abstr. 103, 110855k. (209) Izqulerdo, A.; Carrasco, J. Analyst (London) 1984, 109(5), 605-9. (210) Izquierdo, A,; Guasch, J.; Rius, F. X. Taianta 1985, 32(1), 73-7. (211) Jackson, D. M.; Powell, J. R. J . f h y s . €1983, 16(12), 1153-5. (212) Jacobs, S.T.; Nemeth, M. T.; Kramer, G. W.; Ridley, T. Y.; Margerum D. W. Anal. Chem. 1984, 56(7), 1058-65. (213) Jansen, K. L.; Harris, J. M. Anal. Chem. 1985, 57(13), 2434-6. (214) Japan, Soclety for Analytical Chemistry "Absorptlometry: Organic Analysis", Kyorltsu Shuppan: Tokyo, Japan, 1984; 144 pp. (215) Jaya, S.; Rao, T. P.; Ramakrishna, T. V. Analyst (London) 1983, 108(1290), 1151-5. (216) Jenik, J. S b . Ved. f r . , Vys, S k . Chemickotechnol. fardubice 1984, 46, 127-33; Chem. Abstr. 102, 1723312. (217) Jenik, J.; Schejbalova, M. S b . Ved. f r . , Vys. S k . Chemickotechnol. Pardubice 1982, 45, 203-11; Chem. Abstr. 100, 73669t. (218) Jimenez, R. M.; Palaclo Gonzalez, J. L. Afinidad 1983, 40(386), 3426; Chem. Abstr. 99, 186537~. (219) Jin, S. Yaowu Fenxi Zazhi 1985, 5(1), 53-5; Chem. Abstr. 102, 17275211. (220) Jochum, P.; Schrott, E. L. Anal. Chim. Acta 1984, 157(2), 211-26. (221) Jones, B. E.;Erdmann, D. E.; Skougstad, M. W. Water Anal. 1984, 2 , (Pt. 2), 1-80. (222) Jones, D. G. Anal. Chem. 1985, 57(9), 1057A-l058A, 1060A, 1062A, 1064A, 1066A, 1068A, 1070A, 1073A. (223) Jones, D. G. Anal. Chem. 1985, 57(11), 1207A-l208A, 1210A, 1212A, 1214A. (224) Kaplan, R. S.; Pedersen, P. L. Anal. Biochem. 1985, 150(1), 97-104. (225) Karljikovic, K.; Stankovlc, B.; Granov, A.; Binenfeld, 2. Acta Pharm. Jugosl. 1984, 34(4), 241-6; Chem. Abstr. 102, 144265n. (226) Katami, T.; Hayakawa, T.; Furukawa, M.; Shibata, S. Analyst (London) 1984, 109(2), 159-62. (227) Katami, T.; Hayakawa, T.; Hayakawa, T.; Furukawa, M.; Shibata, S. Analyst (London) 1984, 109(4), 461-3. (228) Katami, T.; Hayakawa, T.; Furukawa, M.; Shibata, S. Analyst (London) 1984, 109(6), 731-3. (229) Kato, T.; Yanaka, K.; Sakai, K.; Hasegawa, T.; Sakai, M. Nligata Rlkagaku 1983, 9, 5-9; Chem. Abstr. 100, 90975g. (230) Kato, T.; Horikoshi, K. Anal. Chem. 1984, 56(9), 1738-40. (231) Kawaguchi, H. Bunseki 1984, (7) 482-8; Chem. Absfr. 101, 121966g. (232) Kaye, W. A m . Lab. (Fairfield, Conn.) 1983, 15(11), 1, 21-1, 24, 28. (233) Kaye, W. I.; Sun, L. S.;Anderson, J. C. US. US 4,461,718 (CI. 252408.1; CO9K3/00), 24 Jul 1984, Appi. 330,972, 15 Dec 1981; 3 pp. (234) Khanduja, K. L.; Dogra, S. C.; Gupta, M. P. Ciin. Chim. Acta 1984, 141(1), 67-71. (235) Khattab, F. I.Anal. Lett. 1983, 16(B14), 1121-6. (236) Kikuchi, S.; Manabe, M.; Okinaka, H. Niihama Kogyo Koto Senmon GakkoKiyo, Rikogaku-hen 1984, 2 0 , 41-5; Chem. Abstr. 101, 477799. (237) Kikuchi, S.; Manabe, M.; Shiraishi, K. Nllhama Kogyo Koto Senmon Gakko K/yo, Rikogaku-hen 1984, 20, 46-50; Chem. Abstr. 101, 47780~. (238) Klm, J. H.; Jeong, J. H. fusan Susan Taehak Yongu Pogo, Chayon Kwahak 1984, 24(2), 34-8; Chem. Abstr. 103, 62234h. (239) Kimpenhaus, W.; Mai, D. Fresenlus' 2. Anal. Chem. 1984, 318(7), 511-16; Chem. Abstr. 101, 183102f. (240) Kimura, K.; Kusaka, C.;Okamoto, H.; Kawanishi, I.; Mizushima, J.; Yaglri, Y.; Ishii, M.; Ueda, Y. Rlnsho Kensa 1984, 28(7), 841-4; Chem. Abstr. 101, 187308a. (241) King, T. H. "Comparison of Data Processing Techniques for Quantitative Multicomponent Analysis in Molecular Spectroscopy", Florida State Univ., Tallahassee, FL, 1984; 180 pp, Avail Univ. Microfilms Int., Order No. DA8427312. (242) Kinkeldei. J. GIT-Suppl. 1984, (4), 28-34; Chem. Abstr. 701, 182719a. (243) Kirillov, A. I.; Shaulina. L. P.; Alekseeva. 0. D. Z h . Anal. Khim. 1984, 39(1), 161-3; Chem. Abstr. 100, 150245f. (244) Kirkbright, G. F. Chem. Anal. (Warsaw) 1983, 28(3), 227-43; Chem. Abstr. 100, 16778d. (245) Kirkbright, G. F.; Miller, R. M.; Spillane. D. E. M.; Sugitani. Y. Anal. Chem. 1984, 56(12), 2043-8. (246) Klrschenbaum, D. M. Appl. Biochem, Biotechnoi. 1984, 9(2), 187-206. (247) Kish, P. P.; Bazel, Ya. R.; Baiog, I . S. Zzv. Vyssh. Uchebn. Zaved.. Khlm. Khim. Tekhnol. 1983, 26(9), 1060-3; Chern. Absb. 100, 114120~. (248) Kish, P. P.; Bazel, Ya. R.; Balog, I.S. Zh.Anal. Khim. 1984, 39(6), 1052-8; Chern. Abstr. 101, 143054k.
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (249) Kitamura, K.; Morita, E.; Hozuml, K. Yakugaku Zasshi 1985, 105(2), 161-5; Chem. Abstr. 102, 175473h. (250) Kitamura, K.; Takagl, M.; Hozumi, K. Chem. Pharm. Bull. 1984, 32(4), 1484-90. (251) Kitamori, T.; Fujli, M.; Sawada, T.; Gohshi, Y. J . Appl. Phys. 1985, 58(1), 268-72. (252) Kleeman, W. P.; Bailey, L. C. J . Pharm. Sci. 1985, 74(6), 655-9. (253) Klein, K.; Pelzl, J.; Fuetterer, H. Photoacoust. Eff.: Princ. Appi., Proc. I n t . Conf., 1st 1981 1984, 412-19. (254) Klopf, G. J.; Cook, K. D. Anal. Chim. Acta 1984, 162, 293-304. (255) Klyachkin, L. E.: Lopatlna, L. B.; Malyarenko, A. M.; Sukhanov, V. L. Pis'ma Zh. Tekh. Fiz. 1985, l l ( 6 ) , 354-8; Chem. Abstr. 103, 14330q. (256) Knowles, A., Burgess, C., Eds. "Techniques in Visible and Ultraviolet Spectrometry, Vol. 3: Practical Absorption Spectrometry. Ultraviolet Spectrometry Group"; Chapman and Hall: London, UK, 1984; 234 pp. (257) Kobashji, K.; Sakaguchi, K.; Takebe, S.; Hosaka, K. Anal. Biochem. 1985, 146(1), 7-12. (258) Koenig, J. L. Phys. Prop. Polym. 1984, 207-37. (259) Korany, M. A.; Abdel-Hay, M. H.; Galal, S. M.: Elsayed, M. A. J . Pharm. Belg. 1985, 40(3), 178-84; Chem. Abstr. 103, 129174). (280) Korany, M. A.; El-Dln, A. A. S.; Abdel-Salam, N. A. Anal. Lett. 1984, 17(A6), 438-95. (261) Korany, M. A.; Wahbl, A. M.; Elsayed, M. A,; Mandour, S. Anal. Lett. 1984, 17(B12), 1373-89. (262) Korany, M. A.; Wahbi, A. M.; Elsayed, M. A,; Mandour, S. Farmaco, Ed. Prat. 1984, 39(7), 243-52; Chem. Abstr. 101, 1 1 6 7 9 5 ~ . (263) Korany, M. A.; Wahbi, A. M.; Mandour, S.; Elsayed, M. A. Anal. Lett. 1985, 18(Bl), 21-34. (264) Kostennlkova, 2. P.; Panova, G. A,; Dambrauskiene, R. Farmatsiya (Moscow) 1984, 33(6), 33-5; Chem. Abstr. 102, 84472r. (265) Koupparis, M.; Anagnostopoulou, P. J . Autom. Chem. 1984, 6(4), 186-91. (266) Koupparis, M. A.; Diamandis, E. P.; Malmstadt, H. V. Ciin. Chim. Acta 1985, 149(2-3), 225-35. (267) Kracmar, J.; Kracrnarova, J. Cesk. Farm. 1985, 34(3-4), 97-105; Chem. Abstr. 103, 9271911. (288) Kracmar, J.; Kracrnarova, J. Pharmazie 1983, 38(8), 524-7; Chem. Abstr. 100, 25980r. Ulstrup, J. Chem. Scr. 1985, 25(1), 49-57; Chem. (269) Kristjansson, I.; Abstr. 103, 44929). (270) Kroll, M. H.; Elin, R. J. Clin. Chem. (Winston-Salem, N . C . ) 1985, 3 1(3), 462-5. (271) Kucher, A. A.; Poluektov, N. S.; Mishchenko, V. T.; Aleksandrova, N. N. Zavod. Lab. 1983, 49(10), 11-13; Chem. Abstr. 99, 224232). (272) Kuznetsov, V. V. Z h . Anal. Khim. 1984, 39(3), 489-92; Chem. Abstr. 10 1 , 324771. (273) LaManna, J. C.; Pikarsky, S. M.; Sick, T. J,; Rosenthan, M. Anal. Biochem. 1985, 144(2), 483-93. (274) Langley, A. J.; Beaman, R. A.; Baran, J.; Davies, A. N.; Jones, W. J. Opt. Lett. 1985, 10(7), 327-9. (275) Lapkowski, M.; Strojek, J. W.; Nerneth, N.; Mocak, J. Anal. Chim. Acta 1985, 171, 77-87. (276) Lawrence, A. H.; Kovar, J. Anal. Chem. 1984, 56(9), 1731-4. Nikolaeva, D. N. Probl. Sovrem. Anal. Khim. 1983, (277) Lebedeva, L. I.; 4 , 142-66; Chem. Abstr. 100, 78957~. (278) Le Doucen, R.; Houdeau, J. P.; Cousin, C.; Menoux, V. J . Phys. E 1985, 18(3), 199-200. (279) Lehrrnan, S. R.; Meyers, C. A. Pept.: Struct. Funct., R o c . A m . Pept. Symp.. 8th 1983, 755-8. (280) Leitis, L.; Skolrneistere, R.; Rubina, K. I.; Jansone, D.; Shlmanskaya, M. V. Z h . Anal. Khim. 1985, 40(3), 388-406; Chem. Abstr. 102, 196948g. (281) Leporati, E. Anal. Chim. Acta 1985, 170(2), 287-93. (282) Lerner, J. M.; Flamand, J.; Laude, J. P.; Thevenon, A. Proc. SPIE-Int. SOC. Opt. Eng. 1983, 41 f(Eiectro-Opt. Instrum. Ind. Appl.), 18-22. (283) Lewis, S. F.; Syty, A. At. Spectrosc. 1983, 4(6), 199-203. (284) Li, S.; Xue, S. Shengwu Huaxue Yu Shengwu Wuli Jinzhan 1985, 61, 51-4; Chem. Abstr. 102, 181678~. (285) Li, W.; Xiao, Y.; Yu, X. Yinwona -. - Huaxue 1984, 1(3), . . 59-61: Chem. Abstr. 102, 205942. (286) Li, Y.; Zhang, 2.; Yu, R. Huaxue Shli 1984, 6(4), 193-8; Chem. Abstr. 101, 221499a. (287) Li, Y. Turangxue Jinzhan 1983, 11(6), 44-56; Chem. Abstr. 101, 8958Rq - - - - - -. (288) Lin, C.: Chang, H.; Zhao, G. Zhongguo Kexue Jishu Daxue Xuebao 1982, (Zengkan 2), 81-7; Chem. Abstr. 100, 114110~. (289) Liu, D.; Li, J. Zhonghua Yixue Jianyan Zazhl 1984, 7(3), 174-6; Chem. Abstr. 102, 91593j. (290) Liu, D.; Cai. R.; Yu, X.; Zeng, Y. Kexue Tongbao (Foreign Lang. Ed.) 1983, 28(9), 1207-10; Chem. Abstr. 100, 6 1 0 7 0 ~ . (291) Liu, S . Fenxi Huaxue 1984, 12(6), 508-12; Chem. Abstr. 102, 39023). (292) Llena, M.; Girona, V.; De Bolos, J.; Castillo, M. Cienc. Ind. Farm. 1985, 4(1), 13-15; Chem. Abstr. 103, 5 9 3 7 2 ~ . (293) Llor, J.; Sanchez-Ruiz, J. M.; Cortijo, M.; Clares. 8. An. Oulm., Ser. A 1984, 80(3, Suppl. 2), 701-1; Chem. Abstr. 103, 4 5 0 3 1 ~ . (294) Loginov, A. S.; Krums, L. M.; Pham Thi Thu Ho Lab. Del0 1985, (E), 486-8; Chem. Abstr. 103, 119369n. (295) Lott, J. A.; Stephan, V. A.; Pritchard, K. A., Jr. Clin. Chem. (WinstonSalem, N . C . ) 1983, 29(11), 1946-50. (296) Lukes, F.; Schmidt, E.; Humlicek, J. Cesk. Cas. Fyz. 1984, 34(5), 448-96; Chem. Abstr. 102, 86527rn. (297) Magili, A.; Becker, A. R. J . Pharm. Sci. 1984, 73(11), 1663-4. (298) Magliozzo, R. S . ; Park, C. M.; Peisach. J. Anal. Biochem. 1984, 140(1), 276-83.
(299) Magulre, G. A. Clin. Chem. (Winston-Salem, N.C.)1984, 30(11), 1886-7. (300) Mahrous, M. S.; Abdel-Khalek, M. M. Analyst (London) 1984, 109(5), 611-13. (301) Mahrous, M. S.; Abdei-Khalek, M. M. Talanta 1984, 31(4), 289-91. (302) Mahrous, M. S.; Abdel-Khalek, M. M.; Abdel-Hamid, M. E. J . ASSOC. Off. Anal. Chern. 1985, 68(3), 535-9. (303) Mahrous, M. S.; AbdeCKhalek, M. M.; Abdel-Hamid, M. E. Talanta 1985, 32(8A), 651-3. (304) Malin, E. L.; Greenberg, R.; Farrell, H. M., Jr. Anal. Biochem. 1985, 144(2), 356-61. (305) Mangala, D. S.; Reddy, B. S.; Sastry, C. S. P. Indian Drugs 1984, 21(11), 526-8; Chem. Abstr. 102, 555132. (306) Manzar, A. Q. N. J . Chem. SOC. Pak. 1984, 6(3), 179-81; Chem. Abstr. 102, 231155~. (307) Marciniec, B. Acta Pol. Pharm. 1984, 41(2), 185-93; Chem. Abstr. 102, 137911s. (308) Marotta, M.; Martino, G. Anal. Biochem. 1985, 150(1), 86-90. (309) Masujima, T.; Wada, K.; Yoshida, H. Farumashla 1985, 21 (6), 528-33; Chem. Abstr. 103, 119011q. (310) Matsubara, C.; Kudo, K.; Kawashita, T.; Takamura, K. Anal. Chem. 1985, 57(6), 1107-9. (311) Matsuoka, M. Senryo to Yakuhin 1984, 29(4), 76-86; Chem. Abstr. 101, 210629s. (312) McCrum, W. A. Water Res. 1984, l8(10), 1249-52. (313) McGeorge, S. W.; Salin, E. D. Spectrochim. Acta, Part B 1985, 408(E), 1039-45. (314) Meal, L. Anal. Chem. 1983, 55(14), 2448-50. (315) Medvedev, M. I.; Novikova, L. B.; Zul'figarov, 0. S. Zavod. Lab. 1984, 50(11), 3-5; Chem. Abstr. 102, 105441~. (316) Mehra, M. C.; Satake, M.; Katyal, M. Indian J . Chem., Sect. A 1984, 23A(10), 860-2; Chem. Abstr. 101, 221662~. (317) Melion, M. G. Anal. Chem. 1945, 17, 81; 1949, 21, 3; 1950, 22, 2; 1951, 23, 2; 1952, 2 4 , 2; 1954, 26, 2. (318) Mellon, M. G.; Boltz, D. F. Anal. Chem. 1958, 28, 559R; 1958, 30, 554R; 1980, 32, 194R; 1982, 34, 232R. (319) Michael, S.;Iannizzl, M.; Simko, V. Lab. Med. 1985, 16(6), 363-5. (320) Ming, C.; Liu, Y.; Chen, C.; Wanbg, W. Kexue Tongbao (Foreign Lang. Ed.) 1985, 30(2), 165-8; Chem. Abstr. 103, 64095n. Shkadova, V. I.; Kalashnikov, V. P. (321) Minka, A. F.; Kopiichik, I . I.; Farm. Z h . (Kiev) 1984, (2), 37-9; Chem. Abstr. 101, 97744k. (322) Mitsubishl Chemical Industries Co., Ltd. Jpn. Kokai Tokkyo Koho JP 58 63,775 [83 83,7751 (CI. C09K3/00), 15 Apr 1983, Appl. 81/161,678, 09 Oct 1981; 5 pp. (323) Montero, J. L.; Gii, M.; Morcillo, J. An. Quim., Ser. A 1984, 80(1), 12-17; Chem. Abstr. 101, 62911k. (324) Morelli, B. Analyst (London) 1983, 108(1289), 959-65. (325) Moreili, B. Analyst (London) 1983, 108(1293), 1506-10. (326) Morelli, B. Analyst (London) 1984, 109(1), 47-51. (327) Morishita, Y.; Matsumoto, H.; Nakane, K.; Kosaka, A.; Kizawa, S.; Miyajima, M.; Yasue, T.; Mizutani, K. Rinsho Kensa 1984, 28(3), 349-52; Chem. Abstr. 101, 46956~. (328) Moroshkin, G. A.; Myasnikov, S. A.; Korol, V. V.; Koshkin, A. I.; Lobanov, N. V.; Kukushkin, V. V. U.S.S.R. SU 1,087,845 (CI. GOlN21/59), 23 Apr 1984, Appl. 3,443,990, 18 Feb 1982. (329) Meuiier, S. C.; Plesser, T.; Hess, B. Anal. Biochem. 1985, 146(1), 125-33. (330) Mukherjee, S.; Garg, B. S.; Singh, R. P. Acta Cienc. Indica, [Ser.] Chem. 1983. 9i1-4). 4-5: Chem. Abstr. 100. 220822t. (331) Nacea, V.; betrescu, A. Farmacia (Bucharest) 1985, 33(1), 41-5; Chem. Abstr. 103. 167076m. (332) Naes, T.; Martens, H. TrAC, Trends Anal. Chem. (Pers. Ed.) 1984, 3(10), 266-71. (333) Nagahiro, T.; Satake, M.; Lin, J. L.; Puri, B. K. Analyst (London) 1984, 109(2), 163-5. (334) Nagata, Y.; Akino, T.; Ohno, K. Anal. Biochem. 1985, 150(1), 238-42. (335) Naka, H. Kensa to Gyutsu 1984, 12(7), 625-7; Chem. Abstr. 101, 162956~. (336) Nakamura, H. Bunseki 1985, (2), 128-31; Chem. Abstr. 102, 124615~. (337) Nakashima, K.; Yamawakl, Y.; Nakatsuji, S.; Akiyama, S.; Kaneda, T.; Misumi, S. Chem. Lett. 1983, (9), 1415-18. (338) Nemcova, I.; Hrachovska, J.; Mikova, J.; Suk, V. Microchem. J . 1984, 30(1), 39-46. (339) Nerln, C.; Cacho, J.; Calvo, A. Rev. Latinoam. Quim. 1983, 14(2), 89-92; Chem. Abstr. 100, 44530k. (340) Ni, 2.; Ma, Y. Fenxi Huaxue 1985, 13(1), 20-4; Chem. Abstr. 103, 170949d. (341) Nieboer, E.; Jusys, A. A. Chem. Toxicol. Clin. Chem. Met., Proc. Int. Conf., 2nd 1983, 3-16. (342) Nikitina, G. M.; Sorokovoi, V. I.; Kornev, A. V.; Marachev, A. G. Byull. €ksp. Biol. Med. 1984, 98(9), 374-5; Chem. Abstr. 101, 226169~. (343) Nonova, D.; Stoyanov, K. Mikrochim. Acta 1984, f(1-2), 143-52. (344) Nour, S.; Vallner, J. J. Anal. Chim. Acta 1984, 162, 323-31. (345) Obtemperanskaya, S. I.; El-Kafrawy, A. E.; Zhmurova, N. V. Vestn. Mosk. Univ., Ser. 2 : Khim. 1985, 26(3), 327-8; Chem. Abstr. 103, 153037n. (346) Obtemperanskaya, S. I.; Kalugina, S. V. Vestn. Mosk. Univer., Ser. 2 : Khim. 1984, 25(6), 607-8; Chem. Abstr. 102, 89421h. (347) Ocean Sclentiflc. Technical Bulletin Chern-Stat, 1984. (348) Ohashi, K.; Kurosawa, K.; Yamarnoto, K. Bunseki Kagaku 1983, 320 l), E361-E365; Chem. Abstr. 100, 27671q. (349) Ohishi, N.; Ohkawa. H.; Miike, A.; Tatano, T.; Yagi, K. Biochem. Int. 1985, 10(2), 205-11. ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
121 R
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (350) Oimomi, M.; Kawasaki, T.; Kubota, S.;Yoshimura, Y.; Baba, S.; Kato, H. Nippon Ketsueki Gakkai Zasshi 1984, 47(4), 868-72; Chem. Absfr. 102, 128208r. (351) Okamoto, T.; Kawata, S.; Mimami, S. Appi. Opt. 1984, 23(2), 269-73. (352) Orlova. E. S.; Tikhonova, L. I.Zavod. Lab. 1984, 50(12), 6-8; Chem. Abstr. 102, 8 9 2 4 4 ~ . (353) Osten, D. W.; Kowaiski, B. R. Anal. Chem. 1985, 57(4), 908-17. Pyatnitskii, I.V.; Ryzhenko, V. L. (354) Ostrovskaya, M. S.;Shtokalo, M. I.; Deposited Doc. 1982, SPSTL 1235 Khp-D82, 96 pp; Chem. Abstr. 101, 83021k. (355) Otto, M.; Wegscheider, W. Anal. Chem. 1985, 57(1), 63-9. (356) Padera, F. G. Res. Dev. 1984, 26(4), 120-4. (357) Pal, M.; Bagchi, S. J. Chem. Soc., faraday Trans. 1 1985, 81(4), 961-72. (358) Palmer, A. A n d . Proc. (London) 1985, 22(5), 139. (359) Pan, G. Ylyao Gongye 1985, 16(6), 248-50; Chem. Absfr. 103, 147237m. (360) Pan, J.; Zhou, W.; Zhao, H.; Hu, 2. Huaxue Ship 1984, 6(1), 43-7; Chem. Abstr. 100, 1673202. (361) Pardue, H. L. Ciin. Biochem. Rev. (Ultimo, Aust.) 1984, 4(4), 131-5. (362) Parks, J.; Worth, H. G. J. Ciin. Chem. (Winston-Salem N . C . ) 1985, 31(2), 279-81. (363) Parmentier, A.; Barthelemy, J. F.; Andermann, G. Labo-Pharma-Probl. Tech. 1984, 344, 531-5; Chem. Abstr. 102, 32357n. (364) Parmentier, A.; Bartheiemy, J. F.;Andermann, G. Labo-Pharma-Probi. Tech. 1984, 344, 536-9; Chem. Absfr. 102, 3 2 3 5 8 ~ . (365) Pasquini, C.; De Olivelra, W. A. Anal. Chem. 1985, 57(13), 2575-9. (366) Perez Ruiz, T.; Ortuno, J. A.; Molina. P. Mikrochim. Acta 1984, l(3-4), 183-90. (367) Perfll'ev, V. A.; Mishchenko, V. T.; Poluektov, N. S. Z h . Anal. Khim. 1984, 39(12), 2133-6; Chem. Abstr. 102, 69219~. (368) Perkampus, H. H. Anal.-Taschenb. 1983, 3 , 279-316; Chem. Abstr. 101. 103029~. (369) Perkin-Elmer Corp., Order No. 6460. (370) Perkin-Elmer Corp., UV Update, Jan.-Apr., 1984; June 1985. (371) Pesavento, M.; Soldi, T. Analyst (London) 1983, 108(1290), 1128-34. (372) Pilipenko, A. T.; Karetnlkova, E. A.; Trachevskii, V. V. Zh. Anal. Khim. 1983, 38(10), 1787-92; Chem. Absfr. 100, 28995k. (373) Pilipenko. A. T.; Savranskii, L. I.; Mas'ko, A. N. Z h . Anal. Khim. 1985, 40(2), 232-6; Chem. Absfr. 102, 142327k. (374) Pisteika, M.; Stojek, B.; Havel, J. Collect. Czech. Chem. Commun 1984, 49(g), 1974-89; Chem. Absfr. 101, 239545~. (375) Pratt, L. H.; Wampler, J. E.; Rich, E. S., Jr. Anal. Insfrum. ( N . Y . ) 1985, 13(3-4), 269-87, (376) Prumbaum. R. Giesserei 1984, 77(25), 966-8; Chem. Absfr. 102, 38731b. (377) Pyatnitskii, I.V.; Mamuiiya, S.G.; Koiomiets, L. L. Z h . Anal. Khim. W85, 40(5), 823-7; Chem. Abstr. 103, 134076k. (376) Qi, Q.; Wei, F.; Shen, N. Huaxue Shgi 1983, 5(5), 269-72; Chem. Abstr. 100, 445642. (379) Rakovskii, E. E.; Shvedova, N. N.; Shkil, A. N., Z h . Anal. Khim. 1984, 39(8), 1463-8; Chem. Abstr. 101, 221565~. (380) Ramakers, J. M. Clin. Chem. (Winston-Salem N.C.) 1984, 30(8), 1433-4. (381) Ramappa, P. G. Indian J. Hosp. Pharm. 1984, 21(5), 208-14; Chem. Absfr. 102, 119766~. (382) Ramappa, P. G.; Basavaiah, K. East. Pharm. 1984, 27(315), 131-4; Chem. Abstr. 100, 215615~. (383) Ramappa, P. G.; Gowda, H. S.; Nayak, A. N. Microchem. J. 1983, 28(4), 586-94. (384) Ramappa, P. G.; Nayak, A. N. Analyst (London) 1983, 108(1289), 966-70. (385) Rangaswamy, V. J.; Yathirajan, H. S.; Nayak, A. N. Indian J. Pharm. Sci. 1983, 45(3), 126-8; Chem. Absfr. 100, 74071d. (386) Rao, K. E.; Sastry, C. S. P. J. Inst. Chem. (India) 1983, 55(4), 1612; Chem. Absfr. 99, 224456k. (387) Rao, K. E.; Sastry, C. S. Mikrochim. Acta 1984, l(5-6), 313-19. (388) Rawat, J. P.; Muktawat, K. P. Singh Microchem. J. 1984, 30(3), 189-96. (389) Raymond, M.; Jochum, C.; Kowalski, B. R. J. Chem. Educ. 1983, 60(12); 1072-3. (390) Razdan, T. K. Parfuem. Kosmet. 1984, 65(4), 190, 192-5; Chem. Abstr. 101, 43385a. (391) Reddy, K. H.; Reddy, D. V. Analyst (London) 1983, 108(1291), 1247-51. (392) Reeves, R. L.; Maggio, M. S.; Harkaway. S. A,; Meyers, G. A. Inorg. Chem. 1985, 24(5), 738-44. (393) Reichardt, W.; Schueler, E. Nahrung 1984, 28(10), 1019-27; Chem. Absfr. 102, 22936m. (394) Ren, Y.; Liu, 2 . ; Zhou, H. fenxi Huaxue 1085, 13(1), 6-11; Chem. Absfr. 103, 9 8 0 0 3 ~ . (395) Ren, Y.; Zhou, H.; Zhuojing, L. fenxi Huaxue 1984, 12(11), 979-85; Chem. Abstr. 102, 86823e. (396) Rezchikov, V. G.; Skachkova, I . N.; Kuznetsova, T. S.;Khrushcheva, V. V. Zh. Anal. Khim. 1985, 40(2), 263-6; Chem. Abstr. 10.7, 197055a. (397) Rizk, M.; Walash, M. I.; Ibrahim. F. Spectrosc. Lett. 1984, 17(8), 423-40. (398) Rizk, M.; Younis, F. Anal. Len. 1984, 17(B16), 1803-9. (399) Rizk, M.; Zakhari, N.; Toubar, S.;Walash, M. I.Acta Pharrn. f e n n . 1984, 93(3), 129-34; Chem. Abstr. 102, 191227m. (400) Roebisch, G.; Rericha, A. Anal. Chim. Acta 1983, 154. 267-75; (401) Roebisch, G.; Rericha, A. Wiss. 2. Paedago. Hochsch. Karl Liebknecht" Potsdam 1983, 27(1), 93-9; Chem. Abstr. 101, 32428r.
.
122R ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
(402) Rogic, D. Farm. Gias. 1984, 40(9), 293-8; Chem. Abstr. 101, 2165274. (403) Rosenbaum, E. J. Anal. Chem. 1949, 21, 16; 1950, 22, 14; 1951, 23, 12; 1952, 24, 14; 1954, 26, 20. (404) Rossi, D. T.; Pardue, H. L. Anal. Chirn. Acta 1983, 155, 103-11. (405) Roy, 6.; Singh, A. K.; Singh, R. P. Taianfa 1983, 30(8), 617-19. (406) Rudenko, V. K. Zh. Neorg. Khim. 1985, 30(1), 258-60; Chem. Absfr. 102, 211891d. (407) Rummens, F. H. A,; Bujaczek, R. F.; Peters, M.; Green, R. 0. J. Pharm. Sci. 1984, 73(2), 231-6. (408) Rusinov, L. A.; Tulenbaev, M. S.;Monosov, D. M. Sist. Sredstva Avtom. Pofentsiai 'no Opasnykh Profsessov Khim. Tekhnoi. 1982, 58-61; Chem. Abstr. 101, 83054~. (409) Rutan, S. C.; Brown, S. D. Anal. Chim. Acta 1985, 167, 39-50. (410) Safanda, J.; Sobotka, P. Collect. Czech. Chem. Commun. 1984, 49(8), 1869-80; Chem. Abstr. 101, 2070044. (411) Saheki, S.; Takeda, A.; Shimazu, T. Anal. Biochern. lg85, 146(2), 277-81. (412) Salto, Y.; Kanetsuna, A.; Okura, T.; Odo, J.; Tanaka, Y. BunsekiKagaku 1984, 33(3), 165-7; Chem. Absfr. 100, 153310). (413) Sakuma, I.; Dohi, T.; Takai, N.; Funakubo, H.; Okabe, Y.; Katoda, T.; Sekiguchi, Y.; Isomura, T. Sogo Shikensho Nenpo (Tokyo Daigaku Kogakubu) 1983, 42, 53-8; Chem. Abstr. 100, 131537m. (414) Salem, F. B. A n d . Len. 1985, 18(B9), 1063-75. (415) Salman, S.; Bayrakdar, N. Istanbul Univ. Eczachiiik f a k . Mecm. 1984, 20, 71-6; Chem. Abstr. 102, 137926a. (416) Saltzman, R. S.; Dell, C. G. ISA Trans. 1985, 24(1), 69-74. (417) Sampson, 6.; Fleck, A. Analyst (London) 1984, 109(3), 369-72. (418) Sanderink, G. J. C. M.; Van Rijn, H. J. M. Ciin. Chim. Acta 1985, 146(1),85-73. (419) Sane, R. T.; Ambike, V. R.; Joshi, S.K.; Sawant, S. V.; Doshl, V. J.; Nayak, V. G.; Malkar, V. B.; Pandit, V. R.; Jukar, S . Indian Drugs 1984, 21(6), 254-6; Chem. Absfr. 701, 12296t. (420) Sane, R. T.; Nayak, V. G.; Malkar, V. B.; Sapre, D. S.;Nadkarni, A. D.; Pandit, U. R . ; Doshi, V. J. Indian Drugs 1983, 21(2), 76-8; Chem. Abstr. 100, 56944m. (421) Santoni, G.; Mondi, C.; Grossi, G.; Lombardo, E. Boil. Chim. Farm. 1984, 123(11), 539-43; Chem. Abstr. 103, 11546d. (422) Sargent-Welch Scientific Co., Appilcations Bulletin, 1984. (423) Sasaki, S.; Mandel, M. J. Phys. E 1984, 17(9), 738-40. (424) Sastre, R.; Martinez, G.; Castillo, F.; Millan, J. L. Makromol. Chem., Rapid Commun. lg84, 5(9), 541-6; Chem. Absfr. 101, 192634h. (425) Sastry, C. S. P.; Rao, B. G.; Rao, K. E. Proc. Nati. Acad. Sci., India, Sect. A 1983, 53(1), 7-11; Chem. Absfr. 101, 1776221. (426) Sastry, C. S. P.; Reddy, T. M. K.; Rao, B. G. Indian Drugs 1984, 21(4), 145-52; Chem. Abstr. 101, 43684~. (427) Schaefer, A. R.; Eckerie, K. L. Appi. Opt. 1984, 23(2), 250-6. Depeursinge, C. D.; Depeursinge, (426) Scheja, B.; Cochet, F.; Parrlaux, 0.; F. B. Proc. SPIE-Inf. SOC. Opt. Eng. 1984, 482(Appl. Laser Chem. Diagn.), 53-5. (429) Scherson, D. A.; Sarangapani, S.; Urbach, F. L. Anal. Chem. 1985, 57(7), 1501-3. (430) Schirmaier, W. Ger. Offen. DE 3,237,563 (Ci. GOIN21/03), 24 Nov 1983, Appl. 09 Oct 1982; 5 pp. (431) Schriefer, L. A.; Benisek, W. F. Anal. Biochem. 1984, 141(2), 437-45. (432) Schulman, S. T.; Vogt, B. S . Drugs Pharm. Sci. 1984, 17(Pharm. Anal., Pt. B), 401-82. (433) Schumacher, E. Ger. Offen. DE 3,340,505 (Ci. GOIN21/03), 23 May 1985, Appl. 09 Nov 1983; 8 pp. (434) Scudieri, F. NATO A S I Ser., Ser. B 1985, 119(Anal. Laser Spectrosc.), 37-50. (435) Sekiguchi, M. Kenaa to GJutau 1984, 12(2), 179-83; Chem. Abstr. 100, 167129~. (436) Sergeev, G. M.; Korenman, I.M.; Tikhomirova, S. V. Z h . Anal. Khim. 1985, 40(1), 154-7; Chem. Abstr. 102, 197263s. (437) Sevillano-Cabeza, A,; Medlna-Escriche, J.; De la Guardia-Cirugeda, M. Analyst (London) 1984, 109(10), 1303-7. (438) Sharpe, M. R. Anal. Chem. 1984, 56(2), 339A-340A, 342A, 344A, 348A, 350A, 356A. (439) Shauiina, L. P.; Kirillov, A. I.I z v . Vyssh. Uchebn. Zaved., Khim. Khim. Technoi. 1984, 27(3), 306-9; Chem. Abstr. 101, 32486h. (440) Shaw, R. W.; Howell, H. E.; Mamantov, G.; Wehry, E. L. Anal. Chem. Symp. Ser. 1984, 19(Anal. Spectrosc.), 37-42. (441) Shen, H.; Wang, L. Huaxue Shiji 1983, 5(5), 262-8; Chem. Absfr. 100, 29004~. (442) Shiba, K. S.; Kanamori, K.; Harada, T.; Nakao, M.; Nakajima. K.; Kodaira, T.; Nakagawa, H. Ciin. Chem. (Winston-Salem N . C . ) 1985, 31(7), 12 15- 18. (443) Shlm, B. S.;Jue, D. M.; Hong, K. J. Korean J. Biochem. 1984. 16(2), 89-95; Chem. Absfr. 102* 181795f. (444) Shimadzu Corp. Jpn. Kokai Tokkyo Koho JP 58,216,953 [83,216,953] (Cl. GOIN31/08), 16 Dec 1983, Appl. 82/100,939, 10 Jun 1982; 7 pp. (445) Shimadzu Corp. Lab. Equip. 1984, 20(10). 83. (446) Shukla, I.C.; Usmani, Q . S.;Chauhan, R. P. S . Proc. Nati. Acad. Sci., India, Sect. A 1983, 53(4), 314-18; Chem. Abstr. 102, 72090b. (447) Siek, T. J.; Rleders, F. J. forensic Sci. 1984, 29(1), 39-54. (448) Siewinski, M.; Kuropatwa, M.; Szewczuk, A. Anal. Chem. 1984, 56(14), 2882-4. (449) Sikorska-Tomicka, H.; Popko, D. Microchem. J. 1984, 29(1). 14-18. (450) Silfwerbrand-Lindh, C.; Nord, L.; Danieisson, L. G.; Ingman, F. Anal. Chim. Acta 1984, 160, 11-19. (451) Slmal, J.; Lage, M. A,; Iglesias, I.J. Assoc. Off. Anal. Chem. 1985, 68(5), 962-4. (452) Singh, I . ; Poonam, Mrs.; Kadyan, P. S. Taianta 1985, 32(5), 387-90.
ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (453) Singh, R. B.; Odashima, T.; Ishii, H. Analyst (London) 1983, 108(1290), 1120-7. (454) Sivanova, 0. V.; Batasheva, N. A. DepositedDoc. 1982, SPSTL 1015 Khpd82, 8 pp.; Chem. Abstr. 101, 32502k. (455) Skripchuk, V. G. U.S.S.R. SU 1,087,841 (Cl. GOIN21/05), 23 Apr 1984, Appl. 3,587,910, 08 Feb 1983. (456) Sladky, P. J . Phys., Colloq. 1983, (C6), 233-8. (457) Smith, P. K.; Krohn, R . I.; Hermanson, G. T.; Maliia, A. K.; Gartner, F. H.; Provenzano, M. D.; FuJimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Anal. Biochem. 1985, 150(1), 76-85. (458) Smith, R. E.; Davis, W. R. Anal. Chem. 1984, 56(13), 2345-9. (459) Solomon, E. I.Comments Znorg. Chem. 1984, 3(5), 225-320. (460) Solomons, M.; Dixon, K. Report 1983, MINTEK-M-67, 12 pp.; Chem. Absfr. 99, 224280~. (461) Sorkau, E.; Doerffel, K.; Reiher, T.; Meier, P. C. Anal. Chim. Acta 1984, 159, 173-9. (462) Spitsyn, P. K.; L'vov, 0. N. Z h . Anal. Khim. 1985, 40(7), 1241-8; Chem. Abstr. 103, 1 5 2 8 7 4 ~ . (463) Starobinets, L. G.; Kovaieva, L. V.; Ishchenko, N. N.; Alinovskaya, L. A.; Ganago, L. I. Vestsi Akad. Navuk BSSR Ser. Khim. Navuk 1984, (I), 7-9; Chem. Abstr. 100, 167276q. (464) Stefyuk, V. V.; Turkevich, N. M. Farm. Z h . (Kiev) 1984, (E), 60-2; Chem. Abstr. 102, 100869h. (465) Strokebaum, W. Pharm. Znd. 1984, 46(4), 386-90; Chem. Absfr. 101 116778t. (466) Stryapkov, A. V.; Sharipov, M. Sh. Deposited Doc. 1983, VINITI 2204-83, 6 pp.; Chem. Abstr. 101, 143132j. (467) Sugitani, Y. Kogaku 1985, 14(2), 108-16; Chem. Abstr. 103, 29288f. (468) Sugitanl, Y.; Uejima, A. Bunseki 1985, (4), 251-7; Chem. Absfr. 103, 47317~. (469) Sun, F.; Xu, L. Huaxue Shiji 1983, 5(6), 327-31; Chem. Abstr. 700, 150240a. (470) Sun, G.; Liu, F. Yaowu Fenxi Zazhi 1984, 4(5), 308; Chem. Abstr. 101, 2 3 5 6 9 3 ~ . (471) Sun, G.; Liu, F. Yaowu FenxiZazhi 1984, 4(6), 374-5; Chem. Abstr. 102, 8 4 4 8 2 ~ . (472) Sun, L.; Yang, Q.; Yu, R. Yaowu FenxiZazhi 1985, 5(1), 23-5; Chem. Abstr. 102, 1548889. (473) Sun, L. S.; Anderson, J. C. U S . US 4,439,347 (Cl. 252-408.1; GOlN31/00), 27 Mar 1984, Appl. 330,974, 15 Dec 1981; 3 pp. (474) Sun, S.; Shen, X. Huaxue Shiji 1984, 6(1), 52-3; Chem. Abstr. 100, ~
150RR5k
(475) Sunandana, C. S. J . Mater. Sci. Lett. 1984, 3(7), 623-4. (476) Susaki, H.; Minami, S. Comput. Enhanced Spectrosc. 1983, 1(4), 209-12. (477) Susaki, H.; Miyama, T.; Matsui, S.; Minami, S. Appi. Spectrosc. 1983, 37(6), 502-8. (478) Szabolcs, L. Gyogyszereszet 1984, 28(12), 455-60; Chem. Abstr. 102, 137909~. (479) Tabacco, A.; Moda, E.; Tarli, P. Ger. Offen. DE 3,339,042 (CI. GOlN33/92), 03 May 1984, I T Appl. 82/23,974, 28 Oct 1982; 9 pp. (480) Tahboub, Y. R.; Pardue, H. L. Anal. Chem. 1985, 57(1), 38-41. (481) Tajima, M. Oyo Butsuri 1984, 53(6), 504; Chem. Abstr. 101, 64986n. (482) Tajima, T.; Maeda, T. Shimadzu Hyoron 1983, 40(2/3), 139-43; Chem. Abstr. 100, 958651. (483) Takagi, M.; Ueno, K. Top. Curr Chem. 1984, 121(Host Guest Complex Chem. 3), 39-65; Chem. Abstr. 101, 162695m. (484) Takahashi, K ; Kaizuka, H.; Oshima, Y. J . Chromatogr. 1983, 268(3), 522-7. (485) Takeuchi, T.; Ishii, D. J . Chromatogr. 1984, 288(2), 451-6. (486) Talipova, L. L.; Smirnova, L. D.; Parpiev, N. A. Zh. Anal. Khim. 1984, 39(7), 1269-74; Chem. Abstr. 101, 182885b. (487) Tam, A. C. NATO ASZ Ser., Ser. B 1985, 119(Anal. Laser Spectrosc.), 29-36; Chem. Abstr. 103, 61599~. (488) Tanaka, A.; Teraki, Y.; Nagumo, K. Sei Marianna Zka Daigaku Zasshi 1984, 12(1), 10-14; Chem. Abstr. 101, 1872709. (489) Tantsyura, G. F.; Plavetskaya, T. G. Z h . Anal. Khim. 1985, 40(2), 228-31; Chem. Absfr. 102, 214246h. (490) Tawfik, A. M.; Mardon, C. J. J . Sci. FoodAgric. 1985, 36(7), 621-7. (491) Technicon Instruments Corp , Data Sheet, 1985. (492) Thijssen, P. C.; Vogels, L. J. P.; Smit, H. C.; Kateman, G. Fresenius' Z . Anal. Chem. 1985, 320(6), 531-40; Chem. Abstr. 102, 196975~. (493) Thompson, M. R.; Dessy, R. E. Anal. Chem. 1984, 56(3), 583-6. (494) Tittel, H. 0.; Thiei, E.; Trakowski, W.; Schenider, M.; Heinrich, W. Znfrared Phys. 1984, 24(2-3), 323-8. (495) Tompkins, M A. A m . Lab. (Fairfieid, Conn.) 1984, 16(2), 110-12, 114, 116-17. (496) Thompkins, M. A. LC, Liq. Chromatogr. HPLC Mag. 1984, 2(7), 540-3. (497) Toshiba Corp. Jpn. Kokai Tokkyo Koho JP 58,172,536, [83.172,536] (Ci. GOlN21/25), 11 Oct 1983, Appi. 82/54,907, 02 Apr 1982; 3 pp, (498) Toyobo Co., Ltd. Jpn. Kokai Tokkyo Koho JP 58,175,496 [83,175,496] (CI. C12Q1/28), 14 Oct 1983, Appl. 82/59,285, 08 Apr 1982. (499) Toyobo Co., Ltd. Jpn. Kokai Tokkyo Koho JP 59 28,664 [64 28,6641 (Ci. G01N33/92), 15 Feb 1984, Appl. 821139,499, 11 Aug 1982; 6 pp. (500) Traeger, F.; Coufal, H.; Chuang, T. J . Phys. Bi 1983, 39(10), 343-6; Chem. Abstr. 100, 12966r. (501) Trautman, J. K.; Gadzekpo, V. P. Y.; Christian, G. D. Talanfa 1983, 30(8), 587-91. (502) Trojanowicz, M.; Augustyniak, W.; Hulanicki, A. Mikrochim. Acta 1984, 211-2) -,. 17-95 .. (503; Tsyganok, L. P. Z h . Anal. Khim. 1984, 39(3), 425-32; Chem. Absfr. 100. 1 8 4 8 6 3 ~ . (504) Tummuru, M. K.; Divakar, T. E.; Sastry, C. S. Analyst (London) 1984, lO9(8), 1105-6.
(505) Tyson, J. Eur. Spectros. News 1983, 4 8 , 28-9; Chem. Absfr. 99, 181181~. (506) Udalova, T. A.; Yukhin, Yu. M.; Shatskaya, S. S. Z h . Anal. Khim. 1984, 39(4), 659-83; Chem. Abstr. 101, 8 3 0 4 3 ~ . (507) Ueda, H.; Pereira-Rosario, R.; Riley, C. M.; Perrin, J. H. Drug Dev. Ind. Pharm. 1985, 11(4), 833-43. (508) Ueda, K.; Yoshimura, 0.; Yamamoto, Y. Mikrochim. Acta 1984, 3(1-2), 103-16. (509) Uldall, A. J . Clin. Chem. Clin. Biochem. 1984, 22(4), 305-7. (510) Unitika, Ltd. Jpn. Kokai Tokkyo Koho JP 58,201,998 [83,201,998] (Cl. C12Q1/34), 25 Nov 1983, Appl. 82/85,499, 19 May 1982; 3 pp. (511) Upor, E.; Mohai, M.; Novak, G. I n "Comprehensive Analytical Chemistry"; Svehla, G., Ed.; Eisevier: New York, 1985; Vol. 20. (512) Urbanski, J.; Wojcieszczyk, R. Chem. Anal. (Warsaw) 1983, 28(1-2), 85-94; Chem. Abstr. 100, 1318289. (513) Vachek, J. Cesk. Farm. 1984, 33(6), 217-19; Chem. Abstr. 101, 2285821. (514) Vaidya, R. A.; Hermes, R. E.; Hathias, L. J.; Bridges, J. L. Am. Lab. (Fairfield, Conn .) 1985, 17(7), 84-5. (515) Valenzuela, A.; Pla, A,; Villanueva, E. J . Toxico. Med. 1984, 4(3), 239-47. (516) Valero, J. An. Quim., Ser. B 1983, 79(2), 297-9; Chem. Abstr. 102, 51000g. (517) Van Kampen, E. J.; Zijlstra, W. G. Adv. Ciin. Chem. 1983, 23, 199-257. (518) Van Tongeren, J. H.; Weyland, J. W.; Van der Voet, H.; Coenegracht, P. M. J. Anal. Chim. Acta 1985, 170(2), 245-53. (519) Varian, Publication No. 85-100528-00, 1983; Publication No. 85100356-00, 1983. (520) Vergeichlik, E. N.; Soiovei, N. V.; Kuleshova, M. I.; Blagorazumnaya, N. V. Farmafsiya (Moscow) 1983, 32(6), 72-4; Chem. Abstr. 102, 1727460. .. (521) Verria, B. C.; Sood, A.; Singh, M. J . Indian Chem. SOC.1984, 61(5), 468-9; Chem. Abstr. 102, 553923. (522) Verma, B. C.; Sood, R. K.; Sharma, D. K.; Sidhu, H. S.; Chauhan, S. Analyst (London) 1984, lO9(5), 649-50. (523) Vogel, P.; Rittersdorf, W. Ger. Offen. DE 3,233,809 (CI. G01N21/03), 15 Mar 1984, Appl. 11 Sep 1982; 20 pp. (524) Vranchev, D. Nauchni Tr.-Piovdivski Univ. 1981, 19(2, Fiz.), 43-7; Chem. Abstr. 100, 162722~. (525) Vytras, K.; Jenik, J.; Kadankova, A. Sb. Ved. Pr., Vys. Sk. Chemickofechnol. Pardubice 1982, 45, 173-86; Chem. Abstr. 100, 73668s. (526) Wachter, G.; Szybalski, L.; Boehme, W. CLB, Chem. Labor Betr. 1985, 36(3), 113-16; Chem. Abstr. 102, 197000d. (527) Wahbi, A. A. M.; Barary, M. Pharmazie 1984, 39(11), 754-6; Chem. Abstr. 102, 124652h. (528) Waite, J. H. Anal. Chem. 1984, 56(11), 1935-9. (529) Walash, M. I.; Rizk, M.; Zakhari, N. A,; Toubar, S. Acta Pharm. Fenn. 1984, 93(1), 33-8; Chem. Abstr. 101, 177591~. (530) Walash, M. I.;Rizk, M.; Zakhari, N. A,; Toubar, S. Anal. Lett. 1984, 17(B9), 817-33. (531) Walash, M. I.; Salem, F. B. J . Pharm. Belg. 1984, 39(2), 88-92; Chem. Abstr. 101, 97730m. (532) Wang, B. Fenxi Huaxue 1984, 12(3), 229-37; Chem. Absfr. 101, 142873q. (533) Wang, H.; Wang, S. Yaowu Fenxi Zazhi 1985, 5(2), 110-12; Chem. Abstr. 103, 1157Og. (534) Wang, L. K.; Thayer, A. E. Report 1983, LIR/08-83/2; Order No. PB84-204692, 18 pp; Chem. Abstr. 101, 207013f. (535) Wang, W.; Zhang, F. Yaowu Fenxi Zazhi 1984, 4(5), 302-4; Chem. Abstr. 101, 235691~. (536) Wang, W. Yingyong Huaxue 1984, 1(2), 1-12; Chem. Abstr. 101, 12197817. (537) Wang, X. Huaxue Shijie 1982, 23(12), 362-4; Chem. Abstr. 100, 965523. (538) Waring, A. J. Anal. Chim. Acta 1983, 153, 213-18. (539) Weber, K. GZTFachz. Lab. 1983, 27(10), 037-6, 841-2, 844-5, 847; Chem. Abstr. 100, 74025s. (540) Weber, K. GZT Fachz. Lab. 1983, 27(11), 974, 976-80, 982-3; Chem. Abstr. 100, 16880f. (541) Weber, R. MTA-J. 1985, 7(3), 121-2, 124-5; Chem. Absfr. 103, 3 120v. (542) Wellburn, A. R.; Lichtenthaler, H. Adv. Photosynth. Res ., Proc. I n t . Congr. Phofosynth., 6th 1983 1984, 2, 9-12. (543) Werie-Wilczynska, A.; Ciecierska-Stoklosa, D.; Gorczynska, K.; Gluzinska, M. J . Mol. Strucf. 1984, 115, 185-8. (544) Willlams, D. H.; Fleming, I. "Spectroscopic Methods in Organic Chemistry"; Urmo: Bilbao, Spain, 1984; 224 pp. (545) Witt, W. Brit. UK Pat. Appl. GB 2,119,086 (CI. GOlN21/27), 09 Nov 1983, DE Appi. 3,215,367, 24 Apr 1982; 7 pp. (546) Wittig, B.; Rohrer, F.; Zetzsch, C. Rev. Sci. Insfrum. 1984, 55(3), 375-8. (547) Wong, S. T. Eur. Pat. Appl. EP 141,134 (CI. G01N33/84), 15 May 1985, US Appl. 544,172, 21 Oct 1983; 16 pp. (548) Woodrow, J.; Spear, K. Appl. Microbioi. Biotechnoi. 1984, 19(3), 177-80. (549) Worsfold, P. J.; Farrelly, J.; Matharu. M. S. Anal. Chim. Acta 1984, 164, 103-9. (550) Wu, J.; Li, B.; Qu, R.; NI, 0.; Zhang, M. Fenxi Huaxue 1985, 13(2), 132-6; Chem. Abstr. 102, 2 1 4 2 2 1 ~ . (551) Wu, M. L. W.; Miche, R. G. Anal. Instrum. ( N . Y . ) 1984, 13(2), 117-34. (552) Xenakis, A. G.; Karayannis, M. I . Anal. Chim. Acta 1984. 759, 343-7. (553) Xu, G.; Yang, 2 . ; Wang, S.Huaxue Tongbao 1985, (E), 23-4; Chem. Abstr. 103, 171064~. ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986
123R
Anal. Chem. 1986, 58, 124R-144R (554) Xu, J.; Ju, R. Yaowu Fenxi Zazhi 1984, 4(2), 124-8; Chem. Abstr. 101, 9 7 7 1 6 ~ . (555) Xu, J.: Yu, R. Yaowu Fenxi Zazhi 1984, 4(1), 56-62; Chem. Abstr. 100, 1 0 9 1 6 9 ~ . (556) Xu, L. Ylyao Gongye 1985, 16(5), 196-7; Chem. Abstr. 103, 929379. (557) Yang, Q.; Chen, ti. Fenxi Huaxue 1984, 12(12), 1098-100; Chem. Abstr. 102, 214276t. (558) Yang, W. Fenxi Huaxue 1985, 13(6), 467-8; Chem. Abstr. 103, 152724~. (559) Yang, 2. Yaowu Fenxi Zazhi 1984, 4(4), 241-2; Chem. Abstr. 101, 198290q. (560) Yang, Z. Fenxi Huaxue 1984, 12(7). 592-6: Chem. Abstr. 102, 16792~. (561) Yao, G.; An, D. Yaowu Fenxi Zazhi 1984, 4(4), 250-5; Chem. Abstr. 101, 137082b. (562) Yi, X.; Li, Y.; Han, L. Turang Tongbao 1983, (6), 35-40; Chem. Abstr. 103, 531709. (563) Yin. L.; Liu, Y. Gaodeng Xuexiao Huaxue Xuebao 1985, 8(6), 502-4; Chem. Abstr. 103, 171177n. (564) Ying, L.; Liu, Y. Gaodeng Xuexiao Huaxue Xuebao 1984, 5(1), 34-8; Chem. Abstr. 100, 184850q. (565) Yotsuyanagi. T.; Hoshino. I-.: Igarashi. S. Eunseki 1985, (7), 496-504; Chem. Abstr. 103, 115097~. (566) Zadorozhnaya, E. M.; Maslei. N. N Deposited Doc. 1982, SPSTL 628 Khp-D82, 5 pp.; Chem Abstr. 100, 1 6 7 2 9 6 ~ . (567) Zaki, M. T. M : AbdeCRehiem, A, G. Microchem. J . 1984, 29(1), 44-8. (568) Zayed, M. A.; El-Morsy, M. M S €gypt. J . Chem. 1983, 26(1), 83-6; Chem Abstr 100, 150336m
(569) Zhan, C.; Liu, S . Huaxue Shii 1983, 5(3), 177-9; Chem. Abstr. 99, 186514t. (570) Zhang, C.; Luo, Q.; Yu, X.; Cheng, Z.; Zen, Y. Gaodeng Xuexiao Huaxue Xuebao 1983, 4(6), 697-702; Chem. Abstr. 100, 111401j. (571) Zhang, G.; Shen, D. Fenxi Huaxue 1984, 12(5), 418-20; Chem. Abstr. 101 177938~. (572) Zhang, H. Yaowu Fenxi Zazhi 1985, 5(2), 92-5; Chem. Abstr. 103, 27399~. (573) Zhang, H.; Sun, Y.; Han, L. Yaowu Fenxi Zazhi 1985. 5(2), 104-5; Chem . Abstr. 103, 27403r. (574) Zhang, J.; Deng, 2 . ; Yang, W. Fenxi Huaxue 1985, 13(2), 117-19; Chem. Abstr. 102, 226097~. (575) Zhang, S.; Fang, Q. Yaowu Fenxi Zazhi 1984, 4(2), 108-9; Chem. Abstr. 10 1 , 97740f. (576) Zhao, Y. Shipin Kexue (Beijing) 1984, 5 7 , 45-50; Chem. Abstr. 103, 36078r (577) Zhao, 2. Huanjing Huaxue 1983, 2(5), 1-7; Chem. Abstr 103, 58810a. (578) Zhebentyaev, A. I. Khim.-Farm. Z h . 1985, 19(1), 111-13; Chem. Abstr. 102, 137921~. (579) Zhou, F. Fenxi Huaxue 1983, l l ( 5 ) , 398-9; Chem. Abstr. 99, 1864133. (580) Zommer-Urbanska, S.;Lehman, W. Farm Pol. 1983, 39(10), 587-90; Chem. Abstr. 101, 12294r. (581) Zou, S.; Liang, W. Talanta 1984, 31(10A), 837-9. (582) Zwart, A. Tldschr. Ned. Ver. Klin. Chem. 1985, 10(1),43-5; Chem. Abstr, 102, 145596h. ~
Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry J a m e s A. Holcombe* and Thomas M. Rettberg Uepurtment of Chemistry, University of Texas at Austin, Austin, Texas 78712
‘I’he last 2 years have produced a large accumulation of literature related to the topical areas covered by this review. ‘I’he main activity continues to reside in the area of atomic absorption (AA) with the primary fundamental studies centered around electrothermal atomization (ETA). Novel work continues in atomic fluorescence (AE’) and laser enhanced ionization (LEI). ‘I’he former enjoys its unique position of readily providing spatially resolved information and extremely low limits of detection when using laser excitation. LEI, and to a lesser extent AE’, continue to take advantage of the laser’s spectral resolutioii in the area of isotopic analysis. It will be interesting to see over the next 2 years how competitive these approaches will be in light of the recent release of the first comniercial induction coupled plasma-mass spectrometer systems, which certainly have potential in this analytically interesting area. Flame emission and related furnace emission techniques continue to receive a sinall percentage of the research efforts. Coherent forward scattering and other magnetooptic techniques continue to look intriguing but have failed to attracted “a crowd” into the research arena at this juncture. A large share of the literature focused on analytical schemes directed at particular analyte/matrix combinations with a majority of the effort centered around AA, probably indicating its broader user base. W-hile many of the included articles might be considered “applications” (which they are in the loose sense of the word), we felt that either the novelty of the approach or the empirical observations report,ed may provide some insights into fundamental processes for those workers with a primary interest in mechanisms. This biennial review covers the literature and significant publications in the field since the previous review (22A)to approximately October 1985. Computer-assisted searching coupled with a literature search of key journals comprise the foundation of this report. As in the past, emphasis is placed on fundamental work conducted in the areas of flame emission, atomic absorption, and atomic fluorescence. Although the application citations are extensive. the list is not all inclusive. 124 R
0003-2100/86/0358- 124R$06.50/0
Presentation of unique studies and new approaches and accessibility of the journal were used as criteria for article selection in this area. The applications given are complimented by the companion reviews presented in this issue of Anal. Chem. on odd years (3A). Lawrence (284-31 A ) continues the biannual bibliography of atomic spectrometry, and the Royal Society of Chemistry has published three volumes of “Annual Reports on Analytical Atomic Spectroscopy” (ARAAS) in the last 2 years (lOA,I l A , 22A). At this writing, Progress in Analytical Atomic Spectroscopy, a journal that publishes comprehensive reviews and overview articles, is in the process of changing its name to Progress in Analytical Spectroscopy. This change will better reflect the expanded scope of the journal to include molecular spectrometry. The introduction of the Journal in Analytical Atomic Spectroscopy was announced this year as a “sister journal to Analyst” (%A) with the first issue expected in 1986. This journal of the Royal Society will focus on applications of atomic spectrometry and also serve as the new home for “Atomic Spectrometry Updates” (formerly ARAAS).
A. BOOKS AND REVIEWS Alkemade (2A) addressed the interrelationship between atomic physics and atomic spectroscopy in a reprint of his lecture presented at the 23rd Colloquim Spectroscopicum Internationale (Amsterdam, The Netherlands, 1983). His title raises the question of a “mother and daughter” relationship and he later notes that, “In a good family, mother and daughter keep in touch with each other”. The connecting lines between the two fields are nicely presented and it is recommended reading. A book by Beyer and Kleinpoppen (5A) considers the physics of atoms and molecules with respect to atomic spectroscopy in greater detail, and a brief review from a similar viewpoint has also been given by Wynne (55A). Bennett and Rothery (4A) also have published an introductory tutorial on AA that covers basic instrumentation, flames, furnaces, and hydride generation. Van Loon (52A) reviewed the analytical potentials available with some of the
0 1986 American
Chemical Society