22 Uptake and Role of Molybdenum in Nitrogen-Fixing Bacteria
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
PHILIP T. PIENKOS, V I N O D K. S H A H ,
and W I N S T O N J. B R I L L
Department of Bacteriology and Center for Studies of Nitrogen Fixation, University of Wisconsin, Madison, WI 53706
Mutant strains of nitrogen-fixing bacteria have been obtained with defects in their ability to synthesize an active molybdenum cofactor. Such strains are used to assay this cofactor. Ammonia in the medium represses the synthesis of the molybdenum cofactor. Molybdenum is transported by an energy-requiring reaction, and the metal becomes part of a molybdenum storage compound. Molybdenum in the medium affects the regulation of nitrogenase synthesis be cause Klebsiella pneumoniae does not synthesize either of the two nitrogenase components when it lacks sufficient molybdenum.
TT7e
s h a l l o u t l i n e a p p r o a c h e s u s e d to i n v e s t i g a t e t h e r o l e of m o l y b -
^ * d e n u m i n n i t r o g e n fixation b y b a c t e r i a . I t is h o p e d that this t y p e of w o r k w i l l m a k e i t easier f o r t h e c h e m i s t t o focus o n t h e m u l t i p l e roles t h a t m o l y b d e n u m p l a y s i n these b a c t e r i a . T h e a p p r o a c h that has g i v e n us most i n s i g h t i n t o t h e m e c h a n i s m of n i t r o g e n fixation i n v o l v e s t h e use of m u t a n t strains that s p e c i f i c a l l y a r e u n a b l e t o g r o w o n n i t r o g e n ( N i f " mutants).
S u c h studies h a v e y i e l d e d i n f o r m a t i o n o n t h e a c t i v e site o f
n i t r o g e n a s e ( J ) , h o w nitrogenase synthesis is r e g u l a t e d (2), t h e o r d e r of genes specific f o r n i t r o g e n fixation (nif g e n e s ) (3, 4), a n d t h e existence of factors other t h a n nitrogenase that are s p e c i f i c a l l y r e q u i r e d i f a n o r g a n i s m is to fix n i t r o g e n (4). vinehndii,
T w o organisms are discussed,
Azotobacter
a b a c t e r i u m t h a t o n l y fixes n i t r o g e n a e r o b i c a l l y , a n d
pneumoniae,
a n organism
that only
fixes
nitrogen under
Klebsiella anaerobic
conditions. T h e e n z y m e , nitrogenase, is c o m p o s e d of t w o p r o t e i n s — c o m p o n e n t I a n d c o m p o n e n t I I . C o m p o n e n t I has a m o l e c u l a r w e i g h t of a b o u t 220,000 a n d contains either o n e o r t w o m o l y b d e n u m a n d 24 i r o n atoms. 402
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Compo-
22.
piENKOS E T AL.
403
Molybdenum in Nitrogen-Fixing Bacteria
n e n t I I has a m o l e c u l a r w e i g h t of 60,000 a n d has f o u r i r o n atoms. r e a c t i o n r e q u i r e s 1 2 - 2 4 A T P f o r e a c h n i t r o g e n fixed ( 5 ) .
The
W e were able
to p r e p a r e cell-free extracts of t h e N i f " m u t a n t strains a n d t i t r a t e e a c h extract (1)
w i t h purified components.
w h i c h of the c o m p o n e n t s
T h u s i t w a s p o s s i b l e to i d e n t i f y
w a s l a c k i n g i n a c t i v i t y . I t w a s i m p o r t a n t to
k n o w i f a m u t a n t l a c k i n g c o m p o n e n t I a c t i v i t y does n o t p r o d u c e
com-
p o n e n t I at a l l or w h e t h e r c o m p o n e n t I is s y n t h e s i z e d , b u t i n a n i n a c t i v e form.
S e r o l o g i c a l tests for t h e c o m p o n e n t s
were performed using anti-
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
s e r u m f r o m r a b b i t s i n j e c t e d w i t h e i t h e r of t h e t w o p u r i f i e d c o m p o n e n t s i s o l a t e d f r o m the w i l d t y p e .
W i t h t e c h n i q u e s s u c h as these,
several
h u n d r e d m u t a n t strains w e r e classified. Molybdenum
Cofactor
K e t c h u m et a l . ( 6 ) s h o w e d t h a t c r u d e extracts of a m u t a n t s t r a i n of Neurospora
crassa, c a l l e d N i t - 1 , that w o u l d not r e d u c e n i t r a t e c o u l d b e
a c t i v a t e d b y a d d i n g a c i d - t r e a t e d m o l y b d o p r o t e i n to t h e extract.
The
a c t i v a t i n g f a c t o r c o u l d b e o b t a i n e d f r o m m o l y b d o p r o t e i n s s u c h as n i t r o genase c o m p o n e n t I, b o v i n e l i v e r sulfite oxidase, x a n t h i n e oxidase, a l d e h y d e oxidase, a n d n i t r a t e r e d u c t a s e f r o m v a r i o u s sources ( 7 ) . et a l . ( S ) o b t a i n e d m u t a n t strains of Rhizobium
Kondorosi
meliloti t h a t c o u l d n o t
r e d u c e n i t r a t e . S o m e of these strains also w e r e u n a b l e to p r o d u c e effect i v e ( n i t r o g e n fixing ) a l f a l f a n o d u l e s , a n d t h e y c o n c l u d e d t h a t a c o m m o n g e n e t i c d e t e r m i n a n t is r e q u i r e d f o r n i t r a t e reductase a n d n i t r o g e n a s e a c t i v i t y . T h i s d e t e r m i n a n t m i g h t b e the m o l y b d e n u m c o f a c t o r t h a t seems to b e c o m m o n to a l l m o l y b d o p r o t e i n s . T h e m o l y b d e n u m cofactor f r o m Rhodospirillum a n d is i n s e n s i t i v e to t r y p s i n ( 9 ) .
rubrum is d i a l y z a b l e
T h e cofactor c a n easily b e i n a c t i v a t e d
b y heat. O n e of the p r o b l e m s i n p u r i f y i n g this cofactor is the i n s t a b i l i t y a n d l o w y i e l d s f r o m p u r i f i e d e n z y m e s a n d c r u d e extracts. L e e et a l . s h o w e d that t h e m o l y b d e n u m cofactor
(10)
is s t a b i l i z e d b y 0 . 0 1 M s o d i u m
m o l y b d a t e a n d that the absence of a i r a d d s to the s t a b i l i t y . T h e s e w o r k e r s u s e d M o " l a b e l i n g to s h o w t h a t t h e m o l y b d e n u m f r o m the cofactor is f o u n d i n a c t i v a t e d n i t r a t e r e d u c t a s e f r o m the m u t a n t s t r a i n of N. crassa. G a n e l i n et a l . (11)
p r o v i d e d e v i d e n c e t h a t the m o l y b d e n u m cofactor
is a m o l y b d e n u m p e p t i d e w i t h a m o l e c u l a r w e i g h t of a b o u t 1000.
The
same p r o p e r t i e s h a v e b e e n c l a i m e d f o r the cofactor f r o m x a n t h i n e o x i dase
(12). I t was i m p o r t a n t to i d e n t i f y m u t a n t strains w i t h defects
i n nitro-
genase s i m i l a r to the d e f e c t o b s e r v e d i n n i t r a t e r e d u c t a s e i n the N i t - 1 m u t a n t strain of N. crassa (6).
It was p o s t u l a t e d t h a t s u c h strains w o u l d
b e a b l e to synthesize a c t i v e c o m p o n e n t I I a n d a n i n a c t i v e c o m p o n e n t that c o u l d b e a c t i v a t e d i n v i t r o b y the m o l y b d e n u m cofactor.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
I
Cell-free
404
BIOINORGANIC C H E M I S T R Y
II
extracts f r o m strains p r o d u c i n g i n a c t i v e c o m p o n e n t I w e r e p r e p a r e d a n d tested w i t h m o l y b d e n u m cofactor m a d e b y a c i d - t r e a t i n g a n d n e u t r a l i z i n g p u r i f i e d c o m p o n e n t I f r o m the w i l d t y p e o r g a n i s m ( 1 3 ) . vinehndii
(14)
a n d K. pneumoniae (4)
Strains of A .
were found w i t h inactive com-
p o n e n t I that c o u l d b e a c t i v a t e d i n v i t r o w i t h the m o l y b d e n u m
cofactor.
T h e m u t a t i o n s that p r e v e n t t h e f o r m a t i o n of the m o l y b d e n u m h a v e b e e n l o c a t e d o n t h e c h r o m o s o m e i n b o t h organisms ( 3 , 4).
cofactor Figure 1
shows the l o c a t i o n (nif B ) of t h e g e n e ( s ) t h a t s p e c i f y t h e m o l y b d e n u m
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
cofactor i n K. pneumoniae.
T h i s g e n e ( s ) is l o c a t e d close to the s t r u c t u r a l
genes for the t w o n i t r o g e n a s e c o m p o n e n t s .
Figure 1. Map of nif genes in Klebsiella pneumonia. The designation, (act), represents the molybdenum cofactor. Component II (II ) is reduced by the nif electron transfer system. II then binds and reduces l (act), and the resulting complex with ATF DNA can reduce nitrogen to ammonia. ox
rcd
ox
his D
nif B
nif F
It is p o s s i b l e to m a k e the w i l d t y p e A . vinelandii
nif D, H
produce
active
component II a n d an inactive component I b y substituting tungsten for m o l y b d e n u m i n the m e d i u m (14). cofactor is not p r o d u c e d .
I n this w a y , a n a c t i v e m o l y b d e n u m
However, if acid-treated component
I from
cells g r o w n o n m o l y b d e n u m is a d d e d to extracts f r o m t u n g s t e n - g r o w n cells, a c t i v a t i o n ocurs. A d d i t i o n of m o l y b d a t e to s u c h extracts does n o t reactivate component
I.
W e are u s i n g m u t a n t strains d e f e c t i v e i n the
m o l y b d e n u m cofactor as w e l l as t u n g s t e n - g r o w n cells as assays to p u r i f y the m o l y b d e n u m cofactor. Regulation N i t r o g e n - f i x i n g cells h a v e a n o b v i o u s r e q u i r e m e n t f o r m o l y b d e n u m ; h o w e v e r , n o m o l y b d e n u m is r e q u i r e d w h e n these cells g r o w i n a m e d i u m c o n t a i n i n g excess N H nitrogenase ( 1 5 ) .
4
+
.
NH
4
+
completely
represses
t h e synthesis
of
N i t r o g e n fixation is q u i t e a n e n e r g y - d e m a n d i n g p r o c -
ess, a n d so i t m a k e s sense f o r t h e o r g a n i s m not to p r o d u c e n i t r o g e n a s e w h e n i t is n o t n e e d e d . is r e p r e s s e d b y N H
4
+
T h e synthesis of t h e m o l y b d e n u m cofactor also (14).
C e r t a i n m u t a n t strains h a v e b e e n i s o l a t e d
that c o n t i n u e to s y n t h e s i z e a c t i v e nitrogenase i n t h e p r e s e n c e of (2,16).
NH
4
+
T h e r e f o r e , i t seems that the factors r e s p o n s i b l e f o r t h e r e g u l a t i o n
of the n i t r o g e n a s e s t r u c t u r a l genes are also r e s p o n s i b l e f o r r e g u l a t i n g t h e
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
22.
405
Molybdenum in Nitrogen-Fixing Bacteria
piENKOS E T AL.
synthesis of a c t i v e m o l y b d e n u m cofactor. also h a v e b e e n m a p p e d o n the
S o m e of these r e g u l a t o r y genes
chromosome.
T h e r e are m a n y reports (e.g., R e f s . 17,18) i n w h i c h n i t r o g e n
fixation
is l i m i t e d i n a s o i l b e c a u s e m o l y b d e n u m is deficient. A d d i t i o n of m o l y b d e n u m to s u c h soils a l l o w s n i t r o g e n denum
deficiency
fixation
to p r o c e e d .
This molyb-
is e x t r e m e l y i m p o r t a n t i f a c r o p of n i t r o g e n - f i x i n g
l e g u m e s is d e s i r e d . I n fact, f a r m e r s c a n b u y m o l y b d a t e s to s p r e a d o n t h e field or to a p p l y to the seed b e f o r e s o w i n g . W e w o n d e r e d w h a t h a p p e n s
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
to a n i t r o g e n - f i x i n g b a c t e r i u m t h a t is deficient i n fixed n i t r o g e n , b u t is u n a b l e to fix n i t r o g e n b e c a u s e m o l y b d e n u m is u n a v a i l a b l e . S u c h a s i t u a t i o n m i g h t cause the b a c t e r i u m to synthesize a c t i v e c o m p o n e n t I I a n d a n inactive component
I. T h i s c o n d i t i o n is d e t r i m e n t a l to the c e l l since i t
wastes e n e r g y s y n t h e s i z i n g proteins that h a v e n o benefit to i t . H o w e v e r , K. pneumoniae has a r e g u l a t o r y m e c h a n i s m that p r e v e n t s
nitrogenase
synthesis w h e n there is not e n o u g h m o l y b d e n u m a v a i l a b l e . W h e n derepress
we
this o r g a n i s m i n the absence of m o l y b d e n u m , n e i t h e r
com-
p o n e n t I nor c o m p o n e n t I I is s y n t h e s i z e d , e v e n i n a n i n a c t i v e f o r m
(19).
A p o s s i b l e m e c h a n i s m for c o n t r o l of nitrogenase synthesis m i g h t i n v o l v e a p r o t e i n that activates t r a n s c r i p t i o n of the nif genes. T h i s a c t i v a t o r is inactivated when N H
4
+
a c c u m u l a t e s . It is easy to i n t r o d u c e a m e c h a n i s m
f o r c o n t r o l b y m o l y b d e n u m b y h y p o t h e s i z i n g that this a c t i v a t o r r e q u i r e s molybdenum.
M u t a n t strains t h a t are d e f e c t i v e i n n i t r o g e n a s e r e g u l a t i o n
b y m o l y b d e n u m s h o u l d be u s e f u l for t e s t i n g this h y p o t h e s i s .
Molybdenum
Storage
W e are n o w t r y i n g to u n d e r s t a n d h o w the m o l y b d a t e that is a d d e d to the m e d i u m u l t i m a t e l y b e c o m e s a p a r t of nitrogenase c o m p o n e n t
I.
Studies w i t h m e t a b o l i c i n h i b i t o r s i n d i c a t e that m o l y b d a t e is t a k e n u p b y a n e n e r g y - d e m a n d i n g process i n A . vinelandii.
W e w e r e s u r p r i s e d to find
that this o r g a n i s m a c c u m u l a t e s m o r e t h a n 20 times m o r e
molybdenum
t h a n i t a c t u a l l y r e q u i r e s f o r m a x i m u m nitrogenase a c t i v i t y . C e l l s t h a t grow on N H
4
+
do not r e q u i r e m o l y b d e n u m .
Azotobacter vinelandii
g r o w n to m i d - l o g phase i n a m e d i u m c o n t a i n i n g N H num.
T h e cells w e r e w a s h e d free of N H
4
+
4
+
b u t no
was
molybde-
a n d t h e n a l l o w e d to derepress
f o r nitrogenase synthesis i n t h e presence a n d absence of c h l o r a m p h e n i c o l w h e n molybdate was added.
T a b l e I presents e v i d e n c e t h a t t h e p r o t e i n
synthesis is not r e q u i r e d for m o l y b d e n u m u p t a k e b u t is r e q u i r e d f o r synthesis of nitrogenase.
T h e m o l y b d e n u m u p t a k e a n d storage
factors
t h e n are n o t i n d u c i b l e b y m o l y b d e n u m . W h e n a c r u d e extract w a s f r a c t i o n a t e d o n a n i o n e x c h a n g e c o l u m n , most of the m o l y b d e n u m w a s associated w i t h a f r a c t i o n t h a t is n o t c o m p o n e n t I (20).
T h i s f r a c t i o n contains w h a t w e h a v e n a m e d the m o l y b -
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
406
BIOINORGANIC
CHEMISTRY
II
d e n u m - s t o r a g e c o m p o u n d , since m o l y b d e n u m c a n b e r e m o v e d f r o m this c o m p o u n d a n d t r a n s p o s e d t o c o m p o n e n t I . I n fact, cells g r o w n i n t h e presence of m o l y b d e n u m a n d N H
4
+
, w h e n transferred to m e d i u m l a c k i n g
b o t h , c a n synthesize a c t i v e nitrogenase f o r m a n y generations u s i n g t h e molybdenum i n the molybdenum-storage m e c h a n i s m b y w h i c h A. vinehndii
compound.
T h i s is a u s e f u l
stores m o l y b d e n u m w h e n excess is
a v a i l a b l e , b u t t h e n uses this excess w h e n i t finds itself i n a n e n v i r o n m e n t lacking molybdenum.
T u n g s t e n also c a n b e stored b y t h e m o l y b d e n u m -
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
storage p r o t e i n . W e are n o w s t u d y i n g m u t a n t strains t h a t seem t o l a c k the m o l y b d e n u m - s t o r a g e p r o t e i n . Table I. Effects of Chloramphenicol on Molybdenum Accumulation in Azotobacter vinelandii
CAM
Nitrogenase Specific Activity (nmoles acetylene reduced/min χ 10 cells)
+
0.59 0.00
7
Organism A. A.
vinelandii vinelandii
Mo (ng/lO 11
cells)
5.70 6.80
T h e r e a r e m a n y questions t h a t m u s t s t i l l b e a n s w e r e d . H o w a n d i n w h a t f o r m does m o l y b d e n u m enter t h e cell? H o w a n d i n w h a t f o r m does m o l y b d e n u m get into molybdenum-storage f o r m does m o l y b d e n u m
protein?
H o w and i n what
get t r a n s f e r r e d t o t h e m o l y b d e n u m
cofactor?
H o w a n d i n w h a t f o r m does t h e m o l y b d e n u m c o f a c t o r g e t i n t o n i t r o genase c o m p o n e n t I ? H o w a n d i n w h a t f o r m does m o l y b d e n u m r e g u l a t e the synthesis o f nitrogenase?
T h e s e questions r e q u i r e i n t e g r a t e d effort
b y chemists, e n z y m o l o g i s t s , geneticists, a n d b a c t e r i a l p h y s i o l o g i s t s .
Hope
fully, such work w i l l ultimately have an impact o n agriculture. Acknowledgments A p a r t o f this w o r k was s u p p o r t e d b y t h e C o l l e g e o f A g r i c u l t u r a l a n d L i f e Sciences, U n i v e r s i t y of W i s c o n s i n , M a d i s o n , b y N I H G r a n t G M 2 2 1 3 0 , a n d b y t h e C e l l u l a r a n d M o l e c u l a r B i o l o g y T r a i n i n g G r a n t G M 07215.
Literature Cited 1. Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., Brill, W. J., Biochim. Biophys. Acta (1973) 292, 246-255. 2. Gordon, J. K., Brill, W. J.,Proc.Natl. Acad. Sci. USA (1972) 69, 35013503. 3. Bishop, P. E., Brill, W. J., Abstracts Annual Meeting American Society Microbiology, p. 163, 1976.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF GUELPH LIBRARY on May 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch022
22.
PIENKOS E T A L .
Molybdenum in Nitrogen-Fixing Bacteria
407
4. St. John, R. T., Johnston, H. M., Seidman, C., Garfinkel, D., Gordon, J. K., Shah, V. K., Brill, W. J., J. Bacteriol. (1975) 121, 759-765. 5. Eady, R. R., Postgate, J. R., Nature (1974) 249, 805-810. 6. Ketchum, P. Α., Cambier, H. Y., Frazier, W. Α., Madansky, C. H., Nason, Α.,Proc.Natl. Acad. Sci. USA (1970) 66, 1016-1023. 7. Nason, Α., Lee, Κ. Y., Pan, S. S., Ketchum, P. Α., Lamberti, Α., De Vries, J.,Proc.Natl. Acad. Sci. USA (1972) 68, 3242-3246. 8. Kondorosi, Α., Barabas, I., Svab, Z., Orosz, L., Sik, T., Hotchkiss, R. D., Nature (1973) 246, 153-154. 9. Ketchum, P. Α., Sevilla, C. L., J. Bacteriol. (1973) 116, 600-609. 10. Lee, Κ. Y., Pan, S. S., Erickson, R., Nason, Α., J. Biol. Chem. (1974) 249, 3941-3952. 11. Ganelin, V. L., L'vov, N. P., Sergeev, N. S., Shaposhnikov, G. L., Kreto vich, V. L., Dokl. Akad. Nauk SSSR (1972) 206, 1236-1238. 12. McKenna, C., L'vov, N. P., Ganelin, V. L., Sergeev, N. S., Kretovich, V. L., Dokl. Akad. Nauk SSSR (1974) 217, 228-231. 13. Shah, V. K., Brill, W. J., Biochim. Biophys. Acta (1973) 305, 445-454. 14. Nagatani, H. H., Shah, V. K., Brill, W. J., J. Bacteriol (1974) 120, 697701. 15. Shah, V. K., Davis, L. C., Brill, W. J., Biochim. Biophys. Acta (1972) 256, 498-511. 16. Gordon, J. K., Garfinkel, D., Brill, W. J., Abstracts Annual Meeting Ameri can Society Microbiology, p. 175, 1975. 17. Evans, H. J., Purvis, E. R., Bear, F. E., Soil Sci. (1951) 71, 117-124. 18. Lobb, W. R., N. Z. Soil News (1953) 3, 9-16. 19. Brill, W. J., Steiner, A. L., Shah, V. K., J. Bacteriol. (1974) 118, 986-989. 20. Pienkos, P. T., Brill, W. J., Abstracts Annual Meeting American Society Microbiology, p. 164, 1976. RECEIVED July 26, 1976.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.