Ultraviolet spectrometry - Analytical Chemistry (ACS Publications)

L. G. Hargis , J. A. Howell , R. E. Sutton. Analytical ... L. G. Hargis and J. A. Howell ... J. A. Howell and L. G. Hargis ... Roy F. Abernethy and Ja...
0 downloads 0 Views 3MB Size
(341) Vinh,L. D., Reynaud, J., Lafont, R., Compt. Rend., Ser. A , B 263B, 192 ( 1 966). \----I.

(342) Wait, S. C., Jr., Ward, A. T., J. Chem. Phys. 4.4, 448 (1966). (343) Wall, T. T., Hornig, D. F., Zhid. 43, 2079 (1965). (344) Wall, T. T., Hornig, D. F., Ibid. 45, 3424 (1966). (345) Wall, T. T., Hornig, D. F., Zhid. 47,784 (1967). (346) Walrafen, G. E., Zhid. 44, 1546 (1966). (347) Walrafen, G. E., Zbid. 46, 1870 (1967). (348) Walrafen, G. E., Ibid. 47, 114 (1967). (349) Weber, A., The Spex Speaker XI, No. 4, 1966. (350) Weber, A., Porto, S. P. S., Chees-

man, L. E., Barrett, J., J. Opt. SOC. Am. 57,19 (1967). (351) Weiss, R. J., Phys. Rev. 140, 1867 (196.5). \ - - - - I .

(352) Wiggins, T. A., Wick, R. V., Rank, D. H., Appl. Opt. 5, 1069 (1966). (353) Wolff, H., Hudwig, H., Ber. Bunsenoes. Phusik. Chem. 70., 474 (1966). ~ (354)”Wolff,-P. A., J . Quantum Electron 2, 659 (1966). (355) Woodward, L. A., Pure Appl. Chem. 1 1 , 473 (1965). (356) Worlock, J. M., Porto, S. P. S., Phys. Rev. Letters 15, 697 (1965). (357)-Wright, G. B:, Mooradian, A,, Phys. Rev. Letters 18,608 (1967). (358) Xuan Xinh. N.. RIaradudin. A. A.. . Goldwell-Horsfall, ’ R. A,, J.’ Phys: (Paris)26, 717 (1965).

(359) Yu, P. S., Hu, T. L., SU, P.-L., Wu L i Haueh Pao 22, 714 (1966); Chem. Ahstr. 66, 15444~’(1967). (360) Ziegler, E., Hoffmann, E. G., Oesterr. Chem. Ztg. 68, 319 (1967). (361) Zubov, V. A., Sushchinskii, M, M.

Shuvalov, I. K., “Contemporary in Raman Spectroscopy,” Usp. Fit. ,Vauk 89,49-88 (1966). (362) Zubov, V. A,, Sushchinskii, M. M., Shuvalov, I. K., Zh. Prikl. Spektroskopii, Akad. iVauk Belorussk. SSR 3, 336 (1965); Chem. Ahstr. 64, 10612d ,Trends

(1966). (363) Zubova, N. V., Kuz’mina, N. P., Zubov. V. A.. Sushchinskii. 11. M.. Shuvalov, I. K.,Zh. Eksperim. i Teor: Fiz. 51, 101 (1966); Chem. Ahstr. 65, 16274c (1966).

Ultraviolet Spectrometry Warren Crummett and Richard Hummel, Analytical Development Labordory, The Dow Chemical Co., Midland, Mich.

T

HIS REVIEW summarizes the material which has come to the authors’ attention since the previous review (145) and covers the period from November 1965 to December 1967. Papers are selected on the basis of their apparent utility to the analytical chemist.

BOOKS AND REVIEWS

Several books have appeared which treat some aspects of ultraviolet spectrometry as part of a broad discussion. These include “Fundamentals of N o lecular Spectroscopy” by Banwell (45) and “Spectroscopy Volume 11: Ultraviolet, Visible, Infrared, and Raman Spectroscopy” by Walker and Straw (635). These books give a good description of elementary theory. I n “Applications of A4bsorption Spectroscopy of Organic Compounds,” Dyer (177) presents a good elementary discussion of the origin of ultraviolet spectra and its applications. A chapter by Boltz (87) in “Standard hIethods of Chemical Analysis” provides a brief discussion of instruments, methodology, and analytical applications. -4STlI has issued a “Manual on Recommended Practices in Spectrophotometry” (17) which includes all the practices proposed b y the ASTPII committee on absorption spectrometry. Infrared and ultraviolet quantitative methods as well as general qualitative analysis methods are included. Definitions of terms and symbols are presented. A chapter b y Forbes (209) in ‘‘Interpretive Spectroscopy” is an excellent treatment of the uses of ultraviolet spectrophotometry for qualitative work and a discussion of its application t o

330 R

ANALYTICAL CHEMISTRY

topics such as steric interactions, cistrans isomerism, tautomerism, hydrogen

bonding, protein structure, natural products, and ions and free radicals. A chapter by Land (373) in “Progress in Reaction Kinetics” deals mith methods of preparing and observing the spectra of aromatic radicals and includes a tabulation of the spectra from the literature up to December 1963. Kinetic data are included. Among new books on molecular orbital theory are “Introduction to Molecular-Orbital Theory” by Liberles (394), “The llolecular Orbital Theory of Conjugated Systems” by Salem (550), and “Electronic Libsorption Spectra and Geometry of Organic llolecules” by Suzuki (595). The latter book deals primarily with applications of the theory. Herzberg (278) has extended his discussion of the electronic structure of molecules to those containing as many as twelve atoms in “Molecular Spectra and Ptlolecular Structure. 111. Electronic Spectra and Electronic Structure of Polyatomic Alolecules.” The application of ultraviolet spectrophotonietric methods to various materials has been discussed in a number of chapters in “Standard Methods of Chemical Analysis” by PIIehlenbacher (429) on unsaturated fatty acids, Stolten (585) on organic functional groups, McGinness, Secrest, and Tessari (419) on resins and esters, Cobler (157) on polymers, and Blank and Kelley (80) on detergents and soap additives. Samson (534) presents all the experimental methods and reviews all known techniques in the field of vacuum ultraviolet spectroscopy in a book entitled “Techniques of Vacuum ‘C‘ltraviolet Spectroscopy.”

An excellent review article b y Kracmar and Kracmarova (359) describes the techniques involved and the applications of ultraviolet spectrophotonietry to the analysis of pharmaceuticals. McCallum (409) has presented a thorough review and discussion of the application of ultraviolet spectrophotometry in the analysis of nucleic acids. He has also reviewed its use in the forensic sciences (407) and in the determination of polynuclear aromatic hydrocarbons in urban airborne particulates (408). Beckman Instruments (57) have issued a bibliography of 6000 references on ultraviolet applications. Gruen (247) has reviewed its use on fused-salts and Svehla (596) has comprehensively reviewed the practical applications of differential spectrophotometry. COLLECTIONS OF SPECTRA AND INDICES

The Sadtler collection of ultraviolet spectra now numbers 22,000 spectra (564), up 6,000 since the last review. An 18,000 spectral collection is available from Scientific Documentation Centre (545). Both sources offer a wide variety of services in making searches and securing spectra. Volume I11 of “Organic Electronic Spectral Data” (659)is a worthy addition to the others (Vol. I, 11, and IV). Four more volumes of “Absorption Spectra in the Ultraviolet and Visible Region” (374-377) b y Lang have appeared. They consist of a collection of spectra of a wide variety of compounds and include a tabulation of absorbance versus wavelength in acidic and basic media. This makes a total of 1285 spectral curves and data published by Lang in seven volumes.

From Japan, Hirayama (287) has published a tabulation of ultraviolet absorption data of typical compounds according to the type of absorbing system which consists of a chromophore or conjugated chromophores with jointed atoms and auxochromes. Hershenson (277) has extended his published indices to cover the period of 1960-1963. It contains 25,000 references to spectral data from 66 journals. Trost (618) has issued a compilation of spectra which shows the contribution of each to structural problems. Several books have appeared which present spectra of selected classes of compounds. Of these the “Atlas of Steroid Spectra” (459) is of primary interest because it classified ultraviolet spectra according to their shape and the position of the absorption maxima. It is a must for all those doing research on steroids. “Systematics of the Electronic Spectra of Conjugated Molecules: A Source Book” (497) presents homologies and wavelength and intensity formulas for hundreds of substituted benzenes, conjugated chains, aromatics and porphyrines. Spectra of polymers, monomers, and additives are presented in “Ultraviolet Spectra of Elastomers and Rubber Chemicals’’ (ZOO). The ultraviolet spectra of adenine, guanine, uridine, and cytidine bases and related compounds before and after bromination are presented by Venksten and Baev (628). “Spectrophotometric Data for Colorimetric Analysis” (304) also includes some ultraviolet spectra of metal complexes. APPARATUS

Relatively little activity has been reported on improving spectrophotometers or devising new ones indicating considerable satisfaction with commercial instrumentation already available. Perhaps the outstanding advance during this period has been the introduction of the Cary Model 16 manual spectrophotometer (109). This instrument features a double beam, double monochromometer optical system which produces a photometric accuracy of 0.00024 absorbance near zero and 0.001 near 1. This permits investigations of Beer’s law in very dilute solutions (below 0.01 absorbance unit). It also produces more sigiiificant figures which are essential for good assay work. Loach and Loyd (397) describe a spectrophotometer capable of measuring changes as small as 5 >( absorbance units. Gurevich and Kolyadin (264) describe a double-beam spectrophotometer whereby the spectra from a selected spectral range from the region of 230-1000 m r is presented on an oscillograph screen.

Vincent (629) built an inexpensive recording photometer for monitoring ultraviolet absorbing effluent from chromatographic columns. Horer and Popescu (292) report a method and apparatus for the ultraviolet spectrometric determination of substances on small paper discs. Middleton (432)used two monitors in series to measure heavy petroleum fractions from a partition chromatographic column. Abelson (1) describes a double path, fused quartz microcell for use with solutions of unknown absorbance. Franc and Pour (211) designed a cuvette for ultraviolet spectrophotometry in conjunction with gas chromatography. Steel, Robinson, and Bates (682) describe a controlled temperature cell block for measuring pB values a t various temperatures. Gould (239) devised an air bath thermostat capable of automatically controlling the cell temperature from -150” to $60” C. James and Smith (316) describe a pressure vessel and furnace for measuring spectra of liquids a t elevated temperatures and pressures for use with Cary 11 and 14 model recording spectrophotometers. Magos and Heath (414) propose a mechanical method of obtaining records proportional to concentration from spectrophotometers with recording galvanometer output. Broadhead and Clark (94) describe a double-beam reflectance attachment for the Unicam SP 800 spectrophotometer. The evaluation of the performance of a spectrophotometer 11as accomplished by Weriiimont (650) by measuring the absorbance of solutions of potassium dichromate a t 20 wavelengths in the 230 to 400 mk interval. Martris operations were used to check for abuormal variations in concentration-related absorbance curves, agreement with Beer’s law and deviations in wavelength calibration. SPECTRAL STUDIES OF CLASSES OF C O M P O U N D S

The number of articles in which ultraviolet spectral data are presented on a series of similar compounds is increasing a t a tremendous rate. These articles are of three types: (I) those designed to reach a conclusion which will permit the prediction of the spectral behavior of related compounds in the future, (2) those designed to add to the growing body of spectral data, and (3) those in which ultraviolet spectral data are given as a part of the physical data presented when new compounds are synthesized. The third type is fairly new and is indicative of the growing awareness of organic synthesis chemists of the value of spectral data. This practice should be encouraged wherever possible. I n the interest of brevity no distinction of type of article will be made

in this review. -111 three present data which are valuable to the analytical chemist. Some studies of interest include those on cis and trans P-nitrostyrene derivatives (644), mono substituted benzenes (417 ) , substituted iodosybenzenes and their corresponding iodo compounds @ I S ) , substituted diphenylmethylenes (620), 1,4-bis-(cycloheptatrienyl) benzene isomers (449),diphenyl derivatives of Group IVb elements ( l e g ) , 1,6bridged [lo] aiinulenes (81), isopsoralene derivatives ( I I S ) , monomeric and polymeric phenylacetylene derivatives (237), 1,l’-dianthoylpoly-ynes ( I O ) , derivatives of triphenylene (5O), carbocyclic, oxa- and azapropellanes (16), acridanes and diacridane (668),polybutadienyl- and polyisoprenyl carbanions (240), 1,4-divinylbenzene diary1 derivatives (466), 2-substituted 1,8naphthyridines (268), carbonium ions (473), 7-isopropylidenebeiizonorbornadienes (44~9,a,B-unsaturated acids ( I S $ ) , humic acids (396), hydroxyand methoxyphthalimidoacetic acids ( I I I ) , benzenesulfiiiic acids and their ethyl esters (349), 1-naphthoic acids substituted in various positions by a nitro, halogen or methyl group (W14), rylates from 3,3’-azobenzenedicaric acid (SX), 3-aryl-5-arylazorhodanines I(SOS), 6-membered thioactams, thioimides, and dithioimides (65), 5-membered heterocyclic thioamides (593, heterocyclic thioamides ( I @ ) , Ai-aryl furfurylidene- and thenylideneimines (%‘I), polycyclic aldehydes, ketones, quinones, and amines ( S z l ) , a-epoxyketones with various substituents (494), aryl- and heterocyclic phenyl ketones (483), @unsaturated ketones ( I % ) , fluorenones (233), indazalone derivatives (I%?), 3,5-disubstituted tetrahydro - 1,3,5- thiadiazine- 2- thiones (601), 8-quinolinol hydrazones (523), semicarbazones of mono- and bicyclic terpene ketones (456), nitrophenylseniicarbazones (241), lJ4-benzodioxans (155), coumarin derivatives (1 2-drated shima and llIartel(.$24), phenaiithroliiies cations. Hoshiiio and coworkers (293) by McUryde (dot?), tropoiie and tropodetermined the ~ K B H of + acetic and lone by Hosoya and Sagakura (294), propionic acids by study of their ultraquinazolines by .Irmarego and Smith violet absorption change in various (24),guanosine catioii in H20 and DzO concentrations of sulfuric acid aiid by Bunville and Schwalbe (105), tetraconcluded that acetic acid is a Hammett hydrofolic acid by Kallen and Jencks base. (328) , and cyanoguan~-lureaand cyanoStradyn and coworkers (589)studied biguanide by Mushkin and Fiiikel'shtein the spectra of 2-benzyl-l,3-indanedione and twelve of its substituted derivatives (453). Rigler and 'is'ilson (6'53) determined the ionizatioii constants of 3and analogs in aqueous solution a t varihydroxypyridine by using the graphic ous pH values and calculated the conshift suggests the 2-aminothiazole, and 1,2-imino-thiazoline structures under various conditions. Klochkov and Korotkov (548)studied the effect of temperature on the absorption spectra of solutions of anthracene, 9,lO-diphenylanthracene, and 1,4-diphenyl-1,3-butadiene from 77-360' K. and noted the increase in intensity with increase in temperature. Polyakov and coworkers (498)found that the association of organolithium compounds in solution has a marked effect on the wavelength of this ultraviolet spectra. Kadhim and Offen (385) studied the effects of high pressures on the spectra of trans-azobenzene in a polymer matrix and found that the magnitude and direction of the spectral shift depended on the type of transition, the nature of the polymer matrix and other features. Hirai (686) studied the spectra of 4-amino-5-carboxy-2-methylpyrimidine in several solvents to ascertain solvent effect on zwitterion formation.

stants of protolysis. K a l h a and coworkers (634) studied the prototropic constant of the anion of 2-hydroxymethylbenzimidazole. Saiiiiigrahi and Chandra (537) calculated stability constants of some phenols with carbon disulfide as a base. TJ7eimer and Prausiiitz (64?) showed the formation of weak complexes betv, een p-xylene and conimoii polar solvents in hexane and calculated their equilibrium constants. Bavay and coworkers (54)proposed a structure for the acid formed by osmium tetraoxide in aqueous solution as OsOn(OH)4 and determined four equilibrium constants from a study of absorbance versus pH a t various wavelengths. Itoh and S a g a kura (508) calculated the monomerdimer equilibrium constant for the reversible dimerization of 1-alkyl-4-carbomethoxypyridiriyl radicals. Bounsall and Poe (89) determined equilibrium constants for the stepwise replacement by iodide of the chloride or bromide in trans - bisethylenediamine - dihalogeiiocomplexes of rhodium(II1). I3ott and Poe (88) determined equilibrium constants for the successive replacement of chloride in trans-Kh eri2CIz+by bromide. R a l s h and coworkers (642)measured the equilibrium constant for the reaction of iodine n i t h toluene over a teniperature range of 210-390" C. Rodgers aiid coworkers (518) 1eported equilibrium constants for the reaction of iodine with propene from 208-300' C. Hiiie and k'eh (685) determined constants for the formation of imines and water from isobutyraldehyde and saturated aliphatic primary amines. Green and Sleet ($43) calculated formation constants for Schiff bases from methylamine and p-hl-droxybenzaldehydes. Sagano and Metzler (454)describe a method for machine computation of equilibrium constants and plotting of spectra of individual ionic species in the pyridozal-alanine system. Hydrolysis constants n ere determined for quadrivalent cerium (468), the oxalatopentarnine-cobalt(II1) complex (21), and acetaldehyde (367). Bellon and Luis-Abboud (63) compared association constants of reactions of proton acceptors with solvents containing H or I)and found the I G / I L t o be close to unity. Millen and Watts (434) present a new method for the determination of ion association constants a i d report constants for the cis-dichlorobisethyleiiediaiiiiie cobalt(I11) cation and chloride and iodide anions by this method. DeSarlo (162) studied the tautomerism of 3,4-dimethyl-isoxazolin-5-one and found the 4-H form predominates in nonpolar solvents but the 2-H form predominates in polar ones. The amino-2thiazoles and the imino-2-thiazolines were examined for tautomerism through their X-methyl derivatives by Sdlim and coworkers (560), 9-hydroxy-acridine-10VOL 40, NO. 5, APRIL 1968

333 R

oxide and 9-mercapto-acridine-10 oxide by Ionescu and coworkers (306),the 0mercaptothiocinnamates and P-mercaptocinnamamides for thioxo-thioenol tautomerism by Yokoyama and Tanaka (663), tetrahydro-2-thiothiazines and thiazoles for thione-thiol tautomerism by Garraway (220), 2-aminothiazoline4-one and 2-iminothiazolidine-4-one by 3-hydroxyisoquinolines in Akerblom (9), diethyl ether and water by Evans and coworkers (190), acenaphthenone by Marinangeli (418),dihydroxyfumaric acid by Hay and Harvie (269), and 4,6-dihydroxypyrimidine and its mono- and dialkyl derivatives by Katritzky and coworkers (333). Katritzky and coworkers (332) also studied the tautomerism of the anionic and cationic forms of glutaconimide as well as the 0- and N-methyl derivatives. Studies by Mondelli and llerlini (438) establish the existence of tautomeric equilibria in chloroform, dimethyl sulfoxide and trifluoroacetic acid solutions of some a-cyano, carbethoxy- and acylmethyl derivatives of 2-oso-1,2-dihydroquinoxaline,2-oxo1,2-dihydro-6,7-benzoquinosaline,3,4dihydro-1,4.-2H-benzoxazone, quinoxaline, and quinoline. llelenteva and Pavlova (430) studied acid-base transformations in the ultraviolet spectra of several 1-phthalanols in sulfuric acid solution. Flis and coworkers (206) investigated the equilibria of sulfites in aqueous solution. Slovetskii and con-orkers (567) show that the silver derivatives of polynitro compounds exist as ions in the crystalline state but in solution an equilibrium exists between the ionic and organometallic forms. Ogryzlo and Sanctuary (470) discuss double molecules in gases using bromine as an example. REACTION MECHANISMS

Reactions which occur in solutions are conveniently studied by ultraviolet spectrophotometry. Intermediates are sometimes identified in this way. Also a better understanding of the reaction process itself often results. Or perhaps the product itself is identified. Porai-Koshits and Shaburov (500) studied the hydrolysis of n-nitrosoacetarylides in aqueous media. In neutral or alkaline media aryldiazonium compounds lvere obtained. I n 0 . l N hydrochloric acid the products were mainly acetanilides. I3errens (66) studied the effect on the electronic spectra of heating aqueous solutions of simple aldoses at 50" C. a t various pH values. Maxima appear which are attributed to various intermediates in the degradation of aldoses. Bell and Biggers (59) studied the effect of hydrolysis on the absorption spectra of the uranyl ion in perchlorate media and resolved the resulting spectrum into individual bands. Tuli and lIoyed (621) demonstrated that extracts of pea seedlings oxidize

334 R

ANALYTICAL CHEMISTRY

indole-3-acetic acid to 3-hydroxymethyloxindole. Higuchi and Gensch (281) used the appearance of a band at 304 mp as evidence for the formation of phthalic anhydride during oxidation of a thioether to sulfoxide by iodine in a phthalate buffer. Kofoed and coworkers (360) used ultraviolet absorption to follow the oxidation of phenothiazine derivatives 011 thin layer plates. Zanker and Ehrhardt (667) studied the photochemical behavior of some xanthenes and xanthones. Backstrom and Kiklasson (35) studied the ultraviolet spectral changes resulting from the photoreduction of benzophenones and 4,4'-dialkylbenzophenones by alcohols. Nelson and 13artlett (458)used the strong ultraviolet absorption of quinoid dicymyl to determine the amount formed by photodecomposition of azocumene. Saidel and coworkers (527) studied the reaction of amino acids and peptide bonds with formaldehyde by measuring the changes in ultraviolet spectra a t 220 mp. Lewin and Humphreys (392) investigated the reactions of formaldehyde with cytosine, cytidine, and deoxycytidine. Song and Chichester (574) investigated the mechanism of the reaction between D-glucose a i d glycine. Reimann and Jencks (612) showed that Smethyl hydroxylamine and p-chlorobenzaldehyde a t alkaline pH values rapidly form an intermediate tetrahedral addition compound which is converted to the product in subsequent slow acid catalyzed reaction. Turitsyna and coworkers (623) investigated the processes occurring during the decolorization of an alkaline methanolic solution of benzylidene derivatives of pyrazolone-5 and of the restoration of color on acidification. They found that the decolorization is not accompanied by liberation of aldehyde but addition of hydroxyl ion with formation of a carbinol capable of easily changing to the original material on acidification. Some other interesting reactions which were studied include the rearrangement of l-alkyl-1,2-dihydro-2-iminopyrimidines (489),the introduction of the iodides of post transition metals with mercury(I1) iodide in dilute dimethylformamide and dimethyl sulfoxide solutions (217 ) , reactions of thioxanthene and thioxanthene-10-oxide in sulfuric acid (658), polymerization of aliphatic diazo compounds (860),the interaction of iodine with triphenylamine, triphenylphosphine, triphenylarsine, and triphenylstilbene (7'1) and reactions of isoxazolinopyridinium cation with amines in buffered solutions (181). REACTION RATES

Ultraviolet spectrophotometric techniques are used extensively to study the kinetics of reactions-especially those

occurring in solution. The method is very convenient inrolving the measurement of the decrease in the intensity of a band or the growth of a band with time. Thus Garrett and Mehta (222) studied the rate of solvolysis of 3,4-dialkyl sydnones. R i t h Seydel and Sharpen (2881, Garrett also studied the kinetics of the acid-catalyzed solvolysis of various nucleosides a t various temperatures. Schowen and Latham (543) measured the rate of reaction of phenoxytriphenylsilane with buffered methanol solutions. Murto (450) studied the rate of alkaline alcoholysis reactions of picryl fluoride to form picrate ion. Hydrolysis rates of interest include the base hydrolysis of thiosulfatopentacyano-cobaltate(II1) ( 4 4 , N-substituted 6-amino-thiouracils (124), tetrachloroaurate(II1) a t various chloride and hydrogen ion concentrations (813), nitropentaamminecobaIt(II1) ion in sulfuric acid solutions (265),tetrachloriodoplatinate(I1) (182), thalidomide, N butylphthalimide, and phthalimide (116),hydroxy and methoxy derivatives of N-benzylidene-2-aminopropane ( I O d ) , methyl-substituted succinanilic acids (280), 8-acetoxyquinoline (46), picrylic compounds (451),alkyl or aryl ethers of 2,4-dinitrophenol (452), and nitropentamminecobalt perchlorate (372). Yates and McClelland (661) determined the rate of acid catalyzed hydrolysis of acetate esters using the wavelength range of 182-195 mp for alkyl acetates and 260-280 mp for phenyl acetates. Robinson (614) proposed a method of identifying alcohols by measuring the rate of alkaline hydrolysis of their 3,5-dinitrobenzoate esters through the increase in absorbance a t 285 mp. Schubert and Lamm (544) determined the first order rate constants for the hydration of styrene in various perchloric acid solutions. Ultraviolet spectrophotometry is a popular technique for measuring the rate of reaction of halogens or halide ions with other compounds. Some recent examples of interest are trans- [Pt (PEt3)2C12]withiodide to yield trans- [Pt(PEt3)212] (194),and iodine with a series of methylphenol derivatives (426), Ltyrosine (427), propene (254), formate ion (284))and isopropyl alcohol in the gas phase (641). Swaminathan and Harris (597) studied the kinetics of the reaction of chloride ion with hexaaquorhodium(II1) ion in acid solution. Chock and Halpern (125) studied the kinetics of the addition of methyl iodide to some square-planar iridium(1) complexes. Several aminolysis reaction rates were measured. Sharvali and Biechler (556) studied the kinetics of aminolysis of eleven phenyl esters by various amines under pseudo-first-order conditions using p-dioxane as solvent. Menger (431) studied the rate of aminolysis and am-

idinolysis of p-nitrophenylacetate by measuring the absorbance due to pnitrophenol formation. Uunnett and Naff (103) studied the rate of aminolysis of isatoic anhydride. Krauss and Reinheimer (362) determined the kinetics of the reaction of 2,4-dinitro-l-halonaphthalenes with ammonia. Oxidation reactions studied kinetically include iron(I1) by chlorine by measuring the ferric ion absorption at 335 m p (144) and iodide ion in various acidic dimethylsulfoxide-water solvent mixtures (364). Some catalyzed reactions whose rates were studied are the potassium hydroxide-catalyzed formation of melarine from dicyandiamide ill diethylene glycol monoethyl ether (336), the acid-catalyzed reversible esterification reaction of allelotrope of p-nitrosophenol and pbenzoquinoneoxime M ith ethanol (215), and the azobisisobutyronitrile-initiated reaction of t-butyl hypochlorite with toluene and cyclohexane (639). Rates of formation of the monothiocyanate complex of vanadium(II1) (40),ketimine from acetone and methyl amine (655), 2- and 4-butylaminopyrimidine from alloxy- and alkylthiopyrimidines and butylamine (98), and aliphatic nitrones from S-cyclohexylhydroxylamine and aldehydes (422) were measured. Cltraviolet spectrophotometry was used to measure the rate of addition of methylmagnesium bromide to a ketone (571), thiols to acetaldehyde and other carbonyl compounds (387), and nitroform to methyl avrylate (330). Rearrangements were studied kinetically also. Among the striking ones are the Ilimroth rearrangement of propynyl (and related)-iminopyrimidines (96, 9 9 ) , and the rearrangement of azoxybenzene and a- and P-4-bromo- and 0-4-methylazoxybenzenes into the corresponding hydroxyazobenzenes (2%). The stability of solutions was measured by ultraviolet spectrophotometric techniques. The influence of time on meta-vanadate solutions in dilute perchloric acid ( I 10), trimethylene bis- (4formylpyridiniuni bromide) dioxine in aqueous solutions (1851, and thioacetamide in the presence of ammonia (492) were studied. Hague and Halpern (267) studied the kinetics of ion substitution reactions of trans - bis(dimethylg1yo~imato)- cobalt(111) complexes. Janes and Nargerum (317’)studied the effect of anions on the dissociation rate of 1,2-diaminocyclo-

hexanetetraacetato-mercurate(I1). PROOF OF STRUCTURE

Infrared, NMR, and mass spectrometry are usually capable of elucidating the structure of a compound but these tools are not available to all chemists and, furthermore, the results from these

are sometimes in disagreement. I n these cases, ultraviolet spectrophotometry is very useful. Recent literature contains some interesting examples. Ioffe and Otten (305) confirmed the lactone structure of diacetylrhodamine and diacetylrhodol by comparing their ultraviolet spectra to that of 3,6-dichlorofurane. Chupakhin and coworkers (128) established the structure of mono- and bisthioquinaldineamides. Barkhash and coworkers (47) established the structure of the condensation products of a-bromocyclohexanone with dimedon and 4-hydrocoumarin. Jurd (323) found UV spectrophotometry convenient in determining the structure of products of the reaction of flavylium salts with 5,5-dimethyl-l,3-~yclohexanedione in acid solutions. Courbat (143) assigned the structures of derivatives obtained by hydroxyethylation of rutoside on the basis of spectral shifts. Brown and coworkers (97‘)confirmed the structures of some methylthiopurines. Clark and Williams (130) used the intensity of the P h - 0 A-A* transition to determine the angle between the plane of the benzene ring and the plane containing the oxygen bonds in several aromatic ethers. Chel’tsova and coworkers (119) confirmed the structures of hydrogenated dibenzylbeiizenes and a,a’-bis(benzylpheny1)xylenes. Clark and Walker (131)used the spectra of 2,6-bis-

of the coumarin rings. S o further shift was obtained with boric acid-sodium acetate indicating that the two hydroxyl groups are not ortho to each other. Bickoff and coworkers (73) used a similar approach to indicate the positions of the hydroxyl groups in 7,12-dihydroxy11-methoxycoumestan separated from alfalfa. Oki and Iwamura (47’2)examined the UV spectra of 2-hydrosybiphenyls and from the K band maxima estimated the dihedral angle made by the t\\ o benzene rings. Ames and coworkers (19) determined the site of protonation of cinnoline and some of its derivatives. Scott and coworkers (647) followed the course of transformations in the five step synthesis of desacetamidocolchiceine. Yates and Ault (668) showed the structure of “dimethylmangastin hydrochloride” and elucidated its mode of formation. Kozyreva (358) deduced the structures of vulcanized polyphenylene-, polytoluylene-, polyethyl~,henyIeiie-, polycumylene-, polydiijhen)-leiie-, and polychlorophenylene - ethyl. Alguer6 and coworkers (13) assigned the cis and trans configurations to resolved isomers of the semicarbazones of phenyl-, p-tolyl, p-chlorophenol-, and p-methoayphenj-lpropiolic aldehyde. THEORY AND CALCULATIONS

(4’- methoxycarbonyl-2’,4-bithiazo1y1-2-

yl) pyridine and dimethyl micrococcinate as support of the proposed structure of the latter. Vromen and coworkers (633) report an excellent example of the use of ultraviolet absorbance to help in the determination of the structure of compounds, in this case the products of the Huang Rlinlon reduction of dibenzylidene-acetone. Tolman and coworkers (620) prepared 1-, 3-, and 7-methyl isomers of 4 - amino - 5 - cyano - 6 - methylthiopyrrolo- [2,3-d]pyrimidine and used their UV spectra t o provide an unequivocal assignment for the actual site of ribosidation in 7-P-o-ribofuranosylpyrroto[2,3-d]pyrimidone. Hewgill and coworkers (279) used ultraviolet spectra as an aid in determining the structure of compounds resulting from the reaction of a sterically hindered o-benzoquinone with o-phenylenediamine. Ultraviolet spectrophotometry is often useful in establishing the positions of chromophores on aromatic rings. Thus, Amery and Corbett (18) determined the relative positions of the hydroxyl and nitro groups in N-methylated aminonitrophenols. Spencer and coworkers (576) used the technique to indicate the location of hydroxyl groups in bicoumol. The 328 mp absorption peak underwent a bathochromic shift to 350 mp in the presence of sodium acetate, indicating that at least one hydroxyl group was in the 7-position of one

The Pariser-Parr-Pople method for the calculation of transition energies and intensities of the A-T* bonds was tested extensively. Faviiii and coworkers (196) used a simplified version on 31 azines with good agreement v ith experiment. Sishimoto and Forster (463) had like success with naphthalene, anthracene, phenanthracene, pyrene, and azalene. Leihovici and 1)eschamps (385, 386) obtained good results on quinones, monoxime, and dioxime but needed a solvent correction for naphthaand anthraquinones (384). Alllinger and coworkers (14) modified the method t o allow for inductive effects of alkyl groups on unsaturated hydrocarbons. Yaoloni and con orkers (482 j experienced difficulty in applying this method to tetra-azapentane. Labarre, et al. (370) calculated the electronic structures of some fluorobenzenes using the L.C.A.0. method in conjunction with ultraviolet spectra. Jaffe and coworkers (314) discuss the limitations of orbital energy level diagrams in understanding the ultraviolet spectra of organic molecules. Favini and coworkers (195) obtained good agreement between experimental and theoretical results and transition energies, oscillator strengths, and dipole moments of A-A* bonds in the spectra of amino- and nitropyridines by use of the localized-orbital model with configuration interaction. Durocher and Sandorfy (176) studied VOL. 40, NO. 5, APRIL 1968

335 R

the “Ham effect” in the electronic spectra of aromatic hydrocarbons. l’rochorow, et al. (505) investigated the absorption spectrum of the n-T* transition in carbonyl cyanide. Innes and coworkers (303) present a critical review of the characterization of the electronic states of the six known azabenzenes. Bakhshiev and Piterskaya ( 4 1 ) studied universal molecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions using phthalimide derivatives. Chiang and coworkers (123) analyzed the effects on the ultraviolet spectra of twisting the free bases and conjugate acids around the interannular bond of N-phenylpyrrole in RIO terms. Tosi (612) interpreted the absorbance spectrum of azoxybenzene by assigning electronic transitions. Strait a i d coworkers (590) demonstrated that oxirane transmits electronic effects via second order conjugation from one phenyl group to the other through the ultraviolet spectra of a series of psubstituted stilbene oxides. Heilbronner (278) applied Simpson’s “Independent Systems ;ipproach” to In]-radialenes and obtained electronic spectral predictions in good qualitative agreement with observation. Stevens and coworkers (583) calculated dipole moments of Rhodamine B from ultraviolet absorbance data. Perkins (487) studied the shifts in the T-T* bonds of azines (pyridine and pyridazine) on coordination with strong electron acceptors. Pysh (606) calculated the ultraviolet optical properties of polypeptide 8-configurations. Bell and Diggers (58) resolved the absorption spectrum of the uranyl ion by nonlinear, least squares computational means over the 330-500 mp range into fourteen absorption bands which were then assigned to various transitions. Job and King (818, 319) measured and analyzed the diffuse banded spectrum of cyanoacetyleiie in the gas phase between 230 and 200 mp and between 260 and 230 mp. Bist and coworkers (75) analyzed the banded absorption phenol vapor in the 250-290 mp region. The electronic absorption of diborane (469) and tetraboroii tetrachloride (421) were also calculated. COMPLEXES

The electronic spectrum of complexes is widely used in their study but most studies utilize the visible portion. However, there are many articles on complexes in which ultraviolet spectra were used. Metal complexes studied include copper with 2-amino-benxophenone oximes (5003); zinc with N alkyl- and N-polymethylene-salicylaldimines (52, 5 3 ) ; nickel with 8-aminoquinoline ( @ I ) , acetylacetone (486) and

336 R

ANALYTICAL CHEMISTRY

@-thioxoketones (625); nickel with dimethylglyoxime and ethylmethylglyoxime and copper with dimethylglyoxime (112); nickel and palladium with dioximes of large ring 1,2-diketones ( 5 1 ) ; cobalt and nickel with a constrained phosphite ester (300); cobalt with dipyridylamine (235), salicylideneimine (166) and with halide ions (378); manganese(I1) chromate with aliphatic amines (455); tin tetrachloride and organotin compounds with 2,2’-bipyridine (351,423); indium with diethylenetriamine pentaacetic acid (669); molybdenum (11) chloride with unidentate ligands (198); mercury(I1) with L-histidine (327); mercury(T1) and silver(1) with triphenylarsine (474); germanium (IV) with a-hydroxyketones (56); peroxychloro complexes of niobium in hydrochloric and perchloric acid solutions (649); tellurium chlorides (55); thallous nitrate with cyclohexane dicarboxylic acid (525); thallium(II1) with ethylenediaminetetraacetic acid (354) and nitrilotriacetic acid (355); hafnium with chloranilic acid (627); zirconium and hafnium with sulfate (658) and with pyrogallol (479); titanium, zirconium, and vanadium halides (93); gadolinium with 5-sulfosalicylic acid (329); rare earths with a-carboxy-p-methyltropolone (251); platinum, with chloroamines (366) and halides (156); palladium with organic phosphites (S91), halides (559) and halides, perchlorate, and thiocyanate (679); ruthenium(II1) with 8-diketones (246); uranium(V1) with pongamol (315); and lead tetraacetate in mineral acid media (176). A study of the complexes of several Group IV, V, and VI metals with ascorbic acid showed that a t a p H of 7 to 9 a new maximum appeared which is suitable for spectrophotometric determination of the metals in concentration down to and 10-6M (586). Also studied were noble metal-azide complexes (541), silicomolybdic acid (538) and a boratebenzohydroxamic complex (267). The solubility of tris(tetramethy1ammon i u m ) e n n e a b r o m odibismuthate(II1) was determined and its spectrum studied (502). Studies on complexes of halogens with organic compounds include halogens with alkythioureas and thiocarbanilides (69), iodine with aniinoboranes (189) and cyanogen iodide with some n-donors (76). It was shown that a complex having the probable formula I(SCN)z- is formed by oxidation of iodide or elemental iodine in potassium thiocyanate solution (399). Other studies on complexes involving anions include solutions of silver iodide complex anions and cations (244), iodides in several solvents (78, 7 9 ) , nitrate and nitrite ions with various cations in aqueous solution (25) and anhydrous metal nitrates and their complexes with water and dimethylsulfoxide in organic liquids

(4)

Charge transfer-complexes studied include halogens with olefins (172), iodine with diethylsulfide (604) and with furan in the gas phase (229) , maleic anhydride with hexamethylbenzene (JOY), 1,2,4,5tetracyanobenzene with substituted benzenes (Sll), complexes between free radicals from the photoreduction of benzophenone (34) and interionic interactions of alkylpyridium ions (510). Seven nitro-p-terphenyls were found which form charge-transfer complexes with both electron donors and acceptors (264). The kinetics of the transformation of outer charge-transfer complexes to inner complexes were studied by measuring the absorption bands (70). With weak charge-transfer complexes a large red shift and intensity enhancement occurs on going from vapor to a n inert, nonpolar liquid while the change with Hbond complexes will generally be much less (619). I n a few of the studies complex formation was attributed to hydrogen bonding. Included were complexes of trimethylamine-S-oxide with phenol, pnaphthol and a-naphthol (365), p-nitrophenol with acetone, dioxane, ethyl ether and triethylamine (419), and 12 a,p-unsaturated ketones with trichloroacetic acid (563). Intermolecular hydrogen bonding was studied in substituted benzenes, hydroxybenzenes, and methoxybenzenes (408) ; in eugenols and isoeugenols (404); and in 4-nitro4‘-benzamido(diphenyla1kanes) (232). The hydrogen bonding of 3-trifluoromethyl-2-nitrophenol was studied in polar and nonpolar solvents (42). Among other complexes studied were benzoyl peroxide with 5,5’-indigo-disulfonic acid (3031), tetracyanoethylene with disulfides (441); halonaphthalenes with m- and p-dinitrobenzene (617 ) ,and aromatic amines with carbon tetrachloride, chloroform and methylene chloride (159). The association constants of the addition complexes of ethanol and arylthionylamines were determined (552). INORGANIC ANALYSIS

Methods using ultraviolet measurement for the determination of metals as complexes continue to be reported. Seedleman (457) determined cobalt in iron and steel with 2-nitroso-1-naphthol using a wavelength of 362 m l and TranVan-Danh, et al. (614) determined cobalt with the same reagent a t 308 mp. Gupta and Mukerjee (253) determined iron(II1) by precipitation with sodium benzilate, solution in alcohol and measurement a t 375 mp. Sarker and Das (539) give conditions for the determination of titanium with benzoylacetanilide in chloroform at 385 nip. Das and Shome (158) determined mercury by extraction with a chloroform solution of n’-benzoyl-iY-phenylhydroxylamine and measurement a t 340 mp. Pappas and

Powell (482) also determined mercury using its absorbance a t 323 mp in neutral potassium iodide solution. Burke (106) determined aluminum with 8-hydroxyquinoline a t 390 mp while R. T . Van Santen, et al. (626) used the same reagent to determine zirconium a t 386 mp. Chung and Meloan (127) determined silver a t 375 mp with 2-amino-&methylthio-4-pyrimidine carboxylic acid. Kirkbright (344) determined selenium and tellurium by measuring their thioglycolates a t 260 mp after extraction with ethyl acetate. Drkgulescu et al. used complex formation with anthranilN,N-diacetic acid to determine gallium(111) and indium(II1) (169) and scandium, yttrium, and lanthanum (170). Affsprung and Robinson ( 8 ) determined niobium by extraction of the tetraphenylarsonium thiocyanato-niobate into chloroform and measurement a t 390 mp. Luke (402) and Canada (108) determined niobium with thiocyanate in the 380 mp region. Palladium was determined by Gupta and coworkers (252) with sodium p-(mercaptoacetamido)benzenesulfonate a t 310 mp and by Ayres and N a r t i n (33) by extraction of the glyoxime complex into chloroform and measurement a t 397 mp. Clem and Huffman (133) determined nickel or palladium by extraction of their pyridine azides into chloroform and measurement in the 370 mp region. Other ultraviolet spectrophotometric methods for metals were described by Hiiro, et al. (282) for the determination of cerium(II1) in the presence of lanthanum and thorium by measurement a t 253 mp, by Hadjiioannou (256)for the determination of molybdenum by its catalytic effect on the hydrogen peroxideiodide reaction and by Huey and Hargis (298) for the determination of cesium by precipitation as the 12-molybdophosphate, solution in basic buffer and measurement of the molybdate ion a t 226 or 208 mp, Bagnall and Brown (37) give the ultraviolet spectra of protactinium(1V) and uranium(1V) in one to 1 2 3 hydrochloric acid solution. Procedures for the ultraviolet determination of anions have also been described.’ Mozersky, et al. (444) determined ortho-phosphate by extracting the phosphomolybdic acid into isobutanol-benzene and measuring its absorbance a t 313 mp. Schafer (540) studied the determination of sulfate with barium chloranilate using measurement at 330 mp. Bingley and Dick (74) determined sulfate by precipitation with benzidine and measuring the absorbance of the benzidine sulfate in hydrochloric acid solution a t 250 mp. Cawse (114) determined nitrate by measuring its absorption a t 210 mp. Bhattacharyya and Chetia (72) determined periodate in the presence of iodate by coprecipitating the periodate with aluminum hydroxide, dissolving

in acid and measuring the periodate absorption a t 210 mp. Chen (120) determined chlorate, chlorite, and hypochlorite with ferrous and iodide ions and chloride with chloranilate. Clyne and Coxon (135) detected the C10 molecule by its ultraviolet spectra after reaction of atomic chlorine and atomic oxygen with chlorine dioxide. Bailey and Medwick (39) determined hydrazine and 1,l-dimethyl-hydrazine by reacting them with salicylaldehyde, measuring the absorbance at three wavelengths, and calculation by simultaneous equations. ORGANIC ANALYSIS

Most procedures for the ultraviolet determination of organic compounds involve separation techniques but some direct methods, such as those following, have been described. Koren and Hirt (353) determined polystyrene in polybutadiene and Chernobai, et al. (121) found it possible to determine vinylcarbazole copolymers in mixtures with other polymers. Osburn and Benedict (476) reported on the effect of ether chain degradation on the measurement of polyethoxylated alkyl phenol detergents. An analytical methods subcommittee (591) has recommended an ultraviolet spectrophotometric method for determining the diene and triene conjugation of drying oils. Egan and Arnold (180) determined 4-sec-butyl-2(a-methylbenzyl)phenol, a metal extraction reagent, in solutions. Talreja and coworkers (600) determined thiourea in ammonium thiocyanate. Desnoyers, et al. (163) determined the solubility of benzene in substituted quaternary ammonium bromide solutions. Setzkorn and Huddleston (553) determined benzene, toluene, and xylene sulfonates. Choi and Brown (126) determined the vapor pressure of aromatic hydrocarbons above aluminum bromide complexes by dissolving the vapor in ethanol for ultraviolet measurement. Cunningham and Schmir (148) studied the hydrolysis of i\’-phenyliminotetrahydrofuran and Alexander and Lustigman (12) measured the rate of degradation of substituted benzene by soil microorganisms. Dingle (168) determined the acaricide, carbaryl, in dipping fluids and cattle hair deposits after dilution with ethanol. Ferguson (197), as chairman of an analytical methods subcommittee, reported on an investigation of the Demetrius-Sinsheimer method for the determination of eugenol in essential oils by differential absorptivity. Turczan (622) determined paminosalicylic acid in tablets. Yuen, et al. (666) determined the herbicide, diquat, in formulations. Also diquat in potatoes was determined by Kirsten (345) and diquat and paraquat in water were determined by Grzenda and coworkers (248). Gaver and Sweeley

(224) monitored the oxidation of secondary allylic hydroxyl group in N-acetylsphingosine by observing the 230 mp absorbance of the conjugated ketone formed. Sokolov and Sokolov (572) determined acetaldehyde and crotonaldehyde from the oxidation of ethylene simultaneously. Extraction was used as a method of separation by several authors. Hoffman, et al. (288) extracted 8-hydroxyquinoline from paint with dilute sulfuric acid. Griffin and Blazek (245) extracted 2-pivalyl-l13-indandione(PiVal) from rodenticide formulations with an alkaline buffer and then into cyclohexane after acidification. Fishwick and Taylor (201) extracted the rodenticide, warfarin, from biological material. Thomas, et al. (608) extracted the fungicide chloroacetylaldehyde-3,4-dinitrophenylhydrazone from fruit. Tye and coworkers (624) estimated aromatic hydrocarbons in extracts of coal. Estep, et al. (188) analyzed fractions obtained by countercurrent distribution of neutral oils from coal tar. Will and Varsel (654) separated hexachlorophene and zinc phenolsulfonate in aerosol deodorants by water-chloroform partitioning and determined both by ultraviolet spectrophotometry. Gunther and Ott (250) determined biphenyl in citrus fruit by a totally automated procedure. Many ultraviolet spectrophotometric procedures used chromatographic methods to separate the compound being determined. Isolation by partition chromatography was used by the following: Davis (157, 158) in the determination of amyl-p-dimethylaminobenzoate and other sunscreens in suntan preparations, Estep, el at. (187) in the determination of alkylnaphthalene in coal tar neutral oil, Ibrahim and Cavagnol (301) who determined the insecticide, fenthion, Hancock et al. (262) who determined diethylphthalate in perfumes, lacquers, paints, and varnishes, and Weber (645) in the separation and determination of salicylic acid and benzoic acid. Polycyclic aromatic hydrocarbons in foodstuffs were determined by Howard and coworkers (295, 296), those in auto exhaust were determined by Hangebrauck, et al. (263) and Oro, et al. (475) identified polycyclic aromatic hydrocarbons in the pyrolysis products of isoprene after chromatographic separation. Campbell and Ide (107) give data for the determination of aromatic hydrocarbons collected from air on silica gel and discuss the particulate background problem. Bitron and Suzin (77) determined n-hexylsalicylate and salicylic acid simultaneously in a model compound study of air pollution sampling. Ion exchange chromatography was used as a separation method by Ford (210) to determine benzoic acid in soft drinks, by Skelly (564) to determine VOL. 40, NO. 5, APRIL 1968

337 R

neutral and weakly acidic impurities in salicylic acid and by Wills (656) t o determine 3-amino-lH-1,2,4-triazole in the commercial product and in formulations. F a n and Wald (193) determined isoniazid in tablets containing p-aminosalicylic acid after separating them with an anion exchange resin. Several procedures have been described in which compounds separated by thin layer chromatography are dissolved and measured by ultraviolet spectrophotometry. Using this technique Stanley, Morgan, and Meeker (581) determined benzo [alpyrene; Korman, Rygg, and Wells (465) determined biphenyl in citrus fruit and impregnated paper; Pejkovic-Tadid, et al. (486) determined isometric dinitrobenzenes; Skelly and Crummett (565) determined 18 to 22 mole ethoxymers of p-nonylphenol in a nine mole adduct and Brand (91) determined p-hydroxybenzaldehyde, vanillin, and syringaldehyde. Spencer and Beggs (575) point out that a large fraction of the ultraviolet absorbance of methanol extracts of silica gel can be eliminated by filtration through a 0.45-1 synthetic membrane filter. Koptyug and Shkol'nik (352) analyzed mixtures of naphthalenemonoand disulfonic acids using separation by paper chromatography. Xng (22) determined pyridine in pyridine-metal complexes by steam distillation-ultraviolet spectrophotometry. Kisser and llachata (346) describe a method for the determination of nonaromatic phosphorothioic esters based on measuring the absorbance of the sulfidic sulfur-iodine complex a t 305 mp. Heistand (274) determined aldehydes and ketones spectrophotometrically as 2,4-dinit rophenylhydrazones. I n some procedures, chemical reactions were used to prepare compounds inore suitable for ultraviolet measurement. Grechukhina and Nesmelov (242) analyzed mixtures of primary and secondary alcohols by preparing the alkyl nitrites. Ashworth and Keller (30) determined tertiary mercaptans by converting them to thionitrites. Holcomb and coworkers (289) determined p-hydroxyphenylpyruvic acid in urine as p-hydroxybenzaldehyde. Scoggins and Miller (546) determined tertiary alcohols as the corresponding tertiary alkyl iodides. Wallace (638) determined diphenydramine and related compounds by measurement as benzophenone after acid hydrolysis, oxidation and steam distillation. Hubbard, et al. (297) determined calcium pantothenate by measuring iodine a t 358 mp after cleaving with acid, treatment with a chlorinating solution and then with acid, treatment with a chlorinating solution and then with potassium iodide. Stevens and his subcommittee (584) describe a procedure for the determination of acinitrazole in feeds by measur338 R

ANALYTICAL CHEMISTRY

ing the absorbance before and after reduction. Schneider and deWeck (542) distinguished between penicilloic acid and its derivatives by conversion t o penamaldates and comparison of the stability of 282 mp. Bellobono (62) described a method for the determination of water in hydrocarbon solvents involving reaction with Y-benzylideneaniline. Ultraviolet spectrophotometry can sometimes be used to identify organic compounds. hlcCaulley, et al. (410 ) identified the antioxidants BH-1, B H T , and Ionox-100 after separation by gas chromatography. Sister Murphy and B. S a g y (448) used ultraviolet spectrophotometry to indicate the type of sulfur compounds in fractions of oil from a meteorite. Goren-Strul and coworkers (236) identified phenols obtained from water. Hasegawa et al. (266) identified chlorogenic acid isolated from potatoes. Rozentals (522) used the spectra from 180 to 260 mp of the gaseous pyrolyzate of elastomers for identification of the elastomer. R e t more, et al. (651) used the spectra of low molecular weight fractions of asphalt to indicate to what class of compounds the fraction belonged. The following collaborative studies or comparisons of methods have been reported: Fitelson (203) gives results on the determination of vanillin; Stone (587)-results on the determination of furazolidone in feeds; Kabasakalian (324)-griseofulvin antibiotic in feed; Malina (416)-hexachlorocyclopentadiene in chlordane; and Gehrt (226, 227)-ronnel in feed. Czech (152) compared ultraviolet and infrared methods for the determination of Dursban insecticide in livestock dips and sprays. Brunelle (100, 101) compared methods and gives results of a collaborative study of a method for benzaldehyde in flavors and cordials. Malik and Chand (415) compared the critical micelle concentration of lauric acid-diethanolamine condensate determined by polarographic and ultraviolet methods. BIOLOGICAL AND PHARMACEUTICAL ANALYSIS

Ultraviolet spectrophotometry has been applied in many different ways in biological and pharmaceutical analysis. Munro and Fleck (446) review and discuss the ultraviolet determination of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) as part of a broader review. DeTorres and Pogo (164) studied the two wavelength method for RNA. Boedtker (84) studied the reaction between R N A and formaldehyde by measuring the absorbance at 270 mp. Gebicki and Freed (225) determined nucleotides from hydrolysis of yeast and tissue RNA after separation by electrophoresis. Falk (192) studied the spectra of samples of

soluble, ribosomal and viral RNA and found that spectral changes on denaturation were the same. Skidmore and Duggan (566) describe a method for the determination of both base composition and concentration of DNA. Thomas and Kyogoku (607) studied the spectra of model nucleoside derivatives of adenine, uracil, guanine, cytosine and inosine for hypochromic or hyperchromic effects. Berrens and Bleumink (67) studied the influence of sugars on the spectrum of proteins and found t h a t the reaction between protein and sugar results in the formation of a chromophore which absorbs at 305 mp. Jung, Stopp and Ruckpaul (322) found hemoglobins from various vertebrates can be identified by their ultraviolet spectra. Edelhoch (179) described a rapid method for tryptophane in proteins using 6J4 guanidine hydrochloride as solvent. Lee, et al. (381) determined aflatoxins. Porush and coworkers (501) determined tetracaine in blood at 303 mp after isolating it. Salim and Hilty (533) measured cyclothiazide at 271 mp. Trione, Leach, and Mutch (616) used ultraviolet absorption to follow the separation and purification of sporogenic substances from fungi. Shroff and Grodsky (560) compared the ultraviolet determination of 17 a-ethynylestradiol 3-methyl ether in tablets with a GLC method. Kaempe (326) identified three interfering substances sometimes encountered on ultraviolet analysis for alkaloids in autopsy material. Holloway et al. (290)reported that 4(5)-monoiodohistidine has no ultraviolet absorption maximum above 210 mp although a maximum had been reported. Separation procedures are widely used in biological and pharmaceutical ultraviolet methods. Extraction was used by the following: Pagnotto and Lieberman (478) in determining hippuric acid in urine as a meawre of toluene exposure; hmundson and Manthey (20) for the determination of nortriptyline in urine; Floyd (207) in the determination or sorbic acid in organge juice; Lee and Puttnam (382) for hexachlorophene in powdered deodorants; Salim and Felker (532) in the determination of toluaftate; and by Rehn (511 ) in the determination of strychnine in brucine. Mokrasch (437) determined aromatic amino acids and proteins by extracting their 2,4,6trinitrophenyl derivatives and measuring a t 340 mp, Spinelli and Kemp (577) determined ionosine monophosphate in fish tissue by a n extractionultraviolet procedure which included correcting for adenosine nucleotides determined by another method. Cohen, et al. (140) determined the bitterness of olives by extracting the bitter constituent and measuring it a t 345 mp. Partition chromatography was used by Krause (361) to separate antipyrine

and benzocaine for ultraviolet determination. Smith (569) analyzed mixtures of codeine phosphate, chlorpheniramine maleate, phenylpropanolamine hydrochloride, hydrocortisone acetate and phenylephrine hydrochloride by this technique. Levine and Hohmann (390) determined acetaminophen in the presence of other drugs using a sodium carbonate-sodium bicarbonate column. McEvoy-Bowe (411) determined creatinine in urine using separation on DEhE-Sephadex. Ascione, et al. (29) separated and determined dimethylchlortetracycline, tetracycline, and chlortetracycline. Johnson (320) gives results of a collaborative study of a partition chromatographic-ultraviolet method for caffeine in nonalcoholic beverages. Montgomery and coworkers (439, 440) isolated and determined phenylephrine, codeine, and antihistamines and also separated and determined dextromethorphan by ion exchangeultraviolet procedures. Pilsbury and Jackson (496) measured ten thiazide diuretic drugs after separation from interferences by paper chromatography. Thin layer chromatography was used by several authors to separate compounds for ultraviolet measurement. Swift (598) determined flavoiies in the neutral fraction of benzene orange peel juice extracts. Corneliussen (142) determined biphenyl in citrus fruits. Duggan (173) reported the spectra of fruit glycosides separated by TLC. Hill and coworkers (283) determined santhurenic acid, kynurenic acid and kynurenine in urine. Frodyma and Lieu (212) determined five vitamins of the 13 group by reflectance spectrometry after resolution on thin layer plates and Lieu, et al. (395) determined five nucleotides by reflectance spectrometry. Kwon and Olcott (369) identified malonaldehyde separated froin oxidized and irradiated fatty acids by TLC-ultraviolet spectrophotometry and Shaw (555) identified the products of the acetylation of chloramphenicol by the same technique. Differential spectrophotometry is widely used in biological analysis. This technique was used by Yurkevich and coworkers (666) to study the interaction of cyanocobalamin with protein. Flatmark (204) studied a conformation change of beef heart cytochrome C. Llurachi, et al. (447) showed alkylphosphorylation of tyrosyl residues. Perlman and Edelhoch (488) showed formation of diiodotyrosine in iodinated human serum albumin. Adler, Litt and Johl ( 7 ) assayed nucleotide solutions by measuring the absorbance before and after removal of the nucleotide, Rozenkrantz, et al. (521) detected formation of fibrin clots by difference spectrophotometry a t 250 mp. Hayashi and hlatsumura (270) confirmed pre-

vious work in which a bathochromic shift indicated that a charge-transfer complex is formed between D D T and nerve components of cockroaches. Chemical treatment was used in a number of cases t o obtain a species suitable for ultraviolet measurement. Barstow (49) assayed norethynodrel by acid catalyzed rearrangement t o a stronger absorber. Said, et al. (526) determined thiamine by precipitation with iodobismuthic acid and dissolution in potassium iodide-acetone for measurement. Wallace (637) determined chlorprothixene by measurement a t 233 mp after permanganate oxidation and extraction. Scott, et al. (549) and Garrett and Blanch (221) determined sugars after acid degradation. Tompsett (611) converted ephedrine to benzaldehyde for measurement and Wallace (636) converted ephedrine to benzaldehyde semicarbazone. Smith, deGrey, and Pate1 (570) determined dmipicillin by acid degradation and measurement at 320 mp. Gaitonde and Griffiths (216) determined free inositol in biological material by periodate oxidation, measuring the excess periodate by iodine absorption at 352 mp. Lewis (393) determined dipicolinic acid in bacterial spores as the calcium chelate. Khalil and Lauffer (339) followed the polymerization of tobacco mosaic virus protein in deuterium oxide and water by following the turbidity a t 320 mp. Eyring and Ofengand (191) showed that hydroxymethylation of purine and pyrimidine nucleosides with formaldehyde takes place. hylward (32) examined the interaction of formaldehyde with uridine 5-monophosphate and polyuridylic acid. Tojo, et al. (609) and Hamaguchi, et al. (260, 261) titrated tyrosyl groups by measuring absorbance at 245 or 296 mp as a function of pH. Tachibana and Murachi (599) studied the ionization of the phenolic groups of stem bromelain by the same technique. Zimmer and Reinert (671) give results of spectrophotometric titration experiments studying the secondary structure of DKA. Ultraviolet spectrophotometry was used in conjunction with other methods by Singleton, et al. (562) to identify ellagic acid precipitated in loganberry wine, by Sugiura and Goto (592) to identify 6-hydroxymethyllumazine separated from spinach and by Bowman and llallette (90) to show that pfluorophenylacetic acid was one of the metabolites of p-fluorophenylalanine. Salim and Booth (531) used ultraviolet spectra as a n identity test for chlorphenesin carbamate. Enzymatic reactions have been used in several ultraviolet methods. Youngs and Wetter (664) determined progoitrin in rapeseed after enzymatic cleavage to 5-vinyl-2-ozazolidinethione. Sen (651) gives results of a collaborative study of

an enzymatic-ultraviolet method for uric acid in flours. Ipata (307) determined 5‘-nucleotides by determining the amount of adenosine released from adenosine monophosphate, measuring the decrease in absorbance at 265 mp after adding a n excess of adenosine deaminase. Pon and Bondar (499) assayed for pyruvate kinase b y recording the decomposition of phosphoenolpyruvate at 230 mp. Stambaugh and Post (580) determined lactic dehydrogenase by measuring the rate of reduction of diphosphopyridine nucleotide at 340 nip. Cuatrecasas and coworkers (146) studied the interaction of nucleotides with staphylococcal nuclease. Pierre (495) followed the reaction of guanase with guanine by ultraviolet spectrophotometry. l l i n a t o and coworkers (435) examined the effect of adenosine deaminase on various antibiotics. Fonda and Xnderson (208) studied the D-amino acid oxidase catalyzed conversion of D-phenylglycine to benzoylformic acid by measuring the increase in absorbance a t 290 mp. Iibuchi, et al. (302) determined the activity of tannin acyl hydrolase (tannase) by measuring the change in absorbance of tannic acid a t 310 mp. Saier and Jenkins (528) give the ultraviolet spectra of purified alanine aminotransferase. LITERATURE CITED

(1) Abelson, D. M.,ANAL. CHEM.,39, 1679 (1967). (. 2,) Acheson. R. 11..Foxton. ill. W.. J . Chena. Soc:, C , 22f8 (1966).’ (3) Acheson, It. ll., Foxton, M. W., Abbot, P. J., Mills, K. It., Zbid., C , 882 (1967). (4) Addison, C. C., Sutton, D., Ibid., A, 1524 (1966). (5) Adembri, G., Sarti-Fantoni, P., Belgodere, E., Tetrahedron, 22, 3149 (1966). (6) Adembri, G., Sarti-Fantoni, P., De Sio, F., Franchini, P. F., Ibid., 23, 4697 (1967). ( 7 ) Adler, N., Litt, G. J., Johl, It. G., ANAL.CHEM.,39, 249 (1967). (8) Affsprung, H. E., Robinson, J. L., A n a l . Chim. d c t a , 37, 81 (1967). (9) Akerblom, E., Acta Chem. Scand., 21, 1437 (1967). (10) Akiyama, S., Kakagana, LI., Bull. Chem. SOC.J a p a n , 40,340 (1967). (11) Albert, A., J . Chem. SOC.,B, 427 I

-

(1F)fifi). \----,-

(12) Alexander, AI., Lustigman, B. K., J . Agr. Food Chem. 14, 410 (1966). (13) Alguer6 de Gabarr6, AI., Castellfi, J., Castells, J., Mestres, It., Anales de Fisica y Quimica ( M a d r i d ) , 53(B), 857 (1967). (14) Allinger, K. L., Tai, J. C., Stuart, T. W., Theoret. Chim. Acta ( B e d . ) , 8, 101 (1967). (15) illmange, J. P., Compt. Rend., 261, 2676 (1965). (16) Altman, J., Babad, E., Itzchaki, J., Ginsburg, D., Tetrahedron Suppl. 8 , 279 (1966). (17) American Society for Testing and Materials, “llanual on Recommended Practices in Spect,rophotometry,” 1916 Race St., Philadelphia, Pa. (18) Amery, G. W., Corbett, J. F., J. Chem. SOC.,C , 1053 (1967). VOL 40, NO. 5, APRIL 1968

339 R

(11)) Ames, 1). E., Boyd, G. V., Chapman, H. F., Ellis, A. W., Lovesay, A. C.,

Waite, L)., Ibid., B , 748 (1967). (20) Amundsoii, AI. E., Manthey, J. A., J . Pharni. Sci., 55, 277 (1966). (21)ilndrade, C., Taube, II., Inorg. Cheni., 5 , 1087 (1966). . 38. 1411 122) Ane. K. P.. A N ~ LCHEM..

’ (1966r’ (23)Arbus, A., Tissier, C., Compt. Rend., Ser. C , 262,879(1966). (24) Armarego, W. L. F., Smith, J’. I. c., J . Chem. SOC.,B,449 (1967). (25) Arrial, X., Viallet, P., Compt. Rend., 261,3799 (1965). 126) Arnett. E.31..Hufford, D.,’ J Amer. &em. SO;., 88,3140(i966j. (27) Araene, A., Balaban, A. T., Bally, I., Barabas, 8.,Paraschiv, hl., Itentea, C. N., Spectrochim. Acta, 23A, 1373 (1967). (28) Artamkina, G. A., Beletskaya, I. P., Pentin, Y. A., Keutov, 0. A., J . Org. Chem. USSR (English transl.), 2 , 1327 (1967). (29) Ascione, P. P., Zagar, J. B., Chrekian, G. P., J . Pharm. Sci., 56,1396 (1967). (30) Ashworth, G. W., Keller, R. E., ANAL.CHEM.,39,373 (1967). (31) Asmus, K. U., Henglein, A , , Wigger, A,, Beck, G., Ber. Bunsenges Phys. Chem., 70, 756 (1966). (32) Aylward, N. N., J . Chem. Lsoc., B , 627 (1966). (33) Ayres, G. II., hIartin, J. B., Anal. Chim.Acta, 35,181 (1966). (34) Backstriim, H. L. J., Appelgren, K. L., Xiklasson, R. J. V., Acta Chem. Scand., 19,1555 (1965). (35) Backstrom, H. L. J., Niklasson, R.J. V., Ibid., 20,2617 (1966). (36) Baddar, F. G., Latif, N., Xada, A. A., J . Chem. SOC., 7005 (1965). Brown, D., Ibid., (37) Bagnall, K. W., A 275 (1967). (38) Bailey, I). X., Hercules, D. kl., ANAL.CHEM.,39,877 (1967). (39) Bailey, L. C., Xedwick, T., Anal. Chini. Acta, 35,330 (1966). (40) Baker, B. It., Sutln, K., Welch, T. J., Inorg. Chem., 6,1948 (1967). (41)Bakhshiev, N. G., Piterskaya, I. V., Opt. Spektrosk. U S S R (English transl.), 19,390 (1965). (42) Balasubramanian, A., Forbes, W. F., Dearden, J. C., Can. J. Chem., 44,961 (1966). (43) Ballard, II., J . Org. Chem., 32, 3160 (1967). (133) Clyne, h1. A. A., Coxon, J. A., Trans. Faraday Soc., 62,1175 (1966). (136) Coates, E., Gardam, P. G., Itigg, B., Zbid., 62, 2577 (1966). (137) Cobler, J. G., “Standard Methods of Chemical Analysis,” F. J. Welcher, Ed., Vol. 3, Part B, Van Nostrand, 1966, p. 1595. (138) Cohen, 11. D., Flavian, S., J . Chem. SOC.,B, 321 (1967). (139.) Cohen, SI. D., Flavian, S., Leiserowitz, L., Ibid., B,,329 (1967). (140) Cohen, S.,Lifshitz, A4., Samish, Z., J . A s s . Ofic. Anal. Chem., 50, 1194 (1967). (141) Corbett, J. F., Spectrochim. Acta, 23A, 2315 (1967). (142) Corneliussen, P. E., J . Ass. Ofic. Anal. Chem., 50, 934 (1967). (143) Courbat! P., Uhlmann, G., Guerne, It., Helv. C h m . Acta, 49, 1420 (1966). (144) Crabtree, J. €I., Schaeffer, W. P., Inorg. Chem., 5 , 1348 (1966). (145) Crummett, W. B., ANAL. CHEM., 38, 40411. (1966). (146) Cuatrecasas, P., Fuchs, S., Anfinsen, C. B., J . Bid. Chem., 242, 4759 (1967). (147) Cumper, C. W. Iv., Read, J. F., Vogel, A. I., J . Chem. Soc., A, 239 (1966). (148) Cunningham, B. A,, Schmir, G. L., J . Amer. Chem. SOC.,88,551 (1966). (149) Curtis, 11. D., Lee, 11. K., Allred, A. L., Ibid., 89, 5150 (1967). (150) Curtis, 11.. F., Phillips, G. T., Tetrahedron, 23,4419 (1967). (151) Cuthrell, 11. E., Fohn, E. C., Lagowski, J. J., Znorg. Chem., 5, 111 (1966). \ - - - - I

(132) Czech, F. P., J . Ass. Ofic. Anal. Chem., 50,861 (1967). (133) Das, B., Shome, S. C.. A n a l . Chim. Acta, 35; 345 (1966): (154) Dauben, W. G., Berezin, G. H., J . -4mer. Chem. Soc., 89, 3449 (1967). (155) Daukshas, V. K.,- Puodzhyunaite, B. A,, llazhuolite, L. E., Sakalauskaite, L. I., J . Org. Cheni., CSSR (English transl.), 3, 167 (1967). (156) Davidson, C. M., Jameson, R. F., Trans. Faraday Soc., 61,2462 (1965). (157) Davis, H. 11.,J . Ass. Ofic. Anal. Chem., 49, 713 (1966). (158) Zbid., p. 1190. (159) Davis, K . 11. C., Farmer, 31. F., J . Chem. Soc., B, 28 (1967). (160) De Courville, A., Compt. Rend., Ser. C, 262, 1196 (1966). (161) Dennler, E. B., Frasca, A. R., Tetrahedron, 22,3131 (1966). (162) IleSarlo, F., Ibid., 23, 831 (1967). (163). Desnoyers, J . E., Pelletier, C. E., Joltcoeur, C., Can. J . Chem., 43, 3232 (1963). 64) De Torres, 11. A , , Pogo, A. O., Anal. Biochem., 13, 281 (1963). 63) Diamant, Y., Hexter, R. AI., Schnepp, O., J . JIol. Spectrosc., 18, 158 (1965). \ - - - - ,

66) I)iamantis, A. A , , Weigold, H., West, B. O., J . Chem. Soc., A, 1281 (1967). 67) Dilling, U‘.L., J . Org. Chem., 31, 104;i (1966). 68) Dingle, J. 13. P., J . Ass. Ofic. A n a l . Chem., 49, 986 (1966). (169) l>r&gulescu, C., Policec, S., Simonescu, T., Talanta, 13, 1451 (1966). (170) Ibid.. D. 1543. (171) Dresslkr, H , Graham, J. E., J . Org. Chem., 32, 985 (1967). (172) Dribois, J. E., Gamier, F., Spectrochim. Acta, 23A, 2279 (1967).

(173) Uuggan, 11.B., J . Ass. Ofic. Anal. Chem., 50, 727 (1967). (174) D u m , G . E., Kung, F., Can. J . Chem., 44, 1261 (1966). (175) Durocher, G., Sandorfy, C., J . M o l . Spectrosc., 20, 410 (1966). (176) DvorAk, V., NBmec, I., Z$ka, J., Microchem. J., 11, 153 ( 1966). (177) Dyer, J . R., “Applications of Absorption Spectroscopy of Organic Compounds,” Chapter 2, Prentice Hall, 1963. (178) Dzyuba, V. P., Lavriishin, V. F., Tolmachev, T. N., J . Gen. Chem. USSR (English trans/.), 36, 346 (1966). (179) Edelhoch, II., Biochemistry, 6, 1948 (1967). (180) Egan, B. Z., Arnold, W. I]., ANAL. CHEX.,38, 950 (1966). (181) Eisenthal, I%., Katritzky, A. R., Lunt, E., Tetrahedron, 23, 2775 (1967). (182) Elding, L. I., Zbid., 20, 2559 ’

~

(1966). \ - - - - ,

(183) Elding, L. I., Leden, I., -Acta Chem. Scand., 20, 706 (1966). (184) Ellefsen, P. R., Gordon, L., Talanta, 14,409 (1967). (185) Ellin, It. I., Easterday, D. E., Zvirblis, P., Kondritzer, A. A,, J . Pharm. Sei., 55, 1263 (1966). (186) Ellis, B., Griffiths, P. J. F., Spectrochim. Acta, 22,2005 (1966). (187) Estep, P. A., Childers, E. E., Kovach. J . J.. Karr. Jr.. C.. ANAL. CHEM..38. 1847 (1966) (188) Estep,‘P. A.,‘K&i-: Jr., C., Warner, iV. C., Childers, E. E., Ibid., 37, 1715 (1965). (189) Eubanks, I. D., Lagowski, J . J., J . Amer. Chem. Soc., 88, 2425 (1966). (190) Evans, D. A., Smith, G. F., Wahid, 11.A., J . Chem. Soc., B, 590 (1967). (191) Eyring, E. J., Ofengand, J., Biochemistry, 6, 2300 (1967). (192) Falk, JI., Can. J . Chem., 43, 3151 (1963). (193) Fan, AI. C., Wald, W.G., J . A s s . Ofic., Agr. Chem., 48, 1148 (1965). (194) Faraone, G., Belluco, U.,Ricevuto, \-., Ettorre, R., J . Znorg. S u c l . Chem., 28,863 (1966). (195) Favini, G., Gamba, A., Bellobono, I. It., Spectrochim. Acta, 23A, 89 (1967). (196) Favini, G., T’andoni, I., Simonetta, AI., Theoret. Chim.Acta, 3, 418 (196;). (197) Ferguson, G . W., (Chairman), Essential Oils Subcommittee of Analytical Methods Committee, :lnalyst, 91,214 (1966). (198) Fergusson, J. E., Robinson, B. H., Wilkiiis, C. J., J . Chenz. Soc., A, 486 i 1967). (lG9) Fields, A . It., Daye, B. ll., Christian, li., Jr., Talanta, 13, 929 (1966). (200) Fikhtengol’ts, \-. S., Zolotareva, It. \-., L’vov, Y. A., “Ultraviolet Spectra of Elastomers and Rubber Chemicals,” Plenlim, N . Y., 1966, transl. by A. E. Stubbs. (201) Fishwick. F. R.. - Tavlnr. A.. Ann/7/st (London),92, 192 (k (202) Fissekis, J. D., Cre J . Org. Chem., 32, 3595 (1 (203) Fitelson. J.. J . Ass. Oftic. Anal. Chem., 50, 859 (1967). (204) Flatmark, T., Acta Chem. Scand., 20, 1470 (1966). (203) Fletcher, T. L., Wetzel, W. H., Namkung, 11. J., J . J l e d . Chem., 9, 593 (1966). (206) Flis, I. E., Arkhysova, G. P., hlishchenko, K. P., J . A p p l . Chem. U S S B (English transl.), 38, 1466 (1965). (207) Floyd, K. >I., J . ‘ l s s . Ofic. Anal. Chem., 50, 1123 (1967). (208) Fonda, 11. L., Anderson, B. SI., J . B i d . Chem., 242, 3937 (1967). (209) Forbes, W. F., “Ultraviolet A4bsorptiori Spectroscopy,” S. K. Freeman, -I

~

~

-

Ed., “Interpretive Spectroscopy,” Reinhold, X . Y., 1965. (210) Ford. 11. A.. Analvst (London), 91; 15 (lY66). (211) Franc, J., Pour, J., Collect. Czech. Chem. Commun., 31,4.534 (1‘366). (212) Frodyma, 11. ll., Lieu, \.. T., AXAL.CHEM.,39, 814 (1967). (213) Fry? F. If., Hamilton, G. A., Turkevich, J., Inorg. Chem., 5, 1943 (1966). (214) Fujita, T., Koshimizu, K., Xitsui, T., Tetrahedron, 22, 1387 (1966). (215) Fnruya, Y., JIorikawa, D., Itoho, K., Bull. Chem. SOC.Japan, 40, 1423 (1967). (216) Gaitonde, 11. K., Griffiths, >I., Anal. Biochem., 15, 532 (1966). (217) Gaizer, F., Beck, M. T., J . Znorg. I\ucl. Chena., 29, 21 (1967). (218) Gakovic, Z., Morgan, K. J., J . Chem. Soc., B, 416 (1967). (219) Garner, It., Suschitsky, II., Ibid., C, Org., 74 (1966). (220) Garraway, J. L., Zbid., B, 92 (1966). (221) Garrett, E. R.,Blanch, J., A s . 1 ~ . CHERI., 39, 1109 (1967). (222) Garrett, E. It., Mehta, P. J., J . Pharm. Sei., 56, 1468 (1967). (223) Garrett, E. It., Seydel, J. K., Sharpen, A. J., J . Org. Chem., 31, 2219 (1966). (224) Gaver, 11. C., Sweeley, C. C., J . ilnier. Cheni. SOC.,88, 3643 (1966). (22.5) Gebicki, J. 11., Freed, S., Anal. Biochent., 13, .50.5 (1963). (226) Gehrt, -4.J., J . dss. Ofic. Anal. Chem., 49, 318 (1966). ~

11. G., Ann. Chzm. (Iiorne), . 56,. 687

(1966).‘

(229) Ginns, E. I., Strong, R . L., J . Phys. Chem., 71, 3059 (1967). (230) Glover, 11. J., J . Anier. Chem. SOC., 87, ,5275 (1965). (231) Zbid., p. 3279. (232) Gliishenkov!, V. A,, Moshkovskii, Y. S.. Izmail’skii. \., A , . J . Gen. Chem. L‘SSR (Englcsh t&nsl.), 36, 223 (1966). (233) Goetz, II., Jitds, €I., .lnn. Chem., 698, 1 (1966). (234) Golden, I). 11.) Rodger>, A. S., Benson, S. \V., J . d r n e r . Chcnl. Soc., 88.3196 11966). (233)’ Goodgame, 11.,J . Chem. Soc., -2, 63 (1966). (236) Goren-Strul, S., Kleljn, IT. F. W., LIobtaert, A . E., Linal. Chzrn. Acta, 34, 322 (iY66). (237) Gorshkova, G. N., Kasatochkiv, 1.. I., Sladkov, A. U., Russ. J . Phys. Chem. (English transl.), 40, 999 (1066). (238) Gosavi, R. K., Ilao, C. S . It., Can. J . Cheni., 45, 1897 (1967). (239) Gould, J. II., Rev. Sei. Znstr., 37, 1229 (1‘366). (240) Gourdenne, A , ) Sigvalt, P., Bull. SOC.Chini. France, 2249 (1967). (241) Grammaticakis, P., Zbid., 84 (1967). (242) (;rerhitkhina, Z. S . , Xesmelov, V. \ ., J . .4ppl. Cheni. L‘SSIZ (English transl.), 39, 2413 (1966). (243) Green, It. W.,Sleet, 11. J., d u s tralian J . Chem., 19, 233 (1966). (244) Green-lade, 1). J., Symorls, 11. C. R., Trans. Faraday Soc., 62, 307 (1966). (243) Griffin, T. B., Blazek, K. A., J . A s s . Ofic. .inal. Chem., 49, 912 (1966). (246) Grobelny, R., Jezowska-Trzeisiatowska, B., Wojciechowhki, J . Znorg. X u c l , Chem., 28, 2713 (1966). (247) Gruen, 11. &I., Quarterly Reviews, 19, 349 (1966). (248) Grzenda, .4.R., Xicholson, If. P., Cox, W. S., J . Amer. Water W o r k s Assn., 58, 326 (1966). (249) Gueguen, IT., Pascal, P., Compt. Rend., Ser. C, 262,684 (1966). VOL. 40, NO. 5 , APRIL 1968

341 R

(250) Gunther, F. A., Ott, D. E., Analyst (London),91,475 (1966). (251) Gupta, B. P., Dutt, Y., Singh, K.P., J. Znorg. Sucl. Chem., 29, 1806 (1967). (2:;2) Gbpta, H. K. L., Bhandari, RI. R., bogani, N. C., Bull. Chem. SOC.Japan, 40,215 (1967). (253) Gupta, S. S., Mukerjee, D., Chim. Anal. (Paris),49, 37 (1967). (254) Gurevich, A l . ll.,Kolyadin, K. I., J . Appl. Chem. U S S R (English transl.), 39,432 (1966). (255) Gverdtsiteli, I. hl., Doksopulo, T. P., hlenteshasvili, 11. AI., Abkhazava, I. I., J . Gen. Chem. CSSR (Enolish trand. ). 36. 118 1 1966). (256) Hadjiibannou, T: P., Anal. Chim. Acta, 35, 360 (1966). (257) Hague, 1). N.,Halpern, J., Inorg. Chem., 6, 2059 (1967). (258) Hahn, C. S.,Lee, K. W., Jaffe, H. H., J. Amer. Chem. Sac., 89, 4975 (1967). (259) H’almann, AI., Platzner, I., J. Phys. Chem., 70, 580 (1966). (260) Hamaguchi, K., Ikeda, K., Sakia, H., Sugeno, K., Narita, K., J. Biochem. (Tokyo),62,99 (1967). (261) Hamagachi, K., Sakai, H., lligita, S., J. Biochem. (Tokyo),62,46 (1967). (262) Hancock, W.,Rose, B. A., Singer, L). D., Analyst (London), 91, 449 (1966). (263) Hangebrauck, R. P., Lauch, R. P., hleeker, J. E., Am. Ind. H y g . J., 27, 47 11966). (264) ’€Ian&, R. L., J . Phys. Chem., 70, 1648 (1966). (265) Harris, A. D., Stewart, R., Hendrickson, D., Jolly, W.L., Znorg. Chem., 6, 1052 (1967). (266) Hasegawa, S., Johnson, R. AI., Gould, W. A , , J. A gr. Food. Chem., 14, 165 11966). (267) Hase,’J., Kobashi, K., Kumaki, K., Chem. Pharm. Bull. (Tokyo), 15, 534 (1967). (268) Hawes, E. hl., Wibberley, D. G., J . Chem. SOC.,C, 1564 (1967). (269) Hay, 1L W.,Harvie, S. J., Australian J . Chem., 18, 1197 (1965). (270) Hayashi, AI., Rlatsumura, F., LVature, 215, 1512 (1967). (271) Head, It. J., Jones, It. A., Australian J . Chem , 19, 1747 (1966). (272) Hedni, P. A., hlinyard, J. P., Jr., Thompson, ii. C., J. Chromatogr., 30, 43 11967). (273) ‘Heilbronner, E., Theor. Chim. Acta, 4, 64 (1966). (274) Heistand, R. N., Anal. Chim. Acta, 39,258 (1967). (275) Hemming, R., Johnston, D. G., J. Chem. SOC..B. 314 11966). (276) Hennion,’ d. F., Reardon, J. E., J . Org. Chem., 32, 2819 (1967). (277) Hershenson, H. AI., “Ultraviolet arid Visible Absorption Spectra,” Index for 1960-1963, Academic Press, New York, 1966. (278) Herzberg, G., “Molecular Spectra and Molecular Structure 111. Electronic Struct,ure of Polyitomic aloiicules,” D. Van Nostrand Co., Princeton, N. J., 1966. (279) Hewgill, F. R., Hewitt, D. G., Langley, P. B., Ai~stralianJ. Chem., 18, 1241 (1963). (280) Higuchi, T., Eberson, L., Herd, A. K., J. Amer. Chem. Soc., 88, 3805 (1966). (281) Higuchi, T., Gensch, K., Ibid., 88,3874 (1966). (283) Hiiro, K., Rassell, D. S., Berman, S. S.,Anal. Chim. Acta, 37, 209 (1967). (283) Hill, H. D., Summer, G . K., Roszel, S . O., Anal. Biochem., 16,84 (1966). (284) IIiller, F. W., Krueger, J. H., Inorg. Chem., 6 , 528 (1967). ~Y

~

342 R

ANALYTICAL CHEMISTRY

(285) Hine, J., Yeh, C. Y., J. Amer. Chem. Soc., 89,2669 (1967). 1286) Hirai. E.. Chem. Pharm. BuEl. ( I ; o ~ Y o 15, ) , i i 6 3 (1967). (287) Hirayama, K., “Ultraviolet Absorption,” “Handbook of Organic Structural Analysis,” Y. Yukawa, Ed., W. A. Benjamin,-Inc., N. Y., 1965: ’ (288) Hoffman, E., Saracz, A., Bursztyn, B., 2.Anal. Chem., 215, 101 (1966). (289) Holcomb, I. A., McCann, I). S., Boyle, A. J., ANAL.CHEM.,37, 1657 (1965). (290) Holloway, C. T., Bond, R. P. RI. Knight, I. G., Beechey, R. B., Biochemistry, 6, 1615 (1967). (291) Holt, S. L., Ballhausen, C. J., Theor. Chim. Acta (Berlin), 7, 313 (1967). (292) Horer, 0. L., Popescu, >I., Anal. Chim. Acta, 35, 6 (1966). (293) Hoshino, S., Hosoya, H., Nagakura, S.,Can. J. Chem., 44, 1961 (1966). (294) Hosoya, H., Nagakura, S.,Bull. Chem. SOC.Japan, 39, 1414 (1967). (295) Howard, J. W., Teague, R. L., Jr., White, R. H., Fry, B. E., Jr., J . Ass. Ofic. Anal. Chem., 49, 59a (1966). (296) Howard, J. W., Triricchi, E. W., White, R. H., Fazio, T., Ibid., 49, 1236 (1966). (297) Hubbard, W. D., Hintz, R l . E., Libby, 1).A., Sutor, R. P., Jr., J . Ass. Ofic. Agr. Chem., 48, 1217 (1965). (298) Huey, F., Hargis, L. G., AIVAL. CHEM.,39, 125 (1967). (299) Humphries, C. At., Walsh, .4.D., Warsop, P. A,, Trans. Faraday SOC., 63, 513 (1967). (300) Huttemann, T. J., Jr., Foxman, B. bl., Sperati, C. R., Verkade, J . G., Inorg. Chem., 4,950 (1965). (301) Ibrahim, F. B., Cavagnol, J. C., J. Agr. Food Chem., 14, 369 (1966). (302) Iibuchi, S., Ninoda, Y., Yamada, K., Agr. Biol. Chem. (Tokyo), 31, 513 (1967). (303) Innes, K. K., Byrne, J. P., ROSS, I. G., J. Mol. Spectrosc., 22, 125 (1967). (304) International Union of Pure and Applied Chemistry, “Spectrophotometric Data for Colorimetric Analysis,” Butterworths, London, 1963. (305) Ioffe, I. S., Otten, T. F., J. Org. Chem. CSSR (English transl.), 1, 328 (1965). (306) Ionescu, M., Katritzky, A. R., Ternai, B., Tetrahedron, 22, 3227 ~

~

i1 Q66\ -”,. ,_I

(307) Ipata, P. L., Anal. Biochem., 20, 30 (1967). (308)‘ItohJ’ AI., Nagakura, S., J . Amer. Chem. SOC.,89,3959 (1967). (309) Ivanov, A. I., Chlenov, I. E., Tartakovskii, V. A,, Slovetskii, T. I., Sovikov, S. S.,Bull. Acad. Sci. IlSSR, Diu. Chem. Sci. (English transl.). 14.58 (1965). (310) Ives, D. J. G., Mosely, P. G. N., J. Chem. SOC.,B , 757 (1966). (311) Iwata, S., Tanaka, J., Nagakura, S.,J.Amer. Chem. SOC.,88,894 (1966). (312) Iwata, S., Tanaka, J., h-agakura, S., Ibid., 89, 2813 (1967). (313) Jackson, X. W.. J. Chem. SOC.,C, 1065 11967). (314) Jaffe, H. H., Beveridge, D. L., Orchin, AI., J . Chem. Ed., 44, 383 (1967). (315) Jain, B. D., Purushottam, K. V., Proc. Indian Acad. Sci., Sect. A , 44, 245 (1966). (316) James, D. W., Smith, C. P., Appl. Spectrosc., 20, 317 (1966). (317) Janes, D. J., Rlargerum, D. W., Znorg. Chem., 5, 1135 (1966). (318) Job, V. A., King, G. W., J . M o l . Spectrosc., 19, 1.55 (1966). (319) Zbid., p. 178.

(320) Johnson, A. R., J . Ass. Ofic. Anal. Chem., 50, 857 (1967). (321) Johnson, H., Sawicki, E., Talanta, 13, 1361 (1966). (322) Jung, F., Stopp, G., Ruckpaul, K., Xature, 207, 990 (1965). (323) Jurd, L., Tetrahedron, 21, 3707 (1965). (324) Kabasakalian, P., J . Ass. Ofic. Anal. Chem., 49,494 (1966). (325) Kadhim, A. H., Offen, H. W.,J. Amer. Chem. Soc., 89, 1805 (1967). (326) Kaempe, B., Acta Pharmacol. To& col., 25, 249 (1967). (327) Kai, F., Bull. Chem. SOC.Japan, 40, 1136 (1967). (328) Kallen, 1%.G., Jencks, W. P., J . Biol. Chem., 241, 5845 (1966). (329) Kanekar, C. It., J . Znorg. A-ucl. Chem., 28, 2297 (1966). (330) Kaplan, L. A., Glover, D. J., J . Amer. Chem. SOC.,88, 93 (1966). (331) Kashino, S., Kishimura, N., Ino, K., Hasegama, S., Bull. Chem. SOC. Japan, 40,33 (1967). (332) Katritzky, A. K., Popp, F. D., Rowe, J. L)., J. Chem. Soc., B, 562 (1966). (333) Katritzky, A. R., Popp, F. D., Waring, A. J., Zbid., B, Phys. Org., 565 (1966). (334) Kauer, J. C., Sheppard, W. A,, J. Org. Chem., 32,3580 (1967). (335) Kawasaki, A., Ogata, Y., Tetrahedron, 22, 1267 (1966). (336) Kawase, A . , Freiser, H., ANAL. CHEW,39, 22 (1967). (337) Kaya, K., Nagakura, S., Theor. Chim. Acta (Berlin),7, 117 (1967). (3381 Ibid.. u. 124. (339j Khalii, AI. T. X,Lauffer, 11. A., Biochemzstry, 6, 2474 (1967). (340) Kheifets, G. M., Kromov-Borisov, K. V., J . Orq. Chem. USSR (English transl.), 2, 1492 (1966). (341) Kimura, K., Nagakura, S., Theor. Chim. Acta., 3., 164 (1965). (342) Kimura, K., Kagakura, S., J . Chem. Phys., 47, 2916 (1967). (343) King, G. W.,Richardson, A. W., J . Jf ol. Spectrosc. , 2 1, 339 ( 1966). (344) Kirkbright, G. F., Anal. Chim. Acta, 35, 116 (1966). (345) Kirsten, W. J., dnalyst (London), 91. 732 i 1966). (346j Kisser, L?., Machata, G., 2. Anal. Chem., 213, 349 (1965). (347) Kitagawa, T., Harada, Y., Inokuchi, H., Kodera, K., J . Jfo2. Spectrosc., 19, 1 (1966). (348) Klochkov, V. P., Korotkov, S. AI., Opt. Spectrosc. Jfol. Spectrosc. Suppl. USSR (Englzsh transl.), 11 (1966). (349) Kobayashi, AI., Koga, X., Bull. Chem. SOC.Japan, 39, 17811 (1966). (350) Kofoed, J., Korczak-Fabierkiewicz, C., Lucaq, G. H. W.,’Tuture,, 211.. 147 I

(1966).

(351) Komura, ll., Kawasaki, Y., Tanaka, T., Okawara, E., J. Organometal. Cheni. (Amsterdam), 4, 308 i 1 !Xi>.

(3%j-K6ptyug, V. A,, Shkol’iiik, S. A,, J . Org. Chem. CSSR (English transl.), 1, 1469 ( 1965). (353) Koren, J. G., Hirt, 11. C., App2. Spectrosc., 21 , 124 (1967). (354) Kornev, T7. I., Astakhov, K. I-., Rvbina, J . I , Russ. J . Inorg. Chem. (Znglish lransl.), 11, 988 (1966). (355) Kornev, V. I , Astakhov, K. V., Iiybnia, V. I., Russ. J. Phys. Chem. (English transl.), 40, 594 (1966). (356) Korshak, V. V., Tinogradova, S.V., Antonova-ilntipova, I. P , Polymer Scz. U S S R (English trans/.),7,353 (1965). (33i) Korte, F., Klein, W., Schmid, E. D., Telrahedron,Suppl , 8, 93 (1966). (358) Kozyreva, Y. F , Polymer Scz. T’SSR (Englzsh transl.), 8, 1364 (1966).

(359) Kracmar, J., Kracmarova, J., Pharmazie, 22,401 (1967). (360) Krakokovyak, AI. G., Anufriyeva, Y. V., Skorokhodov, S. S., Polymer Sci. U S S R (English transl.), 8, 1853 (1966). (361) Krause, It. T., J . A s s . Ofic. ilnal. Chem., 50, 683 (1967). (362) Krauss, R. C., Keinheimer, J. D., Can. J . Chem., 45, 77 (1967). (363) Kresge, A. J., Hakka, L. E., J . Anier. Chem. Soc., 88, 3868 (1966). (364) Krueger, J. H., Znorg. Chem., 5, 132 (1966). (365) Kubota, T., J . Amer. Chem. Soc., 88, 211 (1966). (366) Kukushkin, Y. K., Rz~ss.J . Znorg. Chem. (English transl.), 10, 325 (1965). (367) Kurz, J. L., J . A m e r . Chem. Soc., 89,3524 (1967). (368) Kuthan, J., Hakr, J., Collect. Czech. Chem. Commun., 32, 1438 (1967). (369) Kwon, T. W., Olcott, H. S., J . Food Sci., 31, 552 (1966). (370) Labarre, J. F., Crassnier, F., Faucher, J. P., Compt. Rend., Ser. C, 262, 1139 (1966). (371) Lach, J. L., Bornstein, Rl., J . Pharm. Sei., 54, 1730 (1965). (372) Lalor, C;. C., J . Cheni. Soc., A , 1 (1966). (373) Land, E. J., “Electronic Spectra and Kinetics of Aromatic Free Itadicals,” G. Porter, Ed., “Progress in Reaction Kinetics,” Vol. 3, Pergamon Press, London, 1965. (374) Lang, L., Ed., “Absorption Spectra in the Ultraviolet and Visible Region,” Vol. I\*, Academic Press Inc., N. Y., 1963. (373) Lang, L., Ed., “Absorption Spectra iri the Ultraviolet and \.isible Region,” Vnl. 3, Academic Press, S . Y., 1965. (376) Lang, L., Ed., Ibid., 1-01, VI, N. Y., 1965. (377) Lang, L., Ed., Zbid., Vol. 1-11,h-.Y., 1966. (378) Lantzke, I. R., Watts, D. W., Australian J . Chem., 19, 969 (1966). (379) Larina, L. P., Izyneev, A. A., Fruiize, T. M.,Bull. d c a d . Sci. ( U S S R ) (English transl.), 1965, 171. (380) Larsul, II., Gelebnrt, F., JohanninGilles, A,, Compt. Rend., 261, 4701 (1965). (381) Lee, E. G. I€., Townsley, P. AI., Walden, C. C., J . Food Sei., 31, 432 (1966). (38%)Lee, S., Puttnam, K. A., J . SOC. Cosmet. Chem., 17, 3 (1966). (383) Leermakers, 1’. A., Thomas, I-€. T., Weis, L. D., James, 17. C., J . Amer. Chem. Soc., 88, 5075 (1966). (384) Leibovici, C., Deschamps, J., Compt. IZend., Ser. C, 264, 70 (1967). (38.7) Leibovici, C., Deschamps, J., Theor. Chim. Acta, 4, 321 (1966). (386) Leibovici, C., Ileschamps, J., Theor. Chim. Acta (Berlin), 7, 137 (1967). (387) Leinhard, G. E., Jencks, W. P., J . Anzer. Chem. Soc., 88, 3982 (1966). (388) Reference omitted in final revision. (389) Leont’ev, \.. B., Stroshchenko, 0. S., JIangutova, Yir S., Sadykov, A. S., J . Gen. Chena. VSSZZ (English trans/.),35, 298 (1965). (390) Levine, J., Iiohmann, J. R., J . Ass. Ofic. A n d . Chem., 49,533 (1966). (391) Levshina, G. A, Troitskaya, A. D., Shagidrillin, R. It., Russ. J . Inorg. Chem. (English transl.), 11, 985 (1966). (392) Lewiri, S., Hiirnphreys, D. A., J . Chem. SOC..B, 562 (1967). (393) Lewis, J. C., Anal. Biochem., 19, 327 (1967). (394) Liberles. A.. “Introduction to Jlolerular-6rbitai Theorv.” Holt. Rhinehart, & Winston, Xew“York, 1966: (395) Lieu, V. T., Frodyma, ll. RI., Higashi, L. S., Kunimoto, L. €I., A n a l . Biochem., 19, 454 (1967).

(396) Lindquist, I., Bergman, B., Acta Chem. Scand., 20,918 (1966). (397) Loach, P. A,, Loyd, R. J., ANAL. CHEM.,38, 1709 (1966). (398) Loh, E., Phys. Rev., 158, 273 (1967). (399) Long, C., Skoog, D. A., Inorg. Chem., 5 , 206 (1966). (400) Loomans, J . L. bl., Bull. SOC.Chim. Belges, 75, 380 (1966). (401) Lowrie, H. S., J . M e d . Chem., 9, 784 (1966). (402) Luke, C. L., A n a l . Chim. Acta, 34, 165 (1966). (403) Lutskii, A. E., Soldatov, A. F., J . Gen. Chem. U S S R (English transl.), 35, 2088 (1965). (404) Lutskii, A. E., Soldatova, A. F., ’i’oroshin, E. M.,Ibid., 35. 2094 (1965). 405) Lutskii, A. E., Tre 43,3472 (i965). (407) RIcCallum, J. D., Application of Ultraviolet Spectrophotometry to the Forensic Sciences, Beckman Application Data Sheet UV-8094. (408) McCallurn, J. D., Ultraviolet Analysis of Urban Airborne Particulates for Polynuclear Aromatic Hydrocarbons, Beckmari Instrurnerits, .4pplication Data Sheet UV-8097. (409) NcCallum, J . D., The Analyzer, 7, 10, Winter 1965-66, Beckrnan Instrument Co. (410) McCaulley, D. F., Fazio, T., Howard, J. R., IXCiurcio, F. AI., Ives, J., J . Ass. Ofic. A n a l . Chem., 50, 243 (1967). (411) JlcEvoy-Bowe, E., Anal. Biochem., 16, 133 (1966). (412) McGinness, J. D., Secrest, P. J., Tessari. D. J.. “Standard Methods of Chemical Analysis,” Welcher, F. J., Ed., Vo1. 3, Part B, Van Nostrand, 1272 1966, nr -(413)-’\lacadre, A., lloncuit, C., Conzpt. Rend., 261, 2339 (1963). (414) Jlaeos, L.. IIeath. I).F.. J . Sei. ZnstruriI., Yijima, C., Zbid., B, 56 (1966). (423) Matubayashi, G., Kawasaki, Y., Tanaka, T., Okawara, R., J . Znorg. Sucl. Chem.. 28. 2937 i 1966). (424) llatsiishimi, Y . , ‘&riel, -4.E., J . A m e r . Chem. SOC.,89, 1317 (1967). (423) lIayahi, R l . F., Al-Taiar, A. H., Al-Baldawi, S. A., Hussain, H. A., Can. J . Chem., 44, 2224 (1966). (426) Mayberry, W. E., Biochemistry, 6 , 1320 (1967). (427) Mayberry, W. E., Rall, J. E., Bertoli, D., Zhid., 4, 2606 (1965). (428) Maycock, J. N., Pai ’i’erneker, P. II., V. R., Gorzynski, C. S., Speclrochim. Acta, 23A, 2849 (1967). (429) Mehlenbacher, V. C., “Standard Methods of Chemical Analvsis.” Vol. 3Instrumental Methods, 0.v a n Nostrand, 1966, p. 1066. (430) Melenteva, T. G., Pavlova, L. A., J . Gen. Chem. ( U S S R ) (English transl.), 35, 1739 (1965). (431) Menger, F. M., J . Amer. Chem. SOC., 88, 3081 (1966).

(432) Middleton, W. R., ANAL. CHEM., 39, 1839 (1967). (433) Miescher, E., J . M o l . Spectrosc., 20, 130 (1966). (434) Millen, W. A., Watts, D. W., Australian J . Chem., 19,51(1966). (435) Minato, S., Tagawa, T., Miyaki, RI., Shimizu, B., Kakanishi, K., J . Bzochem. ( T o k y o ) , 59,263 (1966). (436) lloersch, G. W., Morrow, I). F., Neuklis, W. A., J . M e d . Chem., 10, 154 (1967). (437) Nokrasch, L. C., Anal. Bzochem., 18, 64 (1967). (438) Mondelli, It., Meilini, L., Tetrahedron, 22,3253 (1966). (439) Montgomery, K. O., Jennings, P. Y.,Weinswig, 31. H.. J . Pharm. Scz.. 56, 141 (1967). (440) Montgomery, K. O., Weinswig, RI. H., J . Pharm. Scz., 55, 1141 (1966). (441) Moreau, W. ll., Weiss, K., J . A m e r . Chem. SOC.,88,204 (1966). (442) Alorozova, N. K., Shalirnova, K. V., Opt. Spectrosc., L’SSR (English transl.), 21, 112 (1966). (443) Norpurgo, L., Williams, R. J. P., J . Chem. SOC.,A, 73 (1966). (444) Rlozersky, S. AI., Pettinati, J. D., Kolmaii, S. D., ASIL. CHEM.,38, 1182 (1966). (443) >iuneynki, R., Tnnida, H., J. Org. Chem., 31, 1988 (1966). (446) >lunio, H. N.,Fleck, F., Analyst ( L o n d o n ) ,91, 78 ( 1966). (447) Murachi, T., Inagami, T., Yasui, AI., Biochemistry, 4, 2815 (1963). (448) Murphy, AI. T. J., Nagy, B., J . Amer. Oz/ Chem. SOC.,43, 189 (1966). (449) Murray, 11. W., Kaplan, 11. L., J . Amer. Chem. Soc., 88,3527 (1966). (450) blurto, J.. dcta Chem. Scand.. 20. 303 i 1966). (451) IhLd., p. 310. (432) Murto, J., llurto, XI. L., Zbid., 20, 297 (1966). (433) lIushkin, Y. I., Finkel’shtein, A. I., J . Ora. Cheni. I;SSII (Enalish transl.). 1, 722 ( 1963). (454) Ka ano, K., Metzler, 11. E., J . -4nier. $hem. SOC.,89, 2891 (1967). (453) Narain, G., Shitkla, P., J . I n d i a n Chem. SOC.,42,694 (1966). (456) Naves, Y. It., Itetamar, J. A., lticciardi, A. I., Helv. Chim. 4 c t a , 48, 1579 (1965). (457) N‘eedleman, N.,A N I L . CHEM.,38, 915 (1966). (458) Nelson, S. F., Bartlett, P. D., J . Amcr. Chem. Soc., 88, 137 (1966). (459) Keudert, W., Itopke, H., “Atlas of Steroid Spectra,” Springer-Verlag, New York, 1963. (460) Nielsen, E. B., Schellman, J. A., J . Phys. Chem., 71, 2297 (1967). (461) Kiel>eii. P. H.. Dahl. 0.. Acta ‘ Chena. Scand., 20, 1113 (1966). (462) Silssori, O., Zbid., 21, 1301 (1967). (463) Nishimoto, K., Forster, L. S., Theor. Chim. Acta, 3,407 (1965). (464) Sishiwaki, T., Tetrahedron, 22, 2401 (1966). (465) Sorman, S., Itygg, G. L., Wells, A. W.,J . Ass. Ofic. Anal. Cheni., 49, 590 (1966). (466) Xurmukhametov, R.N., lZileshina, L. A,, LIalkes, L. Y., and Shubina, L. Y., Opt. Spectrosc. L’SSR (English transl.), 20, 17 (1966). (467) Xurmukhametov, I?. N., Tishchenko, V. B., Ibid., 23.43 (1967). (468) Offner, H: G., Skoog, D. A,, ANAL. CHEM.,38, 1520 (1966). (469) Ogawa, T., Hirota, K., J . Mol. Spectrosc., 21, 29 (1966). (470) Ogryzlo, E. A., Sanctuary, B. C., J . Phys. Chem., 69, 4422 (1965). (471) Oki, AI., Iwarnrrra, II., Bull. C h e m SOC.J a p a n , 39,470 (1966). I

VOL. 40, NO. 5 , APRIL 1968

,

343 R

(472) Oki, II., Iwamura, H., J. Amer. Chem. Soc., 89, 576 (1967). (473) Olah, G. A., Pittman, Jr., C. V., FVasck, It., Doran, AI., Ibid., 88, 1488

(19G6).

( 4 i 4 ) Olson, D. C., Bjerrum, J., Acta

Chem. Scand., 20, 143 (1966). (475) Oro, J., Ilan, J., Zlatkis, A,, ANAL. CHEM., 39, 27 (1967). (476) Oaburn, Q. W., Benedict, J. H., J . d m e r . Oil Chem. Soc., 43, 141 (1966). (477) Ossorio, R. P., Anales de Fisica y Quimica, 52(B), 149 (1966). (478) Pagnotto, L. D., Lieberman, L. hl., Atner. I n d . Hyg. ilssoc. J., 28, 129 (1967). (479) Pakhomova, A . D., Rudyakova, Y. L., Sheka, J. A., Russ. J . Inorg. Chetn. (English Iransl.), 11, 621 (1966). (480) Palchevskii, V. I,., Polyanskaya, L. A , Opt. Spectrosc. USSR (English, transl.), 20,227 (1966). (481) Paoloni, L., Gramaccioni, P., l-aciago, A., Theor. Chim. Acta, 5, 102 (1966). ,. (482) Pappas, A. J., Powell, H. B., AXAL. CHEM.,39,579 (1967). (483) Parkanyi, C., Horak, V., Pecka, J., Zahradnik, It.. Collect. Czech. Chem. Comniun., 31,835 (1966). (484) Partridge, R. H., J. Chem, Phys., 45. 168.3 ( 1966’i. --, (48.ij Pearson, R. G., I\Ioore, J. w., Inorg. Chem., 5 , 1.523 (1966). (486) Pejkovic-Tadi6, I., Hranisavljevib JakovlieviC. 31..M a r k RI., J . Chromatogr., 21, 123 (1966). (487) Perkins, P. G., J . X o l . Spectrosc., \ - - -

\ -

22.464 (\ -1967) I . - . ,.

(488)

- 1 -

Perlnian, R. L., Edelhoch, H., J. Rid. Chem., 242,2416 (1967). (489) Perrin. 11. U., Pitman, I. H., J . Chem. Soc.,iOil (196.7). (490) Pesak, lI., Greksakova, O., Kopeckv, F., Celechovsky, J., Collect. Czech. dhem. Conzmun., 32, 2031 (1967). (491) Pestell, P., Shurvell, H. F., Pesteil, L., Can. J. Chem., 43,3133 (1961i). (492) Peters, 11. G., Salajegheh, A., As I L . CHEM.,38, 1824 (1966). (493) Peyser, P., Stromberg, R. R., J. Phys. Chem., 71, 2066 (1967). (494) Pierre, J. L., Chautemps, P., Arnaitd, P., Compt. Rend., 261, 2321 (196.5). (493) Pierre. L. L., n‘ature, 208. 666 (1966). (496) Pilabury, V. B., Jackson, J. V., J. Pharm. Pharmacol., 18, 713 (1966). (497) Platt, J. R., “Systematics of the Electronic Spectra of Conjugated Molecules. A Source Book,” John Wiley & Son*, New York, 1964. (495) Polyakov, D. K., Gantmakher, A . R., .l;\ledvedev, S. S., Polymer Sci. L’SSK (English transl.), 7, 198 (1965). (499) Pon, 5 . G., Bondar, R. J. L., Anal. Bfochem., 19, 272 (1967). (500) Porai-Koshits, B. A., Shaburov, 1.. I-,,J. Org. Chem. USSR (English transl.), 2, 1643 (1966). (501) Porrish, I., Shimamura, A , , Takahashi, L. T., J . Pharm. Sei., 54, 1809 (196.5). ( 3 0 % ) Preer, J. R., Haigt, Jr., G. P., Inorg. Chem., 5,656 (1966). (503) Pritchard, J. G., Field, G. F., Koch, K., Raymond, R., Sternbach, L. H., Toome, J-., Traiman, S., A p p l . Spectrosc., 20, 363 (1966). (504) Prochazka, hI., Palecek, l l . , Collect. Czech. Chem. Commun., 32, 3049 (1967). (503) Prochorow, J., Tramer, A , , Wierzchowski. K. L., J . X o l . Spectrosc., 19, 43 (1966). ’ (506) Pysh, E. S., Proc. S a t . Acad. Sci. U. S.,56, 82.5 (1966). ( 5 0 7 ) Raciszewski. Z.. J . Chem. Soc.,, B.. 1142 (1966). ,

I

~

344

R

ANALYTICAL CHEMISTRY

(508) Ramsey, B. G., J. Phys. Chem., 70, 611 (1966). ~ _ _ . _ (509) Itapp6port, Z., Sheradsky, T., J . Chem. Soc., B, 898 (1967). (510) Ray, A., Mukerjee, P., J. Phys. Chem., 70, 2138 (1966). (511) Rehn, B. W., J. Ass. Ofic. Bnal. Chem., 50, 660 (1967). (512) Iteimann, J. E., Jencks, W. P., J . Amer. Chem. Soc., 88,3973 (1966). (513) Robertson, L. C., Xerritt, J. A., J.Mol. Spectrosc., 19,372 (1966). (514) Robinson, J. R., ANAL.CHEM.,39, 1178 (1967). (515) Robinson, R. A., J . Res. S a t . Bur. Stand.. 71A. 385 (1967). (516) Rochester, C. H.,’ Trans. Faraday Soc., 62, 355 (1966). (517) Rochester, C. H., Rossall, B., J . Chem. Soc., B, 743 (1967). (518) Rodgers, A. S., Golden, D. AI., Benson. S. W.. J. Amer. Chem. Soc.. 88.3194 f 1966): (519j Roebber, J . L., Larrabee, J. C., Huffman, R. E., J. Chem. Phys., 46, 4594 (1967). (520) Roncin, J., Damay, N., Homand, J., J . 3101.Spectrosc., 2 2 , 154 (1967). (521) Rozenkrantz, H., Forchielli, E., Giering, J. E., Truant, A. P., Anal. Bzochem.. 15. 2.51 f 1966). (522) Rozentais, G. J., A x ~ L CHEM., . 38, 334 (1966). (523) Rudolph, T., Phillips, J. P., Anal. Chcm. Acta, 34,235 (1966). (524) Sadtler Research Laboratories. “Sadtler Standard Spectra, Ultra: violet,” 1517 Vine St., Philadelphia 2, Pa. (525) Sahu, K. K., Bhattacharya, A. K., J. Indian Chem. Soc., 42, 781 (1966). (526) Said, F., Amer, M. ll., Girgis, K. S., George, Z. A . , Analyst (London), 90,750 (1965). (527) Saidel, L. J., Satzman, J. S., Elfang, W. H., iyature, 207, 169 (1965). (528) Saier, 11. H., Jr., Jenkins, W. T., J . Bid. Chem., 242,91(1967). (529) Sakurai, H., Yamamori, H., Kumada, M.,Bull. Chem. SOC.Jap., 38, 2024 (1963). (530) Salem, L., “The >Iolecular Orbital Theory of Conjugated Systems,” W.A. Benjamin, Inc., S e w York, 1966. (531) Salim, E. F., Booth, R. E., J . Pharm. Sci., 56, 623 (1967). (532) Salim, E. F., Felker, W. S., Zbid., 56,886 (1967). (533) Salim, E. F., Hilty, W. W.,Ibid., 56, 318 (1967). (534) Samson, J. A. R., “Techniques $: Vacuum Ultraviolet Spectroscopy, John Wiley & Sons/Interscience, New Tork, 1967. (535) Sandstrom, J., Uppstrom, B., Acta Chzm. Scand., 20, 57 (1966). (536) Sandstriim, J., Wennerbeck, I., ilcta Chem. Scand., 2 0 , 5 7 (1966). (537) Sannigrahi, A. B., Chandra, A. K., Bull. Chem. Soc. Jap., 40, 1344 (1967). (538) Sanyal, K . S . , Rloulik, S. P., Kundu, N., lIullick, 11. K., J. Indian Chem. Soc., 43, 589 (1966). (539) Sarkar, A . K., Das, J., ANAL. CHEM.,39, 1608 (1967). (540) Schafer, H. S . S., Ibid., 39, 1719 (1967). (541) Schmidtke, H. H., Garthoff, D., J.Amer. Chem. Soc., 89,1317 (1967). (542) Schneider, C. H.,deWeck, A. L., Helv. Chim. Acta, 49, 1689 (1966). (543) Schowen, R. L., Latham, Jr., K. S., J . d m e r . Chem. Soc., 88,3795 (1966). (544) Schubert, W. hl., Lamm, B., Ibid., 88, 120 (1966). (545) Scientific Documentation Centre Ltd., Halbeath House, Dunfermline, Fife, Cnited Kingdom. (546) Scoggins, >I. W., Miller, J. W., ANAL.CHEM.,58,612 (1966). ’

(547) Scott. A. I.. McCaDra. F.. Ruchanan, R. L., Dai, A. C., kou‘ni D.W., Tetrahedron, 21,3605 ( 1965). (548) Scott, F. L., Butler, R. N., J. Chem. SOC.,C, 1202 (1966). ~

(549) Scott, R. W., Moore, W. E., Effland. 11. J.. Mill ett. AI. A.. Anal. Biocheh., 21, 68 (1967)’ (550) S6lim, RX., Selim, M., T&u, O., Drillien, G., Rumpf, P., Bull. Soc. Chim. France, 3527 (1965). (551) Sen, N. P., J . Ass. Ofzc. Anal. Chem., 50, 776 (1967). (552) Senatore, L., Dell’atti, A., Ann. Chim. (Rome), 57, 177 (1967). (553) Setzkorn, E A., Huddleston, E . L., J. d m e r . Oil Chem. SOC., 42, 1081 (1965). (5i4) Shaw, R. il., Ward, P., J. Chem. Soc., B, 123 (1967). (555) Shaw, W. V., J. Bid. Chem., 242, 687 (1967). (536) Sbawali, A. S.S. A., Biechler, S. S., J . Am. Chem. Soc., 89, 3020 (1967). ( 5 5 7 ) Shcheglova, N. A., Shigorin, D. N., Dokunikhin, S. S., RUSSJ . Phys. Chem., 39, 1622 (1965). (558) Shine, H. J., Hughes, L., J . Org. Chem., 31,3142 (1966). (559) Shlenskaya, V. I., Biryukov, A. A., Moskovkina, E. RI., Russ. J. Inorg. Chem. (English transl.), 11, 325 (1966). (560) Shroff, A. P., Grodsky, J., J. Pharni. Sci., 56, 460 (1967). (561) Singh, V. B., Singh, I. S., J. M o l . Spectrosc., 20, 282 (1966). (562) Singleton, V. L., Marsh, G. L., Coven, AI., J . Agr. Food Chem., 14, 5 1966). (563) Sinyagovskaya, L. A., Lavrushin, V. F., Tolmachev, V. N., J . Gen. Chem. USSR (English transl.), 35, 1922 Il96.i\ \ - - _ _

(564) Skelly, N. E., ANAL.CHEM., 38, 934 (1966). (565) Skellv, S . E., Crummett, W. B., J . Chromhtogr., 21,257 (1966). (566) Skidmore, W. E)., Duggan, E. L., Anal. Biochem., 14,223 (1966). (567) Slovetskii, V, I., Ivanov, A. I., Shevelov, S. A., Fainzil’berg, A. A., Novikov, S. S., J. Org. Chem. U S S R (English transl.), 2, 1430 (1967). (568) Slovetskii, V. I., Okhlobystina, L. V., Fainzil’berg, A . rl., Ivanov, A. I., Biryukova, L. I., Novikov, S. S., Bull. *4cad. Scz. USSR, Dzo. Chern. Scz. (English transl.), 1965, 2032. (569) Smith, D. J., J. Ass. Ofic. Anal. Chem., 49, 536 (1966). (570) Smith, J. W. G., deGrey, G. E., Patel, T’. J., ilnalyst (London), 92, 247 (1967). (571) Smith, S. G., Su, G., J . Amer. Cheni. SOC.,88, 3995 (1966). (572) Sokolov, A. G., Sokolov, A. IT., J . Appl. Chem. ( U S S R ) (Eng. transl.), 38,427 (1965). ( 5 7 3 ) Sokolov, S. D., Kazitsyna, L. A., Guseva, I. K., J. Org. Chem. U S S R (English transl.), 2 , 733 (1966). (574) Song, P., Chichater, C. O., J. Food Sei., 31, 914 (1966). ( 5 7 5 ) Spencer, 11. D., Beggs, B. H., J. Chromatogr., 21, 52 (1966). (576) Spencer, It. R., Witt, S. C., Lundin, R. E., Bickoff, E. M.,J. Aar. Food Chem., 15, 536 (1967). ( 5 7 7 ) Spinelli, J., Kemp, B., Ibid., 14, 176 (1966). (578) Spinner, E., White, J. C. B., J . Chem. Soc., B, 991, 996 (1966). (579) Srivastava, S. C., Newman, L., Inorg. Chem., 5 , 1.506 (1967). (580) Stambaugh, R., Post, D., Anal. Biochem., 15, 470 (1966). (581) Stanley, T. W.,Morgan, 31. J., RIeeker, J . E., ANAL.CHEM.,39, 1327 (1967). (582) Steel, B. J., Robinson, R. A,,

Bates, R. G., J . Res. il’at. Bur. Stand., 71A, 9 (1967). (583) Stevens, B., Connelly, N., Suppan, P., Spectrochim. Acta, 22,2121 (1966). (584) Stevens, S. G. E., chairman, Prophylactics in Animal Feeds Subcommittee of Analytical Methods Committee, Analyst (London),91,672 (1966). (585) Stolten, H. J., “Standard Nethods of Chemical Analysis,” F. J. Welcher, Ed., Vol. 3, Part B, \’an Nostrand, 1966, p. 1182. (586) Stolyarov, K. P., Amantova, I. A., Talanta, 14, 1237 (1967). (587) Stone, L. R., J . Ass. Oj@ A w l . Chem.. 49. 325 (1966). (588) Stbry,’ V. M., RlcIntyre, D., O’hIara, J. H., J . Res. ll’at. Bur. Std., 71A, 169 (1967). (589) Stradyn, Y., Ermane, E., Dumpis, T., Linaberg, Y., Vanac, G., J . Org. Chem. USSR (English transl.), 1, 380 (1965). (590) Strait, L. A., Jambotkar, D., Ketcham, R., Hrenoff, >I., J . Org. Chem., 31, 3976 (1966). (591) Subcommittee on Analytical Afethods, Applied Chemistry Division, Organic Coatings Section, Pure Appl. Chem., 10, 218 (1965). (592) Sugiura, K., Goto, M.,J . Biochem. (Tokyo)!60, 335 (1966). (593) Sukigara, hI., Kikuchi, S., Bull. Chem. ,Sot. Jap., 40, 1077 (1967). (594) Ibzd., p. 1082. (595) Suzukl, H., “Electronic Absorption Spectra and Geometry of Organic Molecules,” Academic Press (1967). (596) Svehla, G., Talanta, 13, 641 (1966). (597) Swaminathan, K., Harris, G. &I., J . Amer. Chem. i$oc., 88,4411 (1966). (598) Swift, L. J., J . Agr. Food Chem., 15,99 (1967). (599) Tachibana, A,, Nurachi, T., Biochemistry, 5,2756 (1966). (600) Talreja, S. T., Oza, P. hf., Rao, P. S., Anal. Chim.Acfa, 36, 238 (1966). (601) Talukdar, P. B., J . Indian Chem. Soc., 44, 17 (1967). (602) Talukdar, P. B., Sengupta, S. K., Zbid., 44,29 (1967). (603) Ibid., p. 104. (604) Tamres, hl., Goodenow, J. M., J . Phys. Chem., 71, 1982 (1967). (605) Tanaka, >I., Tanaka, J., Kagakura, S., Bull. Chem. Soc. Japan, 39, 766 .

I

f1966) I - _ _ _

(606) TLmple, C., Jr., Montgomery, J. A., J . Org. Chem., 31, 1417 (1966). (607) Thomas, G. J.. Jr.. Kvoeoku. Y..’ J . Awier. Chem. Soc.; 89,’4170 (3967). (608) Thomas, &I. P., Ackermann, H. J., Kuchar, E. J., J . Agr. Food Chem., 14, 613 (1966). (609) Tojo, T., Hamaguchi, K., Imanishi, M., Amano, T., J . Biochem. (Tokyo), 60, 538 (1966). (610) Tolman, R. L., Robins,. R. K., Townsend, L. B., J . Heterocyclzc Chem., 4. 230 (1967). ( 6 l i ) Tompsek, S. L., Analyst (London), 92,534 (1967). (612) Tosi, C., Spectrochim. Acta, 22, 1701 (1966).

(613) Tramontini, M., Ann. Chim. (Rome),55, 1154 (1965). (614) Tran-Van-Danh, Spitz, J., Mathien, C., Anal. Chim. Acta, 36,204 (1966). (615) Trepanier, D. L., Wagner, E. R., Harris, G., Rudzik, A. D., J . Med. Chem., 9, 881 (1966). (616) Trione, E. J., Leach, C. XI., Mutch, J. T., Suture, 212, 163 (1966). (617) Tronov, B. V., Polle, E. G., J . Gen. Chem. U S S R (English transl.), 36, 1418 (1966). (618) Trost, B. X,“Problems in Spectroscopy, Organic Structure Determination by NMR, IR, UV, and Mass Spectra,” W. A. Beniamin. 1967. (6191 Trott 88; $21 ( (620) Troz; Ibid., 89,239 ( (621) Tuli, \’., Physiol., 42, 425 (1967). (622) Turczan, J. W., J . Ass. Ofic. Anal. Chem., 50, 652 (1967). (623) Turitsyna, N. F., Il’inskaya, Y. S., Dyuzheva, I. I., J . Org. Chem. CSSR, 2, 539 (1966). (624) Tye, R., Horton, A. W., Rapien, I., Amer. Znd. Hug. Assoc. J.. 27. 25 (1966). (625) Uhlemann, V. E., Thomas, P., J . Prakt. Chem., 34, 180 (1966). (626) \’an Santen, R. T., Schlewitz, J. H., Troy, C. II., Anal. Chim. Acta, 33,593 ( 1965). (627) Varga, L. P., Veatch, F. C., A N ~ L . CHEM..39. 1101 f 1967). (628) Venksten, T. V.; Baev, A. A., “Absorption Spectra of Minor Bases. Their Nucleosides, Nucleotides, & Selected and Oligoribonucleotides,” Plenum Press Data Div., N. Y., 1966. (629) Vincent, J. F., ANAL. CHEM.,38, 1631 (1966). (630) VlacJ, F., Collect. Czech. Chem. Commun., 32,331 (1967). (631) Zbid., p. 3133. (632) Vorobeva, R. P., Ivanova, E. N., Opt. Spectrosc. U S S R (English transl.), Suppl. 2,1101. Spectrosc. 19 (1966). (633) Vromen, S., Modiano, A., Lfandelbaum, A., Ginsburg, D., Hwaing, B., Schlessinger, R. H., Cava, M. P., Tetrahedron Suppl., 7,203 (1966). (634) Walba, H., Murray, W. J., Knutson, G., Diaz, A,, J . Amer. Chem. Soc., 88, 1692 (1966). (635) Walker, S., Straw, H., “Spectroscopy Volume 11: Ultraviolet, Visibl? Infra-Red and Raman Spectroscopy, ChaDman Hall. 1967. (636) iliallace, J. E., ANAL. CHEM.,39, 531 (1967). (637) Wallace, J. E., J . Pharm. Sei., 56, 1437 (1967). (638) Wallace, J. E., Biggs, J. D., Dahl, E. T., ANAL.CHEM.,38,831 (1966). (639) Walling, C., Kurkov, 5’. P., J . Amer. Chem. SOC.,89, 4895 (1967). (640) Walsh, A. D., Warsop, P. A., Trans. Faraday Soc., 63,524 (1967). (641) Walsh, R., Benson, S. W., J . Amer. Chem. Soc., 88,3480 (1966). ~

I”

(642) Walsh, R., Golden, I). ll.,Benson, S. W., Ibid., 88, 650 (1966). (643) Warren. R. J.. Eisdorfer. I . R.. Thompson,‘ W. E.; Zarembo,’ J. E.: J . Pharm. Sei., 55, 144 (1966). (644) Watarai, S., Yamamura, K.. Kinugasa, T., Bull. Chem. SOC.‘Japan, 40, 1448 (1967). (645) Weber, J. D., J . Ass. Ofic. Agr. Chem.. 48. 1151 (1965). (646) WehrG, E. L., gogers, L. B., J . Amer. Chem. Soc., 88, 351 (1966). (647) Weimer, 11. F., Prausnitz, J. X , Spectrochim. Acta, 2 2 , 77 (1966). (648) Wells, C. F., Trans. Faraday SOC., 63, 147 (1967). (649) Wendling, E., Bull. Soc. Chim. France, 404 (1966). (650) Wernimont, G., ANAL.CHEM.,39, 554 (1967). (651) Wetmore, D. E., Hancock, C. K., Traxler, R. N., Zbid., 38, 225 (1966). 32) Wheeler, 0. H., Kaplan, L. A,, (6“0rganic Electronic Spectral Data,” Volume 111, 1956-57, Interscience, 1966. (653) Wigler, P. W., Wilson, I . E., Anal. Biochem., 15, 421 (1966). (654) Will, F., 111, Varsel, C., J . Ass. Ofic. Anal. Chem., 49,949 (1966). (655) Williams, A,, Bender, AI. L., J . Amer. Chem. Soc., 88,2508 (1966). (656) Wills, B. D., ’4nalyst (London), 91, 468 (1966). (657) Wilson, J. AI., Gore, S . E., Sawbridge, J. E., Cardenas-Cruz, F., J . Chem. SOC.,B, 852 (1967). (658) Yagodin, G. A., Chekmarev, A . &I., Vladimirova, L. ll.,Russ Znorg. Chem. (English transl.), 11, 167 ( 1966). (659) Yamaguchi, G., Kakinoki, Y., Tsubomura, H., Bull. Chem. Soc. Jap., 40, 526 (1967). (660) Yamakawa, RI., Tanaka, I., J. Mol. Spectrosc., 20, 226 (1966). (661) Yates, K., McClelland, R. A., J . Amer. Chem. Soc., 89,2686 (1967). (662) Yates, P., Ault, A., Tetrahedron, 23, 3307 (1967). (663) Yokoyama, A., Tanaka, H., Chem. Pharm. Bull. (Tokyo), 15, 290 (1967). (664) Youngs, C. G., Wetter, L. R., J . Amer. Oil Chem. SOC., 44, 551 (1967). (665) Yuen, S. H., Bagness, J. E., Myles, D., Analyst (London),92,375 (1967). (666) Yurkevich, A. RI., Borodulina, lr.I., Preobrazhenski, N. A., J . Gen. Chem., U S S R (Englzsh transl.), 35, 84 (1965). (667) Zanker, V., Ehrhardt, E., Bull. Chem. Soc. Jap., 39, 1694 (1966). (668) Zanker, V., Erhardt, E., Mader, F., Thies, J., 2. Physik. Chem. (Frankjort), 48, 179 (1966). (669) Zhirnova, X. ll.,Astakhov, K. V., Barkov, S. A., Russ. J . Phys. Chem. (English transl.),40, 222 (1966). (670) Zhmurova, N., Kirsanov, A. I’., J . Gen. Chem. U S S R (English transl.), 36, 1265 (1966). (671) Zimmer, C., Reinert, H., Anal. Biochem., 14, 1 (1966). ~

VOL 40, NO. 5, APRIL 1968

345 R