Utility of Enzymes in Solubilization of Seed and Leaf Proteins

Pirie, N.W. 1971. "Leaf Protein: Its Agronomy,. Preparation, Quality ... Crenwelge, D.D., C.W. Dill, P.T. Tybor, and W.A.. Landmann. 1974. J Fd Sci. 3...
0 downloads 0 Views 1016KB Size
18 Utility of Enzymes in Solubilization of Seed and Leaf Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

Proteins E . A. CHILDS, J. L. FORTE, and Y. KU a

b

Department of Food Technology and Science, University of Tennessee, Knoxville, Tenn. 37901

The use o f enzymes f o r solubilization o f seed and leaf p r o t e i n s has been s t u d i e d as a means o f overcoming difficulties p r e s e n t e d by the v a r y i n g c o n d i t i o n o f seed and l e a f m a t e r i a l a v a i l a b l e f o r p r o c e s s i n g . The variations a r e the result o f d i f f e r e n c e s i n the original c o n d i t i o n o f the m a t e r i a l and its p o s t - h a r v e s t treatment. E x t r a c t i o n o f P r o t e i n from O i l s e e d s O i l s e e d aleurin p r o t e i n s a r e found in c y t o p l a s m i c vacuoles. Examples i n c l u d e the 7S and 11S g l o b u l i n s of soybeans ( 1 ) , a r a c h i n from peanuts (2,3), edistin from hemp seed ( 4 ) , vicilin and legumin from pea seeds ( 5 ) , and vicilin and legumin from Vicia f a v a ( 6 ) . Based on the similarity o f amino a c i d sequences as meas u r e d by the D i f f e r e n c e Index s u g g e s t e d by Metzger ( 7 ) , D i e c k e r t and D i e c k e r t (8) have s u g g e s t e d the r e s e r v e p r o t e i n s o f leguminous seeds a r e q u i t e homologous and a r e u s u a l l y hexamers o r t e t r a m e r s o f a disulfide bridged s u b u n i t w i t h an A - S - S - B s t r u c t u r e . These similarities i n (a) c y t o p l a s m i c l o c a t i o n and c o m p a r t m e n t a l i z a t i o n and (b) amino a c i d sequence o f a variety o f o i l s e e d p r o t e i n s o f f e r s a u n i f y i n g view o f the c o n d i t i o n s f a c e d in e x t r a c t i n g p r o t e i n s from o i l s e e d s f o r p r o d u c t i o n o f p r o t e i n concentrates or isolates. Several techniques a r e a v a i l a b l e f o r production o f seed p r o t e i n c o n c e n t r a t e s and i s o l a t e s . Protein i s o l a t es c a n be p r e p a r e d from d e f a t t e d seeds by e x t r a c t i o n i n d i l u t e a l k a l i , f o l l o w e d by i s o e l e c t r i c p r e c i p i t a t i o n o f Current Address: D e d e r i c h C o r p o r a t i o n , P.O. Box 7, Hubertus, WI 53033 Current Address: Biology Division, Oak Ridge N a t i o n a l L a b o r a t o r i e s , Oak Ridge, TN 37830 a

b

304 Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

18.

CHILDS

ET

AL.

Solubilization of Seed and Leaf Proteins

305

the p r o t e i n a t an a c i d i c pH, and d r y i n g t h e p r e c i p i t a t ed m a t e r i a l a f t e r washing. P r o t e i n c o n c e n t r a t e s may be produced from seeds by e x t r a c t i o n o f low m o l e c u l a r w e i ght m o l e c u l e s a t pH 4.0 w i t h the p r o t e i n r e m a i n i n g i n the i n s o l u b l e m a t e r i a l f o r d r y i n g . Sugarman (9) d e v e l oped methodology f o r p r o d u c i n g p r o t e i n c o n c e n t r a t e s from f u l l f a t seeds. An aqueous e x t r a c t i o n i s p e r f o r m ed and the r e s u l t i n g e m u l s i o n broken by s h e a r f o r c e s a t an a p p r o p r i a t e temperature and pH. These methods a r e e f f i c i e n t i f the seed has n o t been heated t o an e x t e n t t h a t w i l l cause d e n a t u r a t i o n of the p r o t e i n . I f d e n a t u r a t i o n has o c c u r r e d , e x t r a c t a b l e p r o t e i n y i e l d s w i l l drop t o l e s s than 20% i n soybeans o r c o t t o n s e e d (10,11). Because most o i l s e e d s a r e a l s o an o i l s o u r c e , they may undergo a hexane e x t r a c t i o n and then be s u b j e c t e d t o h e a t and m o i s t u r e t o a i d i n d e s o l v e n t i z a t i o n (13,14). In s p e c i f i c commodities such as soybeans, h e a t may a l s o be u t i l i z e d t o maximize the n u t r i t i o n a l q u a l i t y o f t h e p r o t e i n (15). Thus the p r o b a b i l i t y o f u t i l i z i n g seeds c o n t a i n i n g denatured p r o t e i n s f o r p r o d u c t i o n of p r o t e i n i s o l a t e s and c o n c e n t r a t e s seems l i k e l y . In c o t t o n s e e d , M a r t i n e z e t a l (12) have suggested the lowered s o l u b i l i t y o f p r o t e i n from h e a t e d seeds i s the r e s u l t o f c y t o p l a s m i c p r o t e i n s " g l u i n g " the c y t o p l asmic v a c u o l e s c o n t a i n i n g the s t o r a g e p r o t e i n s t o g e t h e r so t h e y cannot d i s p e r s e when the c e l l i s r u p t u r e d d u r i ng g r i n d i n g . In o r d e r t o i n c r e a s e the e x t r a c t i o n o f p r o t e i n from h e a t d e n a t u r e d s u b s t r a t e s , t e c h n i q u e s which c h e m i c a l l y o r m e c h a n i c a l l y break the c y t o p l a s m i c p r o t e i n s h o l d i n g the a l e u r i n v a c u o l e s t o g e t h e r must be developed. Should t h e i n s o l u b i l i z a t i o n be the r e s u l t o f the b i n d i n g o f i n d i v i d u a l p r o t e i n s o r s t o r a g e vacuol e s t o o t h e r c e l l u l a r c o n s t i t u e n t s (e.g. f i b e r p o l y m e r s ) , t h e s e bonds would a l s o have t o be b r o k e n . E x t r a c t i o n o f P r o t e i n from

Leaves

L e a f p r o t e i n s o c c u r t h r o u g h o u t the c y t o p l a s m o f i n d i v i d u a l c e l l s w i t h 30-40% o f the p r o t e i n l o c a l i z e d i n the c h l o r o p l a s t (16). E x t r a c t i o n o f t h e s e p r o t e i n s has been a c c o m p l i s h e d by p u l p i n g t h e l e a v e s f o l l o w e d by p r e s s i n g t o s e p a r a t e the p r o t e i n a c e o u s j u i c e from the l e a f f i b e r . The j u i c e i s then h e a t e d t o c o a g u l a t e the p r o t e i n and the c o a g u l a t e d p r o t e i n and j u i c e a r e s e p a r a t e d by a p p r o p r i a t e means (17). When t h e s e c h l o r o p l a s t p r o t e i n s a r e e x t r a c t e d , l a r g e amounts o f pigments a r e a l s o f r e e d from the c e l l u l a r m a t r i x t o y i e l d a green p r o d u c t . The p r e s e n c e o f t h e pigments has lowered l e a f p r o -

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

306

E N Z Y M E S IN

FOOD AND

B E V E R A G E PROCESSING

t e i n c o n c e n t r a t e a c c e p t a b i l i t y as a human f o o d . This has l e d t o development o f p r o c e s s e s w h i c h produce a f i b e r f r e e p r o t e i n - c a r o t e n o i d complex f o r use as an ani m a l f e e d (18,19,20,21,22). R e c e n t l y , a number o f s o l v e n t e x t r a c t i o n and d i f f e r e n t i a l h e a t i n g t e c h n i q u e s have been d e v e l o p e d t o produce c o l o r l e s s o r l o w - c o l o r e d p r o t e i n c o n c e n t r a t e s (23,24,25,26,27,28,29,30,31,32,33). P r o d u c t i o n o f any o f the above p r o d u c t s r e q u i r e s the a v a i l a b i l i t y o f non-heated l e a f p r o d u c t s . Approxi m a t e l y 45% o f the l e a f p r o t e i n can be e x t r a c t e d from f r e s h a l f a l f a l e a v e s (33) w h i l e o n l y 5-15% o f a v a i l a b l e p r o t e i n can be e x t r a c t e d from a l f a l f a d r i e d a t 75-150°C (34) . Approaches t o E x t r a c t i o n o f Heat Denatured P r o t e i n From Seeds and L e a v e s Two e x p e r i m e n t a l approaches have been e v a l u a t e d i n experiments t o i n c r e a s e the y i e l d o f e x t r a c t e d p r o t e i n from h e a t - d e n a t u r e d seeds and l e a f s : enzymatic d i g e s t i o n and u l t r a s o n i c d i s p e r s i o n . C e l l u l a s e s and p r o t e a s e s have been used t o h y d r o l y z e p o r t i o n s o f the p l a n t m a t r i x t o a l l o w more e f f i c i ent d i s p e r s i o n and e x t r a c t i o n o f p r o t e i n s . Hang e t a l (35) showed pea bean p r o t e i n e x t r a c t a b i l i t y was i n c r e a sed by t r e a t m e n t w i t h A s p e r g i l l u s n i g e r c e l l u l a s e and Abdo and K i n g (36) and S r e e k a n t i a h e t a l , (37) reported i n c r e a s e d n i t r o g e n e x t r a c t i o n from soybeans, c h i c k p e a s and sesame f o l l o w i n g c e l l u l a s e t r e a t m e n t . Conversely Lu and K i n s e l l a (32) found a n o n - s i g n i f i c a n t i n c r e a s e i n a l f a l f a meal e x t r a c t a b i l i t y f o l l o w i n g c e l l u l a s e treatment. In our l a b o r a t o r i e s , c e l l u l a s e has n o t i n c r e a s e d p r o t e i n e x t r a c t i o n y i e l d s from a l f a l f a meal, screw e x p r e s s e d c o t t o n s e e d meal, o r hexane d e f a t t e d soybean meal. H y d r o l y s i s o f seed p r o t e i n s has been i n t e n s i v e l y investigated. A r z u e t a l (38) d e s c r i b e d the h y d r o l y s i s o f c o t t o n s e e d cake p r o t e i n s by 10 d i f f e r e n t p r o t e o l y t i c enzyme p r e p a r a t i o n s o f b a c t e r i a l , f u n g a l , p l a n t , and a n i m a l o r i g i n . A l l enzymes h y d r o l y z e d c o t t o n s e e d p r o tein. P r o t e o l y t i c enzymes have a l s o been shown t o hydr o l y z e soybean (39) and sesame meal (37) p r o t e i n s . In none o f t h e s e s t u d i e s was the e f f i c i e n c y o f p r o t e i n e x t r a c t i o n from a food s u b s t r a t e measured. The use o f u l t r a s o n i c energy t o i n c r e a s e s o l u b i l i z a t i o n o f p r o t e i n from h e a t d e n a t u r e d s o u r c e s i s a new development. Wang (10) i n c r e a s e d the e f f i c i e n c y o f p r o t e i n e x t r a c t i o n from a u t o c l a v e d soybean f l a k e s from 16% t o 58% by a p p l i c a t i o n o f u l t r a s o n i c waves. In a d d i t i o n , the u l t r a c e n t r i f u g e p a t t e r n s o f the e x t r a c t e d p r o t e i n s

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

18.

CHiLDS E T

AL.

307

Solubilization of Seed and Leaf Proteins

were t h e same o f t h o s e o f p r o t e i n s e x t r a c t e d from nona u t o c l a v e d samples by c o n v e n t i o n a l t e c h n i q u e s . M o l i n a and La Chance (40) i n c r e a s e d the e x t r a c t a b i l i t y o f p r o t e i n from h e a t t r e a t e d c o c o n u t meal by t r e a t m e n t w i t h a v a r i e t y o f p r o t e o l y t i c enzymes. In those e x p e r i m e n t s , the meal was i n c u b a t e d w i t h the p r o t e a s e and the r e s i d u e e x t r a c t e d w i t h d i l u t e a l k a l i . Y i e l d s o f up t o 80% were o b t a i n e d . In experiments w i t h c o t t o n s e e d meal and a l f a l f a meal (11,41), M o l i n a and L a Chanes's t e c h n i q u e s were modified (Figure 1). I n s t e a d o f s h a k i n g , the samples were s t i r r e d and s e p a r a t i o n o f the s o l i d s u b s t r a t e from the l i q u i d was a c c o m p l i s h e d by g r a v i t y f i l t r a t i o n through c o t t o n organdy r a t h e r than by c e n t r i f u g a t i o n .

25g Meal + Enzyme + 100 ml

liquid

I Stir

30 min.

a t 50°C

I Filter Filtrate (Enzyme F r a c t i o n )

Residue Suspend i n 100 0.75% NaOH Stir

30 min.

ml

of

a t 60oc

Filtrate (NaOH F r a c t i o n ) Figure 1. Flow sheet for proteolytic enzyme-chemical extraction of protein from heat-denatured substrates

P r o t e o l y t i c enzyme p r e t r e a t m e n t i n c r e a s e d e x t r a c t a b i l i t y o f p r o t e i n from h e a t d e n a t u r e d c o t t o n s e e d meal (Table I ) . W i t h o u t enzyme t r e a t m e n t , o n l y 15% o f the c o t t o n s e e d p r o t e i n was e x t r a c t e d by a two-step c h e m i c a l e x t r a c t i o n (11) . F i c i n t r e a t m e n t i n c r e a s e d the amount o f p r o t e i n e x t r a c t i o n a p p r o x i m a t e l y 2.5 t i m e s . Trypsin t r e a t m e n t was most e f f e c t i v e , c a u s i n g an approximate f i v e f o l d i n c r e a s e i n e x t r a c t i o n w i t h g r e a t e r than 65% of p r o t e i n b e i n g e x t r a c t e d .

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

308

E N Z Y M E S I N FOOD A N D B E V E R A G E PROCESSING

T a b l e I . E f f i c i e n c y o f a two-step p r o t e o l y t i c enzyme-chemical t e c h n i q u e f o r e x t r a c t i o n o f p r o t e i n from c o t t o n s e e d and a l f a l f a meal p r o t e i n s . A l l d a t a a r e t h e mean o f t h r e e r e p l i c a t e s + s t a n d a r d d e v i a t i o n (From 1 1 ) .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

Enzyme None Papain Ficin Trypsin

Total % Kjeldahl Protein Extracted C o t t o n s e e d Meal A l f a l f a Meal 15.1 16.0 42.7 69.4

+ + + +

2.3 2.4 1.8 5.7

21.9 23.6 34.1 60.2

+ + + +

4.6 2.8 11.3 5.7

Without enzyme t r e a t m e n t , o n l y 21.9% o f t h e a l f a l f a p r o t e i n was e x t r a c t e d (Table I ) . As w i t h c o t t o n s e e d meal, t r e a t m e n t w i t h p a p a i n d i d n o t markedly improve the e f f i c i e n c y o f e x t r a c t i o n (23.6%). F i c i n treatment i n c r e a s e d t h e amount o f p r o t e i n e x t r a c t e d a l m o s t twof o l d (34.1). T r y p s i n t r e a t m e n t was t h e most e f f e c t i v e , c a u s i n g an approximate t h r e e f o l d i n c r e a s e i n e x t r a c t i o n w i t h g r e a t e r than 60% o f a v a i l a b l e p r o t e i n b e i n g e x t r a cted. Parameters A f f e c t i n g t h e E n z y m a t i c - C h e m i c a l E x t r a c t i o n Process pH. E x p e r i m e n t s have been performed i n which t h e amount o f p r o t e i n e x t r a c t e d d u r i n g t h e enzymatic h y d r o l y s i s s t e p and the d i l u t e a l k a l i e x t r a c t i o n s t e p s were q u a n t i f i e d s e p a r a t e l y as a f u n c t i o n o f t h e pH o f t h e enzyme i n c u b a t i o n . T r y p s i n t r e a t m e n t was more e f f e c t i v e than f i c i n o r b r o m e l a i n a t pH's from 4.0 - 9.5 (Table I I ) . There was f i n i t e b u t l i t t l e v a r i a t i o n amongst the enzyme f r a c t i o n s . T r y p s i n t r e a t m e n t , howe v e r , r e s u l t e d i n a two t o t h r e e f o l d i n c r e a s e i n t h e p r o t e i n c o n t e n t o f t h e NaOH f r a c t i o n r e l a t i v e t o f i c i n or bromelain treatment. T h i s would s u g g e s t t h a t t r y p s i n a c t s on t h e s u b s t r a t e i n a manner which a l l o w s the p r o t e i n t o become more d i s p e r s a b l e i n d i l u t e a l k a l i . A t l e s s than pH 6.5, b r o m e l a i n was t h e most e f f i c i e n t i n t h e enzyme e x t r a c t i o n s t e p i n a l f a l f a meal (Table I I I ) . A t pH's g r e a t e r than 6.5, t r y p s i n and b r o m e l a i n were more e f f e c t i v e than f i c i n . As w i t h c o t t o n s e e d , t h e m a j o r i t y o f t h e p r o t e i n was e x t r a c t e d i n t h e d i l u t e a l k a l i s t e p s u g g e s t i n g the enzymes a r e a c t i n g i n a manner which a l l o w s t h e p r o t e i n t o become more d i s p e r s a b l e i n t h e a l k a l i .

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2. 10+0.7

0.70+0.2

1.40+0.6

3.40+0.2

2.51+0.8

9.0

1. 80+0.9

0.60+0.2

1.30+0.7

3.40+0.4

2.48+0.9

8.0

1. 80+0.9

0.60+0.1

1.30+0.6

2.55+0.4

2.50+0.6

7.0

1.30+0.2

1. 60+1.2

0.40+0.1

1.15+0.7

2.60+0.6

2.40+0.4

6.0

1.10+0.3

1. 30+0.2

0.80+0.2

1.10+0.6

2.30+0.4

2.45+0.5

5.0

1.30+0.3

1.10+0.1

1.20+0.2

0.70+0.2

1. 30+0.6

0.70+0.2

1.20+0.8

2.05+0.1

1.80+0.4

4.0

1.40+0.3

0. 80+0.2

Enz .

0.50+0.2

NaOH F r a c .

Bromelain Frac. NaOH F r a c .

0.75+0.3

Enz.

Ficin Frac.

0.50+0.2

1.20+0.2

Enz.

3.0

pH

Trypsin Frac. NaOH F r a c .

Grams o f p r o t e i n e x t r a c t e d from 25 g o f c o t t o n s e e d meal i n a two s t e p p r o t e o ­ l y t i c enzyme-chemical e x t r a c t i o n t e c h n i q u e u t i l i z i n g t r y p s i n , b r o m e l a i n , o r ficin. E x t r a c t a b i l i t y i s p r e s e n t e d as a f u n c t i o n o f t h e pH o f the enzyme r e a c t i o n media.

Table II

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

I—»

1

3

•Α

•ή.

CO

δ*

«Η.

r

ο

CO

η

S

3

00

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

0.53+0.1

0.62+0.1

0.95+0.1

0.97+0.1

1.10+0.1

0.72+0.1

0.78+0.1

0.92+0.2

1.00+0.2

1.05+0.2

1.05+0.2

4.0

5.0

6.0

7.0

8.0

9.0

1.22+0.2

0.52+0.2

0.75+0.1

Trypsin Frac. NaOH F r a c .

3.0

Enz.

0.98+0.1

0.49+0.2 0.80+0.1

0.48+0.1

0.98+0.1

0.55+0.2 0.83+0.1

0.92+0.1

0.90+0.2

0.55+0.2

0.53+0.1

0.52+0.1

1.10+0.1

0.82+0.1

0.81+0.1

0.41+0.0

0.68+0.1

1.00+0.1

0.43+0.2

0.80+0.0

0.68+0.1

0.74+0.1

0.39+0.1

0.38+0.0

1.20+0.3

Bromelain NaOH F r a c . Frac.

0.72+0.2

Enz.

0.72+0.1

Ficin Frac. NaOH F r a c .

0.34+0.1

Enz.

Grams o f p r o t e i n e x t r a c t e d from 25 g o f a l f a l f a meal i n a two s t e p p r o t e o l y t i c enzyme-chemical e x t r a c t i o n t e c h n i q u e u t i l i z i n g t r y p s i n , b r o m e l a i n o r f i c i n . E x t r a c t a b i l i t y i s p r e s e n t e d as a f u n c t i o n o f t h e pH o f t h e enzyme r e a c t i o n media.

Table I I I

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

18.

CHiLDS E T

AL.

311

Solubilization of Seed and Leaf Proteins

One p o s s i b l e h y p o t h e s i s t o e x p l a i n the above d a t a i s t h a t the p r o t e i n s a r e bound t o a polymer l i g a n d a f t e r h e a t treatment and the p r o t e o l y t i c enzyme c l e a v e s the two m o l e c u l e s . A c a n d i d a t e polymer might be d i e t a r y fiber. To t e s t t h i s h y p o t h e s i s , a N e u t r a l D e t e r g e n t F i b e r (NDF) e x t r a c t o f c o t t o n s e e d meal was prepared (Van S o e s t , 1973). C o t t o n s e e d meal samples were a l s o produced from the e x t r a c t i o n r e s i d u e s . I t was n o t e d t h a t the Ν c o n t e n t o f the NDF samples from t r y p s i n t r e a t e d c o t t o n s e e d meal was much lower than t h a t from o t h e r samples (41) . T h e r e f o r e , t r y p s i n was a b l e t o c l e a v e p r o t e i n - f i b e r bonds more e f f i c i e n t l y than o t h e r enzymes. T h i s s t r o n g l y s u g g e s t s , b u t n o t c l e a r l y prove, the s u p e r i o r performance o f t r y p s i n may be based on i t s a b i l i t y to c l e a v e f i b e r - p r o t e i n bonds. T h i s a c t i o n c o u l d r e l e a s e n o n - h y d r o l y z e d p r o t e i n , r a t h e r than w a t e r s o l u b l e fragments; and the whole p r o t e i n might then e x h i b i t i t s normal non-denatured s o l u b i l i t y c h a r a c t e r ­ istics in dilute alkali. T h i s h y p o t h e s i s i s g i v e n add­ i t i o n a l c r e d e n c e by r e c e n t o b s e r v a t i o n s t h a t 60% o f N i t r o g e n s o l u b i l i z e d from c o t t o n s e e d by t r y p s i n t r e a t ­ ment has a m o l e c u l a r w e i g h t g r e a t e r than 1000 d a l t o n s (42) . R e l a t i o n s h i p o f enzyme c o n c e n t r a t i o n t o p r o t e i n extraction. The r e l a t i o n s h i p o f enzyme c o n c e n t r a t i o n to p r o t e i n e x t r a c t i o n i n c o t t o n s e e d was c u r v i l i n e a r (Table I V ) . Treatment w i t h a t r y p s i n c o n c e n t r a t i o n o f 0.03g/25g meal caused g r e a t e r than 75% o f the p r o t e i n to be e x t r a c t e d . A t g r e a t e r than 0.03g enzyme/25g meal, t h e r e was a lowered r a t e o f i n c r e a s e i n p r o t e i n e x t r a c t ability.

Table

IV

E f f e c t o f T r y p s i n C o n c e n t r a t i o n on the E f f i c i e n c y o f a Two-Step T r y p s i n - C h e m i c a l E x t r a c t i o n o r P r o t e i n From C o t t o n s e e d and A l f a l f a Meal Amount o f Trypsin/25g Substrate 0 0.01 0.03 0.06 0.12 0.24

T o t a l % Kjedahl P r o t e i n Extracted Cottonseed 16.4 18.2 78.4 82.6 86.5

+ + + + +

2.3 1.7 3.1 4.3 6.1

Meal

Alfalfa 21.8 27.3 41.7 57.5 64.3 73.4

+ + + + + +

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Meal 2.1 1.4 4.8 7.3 2.8 4.8

312

ENZYMES

IN FOOD A N D B E V E R A G E

PROCESSING

The r e l a t i o n s h i p o f t r y p s i n c o n c e n t r a t i o n t o e x t r a c t a b l e p r o t e i n was q u i t e d i f f e r e n t f o r a l f a l f a meal ( T a b l e I V ) . The e f f i c i e n c y o f the p r o c e s s i n c r e a s e d w i t h i n c r e a s i n g amounts o f t r y p s i n up t o 0.24g t r y p s i n / 25g a l f a l f a meal. T h i s i s 8 times the c o n c e n t r a t i o n used i n c o t t o n s e e d meal.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

E f f e c t o f U l t r a s o n i c Energy on the Enzyme-Chemical Technique Because o f the p o t e n t i a l advantages a s s o c i a t e d w i t h use o f the u l t r a s o n i c t e c h n i q u e (e.g., c a v i t a t i o n o f sample t o c r e a t e new s i t e s f o r enzyme a c t i v i t y , i n creased mixing e f f i c i e n c y , decreased r e a c t i o n times, and r e d u c e d energy e x p e n d i t u r e s ) , e x p e r i m e n t a l s t u d i e s have been performed t o determine the e f f e c t s o f u l t r a s o n i c energy on the p r o t e o l y t i c enzyme-chemical t e c h n i q u e i n c o t t o n s e e d and soybean meal. The combined e n z y m a t i c - c h e m i c a l - u l t r a s o n i c t e c h n i q u e i n c r e a s e d the e f f i c i e n c y o f t o t a l p r o t e i n e x t r a c t i o n from c o t t o n s e e d meal o v e r enzyme use a l o n e ( T a b l e V ) . In soybean meal, the i n c r e a s e i n e x t r a c t i o n e f f i c i e n c y was a p p r o x i m a t e l y 10%.

Table V S o l u b i l i z a t i o n o f c o t t o n s e e d and soybean meal p r o t e i n by e n z y m a t i c - c h e m i c a l t e c h n i q u e s w i t h and w i t h o u t u l t r a s o n i c energy

Technique T r y p s i n , no ultrasonic energy T r y p s i n , 200 accoustical watts

Total % Kjeldahl Protein Extracted C o t t o n s e e d Meal Soybean Meal

65.66+4.98

80.72+3.85

72.99 + 3.18

91.32

+

4.70

The p r e s e n c e o f u l t r a s o n i c energy a l s o i n c r e a s e s the r a t e o f t h e e n z y m a t i c - c h e m i c a l p r o c e d u r e w i t h o u t u l t r a s o n i c energy, a p p r o x i m a t e l y 120 minutes was r e q u i r e d f o r the e x t r a c t i o n (11,42,4 3 ) . With the a d d i t i o n o f u l t r a s o n i c energy, t h e r e were no s i g n i f i c a n t d i f f e r ences i n the i n the p e r c e n t a g e p r o t e i n e x t r a c t e d f o r s o n i c a t i o n times v a r y i n g from 1 - 1 6 min o f t r y p s i n c o t t o n s e e d meal m i x t u r e s ( T a b l e V I ) . These d a t a s u g g e s t

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

18.

CHILDS ET AL.

313

Solubilization of Seed and Leaf Proteins

t h a t s o n i c a t i o n times o f 1 min a r e adequate. The same was t r u e f o r soybean meal where 90% o f a v a i l a b l e p r o t e i n was e x t r a c t e d i n one minute. Therefore, u l t r a s o n i c energy i n c r e a s e s t h e e f f i c i e n c y o f enzyme s o l u b i l i c a t i o n procedures.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

T a b l e VI E f f e c t o f S o n i c a t i o n Time on E x t r a c t i o n o f P r o t e i n From C o t t o n s e e d and Soybean Meal Sonication Time (Min) 1 2 4 8 12 16

Total % Kjeldahl Protein Extracted C o t t o n s e e d Meal Soybean Meal 70.0 67.5 67.5 73.2 61.3 71.6

Functionality of Extracted

+ + + + + +

1.2 1.8 3.4 6.1 9.0 7.8

93.7 93.9 95.3 94.8

+ + + +

4.2 2.4 3.8 2.7

Protein

P r o t e i n e x t r a c t e d from c o t t o n s e e d meal by t h e enzy m a t i c c h e m i c a l p r o c e s s i s q u i t e f u n c t i o n a l . The s o l u b i l i t y o f p r o t e i n c o n c e n t r a t e s produced by i s o e l e c t r i c p r e c i p i t a t i o n was t y p i c a l o f s o l u b i l i t y o f c o t t o n s e e d p r o t e i n as a f u n c t i o n o f pH (42). S o l u b i l i t y was minimal a t a c i d i c pH's and i n c r e a s e d i n b a s i c pH's (Crenwelge e t a l . , 1974). There were no marked d i f f e r ences i n s o l b u i l i t y i n 0.1 M NaCl v s w a t e r . T h i s sugge s t s l i t t l e o r no i n t e r a c t i o n between pH and i o n i c strength. There were no s i g n i f i c a n t d i f f e r e n c e s i n t h e w a t e r o r o i l - h o l d i n g c a p a c i t i e s o f t h e samples (Table V I I ) . However, t h e e m u l s i f y i n g c a p a c i t y o f t h e NaOH f r a c t i o n produced by t h e combined t e c h n i q u e was s i g n i f i c a n t l y g r e a t e r than t h a t o f o t h e r f r a c t i o n c o n c e n t r a t e s . It has o f t e n been s u g g e s t e d t h a t e m u l s i f y i n g c a p a c i t y i s a f u n c t i o n o f m o l e c u l a r r a d i u s (45) and t h e s e d a t a tend to c o n f i r m t h a t o b s e r v a t i o n s i n c e t h e h i g h e s t e m u l s i f i c a t i o n c a p a c i t y was n o t e d w i t h t h e c o n c e n t r a t e having the l o w e s t amount o f low m o l e c u l a r w e i g h t n i t r o g e n ( 4 2 ) .

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

ENZYMES IN FOOD AND BEVERAGE PROCESSING

314

Table V I I

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

F u n c t i o n a l i t y o f c o t t o n s e e d meal p r o t e i n i s o l a t e s p r e p a r e d by the p r o t e l y t i c enzyme-chemical t e c h n ­ i q u e (PC) and the u l t r a s o n i c - e n z y m a t i c (UE) t e c h ­ nique. ( A l l d a t a a r e t h e mean o f t h r e e r e p l i c a t e s + standard deviation) Oilholding capacity (ml/g)

Sample Enzyme fraction (PC) NaOH fraction (PC) NaOH fraction (UE)

4.03

+ 1.10

Waterholding capacity (ml/g)

2.43

+ 0.86

Emulsifying capacity (ml/g)

333

+

4.0

3.53 + 0.32

2.80 + 0.26

443 + 4.0

3.66 + 0.15

2.73 + 0.15

586 + 2.5

In summary, i n v e s t i g a t i o n s w i t h e x t r e m e l y h e a t de­ n a t u r e d s u b s t r a t e s (NSI 0.15) such as c o t t o n s e e d meal, a l f a l f a meal and soybean meal have shown t h a t t r y p s i n t r e a t m e n t w i l l a l l o w e f f i c i e n t p r o t e i n e x t r a c t i o n . The e f f i c i e n c y o f t h i s e x t r a c t i o n can be markedly i n c r e a s e d by i n t e r f a c i n g u l t r a s o n i c energy w i t h t h e system. Iso­ l a t e s produced from the e x t r a c t e d p r o t e i n s a r e f u n c t i o n ­ al. REFERENCES 1. Koshiyama, I. 1972. Agri. Biol. Chem. 36:62. 2. Altschul, A.M., N . J . N e u c e r e , A.A. Woodham, and J.M. Dechary. 1964. N a t . 203:501. 3. Daussant, J., N . J . N e u c e r e , and L . Y . Y a t s u . 1969. P l a n t P h y s i o l . 44:471. 4. S t . A n g e l o , A.J., L . Y . Y a t s u , and A.M. Altschul. 1968. A r c h . Biochem. B i o p h y s . 124:199. 5. V a r n e r , J.E. and G. S c h i d l o v s k y . 1963. P l a n t P h y s i o l . 38:139. 6. Graham, Τ . A . and B . E . S . Gunning. 1970. N a t . 228:81. 7. M e t z g e r , Η . , M.B. S h a p i r o , J.E. Mosiman, and J.E. V i n t o n . N a t . 219:1166. 8. D i e c k e r t , J.W. and M.C. D i e c k e r t . 1976. J Fd Sci. 41:475. 9. Sugarman, N. 1956. U.S. P a t e n t 2, 762, 820.

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

18.

CHILDSETAL.

Solubilization of Seed and Leaf Proteins

315

10. Wang, L.C. 1975. J F d Sci. 40:549. 11. C h i l d s , E.A. 1975. J Fd Sci. 40:78. 12. M a r t i n e z , W . H . , Berardi, L.C. and L.A. G o l d b l a t t . 1970. J A g r F d Chem. 1 8 : 9 6 1 . 13. V i x , H.L.E. 1968. Oil Mill G a z . 72:53. 14. M a r t i n e z , W . H . 1969. P r o c . XVII C o t t o n P r o c Clin. ARS Report 72-69:18. 15. Circle, S.J. and A.K. S m i t h . 1972. "Soybeans:Chemistry and T e c h n o l o g y . " 638. AVI P u b l i s h i n g C o . 16. N e u r a t h , H. and K. Bailey. 1973. "The P r o t e i n s . " 542. Academic P r e s s . 17. Pirie, N.W. 1971. "Leaf P r o t e i n : I t s Agronomy, P r e p a r a t i o n , Q u a l i t y and U s e . " IBP Handbook #20. Blackwell Scientific. 18. K n u c k l e s , B.E., R.R. S p e n c e r , M.E. L a z a r , E.M. Bickoff. and G.O. K o h l e r . 1970. J A g r F d Chem. 18:1086. 19. K o h l e r , G.O. and E.M. Bickoff. 1970. T h i r d Int'l Congress o f Food S c i e n c e and T e c h n o l o g y . Wash, D.C. 20. Lazar,M.E., R.R. S p e n c e r , B.E. K n u c k l e s , and E.M.J. B i c k o f f . 1971. J A g r Fd Chem. 19:944. 21. Miller, R.E., R.H. Edwards, M.E. L a z a r , E.M. Bickoff, and G.O. K o h l e r . 1972. J Agr Fd Chem. 20:1151. 22. S p e n c e r , R.R., A.C. M o t t o l a , E.M. B i c k o f f , J.P. C l a r k , and G.O. K o h l e r . 1971. J A g r Fd Chem. 19:504. 23. Chayen, I.H., R.H. S m i t h , G.R. T r i s t r a m , D. Thirkell, and T . Webb. 1961. J S c i Fd A g r . 12:502. 24. Hartman, G.H., W.R. A k e s o n , and M.A. Stohmann. 1967. J A g r F d Chem. 1 5 : 7 4 . 25. Huang, K.T., M.C. T a o , M. B o u l e t , R.R. Riel, J.P. Julien, and G.J. G r i s s o m . 1971. Can I n s t Fd T e c h . 4:85. 26. W i l s o n , R.F., and J.M.A. Lilley. 1965. J Sci F d A g r . 16:173. 27. B y e r s , M. 1967. J S c i Fd A g r . 18:34. 28. Cowlishaw, S.J., D.E. E y l e s , W . F . Raymond, and J.M.A. Tilley. 1956. J S c i F d A g r . 7:775. 29. deFremery, D., E.M. B i c k o f f , and G.O. K o h l e r . 1973. J A g r F d Chem. 20:1155. 30. Henry, K.M. and J.E. F o r d . 1965. J Sci Fd Agric. 16: 425. 31. L e x a n d e r , K., R. C a r l s o n , V . S c h a l e n , A. Simonsson, and T . L u n d b o r g . 1970. A n n a l . A p p l . Biol. 66:193. 32. Subba-Rau, B.H., S. Mahadeviah, and N . S i n g h . 1969. J S c i F d A g r . 20:355. 33. Edwards, R.H., R.E. Miller, D. deFremery, B.E. K n u c k l e s , E.M. B i c k o f f , and G.O. K o h l e r . 1975. J Agr F d Chem. 23:620. 34. L u , P.S. and J.E. Kinsella. 1972. J Fd Sci. 37:94. 35. Hang, Y.D., W . F . W i l k e n s , A.S. Hill, K.H. S t e i n k r a u s , and L.R. H a c k l e r . 1970. J A g r Fd C h . 1 8 : 9 .

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 29, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0047.ch018

316

E N Z Y M E S I N FOOD A N D B E V E R A G E PROCESSING

36. Abdo, K.M. and K.W. K i n g . 1967. J A g r Fd Chem. 15:83. 37. S r e e k a n t i a h , K.R., H. E b i n e , J. O h t a , and M . Nakans. 1969. F d T e c h . 23:1055. 38. A r z u , Α., H. Mayorga, J. G o n z a l e s , and C . R o l z . 1972. J A g r F d Chem. 20:805. 39. F u j i m a k i , M . H. K a t o , S. Arai, and E. Tamaki. 1968. Fd T e c h . 22:889. 40. M o l i n a , M . R . and P . A . L a C h a n c e . 1973. J Fd Sci. 38: 607. 41. C h i l d s , Ε . A . 1976. U n p u b l i s h e d d a t a . 42. C h i l d s , E.A. and J.L. Forte'. 1976. J F d Sci. 41: 652. 43. K u , Y . and E.A. Childs. 1976. Tenn Fm Hm Sci. 97:26. 44. C r e n w e l g e , D.D., C . W . Dill, P . T . T y b o r , and W . A . Landmann. 1974. J Fd Sci. 39:175. 45. C a r p a n t e r , J.L. and R.L. Saffle. 1965. Fd T e c h . 1567.

Ory and St. Angelo; Enzymes in Food and Beverage Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1977.