5 Use of Subtoxic Herbicide Pretreatments to Improve Crop Tolerance to Herbicides G. R. STEPHENSON and G. EZRA
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Antagonistic combinations of herbicides can lead to the development of seed applied chemical safeners to protect crops from herbicide injury. Another approach has been the development of chloroacetamide compounds as s e l c t i v e safeners that can be added to the formulations of thiocarbamate herbicides to improve their s e l e c t i v i t y in corn. A promising new approach involves early pretreatments with subtoxic l e v e l s of a p a r t i c u l a r herbicide to increase crop tolerance to l a t e r , higher rates of that herbicide. In a series of growth room studies, 0.001 to 0.1X pretreatments with metribuzin in tomato and pyrazon in red beets increased the tolerance of these crops to later higher l e v e l s of these p a r t i c u l a r herbicides. Pretreatments with CDAA were a l s o highly e f f e c t i v e for increasing corn tolerance to CDAA but s i m i l a r studies with EPTC, metribuzin, atrazine, chlorosulfuron, and a l a c h l o r in corn, metribuzin in soybeans, atrazine in sorghum, and chlorsulfuron in oats were less promising. Elevated substrate, enzyme a c t i v i t i e s , and detoxication rates were involved in some of the cases of improved crop tolerance v i a the e a r l i e r subtoxic pretreatments with herbicides. Chemical herbicides have been a v a i l a b l e for more than a century but major impacts on crop production awaited the development of "truely" s e l e c t i v e herbicides or innovations that would permit use of non-selective herbicides in crop situations. We now have some form of s e l e c t i v e chemical weed control for most of our major crops. However, continuing problems with herbicide injury to crops as w e l l as poor control of weeds that are b o t a n i c a l l y s i m i l a r to crops remind us that further improvements in herbicide s e l e c t i v i t y are still needed. Introductions of new s e l e c t i v e herbicides will continue but the high costs of these new chemicals are stimulating efforts to make wider use of existing herbicide chemistry. One successful approach has been to g e n e t i c a l l y improve the tolerance of new crop c u l t i v a r s to major herbicides 0097-6156/85/0276-0069$06.00/0 © 1985 American Chemical Society
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
BIOREGULATORS FOR PEST CONTROL
70
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
(1). A n o t h e r approach has been t o i n c r e a s e the p h y s i o l o g i c a l t o l e r a n c e o f c r o p p l a n t s t o p a r t i c u l a r h e r b i c i d e s t h r o u g h the development of chemical a n t i d o t e s or s a f e n e r s . S i n c e the i n t r o d u c t i o n o f t h i s l a t t e r concept by O t t o Hoffman (2) i n the e a r l y 1960's, a t l e a s t f i v e a n t i d o t e s o r s a f e n e r s h a v e been developed commercially (Table I). R e s e a r c h on c h e m i c a l a n t i d o t e s o r s a f e n e r s has been summarized i n s e v e r a l r e v i e w s and p u b l i s h e d symposia (3.-9)· Most o f the major d e v e l o p m e n t s ( T a b l e I) h a v e r e s u l t e d from i m p i r i c a l s c r e e n i n g programs by I n d u s t r y t h a t may h a v e been s t i m u l a t e d by o b s e r v a t i o n s o f h e r b i c i d e antagonism i n p l a n t s (.3, 10). However, some o f t h e r e s e a r c h on mode o f a c t i o n o f a n t i d o t e s has been d i r e c t e d a t f i n d i n g new ways t o p r o t e c t crop p l a n t s from h e r b i c i d e s (3). The r e s e a r c h t o be d i s c u s s e d i n t h i s t e x t , namely the use o f s u b t o x i c h e r b i c i d e p r e t r e a t m e n t s to improve crop t o l e r a n c e to s e l e c t e d h e r b i c i d e s , a r i s e s i n p a r t from r e s e a r c h on the mode o f a c t i o n o f R-25788 as a s e l e c t i v e a n t i d o t e f o r EPTC o r b u t y l a t e i n corn. Mode o f A c t i o n o f R-25788 In some o f the e a r l i e s t r e s e a r c h , W i l k i n s o n (11) s u g g e s t e d t h a t o p p o s i n g a c t i o n s o f EPTC and R-25788 on l i p i d s y n t h e s i s i n p l a n t s c o u l d e x p l a i n t h e i r mechanisms as a h e r b i c i d e and a n t i d o t e , respectively. E z r a et a l . (12) h a v e p r o v i d e d s t r o n g support f o r t h i s i d e a w i t h t h e i r o b s e r v a t i o n s t h a t EPTC and R-25788 c o u l d h a v e m e a s u r a b l e and o p p o s i t e e f f e c t s on l i p i d s y n t h e s i s as e a r l y as 1 h r a f t e r treatment i n c o r n c e l l s u s p e n s i o n c u l t u r e s . Other r e s e a r c h by Lay and C a s i d a (13) has s u p p o r t e d the concept t h a t R25788 enhances the m e t a b o l i c d e t o x i c a t i o n o f EPTC and i t s s u l f o x i d e by e l e v a t i n g the g l u t a t h i o n e (GSH) l e v e l s and GSH-S.t r a n s f e r a s e a c t i v i t y i n v o l v e d i n the c o n j u g a t i o n o f EPTC-su I f o x i d e with glutathione. E a r l y r e s e a r c h i n our l a b o r a t o r y on a n t i d o t e s t r u c t u r e / a c t i v i t y r e l a t i o n s h i p s (14. 15) e s t a b l i s h e d t h a t acetamide and carbamate m o l e c u l e s more s i m i l a r i n s t r u c t u r e t o EPTC t h a n to R-25788 c o u l d h a v e e q u a l o r even g r e a t e r a n t i d o t e a c t i v i t y a g a i n s t EPTC i n c o r n w i t h s o i l f r e e b i o a s s a y systems. The s t r u c t u r e / a c t i v i t y s t u d i e s seemed to support the i d e a t h a t the a n t i d o t e R-25788 (or i t s a n a l o g u e s ) may a c t as a c o m p e t i t i v e i n h i b i t o r a t s i t e ( s ) o f EPTC a c t i o n i n c o r n . These l a t t e r two t h e o r i e s o f " a n t i d o t e enhanced h e r b i c i d e m e t a b o l i s m " v e r s u s " c o m p e t i t i v e i n h i b i t i o n " were h a r d to r e c o n c i l e w i t h each o t h e r . To r e s o l v e t h i s apparent d i s a g r e e m e n t , a s e r i e s o f acetamide a n a l o g u e s w i t h known a n t i d o t e a c t i v i t i e s were t e s t e d f o r t h e i r e f f e c t s on g l u t a t h i o n e l e v e l s i n c o r n ( F i g u r e 1). In t h i s c o m p a r a t i v e s t u d y , the d i c h l o r o d i a l l y l acetamide (R-25788) was s l i g h t l y more e f f e c t i v e as an a n t i d o t e f o r EPTC i n c o r n than was the m o n o c h l o r o d i a l l y l acetamide (CDAA) and the t r i c h l o r o and nonc h l o r i n a t e d a n a l o g u e s were l e a s t e f f e c t i v e ( F i g u r e l a ) . S u r p r i s i n g l y , t h i s r e l a t e d s e r i e s o f a c e t a m i d e s had v i r t u a l l y the same spectrum o f e f f e c t s on g l u t a t h i o n e l e v e l s i n c o r n s e e d l i n g s ( F i g u r e l b ) . The i n c l u s i o n o f CDAA, (Ν,Ν-diallyl-2c h l o r o a c e t a m i d e ) i n t h i s s t u d y was v e r y f o r t u n a t e . T h i s c h e m i c a l has been a w i d e l y u s e d h e r b i c i d e f o r weed c o n t r o l i n o n i o n s and at h i g h r a t e s i t can a l s o be t o x i c t o c o r n w i t h symptoms not u n l i k e
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
5.
Table I .
C o m m e r c i a l l y important h e r b i c i d e
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
C h e m i c a l name
Application
Crops
antidotes
protected
or
safeners.
Herbicides
seed
corn sorghum wheat oats rice
carbamates chloroacetanilides thiocarbamates others
seed o r herbicide formulation
corn sorghum barley wheat rice
thiocarbamates acetanilides carbamates dithiocarbamates others
1,8-naphthalic anhydride (NA)
N,N-diallyl-2,2dichloroacetamide (R-25788)
71
Crop Tolerance to Herbicides
STEPHENSON AND EZRA
a-[(cyanomethoxy) seed imino b e n z a c e t o n i t r i l e ] (cyoxymetrinil)
sorghum wheat rice
chloroacetanilides
a-(l,3-dioxolan-2-ylmethoxy)iminobenzacetonitrile (CGA-92194)
seed
sorghum
chloroacetanilides
2-chloro-2-4seed (trifluoromethyl)-5thiazolecarboxylic acid, benzyl ester (f lurazole)
sorghum
chloroacetanilides
From Stephenson and E z r a
(3.) ·
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
BIOREGULATORS FOR PEST CONTROL
0.9-
LSD 0.05 (a)
g 80o u. ο g60-
«»9 \ CO fo.6-
LSD 0.05 (b)
S2 40-J
8 20^
ζ
ο ο
x CO
8
ANTIDOTE TREATMENT (I0" M) CALL PLUS EPTC (I0" M)] 4
ANTIDOTE TREATMENT
(ΙΟ^Μ)
4
F i g u r e 1· C o m p a r a t i v e e f f e c t s o f f o u r d i a l l y l acetamides as a n t i d o t e s t o EPTC ( l e f t ) and on GSH l e v e l s ( r i g h t ) i n c o r n s e e d l i n g s . The v a r i o u s d i a l l y l acetamides [R-COlKCHjCH-CI^l were R=CH -, CH C1-, C H C 1 - and CCI3 f o r A, B, C, and D, r e s p e c t i v e l y . A n t i d o t e Β i s b e t t e r known as t h e h e r b i c i d e CDAA. A n t i d o t e C i s t h e a n t i d o t e R-25788 which has been d e v e l o p e d c o m m e r c i a l l y f o r EPTC o r b u t y l a t e . Reproduced w i t h p e r m i s s i o n from Ref. 17. C o p y r i g h t 1983 Pergamon P r e s s . 3
2
2
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
5.
STEPHENSON AND EZRA
73
Crop Tolerance to Herbicides
t h o s e o f EPTC. However, a t lower r a t e s i t i s an e f f e c t i v e a n t i d o t e o r s a f e n e r f o r EPTC i n c o r n ( F i g u r e l a , Compound B). F u r t h e r m o r e , i n t h e s e s t u d i e s we l e a r n e d t h a t l i k e R-25788 i t would a l s o e l e v a t e g l u t a t h i o n e l e v e l s i n c o r n ( F i g u r e l b , Compound B). A l s o , l i k e EPTC, i t i s known t o be d e t o x i f i e d i n p l a n t s by c o n j u g a t i o n w i t h g l u t a t h i o n e (16). With t h i s c o m b i n a t i o n o f knowledge, i t seemed more l i k e l y t h a t CDAA was a c t i n g as a l e s s p h y t o t o x i c mimic o f EPTC i n s t e a d o f as a c o m p e t i t i v e i n h i b i t o r o f EPTC. I t seemed p o s s i b l e t h a t a t low r a t e s , b o t h CDAA and EPTC might be s t i m u l a t o r y on p r o c e s s e s such as l i p i d s y n t h e s i s , but a t h i g h r a t e s , they might b o t h be i n h i b i t o r y . I f the r e q u i r e d r a t e s f o r t h e two compounds were d i f f e r e n t , i t might be p o s s i b l e f o r a s t i m u l a t o r y c o n c e n t r a t i o n o f CDAA ( o r R-25788) t o overcome i n h i b i t o r y e f f e c t s o f EPTC. F u r t h e r m o r e , i f b o t h CDAA and EPTCs u I f o x i d e were c o n j u g a t e d w i t h g l u t a t h i o n e , i t seemed p l a u s i b l e t h a t t h e a n t i d o t e (CDAA) may a c t by enhancing t h e same pathway needed t o d e t o x i f y EPTC and i t s s u l f o x i d e - namely t h e GSH and G S H - S - t r a n s f e r a s e system. One o t h e r q u e s t i o n a l s o emerged. I f CDAA c o u l d e l e v a t e GSH l e v e l s c o u l d o t h e r h e r b i c i d e s , known t o be c o n j u g a t e d w i t h GSH, a l s o e l e v a t e GSH l e v e l s ? Some o f t h e s e q u e s t i o n s h a v e n o t y e t been examined b u t t h e l a t t e r s p e c u l a t i o n p r o v e d t o be c o r r e c t . I n a d d i t i o n t o CDAA, f i v e o t h e r h e r b i c i d e s were shown t o e l e v a t e g l u t a t h i o n e l e v e l s i n c o r n s e e d l i n g s ( T a b l e I I ) and t h e m e t a b o l i s m o f a l l t h e s e h e r b i c i d e s i s known t o i n v o l v e g l u t a t h i o n e c o n j u g a t i o n (18). Table
I I . E f f e c t s o f R-25788 and v a r i o u s h e r b i c i d e s on g l u t a t h i o n e (GSH) l e v e l s i n r o o t s o f 5 - d a y - o l d c o r n s e e d l i n g s .
3 Root (GSH)
Treatments
R-25788 EPTC alachlor propachlor atrazine barban
C o n t e n t i (u moles/g fw) 5
0
10" M
10" M
10-*M
0.19 0.19 0.30 0.20 0.18 0.19
0.31 0.29 0.41 0.29 0.22 0.41
0.48 0.45 0.49 0.35 0.31 0.48
0.71 0.41 0.71 0.42 0.34 0.86
6
From Stephenson e t . a l . ( 1 7 ) . * ^ 3
F o r a l l experiments LSD's were 0.05 u moles/g o r l e s s . H i g h r a t e o f barban caused a s i g n i f i c a n t r e d u c t i o n i n r o o t fw. The m e t a b o l i s m o f a l l o f t h e s e c h e m i c a l s except R-25788, i s known t o i n v o l v e c o n j u g a t i o n w i t h g l u t a t h i o n e i n p l a n t s (18).
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
BIOREGULATORS FOR PEST CONTROL
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
I n c r e a s i n g Crop T o l e r a n c e t o H e r b i c i d e s w i t h H e r b i c i d e Pretreatments At t h i s p o i n t , e v i d e n c e t h a t s i m i l a r m o l e c u l e s a c t e d as e f f e c t i v e a n t i d o t e s by i n d u c i n g needed m e t a b o l i c pathways f o r h e r b i c i d e d e t o x i c a t i o n was a t most v e r y s p e c u l a t i v e . However, another h y p o t h e s i s emerged. C o u l d e a r l y h e r b i c i d e p r e t r e a t m e n t s i n c r e a s e crop t o l e r a n c e t o t h e s e h e r b i c i d e s by e l e v a t i n g t h e s u b s t r a t e s and enzymes needed f o r d e t o x i c a t i o n ? W h i l e n o t a new concept i n a n i m a l systems, such an i d e a has r e c e i v e d l i t t l e a t t e n t i o n i n p l a n t systems and i t c e r t a i n l y has n o t been e x p l o i t e d i n any p r a c t i c a l way. The w h o l e i d e a has seemed much more c r e d i b l e w i t h the study by J a c e t t a and R a d o s e v i c h (19) o f p h o t o s y n t h e t i c r e c o v e r y i n c o r n a f t e r treatment w i t h a t r a z i n e . More s p e c i f i c a l l y , t h e y showed t h a t i n h i b i t i o n o f p h o t o s y n t h e s i s was reduced and t h e r a t e o f r e c o v e r y enhanced i n c o r n p l a n t s t r e a t e d f o r t h e second o r t h i r d time w i t h a t r a z i n e compared t o " f i r s t exposed" p l a n t s ( F i g u r e 2). F u r t h e r m o r e , t h e f a s t e r r e c o v e r y was r e l a t e d t o enhanced r a t e s o f a t r a z i n e m e t a b o l i s m i n t h e p r e v i o u s l y treated plants (Table I I I ) . S t i m u l a t e d by the a n t i d o t e r e s e a r c h , as w e l l as by the work of J a c e t t a and R a d o s e v i c h (19). we d e c i d e d to examine t h e i n f l u e n c e of pretreatment with subtoxic r a t e s of s e v e r a l h e r b i c i d e s on l a t e r crop t o l e r a n c e t o t h e s e same h e r b i c i d e s . F o r t h e s e growth room s t u d i e s (25°C/18°C, 16h p h o t o p e r i o d , l i g h t i n t e n s i t y 400 uE/m / s e c , 75% r e l a t i v e h u m i d i t y ) , p r e t r e a t m e n t s a t c o n c e n t r a t i o n s o f 0.1% t o 10% o f t h e f i n a l h e r b i c i d a l r a t e were g i v e n as a r o o t drench o r seed treatment t o seeds p l a n t e d i n m o i s t v e r m i c u l i t e i n s t y r o f o a m cups. H e r b i c i d a l t r e a t m e n t s were l a t e r a p p l i e d t o t h e r o o t s . P l a n t s were h a r v e s t e d 8-14 days a f t e r h e r b i c i d e treatment ( T a b l e I V ) . P o s s i b l y t h e most s u r p r i s i n g r e s u l t s from t h e s e s t u d i e s were those with a t r a z i n e . E v e n though J a c e t t a and R a d o s e v i c h (19) had o b s e r v e d reduced p h o t o s y n t h e t i c i n j u r y and enhanced a t r a z i n e m e t a b o l i s m w i t h a t r a z i n e p r e t r e a t m e n t s , i n our s t u d i e s , p r e t r e a t m e n t s w i t h a t r a z i n e d i d not p r e v e n t l a t e r d r y weight r e d u c t i o n s from h i g h r a t e s o f a t r a z i n e . We were a l s o s u r p r i s e d t h a t , i n s p i t e o f e f f e c t s on GSH l e v e l s , EPTC p r e t r e a t m e n t s f a i l e d to reduce l a t e r EPTC i n j u r y t o c o r n . Thus f a r , a n t i d o t e r e s e a r c h has had l i t t l e impact on i m p r o v i n g t h e t o l e r a n c e o f b r o a d l e a v e d crops to h e r b i c i d e s . On t h a t b a s i s we were q u i t e encouraged by the e f f e c t i v e n e s s o f m e t r i b u z i n p r e t r e a t m e n t s f o r r e d u c i n g l a t e r m e t r i b u z i n i n j u r y t o tomatoes ( T a b l e I V , F i g u r e 3) and soybeans ( T a b l e I V ) . P y r a z o n p r e t r e a t m e n t s were s l i g h t l y more e f f e c t i v e f o r p r e v e n t i n g pyrazon i n j u r y t o r e d b e e t s ( T a b l e I V ) , but t h e most p r o m i s i n g r e s u l t s were o b t a i n e d w i t h CDAA ( T a b l e IV, F i g u r e s 4, 5). Corn shoot d r y weights were r e d u c e d 40% by CDAA a p p l i e d a t c o n c e n t r a t i o n s o f 200 uM, 5 days a f t e r p l a n t i n g i n v e r m i c u l i t e nutrient culture. Optimum p r e v e n t i o n o f CDAA i n j u r y was o b s e r v e d w i t h a CDAA p r e t r e a t m e n t o f 5 uM, a p p l i e d 2.5 days e a r l i e r . However, s i g n i f i c a n t p r e v e n t i o n o f i n j u r y was a l s o o b s e r v e d w i t h the 1 and 10 uM p r e t r e a t m e n t s ( F i g u r e 4).
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Crop Tolerance to Herbicides
STEPHENSON AND EZRA
0
J
1
1
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
4
1
1
1
1
\
1
1
1
8 12 16 20 TIME (xlOOmin)
1
1
24
1
1
1
28
F i g u r e 2. I n h i b i t i o n and r e c o v e r y o f p h o t o s y n t h e t i c r a t e i n c o r n w i t h 3 s u c c e s s i v e exposures t o a t r a z i n e [ I l l u s t r a t e d by one r e p r e s e n t a t i v e i n f r a r e d gas a n a l y z e r t r a c e , + and - r e f e r t o p r e s e n c e o r absence o f a t r a z i n e ] . "Reproduced w i t h p e r m i s s i o n from Ref. 19. C o p y r i g h t 1981, 'Weed S c i e n c e S o c i e t y of America ". 1
F i g u r e 3. P r e v e n t i o n o f m e t r i b u z i n (0.5 mg/L) i n j u r y t o tomatoes w i t h m e t r i b u z i n p r e t r e a t m e n t s (1.0 ug/L). Left to r i g h t , c o n t r o l , 1.0 ug/L p r e t r e a t m e n t f o l l o w e d by 0.5 ng/L h e r b i c i d a l treatment 14 days l a t e r .
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
1
0 12 12 12 12 12
Recovery period
4 4 4
1
1
Atrazine exposure
Treatment
0 12 12 12
Recovery period
4
1
Atrazine exposure
0 12
Recovery period
1
a
S u p p l i e d as ^ C - a t r a z m e .
1
V a l u e s a d j a c e n t t o t h e same l e t t e r l e v e l of significance.
extracted
3
i n a column a r e n o t d i f f e r e n t
43.4a 54.6a 49.3a 67.9b 59.3a 72.7b
56.6a 45.4a 50.7a 32.1b 40.7a 27.3b
a t t h e 5%
%
Aqueous Chloroform fraction fraction
DPM
Occurrence o f i n c h l o r o f o r m and aqueous f r a c t i o n s o f c o r n s h o o t s a f t e r 1, 2, and 3 s u c c e s s i v e a t r a z i n e t r e a t m e n t s .
"Reproduced w i t h p e r m i s s i o n from Ref. 19. C o p y r i g h t 1981, 'Weed Science Society of America ."
4 4 4 4 4
Atrazine exposure
Table I I I .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
Ο
73
m C/3 Η ο Ο Η
73
Ο
τι
73
I
73 m Ο a r
δ
00
ON
5.
STEPHENSON AND EZRA
Table
IV.
E f f e c t s o f h e r b i c i d e p r e t r e a t m e n t s on subsequent h e r b i c i d e i n j u r y to crops.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
Herbicide
Treatment Concentrations PreHerbicidal-
20uM
76uM
CDAA
5uM
200uM
Atrazine
5uM
50mM
5uM
50mM
50pM
ΙΟηΜ
Alachlor
Chlorsulfuron
8.5nM 15uM
EPTC Metribuzin
Pyrazon
11
Crop Tolerance to Herbicides
50uM 200uM
4.6nM
2uM
4.6nM
luM
0.5uM
lOOuM
ΙΟ.ΟηΜ
20uM
Crop
Prevention of i n j u r y by s u b t o x i c pretreatment Dry Wt. Height
corn ( c v PAG SX-111) corn ( c v PAG SX-111) sorghum ( c v De K a l b E59+) corn (cv PAG SX-111) corn ( c v PAG SX-111) oats (cv c e n t i n n e l ) corn ( c v PAG SX-111) tomatoes ( c v H2653) soybeans (cv EVANS) corn ( c v PAG SX-111) beets (cv D e t r o i t Dark Red)
++
+ +++
+
-
0
0
0
+
0
+
0
0
+
-
+ 0
+
++
-
R e s u l t s a r e from a t l e a s t two experiments. 0 = l e s s than 5%, + - 5-10% r e d u c t i o n i n i n j u r y , ++ - 11-20% r e d u c t i o n i n i n j u r y , +++ « g r e a t e r than 20% r e d u c t i o n i n i n j u r y . Not r e c o r d e d i n t h e s e e x p e r i m e n t s .
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
BIOREGULATORS FOR PEST CONTROL
PLANT DRY WEIGHT
PLANT HEIGHT
100-
1*1
ii
80
til
ii
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
60-
PRETREATMENT 0 0 0.5 1.0 50 10.0 HERBICIDE 0 200200200200200
0 0
0 0.5 1.0 5.0 10.0 200200200200 200
CDAA CONCENTRATION (μΜ) F i g u r e 4. P r e v e n t i o n o f CDAA i n j u r y t o c o r n w i t h CDAA p r e t r e a t m e n t s a p p l i e d 2.5 days e a r l i e r . No i n j u r y was o b s e r v e d w i t h t h e pretreatmentβ a p p l i e d a l o n e except a t t h e h i g h e s t c o n c e n t r a t i o n (50.0 uM).
F i g u r e 5. P r e v e n t i o n o f i n j u r y t o c o r n from CDAA a t 200 uM w i t h 5 uM CDAA p r e t r e a t m e n t s . L e f t t o r i g h t , c o n t r o l , 200 uM CDAA a l o n e , 200 uM CDAA f o l l o w i n g 5 uM CDAA, and 5 uM CDAA alone.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
5.
STEPHENSON AND EZRA
79
Crop Tolerance to Herbicides
E f f e c t o f CDAA p r e t r e a t m e n t s
on subsequent CDAA m e t a b o l i s m
Corn seeds were germinated between m o i s t paper t o w e l s and were then t r e a t e d w i t h 5 uM CDAA e i t h e r 1 o r 2.5 days p r i o r t o a s s a y f o r GSH a f 6 days a f t e r p l a n t i n g ( T a b l e V). U s i n g t h e r e a g e n t DTNB [2,2 - d i t h i o b i s ( 2 - n i t r o b e n z o i c a c i d ) ] , r o o t GSH c o n t e n t s were assayed s p e c t r o p h o t o m e t r i c a 1 l y as p r e v i o u s l y d e s c r i b e d (20). Treatment w i t h CDAA ( a t 5 uM) f o r e i t h e r 1 o r 2.5 days e l e v a t e d GSH l e v e l s more than 60% ( T a b l e V).
T a b l e V.
E f f e c t o f CDAA on GSH l e v e l s
i n 6 day o l d c o r n s e e d l i n g s .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
GSH c o n t e n t i n c o r n r o o t s (ug/g
Control
5 uM CDAA f o r 2.5 days
5 uM CDAA f o r 1 day
65+10
106+6
Reproduced w i t h Press.
fw)
109+11
p e r m i s s i o n from R e f . 20.
Copyright
1985 A c a d e m i c
CDAA a l s o e l e v a t e d G S H - S - t r a n s f e r a s e a c t i v i t y i n c o r n r o o t s o r shoots ( T a b l e V I ) when assayed s p e c t r o p h o t o m e t r i c a 1 l y w i t h CDNB ( l - c h l o r o - 2 , 4 - d i n i t r o b e n z e n e ) (20). However, i n t h i s c a s e , treatment w i t h CDAA f o r 2.5 days produced t h e g r e a t e s t i n c r e a s e i n enzyme a c t i v i t y i n t h e r o o t s o f 6 - d a y - o l d c o r n s e e d l i n g s .
T a b l e V I . E f f e c t o f CDAA p r e t r e a t m e n t s on GSH-Sj-transferase a c t i v i t y i n r o o t s or shoots o f 6-day-old c o r n s e e d l i n g s (c.v. PAG SX-111). 5 uM CDAA time
Pretreatment (days)
0 1 2.5 6
GSH-S-transferase s p e c i f i c a c t i v i t y (nmol/min/mg P r o t e i n ) Shoots Roots 1094 1486 1638 1371
276 315 258 316
A l t h o u g h CDAA p r e t r e a t m e n t s e l e v a t e d b o t h GSH and GSH-S.t r a n s f e r a s e a c t i v i t y (as assayed by CDNB), i t was e s s e n t i a l t o determine whether t h e s e e f f e c t s would a c t u a l l y r e s u l t i n g r e a t e r CDAA m e t a b o l i s m . F o r t h e s e s t u d i e s , we examined [ C]CDAA m e t a b o l i s m i n v i t r o and i n e x c i s e d c o r n r o o t t i p s [ d e t a i l e d methods d e s c r i b e d by E z r a e t . a l . (20)1. The i n v i t r o a s s a y r e v e a l e d a s i g n i f i c a n t l e v e l o f non-enzymatic [ C] CDAA
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
BIOREGULATORS FOR PEST CONTROL
80
d e g r a d a t i o n [as determined by p a r t i t i o n i n g o f water s o l u b l e m e t a b o l i t e s from m e t h y l e n e c h l o r i d e i n t o water and v e r i f i c a t i o n by t h i n l a y e r chromatography]. However, t h e enzymatic r a t e was d o u b l e t h a t o f t h e non-enzymatic r a t e . Furthermore, a 2.5 day p r e t r e a t m e n t w i t h 5uM CDAA i n c r e a s e d t h e GSH-Sr-transferase a c t i v i t y f o r [ C ] C D A A m e t a b o l i s m from 62.9+4.6 t o 78.9+.5.3 nmol/min/mg p r o t e i n (20). M e t a b o l i s m o f [ C] CDAA was v e r y r a p i d i n e x c i s e d r o o t t i p s from c o n t r o l o r p r e t r e a t e d r o o t t i p s . However, i n a l l experiments, p r e t r e a t e d r o o t s took up 2 - f o l d more [ C]CDAA and m e t a b o l i z e d i t t w i c e as f a s t as n o n - p r e t r e a t e d r o o t tissue. 14
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch005
E f f e c t s o f R-25788 and EPTC on t h e GSH/GSH-S-transferase System In a s e r i e s o f experiments, s i m i l a r t o t h o s e w i t h CDAA, R-25788 and EPTC were examined as p r e t r e a t m e n t s t o e i t h e r enhance t h e i r own m e t a b o l i s m by GSH-S_-transferase o r p r e v e n t l a t e r i n j u r y (from t o x i c doses) i n c o r n s e e d l i n g s . The e f f e c t s o f R-25788 on e l e v a t i o n o f GSH and GSH-St r a n s f e r a s e h a v e been w e l l documented (Γ3). However, u n l i k e CDAA, R-25788 p r e t r e a t m e n t s d i d not p r e v e n t o r reduce i n j u r y t o c o r n s e e d l i n g s from l a t e r h i g h e r doses o f R-25788 ( F i g u r e 6). T h i s may be e x p l a i n e d by t h e f a c t t h a t even though R-25788 e l e v a t e s GSH and GSH-S_-t r ans f e r a s e , i t i s n o t a c t u a l l y m e t a b o l i z e d by t h i s system. I n f a c t , R-25788 has been shown t o be d e t o x i f i e d i n c o r n , p r e d o m i n a n t l y t o Ν,Ν-diallyloxamic a c i d . However, t h e r e i s some N - d e a l k y l a t a t i o n and h y d r o l y s i s to d i c h l o r o a c e t i c a c i d and some g l y c o s i d e f o r m a t i o n (21). Even though EPTC p r e t r e a t m e n t s were i n e f f e c t i v e f o r p r e v e n t i n g EPTC i n j u r y ( T a b l e I V ) , EPTC d i d i n f l u e n c e t h i s same system. A t 10 ppm (5 χ 10"^ M), EPTC e l e v a t e d b o t h t h e GSH c o n t e n t ( F i g u r e 7) and G S H - S - t r a n s f e r a s e a c t i v i t y ( F i g u r e 8). However t h e s e e l e v a t i o n s were n o t as g r e a t and were not as p e r s i s t e n t as those o b t a i n e d w i t h R-25788. More s p e c i f i c a l l y , GSH and GSH-S_-transferase a c t i v i t y were e l e v a t e d by more than 50% f o r a t l e a s t 4-days w i t h R-25788 ( F i g u r e 8), whereas t h i s magnitude o f e l e v a t i o n o c c u r r e d o n l y b r i e f l y , 2-days a f t e r EPTC p r e t r e a t m e n t and then d e c l i n e d . I n o t h e r s t u d i e s ( u n p u b l i s h e d ) we h a v e o b s e r v e d no e f f e c t o f EPTC p r e t r e a t m e n t s on [ C ] E P T C metabolism i n excised corn root t i p s . E f f e c t s o f EPTC p r e t r e a t m e n t s on [ C]EPTC s u l f o x i d e m e t a b o l i s m h a v e not y e t been examined · One p o s s i b l e e x p l a n a t i o n f o r t h e i n e f f e c t i v e n e s s o f EPTC p r e t r e a t m e n t s f o r enhancing EPTC m e t a b o l i s m and f o r r e d u c i n g EPTC i n j u r y i s t h a t i t s c o n j u g a t i o n w i t h g l u t a t h i o n e may be p r i m a r i l y non-enzymatic as suggested by o t h e r r e s e a r c h e r s (22). However i n o t h e r r e c e n t r e s e a r c h ( u n p u b l i s h e d ) we h a v e shown t h a t a known GSH-jr-transferase i n h i b i t o r i s s y n e r g i s t i c a 1 l y p h y t o t o x i c w i t h EPTC i n c o r n , i n d i c a t i n g t h a t non-enzymatic c o n j u g a t i o n may n o t be t h a t important i n c o r n . A more l i k e l y e x p l a n a t i o n f o r the l a c k o f p r o t e c t i o n w i t h EPTC p r e t r e a t m e n t s , i s t h a t e f f e c t s on GSH and GSH-S_-traneferase a r e t o o t r a n s i e n t i n n a t u r e , and/or t h a t s u l f o x i d a t i o n i s an important and p o s s i b l y r a t e - l i m i t i n g s t e p . 1 4
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
STEPHENSON AND EZRA
Crop Tolerance to Herbicides
PLANT DRY WEIGHT
PLANT HEIGHT ιοο-
ο ο £r or