16 Use of STERIMOL, MTD, and MTD* Steric Parameters in Quantitative Structure-Activity Relationships J. TIPKER and A. VERLOOP
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
Biochemistry Department, DUPHAR B.V., 's Graveland, The Netherlands
STERIMOL and MTD (Minimum Topological Difference) steric parameters to account for steric influences in QSAR of pesticides have been described and applied in the literature. We have recently developed an improved version of the Simon MTD method, i.e. MTD* parameters. The MTD and MTD* methods will be described. The scope and limitations of the STERIMOL, MTD and MTD* approaches will be discussed and compared using QSAR of insecticidal benzoylphenylureas, DDT-type analogs and benzylchrysanthemates, herbicidal benzonitriles and nitrophenols, and plant-growth regulating phenoxypropionic acids. In 1976 we have p u b l i s h e d t h e STERIMOL a p p r o a c h (1_); i n c l u d i n g a t a b l e c o n t a i n i n g 5 s u b s t i t u e n t c o n s t a n t s o f a b o u t 250 d i f f e r e n t g r o u p s w h i c h c o u l d be u s e d i n QSAR s t u d i e s where s t e r i c e f f e c t s were e x p e c t e d . R e c e n t l y t h i s method h a s been d e v e l o p e d f u r t h e r , w i t h a " s e c o n d g e n e r a t i o n " s e t o f STERIMOL p a r a m e t e r s a s a r e s u l t (2). T h e s e STERIMOL p a r a m e t e r s have been compared w i t h o t h e r s t e r i c c o n s t a n t s , s u c h a s E s ( 1 ) , m o l a r r e f r a c t i v i t y (3) and t h e MSD (minimum s t e r i c d i f f e r e n c e j method o f Simon ( £ ) . From t h e s e s t u d i e s i t c o u l d be c o n c l u d e d t h a t t h e p r e d i c t i v e power o f t h e MSD method was l e s s w i t h r e g a r d t o t h e STERIMOL a p p r o a c h . I n g e n e r a l i t c o u l d be s t a t e d t h a t STERIMOL p a r a m e t e r s were preferable i n describing s t e r i c e f f e c t s i f a great variation i n the s u b s t i t u e n t s e x i s t s ; v a r i a t i o n i n t h e sense o f d e v i a t i o n s f r o m s p h e r i c s h a p e (2>.5)* MTD and MTD* a p p r o a c h e s In 1976 Simon d e v e l o p e d a new method t o d e s c r i b e s t e r i c e f f e c t s i n QSAR (6»). He d e f i n e d t h e minimum s t e r i c d i f f e r e n c e (MSD) 0097-6156/ 84/ 0255-0279506.00/ 0 © 1984 American Chemical Society
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
280
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
between a m o l e c u l e and t h e n a t u r a l s u b s t r a t e o f a b i o l o g c a l r e c e p t o r a s t h e n o n - o v e r l a p p i n g volume o f t h e c o n f o r m a t i o n s w h i c h a l l o w o f a maximum s p a t i a l o v e r l a p o f t h e 2 m o l e c u l e s . In p r a c t i c e the planar s t r u c t u r a l formulae o f t h e molecules a r e super-imposed and t h e u n s u p e r p o s a b l e atoms a r e c o u n t e d . An example i s g i v e n i n F i g u r e 1. The MSD p a r a m e t e r s m i g h t be c h a r a c t e r i z e d as p r o v i d i n g a r o u g h measure o f t h e d e v i a t i o n f r o m " i d e a l " b u l k . O f c o u r s e some problems immediately a r i s e , i . e . : 1. The s u p e r p o s i t i o n o f t h e m o l e c u l e s i s o f t e n r a t h e r s u b j e c t i v e and i t t a k e s h a r d l y i n t o a c c o u n t t h e f l e x i b i l i t y o f t h e molecules studied. 2. The n a t u r a l s u b s t r a t e i s unknown i n many s t u d i e s o f QSAR. Simon e t a l . adopt i n t h o s e c a s e s t h e most a c t i v e m o l e c u l e o f a s e r i e s as t h e s t a n d a r d , a s s u m i n g t h a t i t s shape i s c l o s e s t to the " n a t u r a l " substrate. 3. The g r e a t e s t p r o b l e m o f t h e MSD a p p r o a c h i s t h a t i t d o e s n o t d i s c r i m i n a t e between d i f f e r e n c e s i n shape o f t h e p a r t s o f t h e m o l e c u l e s d i r e c t e d t o t h e w a l l s o f t h e r e c e p t o r w h i c h would be r e l e v a n t , and d i f f e r e n c e s i n shape t o w a r d s t h e o u t e r r e g i o n w h i c h would b e i r r e l e v a n t . B a l a b a n e t a l . (7) r e c e n t l y p u b l i s h e d a method w h i c h p a r t l y o v e r c o m e s t h e a b o v e - m e n t i o n e d p r o b l e m s . T h i s MTD (minimum t o p o l o g i c a l d i f f e r e n c e ) a p p r o a c h i s t r y i n g t o d e v e l o p an o p t i m a l s t a n d a r d m o l e c u l e by s y s t e m a t i c a l l y a n a l y z i n g t h e s h a p e s o f t h e members i n a s e r i e s i n r e l a t i o n t o t h e i r b i o l o g i c a l a c t i v i t i e s . The method c a n be b r i e f l y d e s c r i b e d a s f o l l o w s . 1. A s o - c a l l e d h y p e r m o l e c u l e i s d e v e l o p e d , w h i c h c a n b e considered as t h e assembly o f a l l atomic p o s i t i o n s o f a l l m o l e c u l e s i n t h e s e r i e s . F i g u r e 2 and 3 show t h e p r o c e d u r e f o r 32 s u b s t i t u t e d b e n z o n i t r i l e s . 2. A n i n i t i a l s t a n d a r d m o l e c u l e i s c h o s e n , f o r example t h e most a c t i v e member, and t h e MTD v a l u e s o f a l l t h e members a r e c a l c u l a t e d i n t h e same way as i n t h e Simon method. Now a l l t h e p o s i t i o n s i n t h e h y p e r m o l e c u l e a r e c h a n g e d one by one i n s u c h a way t h a t n o t o n l y f a v o u r a b l e and u n f a v o u r a b l e p o s i t i o n s are taken i n t o account, but a l s o i n d i f f e r e n t p o s i t i o n s , which do n o t c o n t r i b u t e t o t h e MTD v a l u e a t a l l . A f t e r e v e r y change t h e o b t a i n e d MTD v a l u e s a r e c o r r e l a t e d w i t h t h e b i o l o g i c a l a c t i v i t y and t h e c o r r e l a t i o n c o e f f i c i e n t i s o p t i m i z e d by t h e s o - c a l l e d s t e e p e s t a s c e n t method. I f no s i n g l e change i n t h e f i n a l s t a n d a r d c a n d e l i v e r MTD v a l u e s w h i c h c o r r e l a t e b e t t e r w i t h t h e b i o l o g i c a l a c t i v i t y , an o p t i m a l s t a n d a r d i s d e r i v e d . 3. T o a v o i d t h e f i n d i n g o f o n l y a l o c a l optimum o f t h e s t a n d a r d , the procedure i s repeated several times, s t a r t i n g from d i f f e r e n t other i n i t i a l standards, e.g. t h e t o t a l hyper m o l e c u l e , o r i n i t i a l s t a n d a r d s w h i c h a r e g e n e r a t e d a t random, u n t i l most o p t i m i z a t i o n s have l e d t o t h e same s t a n d a r d . In t h e B a l a b a n MTD a p p r o a c h t h e a d d i t i o n a l i n f l u e n c e o f e l e c t r o n i c and h y d r o p h o b i c e f f e c t s i s a c c o u n t i n g f o r by a d d i n g e . g . π and σ
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
TIPKER & VERLOOP
STERIMOL
& MTD Steric Parameters in QSAR
"natural" agonist
without hydrogens
* m i s s i n g ; MSD=1
# t o o much; MSD=1
MSD=2
MSD=3
F i g u r e 1. C a l c u l a t i o n o f t h e o r i g i n a l MSD p a r a m e t e r , a c c o r d i n g t o t h e method o f Simon.
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
hypermolecule
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
structure
F i g u r e 2. C o n s t r u c t i o n o f t h e h y p e r m o l e c u l e o f 31 substituted benzonitriles.
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
16.
STERIMOL
TIPKER & VERLOOP
& MTD Steric Parameters in QSAR
283
a l l t h e compounds c a n be c o v e r e d b y t h e h y p e r m o l e c u l e , none o f t h e positions i s superfluous. structure H 2-CI 2 , 6 - F ; 2,6-C"l2; 2 , 6 - B r ; 2 , 6 - I 2-F.6-C1; 2-CI.6-0H; 2 , 6 - ( C H ) 2-Cl,6-Br; 2-CI,6-CH ; 4-CI 3-CI 2-OCH3 2-CF ,6-Cl 2-0C H ,6-Cl 2,6-(0CH ) 2,4,6-Cl ; 2,6-Cl ,4-0H 2 , 4 - C l ; 2-Cl,4-CH 2,6-Cl ,4-0CH 2,6-Cl ,3-0CH 2,6-Cl ,3-0C0CH 2,3,6-Cl 2,3,5,6-Cl4 2,5-(0C H ) 3,4,5-Cl 2,3,4-Cl 2,3,4,5,6-Cl 3,4-Cl 2,4,5-C1 2
2
3
3
3
2
5
3
2
3
2
2
3
2
3
2
3
2
3
3
2
5
2
2
3
5
2
3
2
2
positions 1 1 2 1 2 3 1 2 3 1 2 3 1 8 1 10 1 2 4 1 2 3 45 6 1 2 3 4 12 1 2 3 47 1 2 3 8 1 2 8 1 2 3 8 9 1 2 3 10 12 1 2 3 4 1 0 12 1 2 3 10 1 2 3 10 11 1 2 4 7 11 12 1 8 10 11 1 2 8 10 1 2 3 8 10 11 1 8 10 1 2 8 11
F i g u r e 3. A t o m i c p o s i t i o n s i n t h e h y p e r m o l e c u l e o f 31 s u b s t i t u t e d b e n z o n i t r i l e s .
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
284
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
t e r m s t o t h e r e g r e s s i o n a f t e r t h e d e v e l o p m e n t o f t h e optimum s t a n d a r d . We c o n s i d e r e d t h a t a b e t t e r a p p r o a c h would be t o i n c l u d e h y d r o p h o b i c and e l e c t r o n i c p a r a m e t e r s a l r e a d y i n t h e p r o c e d u r e t o o b t a i n t h e optimum s t a n d a r d (8). T h e r e s u l t i n g s t e r i c p a r a m e t e r s are i n d i c a t e d as MTD* v a l u e s . O p t i o n s i n t h e p r o c e d u r e make i t p o s s i b l e t o connect t h e f a v o u r a b l e atomic p o s i t i o n s t o each o t h e r and t o t h e b a s i c s t r u c t u r e .
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
C o m p a r i s o n o f STERIMOL, MTD and MTD* The r e s u l t s o f t h e s t u d i e s w i l l b e summarized. D e t a i l s o f t h e QSAR a n a l y s e s a r e o r w i l l be p u b l i s h e d e l s e w h e r e , i n c l u d i n g i n t e r c o r r e l a t i o n m a t r i c e s o f t h e s t e r i c parameters mentioned. But r e l e v a n t c o n c l u s i o n s f r o m e . g . i n t e r c o r r e l a t i o n s w i l l be d i c u s s e d . A t t h i s moment t h e STERIMOL method h a s been a p p l i e d s u c c e s s f u l l y i n a b o u t 50 p u b l i c a t i o n s ; o f t e n w i t h b e t t e r r e s u l t s t h a n o t h e r s t e r i c a p p r o a c h e s , i n c l u d i n g MTD and MTD*, e s p e c i a l l y i n s e r i e s w i t h f e w s u b s t i t u e n t p o s i t i o n s . A r e c e n t example i s o u r s t u d y o f DDT a n a l o g s . Brown e t a l . ( £ ) a n a l y s e d a s e r i e s o f 21 d e r i v a t i v e s u s i n g t h e v a n de Waals (Vw) volumes a s s t e r i c p a r a m e t e r s . I n T a b l e I t h e e q u a t i o n s a r e g i v e n i n which t h e s t e r i c parameters are compared. The MSD a p p r o a c h gave no s i g n i f i c a n t r e s u l t s . A d d i t i o n o f σ* t o E q u a t i o n 1-3 d i d n o t i m p r o v e t h e c o r r e l a t i o n s i g n i f i c a n t l y . STERIMOL gave t h e b e s t r e s u l t s and MTD and MTD* were c o m p a r a b l e w i t h Vw. T h e o b t a i n e d o p t i m a l s t a n d a r d f r o m t h e p r o c e d u r e t h a t gave E q u a t i o n 4 i s shown i n F i g u r e 4, and i t i n d i c a t e s t h a t d i - s u b s t i t u t e d c a r b o n atoms gave t h e b e s t f i t . The STERIMOL a p p r o a c h however, h a s a l s o some weaknesses and l i m i t a t i o n s [2). One a s p e c t i s t h a t 5 STERIMOL p a r a m e t e r s a t e a c h s u b s t i t u t i o n p o s i t i o n m i g h t a b s o r b t o o many d e g r e e s o f f r e e d o m s o t h a t t h e problem o f "chance c o r r e l a t i o n s " might a r i s e , e s p e c i a l l y when many s u b s t i t u e n t p o s i t i o n s a r e i n v o l v e d . T h i s was one o f t h e r e a s o n s f o r d e c r e a s i n g t h e number o f STERIMOL p a r a m e t e r s t o 3 i n t h e " s e c o n d g e n e r a t i o n " STERIMOL a p p r o a c h . S t i l l t h e method i s d i f f i c u l t t o u s e when t h e number o f o b s e r v a t i o n s i s s m a l l i n r e l a t i o n t o t h e number o f s u b s t i t u t i o n p o s i t i o n s , s o t h a t o t h e r s t e r i c methods would be needed, e . g . t h e MSD and MTD a p p r o a c h e s . An example i s t h e QSAR s t u d y o f t h e h e r b i c i d a l a c t i v i t y o f s u b s t i t u t e d b e n z o n i t r i l e s . O u r f i r s t a n a l y s i s u s i n g t h e STERIMOL p a r a m e t e r s showed s t e r i c e f f e c t s t o be v e r y i m p o r t a n t , b u t b e c a u s e o f t h e l a r g e number o f 5 s u b s t i t u e n t p o s i t i o n s many p a r a m e t e r s , sometimes e v e n i n q u a d r a t i c f o r m were n e c e s s a r y , w h i c h r e s u l t e d i n an e q u a t i o n o f t o o low s t a t i s t i c a l s i g n i f i c a n c e . The b i o l o g i c a l a c t i v i t y i s expressed as t h e i n h i b i t i o n o f r o o t g r o w t h o f Panicurn m i l i a c e u m grown on a g a r . T h e b i o l o g i c a l and p h y s i c o - c h e m i c a l d a t a a r e p u b l i s h e d e l s e w h e r e ( 5 ) and t h e r e s u l t i n g e q u a t i o n s when a p p l y i n g MTD and MTD* p a r a m e t e r s are shown i n T a b l e I I .
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
16.
TIPKER & VERLOOP
STERIMOL
& MTD
Steric Parameters in QSAR
285
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
T a b l e I . C o m p a r i s o n o f Vw, MSD, MTD, MTD* and STERIMOL p a r a m e t e r s i n a s e r i e s o f 21 DDT a n a l o g s w i t h a c t i v i t y a g a i n s t Culex f a t i g a n s .
H5C2
oC2H5
°OiO~
-log LC
5 0
t = +0.500 VwX 5.40 - 0 . 0 0 6 ( V w X ) 5.26 -0.859
r 0.789
s 0.513
F 14.82
= - 0 . 2 9 MSD* +1.44
2.04
0.424
0.735
4.17 ( 2 )
= -1.33 MTD +0.95
4.76
0.731
0.554
21.85 ( 3 )
= - 1 . 1 3 MTD* +0.31, σ* +0.93
4.96 2.52
0.782
0.520
14.19 ( 4 )
(1)0
2
-log L C
5 0
-log L C
5 0
-log L C
5 0
-log L C
5 0
= +20.21 B l 8.86 0.921 0.345 22.37 ( 5 ) -4.68 ( B l ) 2 8.86 -0.96 B5 3.67 +0.44 σ* 5.19 -17.35 MSD v a l u e s c a l c u l a t e d f r o m t h e most a c t i v e member; X=CH(C2H5)N02 β E q u a t i o n 1 a c c o r d i n g t o Brown e t a l . (9)
a
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
286
Table I I .
I n h i b i t i o n o f r o o t growth of Panicum miliaceum u n d e r t h e i n f l u e n c e o f 31 b e n Z O M t r M l f -
t
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
pC
pC
5 0
5 0
(pCso)
r
s
= +1.37 = +1.37 Iπ. -0.36 *2 +0.16 σ -1.50
2.32 2.35 0.26
0.454
0.886
2.33
(6)
= - 0 . 5 9 MTD +0.27
5.36
0.705
0.680
28.73
(7)
= +1.21 = +1.21 π π - 0 . 4 2 ir2 +0.67 σ - 0 . 6 2 MTD -0.51
3.45 4.34 1.84 5.02
0.856
0.524
17.82
(8)
3.66 5.98 5.83 9.87
0.913
0.414
32.35
(9)
0
PC5Q = = +1.02 +1.02 -0.46 +1.95 -0.70 +0.31
π tr2 σ MTD*
F
W i t h o u t s t e r i c p a r a m e t e r s E q u a t i o n 6 was o b t a i n e d , w h i c h was o f no s i g n i f i c a n c e . The MTD v a l u e s used i n E q u a t i o n 7 and o b t a i n e d a f t e r o p t i m i s a t i o n were added t o t h e v a r i a b l e s f r o m E q u a t i o n 6, r e s u l t i n g i n E q u a t i o n 8. I f t h e o p t i m i s a t i o n t o o k p l a c e i n t h e p r e s e n c e o f t h e p h y s i c a l p a r a m e t e r s (MTD* a p p r o a c h ) t h e b e s t r e s u l t was a c h i e v e d , shown i n E q u a t i o n 9. E l e c t r o n w i t h d r a w i n g g r o u p s i n c r e a s e t h e a c t i v i t y a t an o p t i m a l π - v a l u e o f about 2. The s t e r i c r e q u i r e m e n t s a r e g i v e n i n F i g u r e 5, s h o w i n g t h a t d i o r t h o s u b s t i t u t i o n gave the b e s t f i t . A n o t h e r e x a m p l e o f t h e use o f t h e MTD and MTD* a p p r o a c h e s c a n b e found i n a s e r i e s o f o p t i c a l l y a c t i v e α-phenoxypropionic a c i d s w i t h a u x i n - l i k e a c t i v i t y , p a r t l y p u b l i s h e d i n (5>). The R - s t e r e o i s o m e r s a r e much more a c t i v e t h a n t h e S - a n a l o g e s . B o t h s e r i e s were a n a l y z e d by L i e n e t a l . (10) and a c o r r e l a t i o n w i t h π , π , σ and t h e Van d e r W a a l s volume was f o u n d . The P f e i f f e r r u l e i s e x p l a i n e d i n terms o f d i f f e r e n t s t r u c t u r a l requirements f o r the s u b s t i t u e n t s a s m e a s u r e d b y π and van d e r W a a l s v o l u m e . A n a l y s i n g t h e s e r i e s u s i n g STERIMOL d e l i v e r e d e q u a t i o n s c o n t a i n i n g t o o many p a r a m e t e r s . In T a b l e I I I t h e e q u a t i o n s a r e g i v e n a s a r e s u l t o f 2
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
TIPKER & VERLOOP
STERIMOL
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
H5C20-^~^-C
& MTD Steric Parameters in QSAR
0C2H5
• favourable • unfavourable A indifferent F i g u r e 4. S t a n d a r d used i n E q u a t i o n 4 t o o b t a i n MTD* v a l u e s i n a s e r i e s o f DDT a n a l o g s .
• favourable • unfavourable A indifferent
F i g u r e 5. S t a n d a r d used i n E q u a t i o n 9 t o o b t a i n MTD* values i n a series of bezonitriles.
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
288
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
T a b l e I I I . A u x i n - a c t i v i t y o f p h e n o x y p r o p i o n i c a c i d s (PC50) H
R
H00C-C-X«-^~^ CH t
r
1.84 2.15 1.28
0.475
0.941
1.94
24
(10)
pC50 = = - 0 . 8 8 MTD MTD 5.80 +8.10
0.778
0.641
33.66
24
(11)
pC
5 0
= +2.18 +2.18 π = π -0.45 *2 +0.98 σ +3.69
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
3
s
F
η
= +2.04 = +2.04 -0.38 +0.31 -0.84 +5.38
π π *2 σ σ MTD MTD
2.86 2.96 0.65 5.97 5.97
0.855
0.569
12.90
24
(12)
= +1.62 = +1.62 -0.43 +1.14 -0.78 +7.32
π π *2 σ MTD*
2.81 4.22 3.06 8.16
0.910
0.455
22.89
24
(13)
5.24 5.09 3.93
0.865
0.269
16.79
21
(14)
0..6 62 2 MTD MTD 5.48 pC o = = --0 +5.40
0.783
0.315
30.07
21
(15)
= +1.41 +1.41 pC o = -0.26 +0.66 -0.32 +3.01
0.910
0.229
19.19
21
(16)
0.949
0.175
36.09
21
(17)
pC
5 0
pC
5 0
= +1.84 +1.84 ir π pC o = -0.33 *2 π +1.02 σ σ +1.92 5
2
5
SH 5
π 4.21 π *2 ir2 4.20 σ σ 2.56 MTD MTD 2.72
π pC Q = = +1.77 ir -0.25 *2 +0.35 σ -0.28 MTD* +1.95 5
ο X=0
7.76 5.57 1.62 4.96
or S
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
16.
TIPKER & VERLOOP
STERIMOL
& MTD Steric Parameters in QSA R
289
t h e MTD and MTD* m e t h o d s . T h e E q u a t i o n s 10-13 a r e r e l a t e d t o t h e s e r i e s o f t h e R - a n a l o g s and 14-17 t o t h e S - d e r i v a t i v e s . E q u a t i o n 10 shows t h a t t h e p h y s i c a l p a r a m e t e r s π and σ c a n n o t d e s c r i b e t h e a c t i v i t y s i g n i f i c a n t l y . MTD a l o n e g i v e s a l r e a d y b e t t e r r e s u l t s a s shown b y E q u a t i o n 11 and c o m b i n i n g t h e M T D - v a l u e s w i t h π and σ r e s u l t s i n E q u a t i o n 12, i n w h i c h t h e σ p a r a m e t e r d o e s n ' t g i v e a significant contribution ( s e e t - v a l u e ) . T h e b e s t r e s u l t s were o b t a i n e d w i t h t h e MTD* a p p r o a c h shown i n E q u a t i o n 13. E l e c t r o n w i t h d r a w i n g s u b s t i t u e n t s w i t h a π-optimum o f 1.9 a r e f a v o u r a b l e . T h e i d e a l s t a n d a r d i s g i v e n i n F i g u r e 6. W i t h t h e compounds h a v i n g a S - c o n f i g u r a t i o n a good c o r r e l a t i o n c o u l d a l r e a d y b e o b t a i n e d w i t h o u t s t e r i c p a r a m e t e r s a s shown i n E q u a t i o n 14. I n d e e d , t h e a d d i t i o n o f t h e MTD p a r a m e t e r ( E q u a t i o n 15-16) o r MTD* ( E q u a t i o n 17) d i d i m p r o v e t h e c o r r e l a t i o n b u t t h e d i f f e r e n c e was n o t a s p r o n o u n c e d a s w i t h t h e R - s t e r e o i s o m e r s . The e x p l a n a t i o n f o r t h i s d i f f e r e n c e i n s t e r i c i n f l u e n c e m i g h t be t h e f a c t t h a t t h e R - a n a l o g s f i t e x c e l l e n t l y a t t h e r e c e p t o r and s m a l l c h a n g e s i n t h e m o l e c u l e d i s t u r b t h i s f i t r a t h e r e a s i l y , i n c o n t r a s t w i t h t h e S-compounds w h i c h d o n o t f i t w e l l s o t h a t t h e same c h a n g e s have o n l y a s m a l l e f f e c t o n t h e a l r e a d y p o o r f i t . A l s o i n t h i s example MTD* gave b e t t e r r e s u l t s t h a n MTD, e s p e c i a l l y i n t h e R s e r i e s . When l e s s s u b s t i t u e n t p o s i t i o n s a r e p r e s e n t STERIMOL c a n be used but i n t h o s e c a s e s t h e r e i s o f t e n h a r d l y a n y d i f f e r e n c e i n r e s u l t s i f compared w i t h t h e MTD* method. T h i s i s i l l u s t r a t e d b y o u r v e r s i o n o f t h e QSAR o f t h e i n s e c t i c i d a l a c t i v i t y a g a i n s t A m e r i c a n c o c k r o a c h e s o f 36 s u b s t i t u t e d b e n z y l chrysanthemates. The b i o l o g i c a l d a t a were p u b l i s h e d b y Nakagawa e t a l . (11) and we used f o r t h i s example t h e minimum m o l a r d o s e t o c a u s e d e a t h (MLD) w i t h o u t a d d i t i o n o f s y n e r g i s t s . T h e a u t h o r s s p l i t up t h e s e r i e s i n o r t h o , meta and p a r a s u b s t i t u t e d s u b s e r i e s and t h e y f o u n d t h a t t h e b i o l o g i c a l a c t i v i t i e s c o u l d be c o r r e l a t e d w i t h t h e Van d e r W a a l s volume i n a way w h i c h was d e p e n d e n t o n t h e s u b s t i t u t i o n p o s i t i o n . We have p u t a l l t h e compounds t o g e t h e r and compared t h e d i f f e r e n t s t e r i c a p p r o a c h e s . T h e r e s u l t s a r e summarized i n T a b l e IV.
HOOC-C-X-
• f avourable •unfavourable A indifferent
F i g u r e 6. S t a n d a r d s used i n E q u a t i o n 13 ( l e f t ) and i n E q u a t i o n 17 ( r i g h t ) t o o b t a i n MTD* v a l u e s i n a s e r i e s of stereo isomers o f phenoxypropionic a c i d s .
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
290
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
T a b l e IV. I n s e c t i c i d a l a c t i v i t y a g a i n s t American cockroaches of 36 s u b s t i t u t e d b e n z y l c h r y s a n t h e m a t e s .
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
C00CH2-^~^
l o g ( l / M L D ) = +0.44 +0.62 +0.86 -0.14 +4.98
t dVw o r t h o 6.28 dVw meta 12.56 4.88 dVw p a r a dVw p a r a 3.21
-0.40 MTD +9.62
r 0.915
s 0.377
F 40.21 ( 1 8 )
0.896
0.409
43.61 ( 1 9 )
0.902
0.386
2
l o g ( l / M L D ) = +0.41 B5 o r t h o 5.50 +0.63 B5 meta 1 1 . 3 4 +0.46 L p a r a 4.83 +3.09 log(l/MLD)
R
12.19
148.5
(20)
E q u a t i o n s 18-20 g i v e a b o u t t h e same r e s u l t s and t h e s t a n d a r d o b t a i n e d i n t h e p r o c e d u r e t h a t l e d t o E q u a t i o n 20 i s shown i n F i g u r e 7. S i n c e t h e s e e q u a t i o n s c o n t a i n o n l y s t e r i c p a r a m e t e r s , t h e p i c t u r e o b t a i n e d f r o m t h e MTD method c a n d i r e c t l y be used t o compare t h e b i o l o g i c a l a c t i v i t y o f t h e compounds. MTD* and MTD a r e i n p r i n c i p l e t h e same i n t h i s example b e c a u s e no e l e c t r o n i c and h y d r o p h o b i c p a r a m e t e r s a r e i n v o l v e d . However, e x t r a p o l a t i o n outside t h e hypermolecule i s not p e r m i s s i b l e . A n o t h e r example i s t h e h e r b i c i d a l a c t i v i t y o f s u b s t i t u t e d n i t r o p h e n o l s , expressed as t h e i n h i b i t i o n o f t h e H i l l r e a c t i o n . In a s e r i e s o f 28 compounds w i t h 3 s u b s t i t u t i o n p o s i t i o n s , MTD MTD* a n d STERIMOL were compared ( 5 ) . T h e b i o l o g i c a l v a l u e s were t a k e n f r o m t h e work o f T r e b s t and D r a b e r ( 1 2 ) and t h e r e s u l t s a r e summarized i n T a b l e V. T h e r e i s a l r e a d y a s i g n i f i c a n t c o r r e l a t i o n w i t h π a l o n e , a s c a n be seen f r o m E q u a t i o n 2 1 , b u t i t c a n be improved by a d d i n g B l t e r m s f o r b o t h o r t h o s u b s t i t u e n t s . E q u a t i o n 22 shows t h e r e s u l t . T h e more s t e r i c h i n d r a n c e o f t h e h y d r o x y l g r o u p , t h e more t h e i n h i b i t i o n i n c r e a s e s . The MTD* a p p r o a c h l e d t o E q u a t i o n 23 and i t i s s t a t i s t i c a l l y as good a s E q u a t i o n 2 2 . T h e s t a n d a r d o b t a i n e d w i t h t h i s p r o c e d u r e i s shown i n F i g u r e 8. O p t i m i z a t i o n i n t h e a b s e n c e o f π y i e l d e d E q u a t i o n 2 4 . The MTD v a l u e s used i n E q u a t i o n 24 t u r n e d t o be h i g h l y c o r r e l a t e d with t h e π v a l u e s (r=0.924), so t h a t combination o f t h e parameters gave no s i g n i f i c a n t improvement i n E q . 2 5 . The i n t e r c o r r e l a t i o n
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
TIPKER & VERLOOP
STERIMOL
& MTD Steric Parameters in QSAR
• favourable • unfavourable A indifferent
F i g u r e 7. S t a n d a r d used i n E q u a t i o n 20 t o o b t a i n MTD values i n a s e r i e s of benzyl chrysanthemates.
• favourable • unfavourable A indifferent
F i g u r e 8. S t a n d a r d used i n E q u a t i o n 23 t o o b t a i n MTD* values in a series of nitrophenols.
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
292
o f π and MTD* i n E q u a t i o n 23 however i s v e r y low (r=0.001). So, we c o n c l u d e t h a t i f a v a r i a b l e ( i n t h i s example π ) i s a l r e a d y c o r r e l a t e d w i t h t h e b i o l o g i c a l a c t i v i t y , a MTD o p t i m i z a t i o n w i t h o u t t h i s v a r i a b l e o f t e n p r o d u c e s a MTD p a r a m e t e r t h a t i s i n t e r c o r r e l a t e d w i t h t h a t v a r i a b l e . On t h e o t h e r hand an o p t i m i z a t i o n i n t h e p r e s e n c e o f t h i s v a r i a b l e (MTD*) w i l l r e d u c e t h e r e s i d u a l sum o f s q u a r e s and w i l l p r e v e n t a n i n t e r c o r r e l a t i o n . T a b l e V.
I n h i b i t i o n H i l l r e a c t i o n by 28 n i t r o p h e n o l s
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
/Rl
t pl50 -
+
0.98 π +3.38
+
pl50 = 0 . 6 3 π +0.88 Β1
r
s
8.61
0.860
0.589
F 74.15
(21)
7.37
0.958
0.344
89.75
(22)
0.942
0.396
98.28
(23)
o r t h o R l 4.22 +1.34 B l o r t h o R2 6.82
+0.23 +
pl50 = 0 . 9 8 π
-0.75
12.80
MTD*
5.70
= -1.22 MTD +7.83
9,40
0.879
0.551
88.42
(24)
1.36 2.38
0.888
0.542
46.60
(25)
+6.37 pl
5 0
pl50 - +0.37 π -0.80 MTD +6.21
When t h e number o f o b s e r v a t i o n s i n c r e a s e s and more v a r i a b l e s a r e a l l o w e d , STERIMOL a p p e a r s t o be b e t t e r b e c a u s e o f i t s more p r e c i s e d e s c r i p t i o n o f t h e s h a p e o f s u b s t i t u e n t s . A QSAR a n a l y s i s o f t h e l a r v i c i d a l a c t i v i t y o f 61 s u b s t i t u t e d b e n z o y l u r e a s i s a n example o f t h i s . T h e a c t i v i t y a g a i n s t P i e r i s b r a s s i c a e i s e x p r e s s e d a s LD5Q ( i n ppm) and t h e s e v a l u e s a r e p u b l i s h e d b y W e l l i n g a e t a l . (13). T h e QSAR r e s u l t s a r e g i v e n i n T a b l e V I . E q u a t i o n 26 shows t h a t o n l y t h e i n d i c a t o r p a r a m e t e r D l , w h i c h d i s c r i m i n a t e s between t h e 2,6-C12 and t h e 2,6-F2 d e r i v a t i v e s , gives a s i g n i f i c a n t contribution t o the regression i f s t e r i c p a r a m e t e r s a r e o m i t t e d . MTD on i t ' s own g i v e s o n l y a p o o r c o r r e l a t i o n w h i c h c a n b e s e e n f r o m E q u a t i o n 27. C o m b i n a t i o n w i t h
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
16.
TIPKER & VERLOOP
STERIMOL
& MTD Steric Parameters in QSAR
293
T a b l e V I . L a r v i c i d a l e f f e c t a g a i n s t P i e r i s b r a s s i c a e o f 61 s u b s t i t u t e d benzoyl phenyl ureas.
(CH )
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
3
t 1.34 1.67 6.75 0.93
r 0.710
s 0.805
14.27 ( 2 6 )
4.61
0.515
0.956
21.28 ( 2 7 )
- l o g ( L D ) = -0.68 MTD +0.52 Σ π +0.48 oR +1.56 D l -0.44 D2 +0.25
7.02 5.01 1.82 7.34 1.91
0.862
0.585
31.84 ( 2 8 )
- l o g ( L D ) = -0.64 MTD* +0.55 Σ π +0.37 oR +1.56 D l -0.50 D2 +0.18
7.10 5.15 1.41 7.33 2.13
0.861
0.589
31.56 ( 2 9 )
4.86 2.87 8.63 7.16 6.50 7.60 2.58
0.899
0.514
32.08 ( 3 0 )
- l o g ( L D ) == +0.17 Σ π +0.60 oR +1.91 D l * -0.30 D2e -0.88 5 0
= -0.61 MTD +1.09 5 0
5 0
2
• l o g ( L 0 ) == -0.03 L p a r a -0.20 B5 p a r a -1.31 L meta +0.82 Σ π +1.76 oR +1.48 D l -0.53 D2 +2.57 5 0
δ D1=0 f o r 2.6-C12 compounds a n d D l = l f o r 2.6-F2 d e r i v a t i v e s ε D2=0 f o r N(H) and D2=l f o r N(CH ) compounds 3
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
294
PESTICIDE SYNTHESIS THROUGH RATIONAL APPROACHES
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
t h e v a r i a b l e s used i n E q u a t i o n 26 l e a d s t o an improved r e s u l t : E q u a t i o n 2 8 . T h e MTD* p r o c e d u r e g i v e s no b e t t e r c o r r e l a t i o n , f o r t h e E q u a t i o n s 28 and 29 a r e a b o u t t h e same. T h e main r e a s o n f o r t h e l a c k o f d i f f e r e n c e between MTD and MTD* i s f o u n d i n t h e low i n t e r c o r r e l a t i o n s between t h e s e p a r a m e t e r s and t h e o t h e r p h y s i c a l p a r a m e t e r s . E q u a t i o n 30 shows t h e r e s u l t o f t h e STERIMOL a p p r o a c h . B o t h i n d i c a t o r p a r a m e t e r s and t h e σ t e r m g i v e a s i g n i f i c a n t c o n t r i b u t i o n t o t h e r e g r e s s i o n and i t c a n b e concluded t h a t e l e c t r o n withdrawing groups with a l i p o p h i l i c c h a r a c t e r and s u b s t i t u t e d a t t h e p a r a p o s i t i o n a r e p r e f e r a b l e . When t h e s u b s t i t u e n t s become t o o l a r g e , t h e s q u a r e o f L becomes more i m p o r t a n t , w h i c h r e s u l t s i n a d e c r e a s e i n a c t i v i t y . T h e 2,6-F2 compounds a r e f a r more a c t i v e t h a n t h e c h l o r o a n a l o g s . N-methylation causes a s l i g h t decrease i n a c t i v i t y . D i s c u s s i o n and C o n c l u s i o n s We t r i e d t o summarize t h e QSAR s t u d i e s d i c u s s e d i n a r o u g h way i n Table VII T a b l e V I I . Comparison parameters. Series
o f u s e f u l n e s s o f MTD, MTD* and STERIMOL Number o f
members s u b s t i t u t i o n positions DDT a n a l o g s 21 1 5 31 Benzonitriles 5 P h e n o x y p r o p i o n i c a c i d s 21/24 Benzyl chrysanthemates 36 3 Nitro-phenols 28 3 61 2 Benzoylphenylureas
Relative quality of equation with MTD MTD* STERIMOL -
±
+
±
+ +
-
+
+ + +
± +
( ) +
±
±
T h e s e r e s u l t s g i v e some i n s i g h t i n t h e s c o p e and l i m i t a t i o n s o f t h e MTD, MTD* and STERIMOL p a r a m e t e r s . L e t us f i r s t compare t h e MTD and MTD* m e t h o d s . I n t h e example o f t h e b e n z y l c h r y s a n t h e m a t e s t h e r e g r e s s i o n e q u a t i o n s have o n l y s t e r i c t e r m s , s o t h a t t h e r e i s no d i f f e r e n c e between t h e two methods i n p r i n c i p l e . In t h e case o f t h e benzoylphenyl ureas t h e i n t e r c o r r e l a t i o n between t h e MTD v a l u e s and t h e o t h e r p a r a m e t e r s i s v e r y low, s o i t i s u n d e r s t a n d a b l e t h a t t h e r e i s h a r d l y any d i f f e r e n c e . B u t i n t h e f o u r o t h e r s t u d i e s t h e r e was much more i n t e r c o r r e l a t i o n between t h e MTD v a l u e s on t h e o n e hand and t h e e l e c t r o n i c a n d / o r h y d r o p h o b i c p a r a m e t e r s o n t h e o t h e r hand, and i n t h e s e c a s e s t h e MTD * method g i v e s s l i g h t l y b e t t e r r e s u l t s . Our p r e l i m i n a r y c o n c l u s i o n f r o m t h e e x a m p l e s d i s c u s s e d , i s t h a t t h e MTD* i s t h e p r e f e r a b l e o n e , b o t h f r o m f u n d a m e n t a l and
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
16.
TIPKER & VERLOOP
STERIMOL
& MTD Steric Parameters in QSAR
295
p r a c t i c a l p o i n t o f view. We e x p e c t t h a t t h i s c o n c l u s i o n w i l l b e c o n f i r m e d i n o t h e r QSAR s t u d i e s . The c h o i c e b e t w e e n t h e STERIMOL and MTD* a p p r o a c h e s i s d e p e n d e n t o n some p r o p e r t i e s o f t h e s e r i e s s t u d i e d , e . g . t h e number o f members i n r e l a t i o n t o t h e number o f s u b s t i t u t i o n p o s i t i o n s I n t h o s e c a s e s where t h e r e s u l t i n g d e g r e e s o f f r e e d o m a r e s u f f i c i e n t , t h e STERIMOL a p p r o a c h g i v e s t h e most s a t i s f a c t o r y r e s u l t s ( e . g . i n t h e s t u d i e s o n t h e DDT a n a l o g s and t o a l e s s e r e x t e n t i n b e n z o y l p h e n y l u r e a s ; T a b l e V I I ) . But i n o p p o s i t e c a s e s , i . e . t h e QSAR's o f t h e b e n z o n i t r i l e s and t h e p h e n o x y p r o p i o n i c a c i d s , t h e STERIMOL p a r a m e t e r s c a n n o t b e u s e d . The s t u d i e s o n t h e c h r y s a n t h e m a t e s and t h e n i t r o p h e n o l s a r e o f an i n t e r m e d i a t e c h a r a c t e r . B u t i n s u c h c a s e s t h e STERIMOL a p p r o a c h i s o f t e n s t i l l p r e f e r a b l e b e c a u s e o f i t s h i g h e r p r e d i c t i v e power; we have i l l u s t r a t e d t h a t i n an e a r l i e r s t u d y on t h e p l a n t g r o w t h regulating a c t i v i t y of substituted phenoxyacetic acids (4). This phenomenon i s p r o b a b l y c a u s e d by t h e f a c t t h a t t h e STERIMOL parameters a r e independent geometric measures, i n c o n t r a s t t o t h e MTD* p a r a m e t e r s w h i c h a r e i n i t i a t e d by t h e b i o l o g i c a l d a t a and t h u s n o t i n d e p e n d e n t . B e s i d e s t h e MTD* v a l u e s a r e o b t a i n e d a f t e r an o p t i m i z a t i o n w i t h many r e g r e s s i o n a n a l y s e s w h i c h m i g h t more e a s i l y g i v e r i s e t o chance c o r r e l a t i o n s o r o v e r r a t i n g o f t h e s t a t i s t i c a l c r i t e r i a . T h e r e f o r e r a n d o m i z a t i o n o r s p l i t t i n g up t h e d a t a i n a t r a i n i n g and a n e v a l u a t i o n s e t a r e needed t o v e r i f y a MTD* a p p r o a c h ( 8 ) . B u t i f t h e o b t a i n e d r e s u l t s a r e s i g n i f i c a n t , the standard molecule can help t o v i s u a l i z e the s t e r i c aspects o f QSAR. The c h o i c e between t h e MTD* and STERIMOL a p p r o a c h e s i s i n f l u e n c e d b y s t i l l o t h e r f a c t o r s such as t h e r e p r o d u c i b i l i t y and t h e c o m p u t e r t i m e needed (5J. Our t e n t a t i v e c o n l u s i o n i s t h a t t h e STERIMOL a p p r o a c h has t h e g r e a t e s t a d v a n t a g e s p r o v i d e d t h a t t h e chemical s e r i e s s t u d i e d allows i t s a p p l i c a t i o n . I f that i s not t h e c a s e t h e n t h e MTD* method c a n be u s e f u l , n o t w i t h s t a n d i n g i t s r e s t r i c t e d a p p l i c a b i l i t y o f p r e d i c t i v e purposes.
Literature Cited 1. Verloop, Α.; Hoogenstraaten, W.; Tipker, J., in "Drug Design" Ariens, E. J . Ed.; Academic Press: New York, 1976, Vol. VII, pp. 165-207. 2. Verloop, Α., in proc. 5th Int. Congress of Pest. Chem., Miyamoto, J.; Kearney, P. C . , Eds.; Pergamon Press, Oxford 1983, vol 1, pp 339-344 3. Verloop, Α.; Tipker, J., in "Biological Activity and Chemical Structure"; Keverling Buisman, J . Α., Ed.; Elsevier: Amsterdam, 1977; pp. 63-81. 4. Verloop, Α., Phil. Trans. R. Soc. Lond. 1981, B295, pp. 45-55. 5. Verloop, Α.; van den Berg, G.; Tipker, J., in "Recent Advances in Weed Research."; Fletcher, W. W., Ed.; Common Wealth Agricultural Bureaux. England; Slough, 1983; pp. 79-103.
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by EMORY UNIV on June 29, 2014 | http://pubs.acs.org Publication Date: June 26, 1984 | doi: 10.1021/bk-1984-0255.ch016
296
PESTICIDE SYNTHESIS
T H R O U G H RATIONAL
APPROACHES
6. Simon, Z.; Chiriac, Α.; Motoc, I.; Holban, S.; Ciubotaru, D.; Szabadai, Z. Stud. Biophys. 1976, 55, pp. 217-226. 7. Balaban, A. T.; Chiriac, Α.; Motoc, I.; Simon, Z. in LECTURE NOTES IN CHEMISTRY, Berthier, G. et a l . Eds. vol. 15, Springer-Verlag: Berlin, 1980. 8. Hoogenstraaten, W; Tipker, J. to be published. 9. Brown, D. B.; Metcalf, R. L . ; Sternburg, J . G.; Coats, J. R. Pestic. Biochem. Physiol. 1981, 15, pp. 43-57. 10. Lien, E. J.; Rodrigues de Miranda, J. F . ; Ariens, E. J . Mol. Pharmacol. 1976, 12, pp. 598-604. 11. Nakagawa, S.; Okajima, N.; Kitahaba, T.; Nishimura, K.; Fujita, T.; Nakajima, M. Pestic. Biochem. Physiol. 1982, 17, pp. 243-258. 12. Trebst, Α.; Draber, W., in "Advances in Pesticide Science"; Geissbuhler, G. T. et a l . Eds. Pergamon Press: Oxford, 1979, pp. 223-234. 13. Wellinga, K.; Mulder, R.; Van Daalen, J. J. J. Agric. Food Chem., 1973, 21, 993. RECEIVED December 23,
1983
In Pesticide Synthesis Through Rational Approaches; Magee, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.