2 Unusual Properties Associated with One-Dimensional Inorganic Complexes J O E L S. M I L L E R
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
Physical and Chemical Sciences Laboratory, Webster Research Center, Xerox Corp., 800 Phillips Rd.-114, Webster, N . Y. 14580
In recent years there has been increased interest in inorganic and organic materials which exhibit highly anisotropic properties arising from a one-dimensional or pseudo-one-dimensional structure in the solid state. Besides being pleochroic, such one-dimensional materials may exhibit cooperative magnetic interactions (ferro and antiferromagnetic coupling) as well as unusual electrical properties (e.g. high conductivity and low thermal electric power). The unusual properties of 1-D systems are surveyed while focusing is on the structural and electronic features of the materials to aid in predicting new classes of materials which may exhibit unusual electrical, magnetic, and optical properties. These properties are discussed in terms of transition metal (row and group), oxidation state, geometry, ligand field strength, stoichiometry, etc. / ^ \ n e - d i m e n s i o n a l ( l - D ) systems (1, 2, 3, 4, 5, 6) are best defined i n terms of t h e i r a n i s o t r o p i c e l e c t r i c a l , m a g n e t i c , a n d o p t i c a l properties. A l l n o n c u b i c crystals w i l l e x h i b i t s u c h a n i s o t r o p i c properties b y v i r t u e of the s y m m e t r y , b u t for this discussion a 1-D system is defined b y a n intensive p r o p e r t y w h i c h is p r o n o u n c e d i n a single d i r e c t i o n w i t h respect to the r e m a i n i n g o r t h o g o n a l directions—e.g. t h e e l e c t r i c a l c o n d u c t i v i t y ( 7 ) a n d o p t i c a l (8) a n d reflectance ( 9 ) spectra of K P t ( C N ) B r . 3 o o • 3 H 0 (10, 11). T h e s e p r o n o u n c e d a n i s o t r o p i c properties arise f r o m stronger i n t e r m o l e c u l a r interactions i n one d i m e n s i o n i n the c r y s t a l t h a n i n the r e m a i n i n g directions. I n the context of the b r o a d subject of i n o r g a n i c c h e m i s t r y , the complexes w h i c h e x h i b i t strong a n i s o t r o p i c p r o p e r ties are r e l a t i v e l y f e w i n n u m b e r , a n d , h a v i n g b e e n s t u d i e d i n d e t a i l o n l y r e c e n t l y , t h e y are classified as u n u s u a l . T h e most extensively s t u d i e d 1-D i n o r g a n i c c o m p l e x K P t ( C N ) B r o . 3 o o * 3 H 0 , is d e p i c t e d i n F i g u r e 1. 2
4
2
2
4
2
18 King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
0
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
2.
MILLER
One-Dimensional Complexes
19
T h i s p a p e r focuses o n t h e u n u s u a l p r o p e r t i e s associated w i t h
1-D
i n o r g a n i c complexes w h i c h m a k e s t h e m w o r t h y of s p e c i a l s t u d y . A l t h o u g h a v a r i e t y of p r o p e r t i e s are u n u s u a l because of i n t e r m o l e c u l a r i n t e r a c t i o n s i n the s o l i d , o n l y those m o s t f a m i l i a r to i n o r g a n i c chemists are d i s c u s s e d — n a m e l y , t h e o p t i c a l , m a g n e t i c , a n d e l e c t r i c a l properties. f a m i l i a r to p h y s i c i s t s (2, 3, 6)—e.g.,
t e r i n g , piezoresistance, a n d specific h e a t — a r e n o t discussed. s p e c i a l features
of s t r u c t u r e , s t o i c h i o m e t r y ,
o x i d a t i o n state a r e d i s c u s s e d
Topics more
t h e r m o e l e c t r i c p o w e r , n e u t r o n scatligand
field
In addition, strength, a n d
since they f r e q u e n t l y y i e l d clues t h a t a
complex m a y exhibit unusual properties.
T h e s u r v e y is n o t i n t e n d e d to
b e exhaustive b u t rather to g i v e a n i n d i c a t i o n of w h i c h p r o p e r t i e s m o s t u s e f u l i n the c h a r a c t e r i z a t i o n of n e w
are
and, i n particular, highly
c o n d u c t i n g 1-D c o m p l e x e s . T h e f o l l o w i n g is a case h i s t o r y of the o n e - d i m e n s i o n a l
inorganic
c o m p l e x , K ^ o . 5 l r ( C O ) C l 2 , w h i c h exhibits h i g h c o n d u c t i v i t y at r o o m t e m 2
perature.
T h i s c o m p l e x e x h i b i t s a v a r i e t y of u n u s u a l p r o p e r t i e s
which
i n d i c a t e a c o l u m n a r s t r u c t u r e a n d a p a r t i a l l y o x i d i z e d c h a r a c t e r i n spite of the o r i g i n a l proposals
f o r its s t r u c t u r e .
T h i s m a t e r i a l serves as a n
i n s t r u c t i v e e x a m p l e to p o i n t o u t s e v e r a l features w h i c h m a k e the c o m p l e x w o r t h y of d e t a i l e d s t u d y .
T o date, the d e t a i l e d s t u d y of its e l e c t r i c a l ,
m a g n e t i c , a n d o p t i c a l p r o p e r t i e s has not b e e n r e p o r t e d .
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
20
INORGANIC
COMPOUNDS
I n 1961 M a l a t e s t a a n d C a n z i a n i (12)
WITH
UNUSUAL PROPERTIES
r e p o r t e d the r e a c t i o n of potas-
s i u m h e x a c h l o r o i r i d a t e ( I V ) w i t h c a r b o n m o n o x i d e a n d a c o p p e r catalyst a b o v e 1 0 0 ° C at h i g h - p r e s s u r e to y i e l d K I r ( C O ) C l 2
4
and K I r ( C O ) C l 4 . ,
4
2
4
8
w h i c h suggests a m i x e d v a l e n t character for the m a t e r i a l s . T h e s e
com-
plexes h a d a m e t a l l i c luster a n d w e r e r e p o r t e d to b e d i a m a g n e t i c i n the s o l i d a n d i n acetone. T h e b r o m o analogs, K I r ( C O ) B r 2
4
4
and K I r ( C O ) 2
2
4
B r , w e r e also p r e p a r e d as w e r e a v a r i e t y of salts w i t h different cations. 5
T h e former bromo complex exhibited v agrees w i t h the v
co
at 2092 a n d 2053 c m "
co
which
1
absorptions of v a r i o u s h a l o c a r b o n y l I r a n d I r 1
com-
1 1
plexes. A n almost c o m p l e t e a n d c o n t i n u o u s I R a b s o r p t i o n was also n o t e d w h i c h p r e s u m a b l y arises f r o m the h i g h r e f l e c t i v i t y of the m a t e r i a l . T h e authors f o r m u l a t e d d i n u c l e a r structures to a c c o u n t for t h e s t o i c h i o m e t r y Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
a n d the t e r m i n a l c a r b o n y l groups.
H o w e v e r , these structures d o
not
a c c o u n t f o r the t w o c a r b o n y l absorptions i n the I R , the solid-state a n d s o l u t i o n d i a m a g n e t i s m , or the m e t a l l i c color of these complexes
which
is i n contrast w i t h the colors of other i r i d i u m complexes. A d e c a d e later C l e a r e a n d G r i f f i t h (13) concentrated
r e p o r t e d that the r e a c t i o n of
h y d r o h a l i c a n d f o r m i c acids w i t h
hexachloroiridate(IV)
results i n the f o r m a t i o n of d i a m a g n e t i c n e e d l e crystals of
[Ir (CO) X ] " 2
4
4
1
s t o i c h i o m e t r y w h i c h e x h i b i t m e t a l l i c reflections. I n a c c o r d w i t h the w o r k of M a l a t e s t a a n d C a n z i a n i (12),
they p r e p a r e d t h e b r o m o complexes
as
w e l l as complexes c o n t a i n i n g different cations, b u t t h e y d i d not p r e p a r e complexes
containing more than four halides.
T o account for the
ob-
s e r v e d d i a m a g n e t i s m , t h e y p r o p o s e d a p l a n a r t e t r a n u c l e a r structure b a s e d o n the s t r u c t u r e of the isoelectronic R e ( C O ) i 4
I n 1972 B u r a v o v et al. four-probe (CO) Cl 4
4 8
(15)
6
2 +
r e p o r t e d the
ion
(14).
temperature-dependent
p o l y c r y s t a l l i n e d c c o n d u c t i v i t y of K I r ( C O ) C l 2
4
4
and K I r 2
p r e p a r e d b y the m e t h o d of M a l a t e s t a a n d C a n z i a n i
B o t h complexes
2
(12).
h a d high conductivity, w h i c h implies intermolecular
i n t e r a c t i o n s a n d a p a r t i a l l y o x i d i z e d character i n the s o l i d . T h e p r e v i o u s l y p r o p o s e d d i n u c l e a r a n d t e t r a n u c l e a r structures l a c k i n t e r m o l e c u l a r i n t e r a c t i o n s a n d thus m u s t b e d i s c o u n t e d . R e c e n t l y K r o g m a n n et
al. p o s t u l a t e d a cation-deficient,
partially
o x i d i z e d f o r m u l a t i o n for this m a t e r i a l , K ~ . 5 l r ( C O ) C l , a n d a c o l u m n a r 0
s t r u c t u r e i n the s o l i d (16).
2
2
T h i s o n e - d i m e n s i o n a l s t r u c t u r e is consistent
w i t h the o b s e r v e d d i a m a g n e t i s m , s t o i c h i o m e t r y , I R spectra, d c t i v i t y , a n d v i s u a l a p p e a r a n c e of the complexes.
conduc-
P r e l i m i n a r y powder x-ray
d a t a s u p p o r t this f o r m u l a t i o n w i t h a short 2.86 A I r - I r distance.
This
i n f o r m a t i o n sets a basis for the i n t e r p r e t a t i o n of d e t a i l e d o p t i c a l , e l e c t r i c a l , a n d m a g n e t i c measurements t h a t w i l l h e l p i n f u r t h e r u n d e r s t a n d i n g of the c h e m i s t r y a n d p h y s i c s of o n e - d i m e n s i o n a l i n o r g a n i c complexes. I n a d d i t i o n to a d i s c u s s i o n of the p h y s i c a l p r o p e r t i e s , a short d e s c r i p t i o n of the features i m p o r t a n t i n the u n d e r s t a n d i n g of h i g h l y c o n d u c t i n g
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
2.
One-Dimensional
MILLER
m a t e r i a l s is presented.
21
Complexes
These include crystallographic,
stoichiometric,
t r a n s i t i o n m e t a l , o x i d a t i o n state, a n d l i g a n d field s t r e n g t h artifacts assoc i a t e d w i t h p a r t i a l l y o x i d i z e d i n o r g a n i c systems. Optical
Properties
S o l u t i o n . I n o r g a n i c complexes t y p i c a l l y e x h i b i t e l e c t r o n i c a b s o r p t i o n spectra i n the U V - v i s i b l e r e g i o n w h i c h are assigned to w -> ir, d-d, charge transfer a n d L —> M c h a r g e transfer absorptions. tions h a v e b e e n r e p o r t e d for f e w e r complexes, assigned to d-d
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
(17, 18)1
a n d charge transfer absorptions [e.g. of N i ( S C ( C N ) ) ~ 2
2
2
or to i n t r a v a l e n c e transfer ( I V T ) absorptions (19, 20, 21,
t w e e n m e t a l sites of a m i x e d v a l e n t d i m e r [e.g. 3
N e a r - I R absorp-
a n d t h e y are g e n e r a l l y 2
z
22,
a r i s i n g f r o m the F r a n c k - C o n d o n b a r r i e r to e l e c t r o n transfer b e -
23, 24)
(NH )
M —> L
5
5 +
( C o m p l e x I ) , E q u a t i o n 1 (25, 26)].
(HsNJsRuN^O^NRuI n terms of the R o b i n a n d
D a y classification, this is a C l a s s I I m a t e r i a l i n w h i c h the m e t a l ions are d i s t i n g u i s h a b l e (21,
T h e properties
24).
of the m i x e d v a l e n t complexes t y p i f i e d b y
I
are
u n u s u a l b e c a u s e of the n a t u r e of the l o w e n e r g y a b s o r p t i o n , a n d u n u s u a l magnetic
a n d e l e c t r i c a l properties w o u l d b e
e x p e c t e d i f the
discrete
d i m e r molecules i n t e r a c t e d i n the s o l i d . U n u s u a l o p t i c a l , m a g n e t i c , a n d e l e c t r i c a l properties are e x p e c t e d f o r m i x e d v a l e n t c o m p l e x e s of infinite l e n g t h , i.e. g o i n g f r o m R o b i n a n d D a y C l a s s I I I - A to C l a s s I I I - B (21, A n o t h e r u n u s u a l o p t i c a l p r o p e r t y is s o l v a t o c h r o m i s m (27, 28). i n o r g a n i c complexes h a v e s m a l l s o l v e n t - d e p e n d e n t
absorption
24). Most
spectra.
P r o n o u n c e d s o l v a t o c h r o m i s m has n o t b e e n extensively c h a r a c t e r i z e d for i n o r g a n i c c o m p l e x e s i n s o l u t i o n w i t h the e x c e p t i o n of a recent r e p o r t o n the e l e c t r o n i c spectra of a v a r i e t y of d i p o l a r d i t h i o l e n e a - d i i m i n e n i c k e l complexes
(29).
S o l i d . M o s t i n o r g a n i c c o m p l e x e s h a v e solid-state electronic t h a t are v i r t u a l l y s u p e r i m p o s a b l e
w i t h t h e s o l u t i o n spectra.
spectra
F o r these
c o m p l e x e s i t c a n b e stated that the same species ( s a m e electronic s t r u c t u r e s ) exist i n b o t h states. D e v i a t i o n s f r o m the i d e n t i t y of s o l u t i o n a n d solid-state d a t a m a y result f r o m ( a )
e q u i l i b r i a a r i s i n g f r o m association,
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
22
INORGANIC
COMPOUNDS WITH
UNUSUAL
PROPERTIES
e.g. Ru[S C (CF )2]2PPh3 + 2
or
from
2
PPh
3
different
conformations
Ru(S C (CF ) )(CO)(PPh ) 2
2
3
2
3
^
3
Ru[S C (CF )2]2(PPh3)2 2
i n the
or
actions a r i s i n g f r o m m e t a l - m e t a l b o n d i n g
(b)
N i ( S C ( C N ) 2 ) 2 " (17,
[e.g.
1
2
i n t e r a c t i o n s [e.g.
2
[e.g. M ( H D P G )
[Pt (en)X ] [Pt n
2
z a t i o n of free electrons
I V
18, 3 5 ) ] ,
[e.g.
intermolecular inter-
d i p h e n y l g l y o x i m e ; M — N i (32, 3 3 ) , P d ( 3 2 , 3 3 ) , P t (34))], zation
(30)
3
s o l i d t h a n i n solutions
31)]
(30,
2
2
(H DPG
2
from dimeri-
f r o m infinite m e t a l - h a l o
( e n ) X ] ( 3 6 ) ] , or f r o m t h e d e r e a l i 4
resulting i n a D r u d e behavior
and a
plasma
a b s o r p t i o n c h a r a c t e r i s t i c of a m e t a l [e.g. K P t ( C N ) B r o . 3 o o * 3 H 0 2
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
4
2
4
0
(2,6,
2
I n aqueous solution K P t ( C N ) B r . 3 o o * 3 H 0
9)"\.
=
2
2
has a n
absorption
s p e c t r u m w h i c h c a n b e d e c o m p o s e d i n t o the s p e c t r a associated w i t h P t n
(CN)
4
2
" a n d f r a r w - P t ( C N ) B r " . N e i t h e r of these latter species i n I V
4
2
2
s o l u t i o n or i n the s o l i d e x h i b i t s the absorptions o b s e r v e d for K P t ( C N ) 2
4
Br .3oo • 3 H 0 i n the s o l i d ( J O ) . 2
0
S i n g l e crystals w h i c h d o not h a v e c u b i c s y m m e t r y s h o u l d e x h i b i t d i c h r o i s m or p l e o c h r o i s m .
P r o n o u n c e d d i c h r o i s m is g e n e r a l l y
w i t h l a r g e a n i s o t r o p i c p r o p e r t i e s a n d is c h a r a c t e r i s t i c of m a t e r i a l s , e.g. M ( C O ) ( a c a c ) ( M — R h , I r (37)
and K P t ( C N ) B r . o o •
2
3 H 0 (8,9).
associated
one-dimensional
2
4
0
3
B a n d semiconductors should have an absorption that corre-
2
s p o n d s to t h e b a n d gap, b u t i t m a y b e difficult to observe. H i g h l y c o n ducting one-dimensional
materials have
a p l a s m a e d g e w h i c h is
the
s i g n a t u r e of a m e t a l l i c state. Color.
I n a d d i t i o n to
white, inorganic
r e m i n i s c e n t of c o m p o n e n t s of the r a i n b o w .
complexes exhibit
colors
A t y p i c a l l y some c o m p l e x e s
h a v e h i g h r e f l e c t i v i t y i n the v i s i b l e r e g i o n a n d a m e t a l l i c luster. A m e t a l l i c l u s t e r n e e d n o t i n d i c a t e a m e t a l l i c state since a p l a s m a a b s o r p t i o n necessary
for t h e existence
crystals of K P t ( C N ) 2
4
of a m e t a l l i c state.
F o r example,
are l i g h t y e l l o w a n d crystals of K P t ( C N ) 2
is
whereas 4
• 3H 0 2
are w h i t e , t h e c r y s t a l faces of K P t ( C N ) B r . 3 o o ' 3 H 0 are c o p p e r c o l o r e d 2
4
2
0
a n d h a v e a p l a s m a a b s o r p t i o n ( a n d m e t a l l i c state) a b o v e 620 n m . faces of s e m i c o n d u c t i n g (38)
Sur-
crystals of I r ( C O ) ( a c a c ) are also m e t a l l i c 2
g o l d i n a p p e a r a n c e a n d h a v e a s t r o n g reflectance at 568 n m (16, 37).
The
e y e c a n n o t d i s t i n g u i s h b e t w e e n the sources of s t r o n g reflectances, a n d a m e t a l l i c luster is a necessary b u t n o t sufficient c o n d i t i o n for a m e t a l l i c state; thus " A l l is n o t g o l d that g l i s t e n s " Magnetic
(39).
Properties
C o o r d i n a t i o n complexes typically exhibit identical magnetic behavior ( d i a m a g n e t i s m or p a r a m a g n e t i s m ) i n b o t h the s o l i d state a n d i n s o l u t i o n . D e v i a t i o n s f r o m s o l u t i o n a n d solid-state m a g n e t i c d a t a suggest e q u i l i b r i a
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
2.
One-Dimensional
MILLER
[e.g. T N i ( I I ) ^± D d
N i ( I I ) ] o r association w i t h f e r r o m a g n e t i c o r a n t i -
4h
ferromagnetic
23
Complexes
coupling.
Temperature
independent
(Pauli)
paramag-
n e t i s m a r i s i n g f r o m t h e m a g n e t i c m o m e n t o f c o n d u c t i o n electrons u s u a l l y is n o t o b s e r v e d f o r i n o r g a n i c c o m p l e x e s i n t h e s o l i d state b u t is c h a r a c teristic of a m e t a l l i c system (40).
T h u s the molar magnetic susceptibility
should be positive i n sign a n d lower i n value than w o u l d b e expected for one u n p a i r e d e l e c t r o n p e r m e t a l site, i.e. fi
< 1.73 B M . A o n e - d i m e n -
ett
s i o n a l m e t a l l i c system s h o u l d e x h i b i t t e m p e r a t u r e - i n d e p e n d e n t netism.
A
variety
of
first-row
paramagnetic
metal
paramag-
complexes,
e.g.
M e N M n C l , forms c o l u m n a r structures i n t h e s o l i d state w h i c h e x h i b i t 4
3
a n t i f e r r o m a g n e t i c c o u p l i n g (6, 41, 42).
E x a m p l e s of systems w i t h f e r r o -
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
m a g n e t i c c o u p l i n g h a v e also b e e n r e p o r t e d (6, Electrical
41).
Properties
M o s t inorganic a n d organic materials have l o w conductivity i n either s i n g l e - c r y s t a l or p o l y c r y s t a l l i n e f o r m . ohm^cm"
V a l u e s t y p i c a l l y less t h a n 1 0 "
10
are o b s e r v e d , a n d t h e complexes are l a b e l e d as to i n s u l a t o r s .
1
T h e s e m a t e r i a l s are p r o b a b l y large g a p s e m i c o n d u c t o r s
w i t h large i m -
p u r i t y c o n t r i b u t i o n s , a n d o n l y a c a r e f u l , d e t a i l e d s t u d y of t h e t e m p e r a t u r e d e p e n d e n c e of t h e e l e c t r i c a l c o n d u c t i v i t y
( i n c l u d i n g e l e c t r i c field d e -
p e n d e n c e ) o n single crystals c a n a d e q u a t e l y c h a r a c t e r i z e t h e m . A p l o t of l o g c o n d u c t i v i t y vs. i n v e r s e t e m p e r a t u r e s h o u l d r e s u l t i n a straight l i n e f o r a s e m i c o n d u c t o r ( a s s u m i n g t h a t the m o b i l i t y is t e m p e r a t u r e i n d e p e n d e n t ) . S o m e i n o r g a n i c c o m p l e x e s a t y p i c a l l y h a v e a m u c h l a r g e r c o n d u c t i v i t y at r o o m t e m p e r a t u r e w h i c h m a y arise f r o m a m e t a l l i c state. I n contrast to a s e m i c o n d u c t o r , t h e c o n d u c t i v i t y of a m e t a l increases w i t h d e c r e a s i n g t e m p e r a t u r e a n d exhibits a m o r e c o m p l e x t e m p e r a t u r e d e p e n d e n c e . T h u s a d e t a i l e d s t u d y of t h e t e m p e r a t u r e d e p e n d e n c e is necessary to d i s t i n g u i s h b e t w e e n a s m a l l g a p s e m i c o n d u c t o r a n d a m e t a l l i c state (6).
K Pt(CN) 2
4
Br .3oo • 3 H 0 ( a n d p o s s i b l y t h e c h l o r o a n a l o g u e ) is t h e o n l y 1 - D t r a n s i 0
2
t i o n m e t a l c o m p l e x w h i c h has b e e n c h a r a c t e r i z e d so f a r as a m e t a l A t r o o m t e m p e r a t u r e , K P t ( C N ) B r . 3 o o * 3 H 0 has a c o r r e c t e d 2
4
t i v i t y (43) of ~ 5 . 5 X 1 0 o h r n ^ c m " 3
10" f o r K P t ( C N ) 6
2
4
2
0
1
(7)
(2,6). conduc-
[ c o m p a r e d w i t h v a l u e s of ~ 9 X
• * H 0 ( 44) a n d 9.4 X 1 0 f o r p l a t i n u m m e t a l 2
4
(45)]
a n d a n a n i s o t r o p i c c o n d u c t i v i t y r a t i o (o-||/o-j_) of 1 0 ( 7 ) . I n a d d i t i o n to 5
h i g h c o n d u c t i v i t y , a l o w v a l u e f o r t h e t h e r m o e l e c t r i c p o w e r also c h a r a c terizes a m e t a l l i c state
(6).
Crystallography B y definition, 1-D complexes have a columnar structure. T h e p r o p erties associated w i t h these c o m p l e x e s arise f r o m t h e e l e c t r o n i c a n d steric
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
24
INORGANIC
properties of the molecules interactions. m e t a l atoms,
UNUSUAL
PROPERTIES
i n the chain a n d the inter- a n d intrachain
F o r 1-D square t h e spacings
COMPOUNDS WITH
planar complexes w h i c h have
characterize
spacings m a y b e equivalent
collinear
the resultant properties.
(Structure I I ) or inequivalent
The
(Structure
III) throughout the chain.
II
III
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
W i t h e q u i v a l e n t s p a c i n g t h e shorter t h e s p a c i n g s , t h e stronger t h e anisotropic properties.
C o m p l e x e s w h i c h h a v e short e q u i v a l e n t s p a c i n g s ,
i.e. ^ 3.0 A , h a v e b e e n c h a r a c t e r i z e d as p a r t i a l l y o x i d i z e d as t h e y h a v e h i g h e l e c t r i c a l c o n d u c t i v i t y as w e l l as s t r o n g l y a n i s o t r o p i c p r o p e r t i e s , K Pt(CN) Bro.3oo ' 3 H 0 with 2
4
2
~ 2 . 8 8 A spacings
(46)
e.g.
Table I ) .
(see
F o r m o d e r a t e s p a c i n g s , ~ 3 . 0 ~ 3.5 A , t h e o b s e r v e d a n i s o t r o p i c p r o p e r t i e s are n o t as d r a m a t i c a n d l o w c o n d u c t i v i t y is o b s e r v e d , e.g. K P t ( C N ) 2
4
•
x H o O [ ~ 3 . 5 A (49)~\. F o r crystals w i t h spacings w h i c h e x c e e d t h e v a n der W a a l r a d i i , the complexes d o not exhibit enhanced properties. f o r m short spacings a r e n o t sufficient to w a r r a n t e n h a n c e d
Uni-
properties.
S t r o n g m e t a l - m e t a l i n t e r a c t i o n s are i m p o r t a n t . T h u s , square p l a n a r t h i r d r o w t r a n s i t i o n m e t a l c o m p l e x e s w i t h t h e greater s p a t i a l extent a n d i n t e r a c t i o n w i t h n e i g h b o r i n g c o m p l e x e s of t h e 5d 2 o r b i t a l e n h a n c e t h e a n i s o Z
t r o p i c p r o p e r t i e s w i t h respect to t h e first a n d s e c o n d r o w congeners
(4,6).
A v a r i e t y of d i v a l e n t 1 - D i n o r g a n i c c o m p l e x e s a r e c o m p r i s e d o f a l t e r n a t i n g cations a n d anions. T h e most e x t e n s i v e l y s t u d i e d m e m b e r o f t h i s class is M a g n u s ' G r e e n Salt, [ P t ( N H ) ] 3
[ P t C l ] (4, 6).
4
Complexes of
4
this t y p e , as w e l l as c o m p l e x e s c o m p r i s e d o f c h a i n s o f i d e n t i c a l n e u t r a l molecules
(6)
[e.g. P t ( e t h y l e n e d i a m i n e ) C l n
P d , P t ) ] containing metals w i t h
filled
or M ( H D P G )
2
2
( M= Ni,
v a l e n c e shells e x h i b i t
moderate
( ^ 3 . 5 A ) to l o n g ( ^ 3 . 5 A ) spacings, d i c h r o i c o p t i c a l p r o p e r t i e s , d i a m a g netism, a n d l o w conductivity. Several 1-D inorganic complexes are comprised of alternating m i x e d v a l e n t c o m p l e x e s w i t h l o n g e q u i v a l e n t m e t a l - m e t a l spacings. of t h i s t y p e h a v e b e e n o b s e r v e d f o r A u - A u T
(4, 6).
i n
T h e complexes of [ M ( a m i n e ) X ] 2
h a v e h a l i d e atoms b r i d g i n g t h e M
1
1
and M
n
I V
I
V
Complexes
, and P t - P t
( X = halide)
3
associated w i t h t h e t e t r a v a l e n t m e t a l (6).
, Pd -Pd
n
I V
stoichiometry
atoms, b u t t h e y a r e c l e a r l y
T h e resultant properties are
best d e s c r i b e d i n terms o f t h e s u m of t h e i n d i v i d u a l m o l e c u l e s a n d a r e p l a c e d i n C l a s s I I b y R o b i n a n d D a y (21, 24).
L o w c o n d u c t i v i t y has b e e n
o b s e r v e d f o r c o m p o u n d s o f this t y p e .
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
2.
One-Dimensional
MILLER
25
Complexes
S o m e c o l l i n e a r c o m p l e x e s d o n o t h a v e c o l l i n e a r m e t a l - m e t a l atoms, e.g. P ( C H ) 3 C H 3 N i [ S C ( C N ) ] 6
5
+
2
2
2
2
1
- (Complex I V )
does not h a v e e q u i v a l e n t i n t e r p l a n a r spacings.
(50).
Complex I V
T h i s complex exhibits a
s i n g l e g r o u n d state w i t h a l o w l y i n g t r i p l e t e x c i t e d state (51). cal properties characterize C o m p l e x
Its e l e c t r i -
I V as a n i n t r i n s i c s e m i c o n d u c t o r
a l o n g the c h a i n axis w i t h a n a n i s o t r o p i c c o n d u c t i v i t y
(35).
Structures of 1-D a n t i f e r r o m a g n e t i c a l l y c o u p l e d p a r a m a g n e t i c r o w t r a n s i t i o n metals e x h i b i t l i g a n d b r i d g e d p o l y m e r s w i t h l o n g m e t a l - m e t a l spacings (6, 41, 42).
F o r example, N M e M n C l 4
c h a i n w i t h t h r e e b r i d g i n g h a l i d e atoms b e t w e e n t h e d
5
Mn
first
equivalent has a
3
atoms t h a t
1 1
p r o v i d e s a p a t h w a y for m a g n e t i c c o u p l i n g .
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
I n s u m m a r y , c r y s t a l s t r u c t u r e d i r e c t l y relates t o t h e t y p e a n d extent of i n t e r m o l e c u l a r interactions w h i c h c h a r a c t e r i z e t h e p r o p e r t i e s of system.
the
I n g e n e r a l , p l a n a r m o l e c u l e s of the t h i r d r o w t r a n s i t i o n m e t a l
w i t h short e q u i v a l e n t spacings e x h i b i t the strongest a n i s o t r o p i c p r o p e r t i e s . T h e s e 1-D crystals a r e d a r k , d i c h r o i c needles w h i c h m a y a p p e a r m e t a l l i c . C h a i n c o m p l e x e s of the first r o w p a r a m a g n e t i c ions f r e q u e n t l y e x h i b i t 1-D antiferromagnetic coupling. Stoichiometry A n i m p o r t a n t a r t i f a c t of h i g h l y c o n d u c t i n g 1-D m a t e r i a l s is the p a r t i a l l y o x i d i z e d c h a r a c t e r of t h e m e t a l w h i c h results f r o m n o n s t o i c h i o m e t r y of ions i n the u n i t c e l l ( T a b l e I ) . F o r e x a m p l e , K P t ( C N ) B r . 3 o o • 3 H 0 2
4
m a y b e m a d e r e p r o d u c i b l y w i t h a 0.300:1: : B r : P t (11)
2
0
r a t i o : thus t h e sys-
t e m is n o n s t o i c h i o m e t r i c . H i s t o r i c a l l y this was e x p l a i n e d b y t h e i n v o c a t i o n of m i x e d v a l e n c e states for t h e m e t a l . R e c e n t w o r k has r e v e a l e d u n e q u i v o c a l l y that a l l the m e t a l atoms are e q u i v a l e n t (1, 2, 3, 4,5,6) classified b y R o b i n a n d D a y as C l a s s I I I - B (21,
24).
a n d they are
The unusual con-
d u c t i v i t y of these systems arises d i r e c t l y f r o m the e l e c t r o n i c associated w i t h the p a r t i a l l y o x i d i z e d ( n o n s t o i c h i o m e t r i c ) Nonstoichiometry
can be
assessed b y
precise
properties
system.
e l e m e n t a l analysis.
E x t r e m e care m u s t b e t a k e n to ensure that r e p r o d u c i b l e n o n s t o i c h i o m e t r y is c h a r a c t e r i z e d .
F o r example,
absorption spectra, x-ray
fluorescence,
n e u t r o n a c t i v a t i o n , a n d mass s p e c t r a l analysis w e r e u s e d to d e t e r m i n e t h e 0.300 ±
0 . 0 0 6 : 1 : : B r : P t r a t i o for K P t ( C N ) B r . o o • 3 H 0 2
4
0
3
2
(10).
The
errors associated w i t h r o u t i n e e l e m e n t a l analysis a l l o w significant differences i n the s t o i c h i o m e t r y of n o n s t o i c h i o m e t r i c m a t e r i a l s .
I n order
to
u n d e r s t a n d f u l l y the p h y s i c s of 1-D systems, it is i m p e r a t i v e that the exact s t o i c h i o m e t r y be k n o w n as this relates d i r e c t l y t o the b a n d
filling
which,
i n g e n e r a l , cannot b e o b t a i n e d b y a l t e r n a t i v e t e c h n i q u e s . A p a i r of c o m p u t e r p r o g r a m s w a s w r i t t e n to a i d i n t h e i n t e r p r e t a t i o n of c h e m i c a l analysis (52,
53).
F o r e x a m p l e , o x i d a t i o n of b i s ( d i p h e n y l -
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
26
INORGANIC
COMPOUNDS WITH
Table I. Complex
M-M,
(Cation) P t ( C N ) X ^ . i • 2 / H 0 2
4
0
K . Pt(CN)4-2/H 0 (Cation) J?t(0rf3t0*),-»Hrf) 1
7 4
I r ( C O ) i C l i . or I r ( C O ) C l i . (Cation) J r (CO) X w
3
2
C ations/A
A
~2.95 2.88-2.9
2
M
Classes of H i g h l y Conducting
2.88-2.95
2
2
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
2
2
4
6
6
x
3
2 +
H + , K + , Cs+, N M e + 4 , AsPh+4, L i + Mg +, B a C1-, (Br-?, I-?)
2.8-3.0 2.64 1°
0.5 ?
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
0.5 >10« 8 X 10 >10 >10 >
3c
3 a
0
Ze
d
* From Ref. 48. Anisotropy is suggested by crystallographic data, but it has not been confirmed experimentally. A superconducting transition has been observed at ~ 0 . 3 ° K , Ref. 61. 1
9
glyoximato)nickel(II),
N i ( H D P G ) , w i t h h a l o g e n (54, 55, 56) y i e l d s a 2
series o f m a t e r i a l s of M ( H D P G ) X y ( X = B r , I ; 0 < y < 1.15) s t o i c h i 2
o m e t r y i n contrast to p r e v i o u s l i t e r a t u r e reports.
A preliminary report
suggests s i m i l a r p r o p e r t i e s f o r b i s ( 1 , 2 - b e n z o q u i n o n e d i o x i m a t o ) c o m p l e x e s of t h e n i c k e l t r i a d (57). F i g u r e 2 depicts a s a m p l e c o m p u t e r o u t p u t w h i c h characterizes a set o f analysis as N i ( H D P G ) B r . 7 9 - o . 8 2 . 2
crystallography Ni(HDPG)
2
demonstrated
0
Microscopy a n d
t h a t this m a t e r i a l is n o t a m i x t u r e o f
a n d N i ( H D P G ) B r as is suggested b y t h e d a t a t h a t a p 2
p e a r e d p r e v i o u s l y i n t h e l i t e r a t u r e (58). A n e w material m a y or m a y not be nonstoichiometric. plexes a r e s t o i c h i o m e t r i c .
Most com-
I f a n i n o r g a n i c c o m p l e x e x h i b i t s h i g h aniso-
tropic conductivity, the complex m a y be nonstoichiometric. U p o n r e v i e w i n g the properties of inorganic complexes w h i c h exhibit h i g h c o n d u c t i v i t y , o n e notices s e v e r a l trends w h i c h m a y b e i n s t r u c t i v e i n the p r e d i c t i o n o f n e w m a t e r i a l s . T h e i n o r g a n i c 1 - D m a t e r i a l s t h a t a r e characterized b y h i g h conductivity (Table I ) are comprised of partially o x i d i z e d square p l a n a r I r a n d P t c o m p l e x e s w h i c h c o n t a i n r i g o r o u s l y 1
planar ligands. spacings
n
T h e o v e r a l l g e o m e t r y a l l o w s f o r short
a n d strong intermolecular interactions
intermolecular
(provided
for b y the
greater s p a t i a l extent o f t h e 5dz* o r b i t a l w i t h respect t o t h e 4d * a n d z
3(2*2 o r b i t a l s ) . P a r t i a l o x i d a t i o n seems to b e necessary f o r h i g h c o n d u c t i v i t y a n d seems t o r e q u i r e a p a i r o f stable o x i d a t i o n states, b u t p a r t i a l o x i d a t i o n m a y s t a b i l i z e a p r e v i o u s l y u n c h a r a c t e r i z e d o x i d a t i o n state o f a
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
28
INORGANIC
COMPOUNDS
m e t a l . T o date n o p a r t i a l l y o x i d i z e d A u
m
WITH
UNUSUAL PROPERTIES
complexes h a v e b e e n r e p o r t e d .
T h i s m a y b e a t t r i b u t a b l e to t h e i n s t a b i l i t y of A u
I V
o r to t h e h i g h e r c h a r g e
w h i c h w i l l decrease t h e s p a t i a l extent of t h e 5d * o r b i t a l . T h e l i g a n d s z
(1,4,6)
w h i c h h a v e b e e n successful i n s t a b i l i z i n g p a r t i a l l y o x i d i z e d m a t e -
rials r a n g e f r o m m o n o d e n t a t e
( C O , C I , C N ) to b i d e n t a t e ( o x a l a t e ) a n d
f r o m a strong field l i g a n d ( C O ) t o a w e a k field l i g a n d ( o x a l a t e ) .
Thus no
c o n c l u s i o n c a n b e m a d e a b o u t t h e l i g a n d s except f o r t h e i r p l a n a r i t y . C o m p l e x e s c o n t a i n i n g m a c r o c y l i c l i g a n d s are p o o r c a n d i d a t e s f o r f o r m i n g a h i g h l y c o n d u c t i n g 1 - D m a t e r i a l s as t h e v a n d e r W a a l r a d i i f o r t h e i n t e r m o l e c u l a r ir i n t e r a c t i o n s (i.e. > 3.3 A ) is greater t h a n t h e spacings r e q u i r e d f o r strong m e t a l - m e t a l o v e r l a p (i.e. < 3.0 A ) .
C a t i o n i c square
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
p l a n a r complexes a r e also p o o r c a n d i d a t e s f o r t h e f o r m a t i o n of a h i g h l y conducting
complex
as t h e p l u s c h a r g e w i l l c o n t r a c t t h e 5d * o r b i t a l z
d i m i n i s h i n g the o v e r l a p b e t w e e n adjacent molecules i n the c h a i n . T h u s a l i k e l y c a n d i d a t e f o r t h e f o r m a t i o n of a n e w h i g h l y c o n d u c t i n g m a t e r i a l w o u l d b e b a s e d o n I r ( C N ) ~ . T h e 3 — c h a r g e o n this d c o m p l e x s h o u l d I
4
3
8
increase t h e s p a t i a l extension of t h e 5d * o r b i t a l e n a b l i n g stronger i n t e r z
m o l e c u l a r o v e r l a p a l o n g the c h a i n . I n i t i a l attempts a t p r e p a r i n g I r ( C N ) has l e d to t h e i s o l a t i o n of I r
n i
4
3
~
( C N ) H ~ f r o m a l c o h o l a n d w a t e r solutions 5
3
(1, 59) a l t h o u g h the R h a n a l o g has r e c e n t l y b e e n i s o l a t e d as t h e salt of a 1
b u l k y c a t i o n (60). N e w m a t e r i a l s are necessary to c h a r a c t e r i z e the i n o r g a n i c p a r a m e t e r s associated w i t h t h e h i g h l y c o n d u c t i n g materials as w e l l as to u n d e r s t a n d the physics of one dimension
(2,3,5,6).
Literature Cited 1. Krogmann, K., Angew. Chem. Int. Ed. Engl (1969) 8, 35. 2. Zeller, H . R., Advan. Solid State Phys. (1973) 13, 31. 3. Shchegolev, I. F., Phys. Status Solidi A (1972) 12, 9. 4. Thomas, T. W., Underhill, A. E., Chem. Soc. Rev. (1972) 1, 99. 5. Garito, A. F., Heeger, A. J., Acc. Chem. Res. (1974) 7, 232. 6. Miller, J. S., Epstein, A. J., Prog. Inorg. Chem. (1975) 20, 1 and references therein. 7. Zeller, H. R., Beck, A., J. Phys. Chem. Solids (1974) 35, 77. 8. Bernasconi, J., Bruesch, P., Kuse, D., Zeller, H . R., J. Phys. Chem. Solids (1974) 35, 145. 9. Geserich, H . P., Hausen, H . D., Krogmann, K., Stampel, P., Phys. Status Solidi A (1972) 9, 187. 10. Saillant, R. B., Jaklevic, R. C., ACS Symp. Ser. (1974) 5, 376. 11. Saillant, R. B., Jaklevic, R. C., Bedford, C. D., Mater. Res. Bull. (1974) 9, 289. 12. Malatesta, L., Canziani, F., J. Inorg. Nucl. Chem. (1961) 19, 81. 13. Cleare, M . J., Griffith, W. P., J. Chem. Soc. A (1970) 2788. 14. Churchill, M . R., Bau, R., Inorg. Chem. (1968) 7, 2606. 15. Buravov, L . N., Stepanova, K. N., Khidekel', M . L., Shchegolev, I. F., Dokl. Chem. (1972) 203, 283.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
2.
MILLER
One-Dimensional
Complexes
29
16. Krogmann, K., Geserich, H . P., Wagner, H., Zielke, H . J., "Abstracts of Papers," 167th National Meeting, ACS, March 1974, INOR 221. 17. Shupack, S. I., Billig, E., Clark, R. J. H., Williams, R., Gray, H . B.,J.Amer. Chem. Soc. (1964) 86, 4594. 18. Maki, A. H., Edelstein, N., Davison, A., Holm, R. H., J. Amer. Chem. Soc. (1964) 86, 4586. 19. Allen, G. C., Hush, N. S., Prog. Inorg. Chem. (1967) 8, 357. 20. Hush, N. S., Prog. Inorg. Chem. (1967) 8, 391. 21. Robin, M . B., Day, P., Adv. Inorg. Chem. Radiochem. (1967) 10, 247. 22. Cowan, D. O., LeVanda, C., Park, J., Kaufman, F., Acc. Chem. Res. (1973) 6, 1. 23. Day, P., ACS Symp. Ser. (1974) 5, 234. 24. Day, P., NATO Adv. Study Inst. (1975) 7B, 191. 25. Creutz, C., Taube, H., J. Amer. Chem. Soc. (1969) 91, 3988. 26. Ibid. (1973) 95, 1086. 27. Liptay, W., Angew. Chem. Int. Ed. Engl. (1969) 8, 177. 28. Reichardt, C., Angew. Chem. Int. Ed. Engl. (1965) 4, 29. 29. Dance, I. G., Miller, T. R., J. Chem. Soc. Chem. Commun. (1973) 433. 30. Miller, J., Balch, A. L., Inorg. Chem. (1971) 10, 1410. 31. Bernal, I., Clearfield, A., Epstein, E. F., Ricci, J. S., Jr., Balch, A., Miller, J. S., J. Chem. Soc. Chem. Commun. (1973) 39. 32. Banks, C. V., Barnum, D. W., J. Amer. Chem. Soc. (1958) 80, 3579. 33. Ibid. (1958) 80, 4767. 34. Miller, J. S., Goldberg, S. Z., accepted for publication. 35. Miller, J. S., Epstein, A. J., "Abstracts of Papers," 167th National Meeting, ACS, March 1974, INOR 110. 36. Watt, G. W., McCarley, R. E., J. Amer. Chem. Soc. (1957) 79, 4585. 37. Dessent, T. A., Palmer, R. A., Horner, S. M . , ACS Symp. Ser. (1974) 5, 301. 38. Pitt, C. G., Monteith, L. K., Ballard, L . F., Collman, J. P., Morrow, J. C., Roper, W. R., Ulkü, D., J. Amer. Chem. Soc. (1966) 88, 4286. 39. Cervantes, M . , "Don Quixote," Part II, Book III, Chap. 33, p. 1615. 40. Kittel, C., "Introduction to Solid State Physics," 4th ed., p. 518, John Wiley & Sons, New York, 1971. 41. Ackerman, J. F., Cole, G. M., Holt, S. L., Inorg. Chim. Acta (1974) 8, 323. 42. Hone, D. W., Richards, P. M . , Ann. Rev. Mater. Sci. (1974) 4, 337. 43. Miller, J. S., J. Amer. Chem. Soc. (1974) 96, 7131. 44. Minot, M . J., Perlstein, J. H., Phys. Rev. Lett. (1971) 26, 371. 45. "Handbook of Chemistry and Physics," 53rd ed., p. F145, Chemical Rubber, Cleveland, 1972. 46. Krogmann, K., Hausen, H . D., Z. Anorg. Allg. Chem. (1968) 358, 67. 47. Cutforth, B. D., Datars, W. R., Gillespie, R. J., van Schyndel, A., ADVAN. C H E M . SER. (1975) 150, 56.
48. MacDiarmid, A. G., MiKulski, C. M . , Saran, M . S., Russo, P. J., Cohen, M. J., Bright, A. F., Garito, A. J., Heeger, A. J., ADVAN. C H E M . SER.
(1975) 150, 63. 49. Moreau-Colin, M . L., Bull. Soc. R. Sci. Liege (1965) 34, 778. 50. Fritchie, C. J., Jr., Acta Crystallogr. (1966) 20, 107. 51. Weiher, J. F., Melby, L. R., Benson, R. E., J. Amer. Chem. Soc. (1964) 86, 4329. 52. Miller, J. S., Goedde, A. O., J. Chem. Educ. (1973) 50, 431. 53. Miller, J. S., Kirschner, S. Kravitz, S. H , Ostrowski, P., manuscript in preparation. 54. Edelman, L. E., J. Amer. Chem. Soc. (1950) 72, 5765. 55. Foust, A. S., Soderberg, R. H., J. Amer. Chem. Soc. (1967) 89, 5507. 56. Keller, H . J., Seibold, K., J. Amer. Chem. Soc. (1971) 93, 1309.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
30
INORGANIC
COMPOUNDS
WITH UNUSUAL
PROPERTIES
57. Endres, H . , Keller, H . J . , Mégnamisi-Bélombé, Moroni, W., Nörte, D., Inorg. Nucl. Chem. Lett. (1974) 10, 467. 58. Miller, J. S., Griffiths, C. H., manuscript in preparation. 59. Krogmann, K., Binder, W., Angew. Chem., Int. Ed. Engl. (1967) 6, 881. 60. Halpern, J., Cozens, R., Goh, L-Y., Inorg. Chim. Acta. (1975) 12, L35. 61. Greene, R. L., Street, G. B., Suter, L. J., Phys. Rev. Lett. (1975) 34, 577.
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch002
RECEIVED January 24, 1975.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.