Utilization of Petroleum Coke in Metallurgical Coke Making - American

ROE has the closest correlation with faQs(100 - VM), and MFE ' with. faQs. Examination on Petroleum Coke. Evaluation has been made by assuming...
3 downloads 0 Views 985KB Size
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

18 Utilization of Petroleum Coke in Metallurgical Coke Making Kenji Matsubara, Hidetoshi Morotomi, and Takashi Miyazu Technical Research Center, Nippon KokanK.K.,Minamiwatarida-cho 1-1, Kawasaki-ku, Kawasaki 210, Japan In Japan, NKK was the f i r s t company to use petroleum coke as the source for metallurgical coke making in 1967. Since then, petroleum coke has been utilized to increase carbon content and decrease ash content of coal blends used by Japanese iron and steel companies. This report includes the following subjects: 1. The development of the procedure for the use of petroleum coke by Japanese iron and steel companies. 2. The discussions about the effect of petroleum coke on coke strength. 3. The pitch addition as the advanced utilization. In order t o maintain high p r o d u c t i v i t y i n a b l a s t furnace, i t i s n e c e s s a r y t o u s e h i g h - q u a l i t y coke h a v i n g h i g h s t r e n g t h and c o n t a i n i n g few i m p u r i t i e s such a s ash and s u l f u r . S t r e n g t h i s p a r t i c u l a r l y i m p o r t a n t among t h e p r o p e r t i e s o f coke. S i n c e coke s t r e n g t h l a r g e l y depends upon c o a l i f i c a t i o n rank and f l u i d i t y o f c o a l b l e n d s , i t i s p o s s i b l e t o manufacture h i g h - s t r e n g t h coke b y k e e p i n g t h e s e p r o p e r t i e s at appropriate l e v e l s . Japan i m p o r t s c o k i n g c o a l s from t h e U n i t e d S t a t e s , Canada, A u s t r a l i a and many o t h e r f o r e i g n c o u n t r i e s . F u t u r e s u p p l i e s o f c o k i n g c o a l s i n v o l v e s some u n c e r t a i n t y r e l a t i v e t o procurement o f g o o d - q u a l i t y c o a l s i n s u f f i c i e n t q u a n t i t i e s . V a r i o u s measures have been examined t o s o l v e t h i s p r o b l e m i n Japan. One such measure i s t h e e x p a n s i o n o f t h e scope o f raw m a t e r i a l s used f o r coke-making. Use o f p e t r o l e u m coke as a raw m a t e r i a l f o r coke-making f a l l s i n t o t h i s c a t e g o r y . F i g u r e 1 shows a n n u a l consumptions o f p e t r o l e u m coke and raw m a t e r i a l s f o r coke-making b y t h e Japanese c o k i n g i n d u s t r y . W i t h a v i e w toward t h e e f f e c t i v e u t i l i z a t i o n o f c a r b o n s o u r c e s , Nippon Kokan K.K. s u c c e s s f u l l y u t i l i z e d p e t r o l e u m coke f o r t h e f i r s t t i m e i n Japan i n 1967, t a k i n g advantage o f t h e l o w e r a s h c o n t e n t r e l a t i v e t o t h a t i n c o a l s . Now t h a t p e t r o l e u m coke i s used f o r coke-making i n t h e Japanese coke i n d u s t r y as shown i n F i g u r e 1, i t s a p p l i c a t i o n may be c o n s i d e r e d as an e s t a b l i s h e d t e c h n o l o g y . The r a t i o o f i t s u s e r e l a t i v e t o c o k i n g c o a l s i s , however, s t i l l a t t h e v e r y low l e v e l o f 1.0%. T a b l e I shows r e s u l t s o f e x a m i n a t i o n s 0097-6156/86/0303-0251$06.00/0 © 1986 American Chemical Society

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

252 PETROLEUM-DERIVED CARBONS

F i g u r e 1. i n Japan. Annual consumption o f raw m a t e r i a l s f o r coke making

18.

MATSUBARA ET AL.

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

Table I .

Petroleum Coke in Metallurgical Coke Making

Views o f Japanese s t e e l companies on u s e o f p e t r o l e u m coke

Status of petroleum coke blending test

Company C

Company D

NKK

View on blending limit

Blending ratio: DPC: 0, 3, 5 and 7% FPC: 2, 4, 6 and 8%

1. Blending l i m i t : 5-6%; 2. No marked difference between DPC and FPC, DPC being slightly better. 3. Increased blending of PC decreased coke ash and increased TS, and particularly because of S problem, actual use of PC is limited to about 3%.

Blending ratio: DPC: 2 and'5% FPC: 5% selective blending to partial briquetting of coal charge is also applied.

1. Blending l i m i t is 3-5%; partial briquetting of coal charge; 2. DPC is superior to FPC.

Blending ratio: DPC: 0-15%

1. Increasing the amount of added DPC leads to almost linear decrease in DI. 2. Decrease in DI is eliminated by keeping constant Ro and T.In. and maintaining MF at a certain level.

Blending ratio: DPC: 0, 5, 10 and 15% FPC: 0, 5, 10 and 15%

1. Blending l i m i t is about 10%; 2. No marked difference between FPC and DPC.

Blending ratio: 1) To ordinary and partial briquetting of coal charge: 6% DPC 2) To partial briquetting of coal charge: 0, 2, 4, 6, 8, 10 and 12% FPC

1. Blending l i m i t : Ordinary coal : 4-5% partial briquetting of coal charge: 8%

Company A

Company Β

253

2. FPC is a l i t t l e inferior to DPC.

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

254

PETROLEUM-DERIVED CARBONS

r e g a r d i n g use o f p e t r o l e u m coke a t t h e f i v e major s t e e l companies i n Japan. (5) A c c o r d i n g t o t h e comprehensive summary o f t h e i r v i e w s , the b l e n d i n g l i m i t o f p e t r o l e u m coke i n o r d i n a r y b l e n d r e l a t i v e t o c o k i n g c o a l s i s about 5% a t t h e h i g h e s t , and t h e q u a l i t y o f d e l a y e d coke i s b e t t e r t h a n t h a t o f f l u i d coke. I n t h i s r e p o r t , t h e a u t h o r s e v a l u a t e p e t r o l e u m coke as a raw m a t e r i a l f o r coke-making and examine t h e above-mentioned b l e n d i n g limit. B e s i d e s p e t r o l e u m coke, e x a m i n a t i o n and e v a l u a t i o n o f p e t r o l e u m r e s i d u a l o i l a r e a l s o p r e s e n t e d as a more e f f e c t i v e use as a raw m a t e r i a l . E v a l u a t i o n o f Coking

Coals

Japan i m p o r t s c o k i n g c o a l s f o r b l a s t f u r n a c e s from many f o r e i g n c o u n t r i e s . The q u a l i t y o f coke d e r i v e d from t h e s e c o a l s , b e i n g s u b j e c t t o o p e r a t i n g c o n d i t i o n s o f t h e coke oven b a t t e r y , m a i n l y depends upon p r o p e r t i e s o f t h e c o k i n g c o a l s ; coke o f an e x c e l l e n t q u a l i t y i s a v a i l a b l e from a p p r o p r i a t e c o m b i n a t i o n s o f c o a l s . Blendi n g d e s i g n o f c o a l s forms one o f t h e most remarkable f e a t u r e s o f t h e Japanese coke-making t e c h n o l o g y . B l e n d i n g d e s i g n o f c o a l s may be summarized as f o l l o w s . ( 1 ) The most i m p o r t a n t coke p r o p e r t y i s t h e s t r e n g t h , w h i c h i s commonly e x p r e s s e d by J I S drum i n d e x i n Japan. L a r g e - c a p a c i t y b l a s t f u r n a c e e n g i n e e r s i n Japan a s s e r t t h a t coke s h o u l d have a J I S drum s t r e n g t h , as e x p r e s s e d i n DI30/15, o f a t l e a s t 92. E v a l u a t i o n o f a c o k i n g c o a l r e l a t i v e t o t h e coke s t r e n g t h may be e x p r e s s e d w i t h two p a r a meters: t h e mean maximum r e f l e c t a n c e o f v i t r i n i t e p a r t o f c o a l (Ro) r e p r e s e n t i n g t h e degree o f c o a l i f i c a t i o n rank o f t h e c o a l , and t h e maximum f l u i d i t y (MF) i n d i c a t i n g t h e c o k i n g p r o p e r t y o f t h e c o a l . F i g u r e 2 i l l u s t r a t e s t h e r e l a t i o n s h i p between t h e coke s t r e n g t h (DI30/15) and t h e maximum f l u i d i t y (MF) o f b l e n d e d c o a l s i n t h e coke oven b a t t e r y a t Nippon K o k a n s Fukuyama Works w i t h t h e r e f l e c t a n c e (Ro) o f b l e n d e d c o a l s as t h e parameter. A c c o r d i n g t o t h i s f i g u r e , a t an MF o v e r 200 DDPM ( D i a l D i v i s i o n p e r Minute) w i t h a c o n s t a n t Ro, t h e v a l u e o f DI30/15 i s maximized. W i t h i n t h e range o f o v e r 200 DDPM, i t i s n e c e s s a r y t o i n c r e a s e Po w h i c h c o r r e s p o n d s t o t h e c o a l i f i c a t i o n rank o f b l e n d e d c o a l s , i n o r d e r t o r a i s e t h e s t r e n g t h . T h i s range i s t h e r e f o r e r e f e r r e d t o as the c o a l rank c o n t r o l r e g i o n . I n t h e r e g i o n o f MF under 200 DDPM, i t s u f f i c e s t o i n c r e a s e t h e f l u i d i t y (MF) o f b l e n d e d c o a l s i n o r d e r t o r a i s e t h e coke s t r e n g t h : t h i s range i s t h e r e f o r e c a l l e d t h e f l u i d i t y c o n t r o l r e g i o n . W i t h an Ro o f b l e n d e d c o a l s o f 1.15, a DI30/15 o f 92 can be ensured b y h o l d i n g MF a t 200 DDPM. A s i m i l a r t e s t was c a r r i e d o u t i n a 20-kg t e s t oven a t Nippon Kokan s T e c h n i c a l Research C e n t e r as shown i n F i g u r e 3. (2) C o k i n g c o n d i t i o n s i n c l u d e d a c o k i n g t e m p e r a t u r e o f 880°C and a c o k i n g t i m e o f 6.5 Hrs. I n t h i s c a s e , t h e c o k i n g speed i s v e r y h i g h , so t h a t MF c o r r e s p o n d i n g t o t h e s a t u r a t i o n o f s t r e n g t h i s r a t h e r low a t about 80 DDPM. I f Ro o f b l e n d e d c o a l s i s k e p t a t 1.15 under t h e s e c o n d i t i o n s , a DI30/15 o f 92 c a n be ensured. Use o f t h i s s m a l l - c a p a c i t y t e s t oven c a n f a c i l i t a t e an e x p e r iment, and t h e e x p e r i m e n t s p r e s e n t e d i n t h i s r e p o r t were conducted i n t h i s oven. I n t h i s t e s t oven, t h e v a l u e o f MF o f 80 DDPM forms the boundary between t h e f l u i d i t y c o n t r o l r e g i o n and t h e c o a l rank control region. 1

1

18.

255

Petroleum Coke in Metallurgical Coke Making

MATSUBARA ET AL.

15

92.5 92

Fluidity Control Region

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

91

Ν

Coal Rank Control Region

90 X

Fluidity Control Region (negative)

Boundary Region

a> T3

_c Ε

Û

1.5

2.0

2.5

3.0

3.5

1000

2000 3000

1

30

50

100

200

300

500

log MF DDPM

F i g u r e 2 . R e l a t i o n between G i e s e l e r max. f l u i d i t y o f b l e n d s and drum s t r e n g t h o f coke y i e l d e d i n Fukuyama Works.

''jr' / / /

,

•- ι --π

ο

—m

- Ο

Ο

S

S

Fluidity Control Region

ι—-ο

/s / Λ6/ /

O.Coal blend

Q

74μ 72 70 1.5

I :Ro=1 .20 II : Ro = 1.15 III : Ro = 1.10

1.6 1

40

1.7 50

1.

1.9

mJ

I

2.0 I

2.1

2.2

10g MF

1

60 70 80 90 100 120 140 160180 MF(ddpm)

F i g u r e 3. R e l a t i o n between MF o f c o a l b l e n d s and s t r e n g t h o f coke made b y s m a l l t e s t oven.

256

PETROLEUM-DERIVED CARBONS

C o a l s produced i n v a r i o u s p a r t s o f t h e w o r l d may be a r r a n g e d i n terms o f Ro and MF as shown i n F i g u r e 4, w h i c h i s r e f e r r e d t o as t h e MOF diagram. Thus, Ro and MF have s i g n i f i c a n t meanings i n t h e e v a l u a t i o n o f a c o a l i n terms o f coke s t r e n g t h . I n a d d i t i o n t o Ro and MF i n e r t m a t t e r s o f c o a l such as a s h and s u l f u r , which do n o t s o f t e n and m e l t , a r e i m p o r t a n t p r o p e r t i e s o f c o a l t o be e v a l u a t e d . The r e l a t i o n s between FOB p r i c e s o f c o a l s from v a r i o u s p a r t s o f t h e w o r l d and t h e above-mentioned f a c t o r s were a n a l y z e d by m u l t i p l e r e g r e s s i o n a n a l y s i s . (3) T h i s p e r m i t s economic e v a l u a t i o n o f c o a l s as raw m a t e r i a l s f o r coke-making. Petroleum r e s i d u a l o i l s and p e t r o l e u m coke can s i m i l a r l y be e v a l u a t e d as raw m a t e r i a l s . The most d i f f i c u l t problem here i s how t o e v a l u a t e f a c t o r s c o r r e s p o n d i n g t o Ro and MF i n c o a l s . (6^) This report presents p r i m a r i l y an e s t i m a t i o n o f such f a c t o r s f o r e v a l u a t i o n .

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

f

T e s t Method T e s t Samples. Main p r o p e r t i e s o f t h e r e s i d u a l o i l s used i n t h e p r e s e n t t e s t a r e r e p r e s e n t e d i n Table I I . I t s h o u l d be n o t e d i n t h i s t a b l e t h a t : No. 1 i s propane d e a s p h a l t e d a s p h a l t ; Nos. 2 t o 7 a r e p e t r o l e u m p i t c h e s d e r i v e d from r e s i d u a l o i l h e a t t r e a t e d under v a r i o u s c o n d i t i o n s ; No. 8 i s KRP p i t c h made by Kureha Chemical I n d u s t r y from crude o i l h e a t t r e a t e d w i t h h o t steam a t temperatures o v e r 1,000°C; and Nos. 9 and 10 a r e b o t h r e s i d u a l o i l s from c o a l , No. 9 b e i n g s o l v e n t r e f i n e d c o a l made by NKK and No. 10 b e i n g h e a t t r e a t e d c o a l t a r p i t c h . These Nos. 1 t o 10 a r e t y p i c a l examples o f b i n d i n g m a t e r i a l f o r coke-making i n Japan. Table I I

Residual Oil (NO.) 1 2 3 4 5 6 7 8 9 10

Ash

Properties of residual o i l VM

T.S

C/H

Reflectance

(dbX) (dbX) (dbx) (atomic) Ro tr

94.8

0.19

0 . 5 6

0 . 0 5

85.9

5.30

0 . 6 7

tr

75.7

6.75

0 . 8 2

0 . 8 0

55.5

3.75

0.96

40.3

0 . 3 8 0.11

tr



Ra

fa

(%)

QS

log (MFc) (*)

4.26

0.142

too

5.27

0.316

100

15.0

0.30

6.25

0.471

100

13.4

1.03

0 . 4 3

7.30

0.581

8 0 . 2

11.1

6.80

1.23

1.10

9.28

0.637

85.1

11.4

35.1

6.44

1.29

1.05

9.11

0.651

63.7

9.2

36.5

5.93

1.83

0 . 7 3

7.95

0.874

83.9

14.2

-

8.1

33.0

0.22

1.68

1.87

9.91

0.912

74.9

0.81

60.5

0.76

1.23

0.86

8.78

0.777

99.0

15.9

8.7

0 . 5 0

53.7

0.47

1.78

1.51

9.95

0.939

9 1 . 2

13.8

P r o p e r t i e s o f t h e p e t r o l e u m cokes used i n t h e p r e s e n t t e s t a r e shown i n Table I I I . The symbol MPC r e p r e s e n t s p e t r o l e u m coke manufactured w i t h t h e use o f Minas heavy o i l by t h e d e l a y e d c o k i n g p r o c e s s , and DPC and FPC a r e , r e s p e c t i v e l y , p e t r o l e u m cokes p r o v i d e d by a d e l a y e d c o k e r and a f l u i d c o k e r c o m m e r c i a l l y a v a i l a b l e i n Japan.

18.

MATSUBARA ET AL.

257

Petroleum Coke in Metallurgical Coke Making

DDPM 30,000 r-

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

20,000 L-

/ Kyoei Oyubari M i i k e J â t ÈL\ Jap. H.V.(A) Heiwa Yubari >27,500

V.M. 42-46 Inerts 48-96 V.M. 35-36 Inerts 16-20

10,000 h

V.M. 22-31 Inerts 12-26

Relations between max. fluidity and rank of coals in case of low inerts contents

2M%) Lower rank \-

Field of coking coals

Mean Reflectance in cedar oil

^ Higher rank

Note: V.M. contents are shown as percent on dry, ash free basis; Inerts contents are shown as volume percent. F i g u r e 4. (MOF

R e l a t i o n between max. f l u i d i t y and r a n k o f c o a l s

diagram).

1

2 2.62

4.433 1.98

7.87 15.68

·

2.29

»

1.98



1.73

ι 6.98 92.49 91.38

14.72

»

5.02

4.67 14.29

·

0.47 2.003 1.73

0.36



1.74

0.49 1.807

·

2.33

0.30

Pétrographie analysis

Calorific value (kcal/kg)

ο co

8.49 91.16 91.62 3.84

1.60

Ul

0.53

FC O

12.47 87.53 93.22 4.33

VM CO H

0.35

Ash

Ultimate analysis (d.a.f.%) A

tr

Sample

Proximate analysis (d.b.%)

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

258 PETROLEUM-DERIVED CARBONS

CO

ο ro to ο οι f>|

CO CO CO

Ο ο Ο ο — »

ο ο

ο α. S

ο ο_ Q

ο α..

Lu

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

18.

M A T S U B A R A E T A L .

Petroleum Coke in Metallurgical Coke Making

259

R e s i d u a l O i l A d d i t i o n T e s t . As p r e v i o u s l y shown i n F i g u r e s 2 and 3, t h e e f f e c t o f t h e r e f l e c t a n c e and the f l u i d i t y o f b l e n d e d c o a l s on t h e s t r e n g t h o f coke t h a t i s produced can be e x p r e s s e d i n the form o f a model as i n F i g u r e 5. (_3) U s i n g the t e s t oven, t h e l o w - v o l a t i l e c o a l i n the base b l e n d s was r e p l a c e d by t h e o t h e r c o a l s w i t h d i f f e r e n t c o a l ranks i n t h e c o a l rank c o n t r o l r e g i o n , and t h e r e l a t i o n s h i p between DI o f the coke produced and Ro o f the replacement c o a l was determined. The r e g r e s s i o n l i n e i s i l l u s t r a t e d i n F i g u r e 6. Then, DI o f t h e coke produced by a d d i n g r e s i d u a l o i l i n an amount e q u a l t o t h a t o f t h e replacement c o a l i n the manner d e s c r i b e d above was d e t e r m i n e d , and t h e r e f l e c t a n c e o f the r e s i d u a l o i l was determined from the r e g r e s s i o n l i n e g i v e n i n F i g u r e 6. The r e f l e c t ance t h u s determined i s h e r e i n d e f i n e d as t h e e f f e c t i v e r e f l e c t a n c e , Ro . A f t e r d e t e r m i n a t i o n o f R o , DI i s determined on t h e coke produced from a b l e n d o f c o a l and r e s i d u a l c o i l i n t h e f l u i d i t y control region. S i n c e t h e v a l u e s o f Ro o f the b l e n d e d c o a l s a r e known, i t i s p o s s i b l e t o determine the v a l u e o f M F f o r the b l e n d o f r e s i d u a l o i l and c o a l s from F i g u r e 5, and hence t o determine t h e v a l u e o f M F f o r the r e s i d u a l o i l because M F f o r the r e m a i n i n g p o r t i o n i s known. The v a l u e o f M F o f the r e s i d u a l o i l t h u s o b t a i n e d i s d e f i n e d as t h e effective fluidity, MFE. E

E

P e t r o l e u m Coke A d d i t i o n T e s t . P e t r o l e u m coke may be c o n s i d e r e d as t h e r e s i d u a l o i l w h i c h i s f u r t h e r coked. Base b l e n d s used i n t h i s a d d i t i o n t e s t and the b l e n d s s u b j e c t e d t o the a d d i t i o n t e s t a r e shown i n Table IV, w h i c h a l s o g i v e s t h e p r o p e r t i e s o f t h e coke carbonized a f t e r blending. When b l e n d i n g p e t r o l e u m coke, t h e s t r e n g t h o f t h e coke carboni z e d a f t e r b l e n d i n g i s not s a t i s f a c t o r y unless the p r o p e r t i e s o f b l e n d i n g c o a l s are good. The degree o f c o n t r i b u t i o n o f p e t r o l e u m coke t o t h e coke s t r e n g t h i s c o n s i d e r e d t o be much l o w e r t h a n t h a t of residual o i l . T h i s means t h a t p e t r o l e u m coke i s c o n s i d e r e d t o e x h i b i t p r o p e r t i e s c o n s i d e r a b l y d i f f e r e n t from t h o s e o f a c o k i n g c o a l . W i t h t h i s f a c t i n v i e w , p e t r o l e u m coke was b l e n d e d on t h e assumption t h a t p e t r o l e u m coke was t h e same as t h e i n e r t m a t t e r o f c o a l , and the r e a c t i v e p o r t i o n was n u l l , and t a k e s o n l y t h e f l u i d i t y i n t o account. E x a m i n a t i o n was based on t h e f o l l o w i n g c o m b i n a t i o n s w i t h t h e base b l e n d s : 1. Changes i n the s t r e n g t h o f the coke p r o d u c t were s t u d i e d b y b l e n d i n g p e t r o l e u m coke s i m p l y a t 5% and 10% i n t o base b l e n d s ; 2. P e t r o l e u m coke i s assumed t o be t h e same as i n e r t m a t t e r o f c o a l a s d e s c r i b e d above. Decrease i n Ro o f the b l e n d i s compensated by c o a l s o t h e r than p e t r o l e u m coke. By c o n s i d e r i n g t h e amount o f b l e n d e d p e t r o l e u m coke, t h e b l e n d i s d e s i g n e d so t h a t MF o f the b l e n d may be m a i n t a i n e d o n l y w i t h t h a t o f c o a l s i n t h e base b l e n d , on the assumption, however, t h a t p e t r o l e u m coke has a log[MF] o f 0. P a r t i c u l a r s i n t h i s case a r e shown i n T a b l e I V . Results R e s u l t s o f R e s i d u a l O i l T e s t . V a l u e s o f R O E and M F E a s d e r i v e d from the r e s u l t s o f t h e t e s t a r e g i v e n i n T a b l e V, w h i c h s u g g e s t s t h a t a l l t h e r e s i d u a l o i l s demonstrate e x c e l l e n t p r o p e r t i e s i n many c a s e s . These v a l u e s a r e a r r a n g e d i n t o an MOF diagram i n F i g u r e 7.

15.0

21.4 10.0

10

5.8

50,000

0.84

Yutoku(Jp.Hv)

Coke s t r e n g t h

P r o p e r t i e s of coal blend

90.5

92.5 89.8

90.6 91.1 89.3 90.0

90.4

90.9

91.3

91.5

91.6

89.4

107 107 107 107 107 107 83 83 83

107

107

107

136

MF (DDPM)

J I S D:

1.15 1.15 1.15

1.15 1.15 1.15 1.15 1.15

1.15

1.15

1.15

1.15

FPC

1.15

10

DPC

Ro [%)

100

6.0 23.8

10.1

25

36.4

39

0.84

Witbank(S.A.Hv)

0

8.5 9.0

10

39.2

1,000

1.08

Wellondilly ( A u s t r a l i a Mv)

Petroleum coke

4.2

4.5

10

35.1

1.30

Fording(Ca.Lv)

>90

30

34.5

10

155

1.36

Bal mer (Ca.Lv) •95

4.2 |29.8

4.5

FPC

31.5

DPC

5

MPC

18.1

FPC

14,000

DPC

1.10

MPC

P i t t s o n (US Mv)

FPC

8.5

DPC 9.0

MPC

10

II-3

13.8

(X)

T.In.

(%)

2

MF DDPM

Blending r a t i o

1.60

Ro (X)

Properties

R e s u l t s o f p e t r o l e u m coke a d d i t i o n t e s t

Prime (US Lv)

Blended with

Table IV.

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

Ο

TO CO

η >

α

< m

S

D m

2

Ο r m c

73

m H

no

18.

MATSUBARA ET AL.

Table V

Effective reflectance of r e s i d u a l o i l

( R O E ) and e f f e c t i v e f l u i d i t y ( M F E )

Effective reflectance (Ro )

Effective fluidity (log MF )

1

0.027

2.55

2

0.208

5.04

3

0.377

5.98

4

0.926

5.01

5

1.144

5.99

6

1.055

5.25

7

1.228

5.38

8

1.605

6.20

9

0.924

5.95

10

1.545

5.82

Residual No. Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

261

Petroleum Coke in Metallurgical Coke Making

oil

E

E

R e s u l t s o f P e t r o l e u m Coke T e s t , The r e s u l t s o f t h e t e s t a r e g i v e n i n T a b l e I V . From t h e d a t a shown, t h e r e l a t i o n s h i p between t h e s t r e n g t h (DI) and t h e r a t i o o f a d d i t i o n i s r e p r e s e n t e d i n F i g u r e 8. A c c o r d i n g t o t h i s f i g u r e , s i m p l e a d d i t i o n t o t h e base b l e n d r e s u l t s i n a sharp decrease i n D I , and even when Ro and MF a r e compensated, t h e r e i s s t i l l a lower v a l u e o f DI, s u g g e s t i n g t h a t a t l e a s t t h e log[MF] o f p e t r o l e u m coke i s l o w e r than 0. E x a m i n a t i o n and E v a l u a t i o n E x a m i n a t i o n on R e s i d u a l O i l . V a l u e s o f R O E and M F E residual o i l have been determined as d e s c r i b e d above. T h i s measurement, however, r e q u i r e s much l a b o r . E f f o r t s were t h e r e f o r e made t o e s t a b l i s h a method f o r e s t i m a t i n g R O E and M F E from t h e v a r i o u s parameters o f residual o i l . F i g u r e 9 shows t h e r e l a t i o n s h i p between R O E and faQs(100 - VM); and F i g u r e 10, t h e ^ r e l a t i o n s h i p between M F E and faQs. A l l t h e s e f i g u r e s demonstrate h i g h c o r r e l a t i o n s . These r e s u l t s were a r r a n g e d and s u b j e c t e d t o m u l t i p l e r e g r e s s i o n a n a l y s i s , and t h e r e s u l t s a r e g i v e n i n Table V I . A c c o r d i n g t o t h i s t a b l e , R O E has t h e c l o s e s t c o r r e l a t i o n w i t h faQs(100 - VM), and M F E ' w i t h faQs. f

o

r

E x a m i n a t i o n on P e t r o l e u m Coke. E v a l u a t i o n has been made b y assuming t h a t p e t r o l e u m coke was a t o t a l l y i n e r t c o n t e n t and log[MF] o f t h e f l u i d i t y was n u l l , b u t t h i s i s n o t always t h e case as shown i n t h e r e s u l t s i n t h e former s e c t i o n .

PETROLEUM-DERIVED CARBONS (Fluidity control region) -

^

Coke strenjgth (

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

Q

(Coal rank control region) 1 -

1 1

High Ro Medium Ro

DI(MF)

Low Ro

ι ι MFbj

[

M F of coal charge

F i g u r e 5. E f f e c t o f f l u i d i t y and c o a l rank o f c o a l b l e n d on coke s t r e n g t h .

e*

DI obtained by addition of an additive (10%)

ι /

\U—'

ο

_1

0.8

1.0

1.2

5

.Estimated value 1.4

1.6

Vitrinite reflectance of coal added (10%)

F i g u r e 6. E s t i m a t i o n o f e f f e c t i v e r e f l e c t a n c e ( R O E ) o f c a k i n g additives. 7.0

6.0 5.0

£

4 0

S

3.0

Έ

_J

9

ο

Ο ^

Jap.H.V

j I

u_\; ι

I I

ο ! Heavy oil

I USA.H.V.

ο/ ο Jap.H.V.

2.0 1.0 0

"

ψ

! !

ij.AustM.V. USA.L.V, Aust.H.V. i * \ >TN

V I 0.5

I l! \ \ v

1.0

-i

C a n

e.

1.5

l

v\\ L V

^ 2.0 Ro.

F i g u r e 7.

3.0 Rok

MOF diagram f o r c a k i n g a d d i t i v e s ( r e s i d u a l o i l )

MATSUBARA ET AL.

Petroleum Coke in Metallurgical Coke Making

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

92.Oh

90.Oh ο

in

Q : Simple addition : MF

compensation

88.0 X: M P C O: D P C

·:

FPC

86.0

l

0

5

10

15

Ratio of added petroleum coke F i g u r e 8.

(%)

Change i n DI30/15 by a d d i t i o n o f p e t r o l e u m coke.

-0.1

0

10

20

30

40

fa · QS · (lOO-VM)XIO"

F i g u r e 9.

50

2

R e l a t i o n between R o and faQS(100-VM). E

264

PETROLEUM-DERIVED CARBONS Table V I

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

Ro

E s t i m a t i n g e q u a t i o n s o f R O E and M F E for residual o i l Ro

E

= -0.02060 (VM) + 2.021

Ro

E

= 1.1245(C/H) - 0.518

Ro

E

- 0.03376(FAQS(100 - VM)) + 0.0148

Ro

E

= 0.00285(RaQS(100 - VM) + 0.0287

E

(R=-0.8167, N=56) (R=0.8503, N=56)

log MF = 2.445 + 5.564(FAQS)

(R=0.8724, N=52)

(R=0.6988, N=50)

E

log MF = 1.492 + 0.6024(RaQS) E

MF

(R=0.9037, N=56)

(R=0.6540, N=43)

E

log MF = 2.429 + 0.218 log MFc

(R=0.6689, N=60)

E

log MF = 4.031 + 0.0052(TDc) E

(R=0.5416, N=60)

The v a l u e s o f M F were t h e r e f o r e reviewed w h i l e r e t a i n i n g t h e assumption t h a t p e t r o l e u m coke was a t o t a l l y i n e r t c o n t e n t . The r e s u l t s shown i n T a b l e V I I demonstrate t h a t l o g M F t a k e s l a r g e n e g a t i v e v a l u e s . The average o f t h e s e v a l u e s i s d e f i n e d as M F E o r a p a r t i c u l a r p e t r o l e u m coke. The r e l a t i o n s h i p between t h i s M F E and V M f o r p e t r o l e u m coke and r e s i d u a l o i l i s r e p r e s e n t e d i n F i g u r e 11, w h i c h shows t h e p o s s i b i l i t y o f e x p r e s s i n g M F E *>Υ V M f

Table V I I

Effective fluidity

(Simple addition) Sample

MPC

DPC

FPC

log MF

E

( M F E ) o f p e t r o l e u m coke

(MF compensation) log MF

E

-1.17

(10%)

-2.26

(10%) -2.65

(15%)

-2.17

(5%)

-2.75

(10%)

-3.56

(10%) -3.70

(15%)

-2.52

(5%)

-4.83

(10%)

-5.66

(10%) -5.53

(15%)

-4.44

(5%)

Note) Figures in ( ratios.

(Average) log MF

E

-2.20

-3.13

-5.12

) represent blending (adding)

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

M ATS U Β ARA ET AL.

Petroleum Coke in Metallurgical Coke Making

0.2

0.4

0.6

fa - Q S X 1 0 -

0.8

1.0

2

F i g u r e 10. R e l a t i o n between MFg and faQS.

K

*

SRC

P

+5

Ô PDA

li.

I

/ / / O MPC

Ç> DPC -5

FPC 50

100 VM

F i g u r e 11. R e l a t i o n between e f f e c t i v e f l u i d i t y and VM o f heavy r e s i d u e s .

266

PETROLEUM-DERIVED CARBONS

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

Evaluation Economic E v a l u a t i o n , An a d d i t i v e used a s a c o k i n g raw m a t e r i a l c a n be e v a l u a t e d from v a l u e s o f R O E r M F E , i n e r t m a t t e r , a s h , s u l f u r and so on i n t h e same manner a s i n a c o a l , a s shown above. The r e l a t i o n ­ s h i p s between t h e i n d i v i d u a l parameters f o r c o a l and t h e FOB p r i c e s have p r e v i o u s l y been d e t e r m i n e d a t Nippon Kokan. These v a l u e s a r e a p p l i c a b l e t o t h o s e o f a d d i t i v e s a s shown i n F i g u r e 12. I n t h i s f i g u r e , t h e p r i c e i s n o t shown, b u t o n l y t h e r e l a t i v e p o s i t i o n was e s t i m a t e d b y an e q u a t i o n . F o r heavy r e s i d u e s , t h e economic e v a l u a t i o n i s shown a l s o i n t h i s f i g u r e . I n t h e e s t i m a t i o n f o r m u l a , C I , C2, C3 and C4 a r e c o n s t a n t c o e f f i c i e n t s d e t e r m i n e d from economic and t e c h n i c a l p o i n t s o f v i e w , and u. v. w and s a r e c o ­ e f f i c i e n t s determined by m u l t i p l e r e g r e s s i o n a n a l y s i s . F o r p e t r o l e u m coke, t h e same e v a l u a t i o n i s shown a l s o i n F i g u r e 12. I t w i l l be u n d e r s t o o d t h a t t h e v a l u e o f p e t r o l e u m heavy o i l i s b e t t e r t h a n t h a t o f p e t r o l e u m coke a s a raw m a t e r i a l f o r coke making. P e t r o l e u m heavy o i l s can more a d v a n t a g e o u s l y be u t i l i z e d than p e t r o l e u m coke.

/

100

80

KRP

SRC

Οο •

ο Ο

Ο 40

/u

MPC

60

DPC

20

ι

Ο

» Price (F.O.B.)

'

20

F i g u r e 12.

'

ι

Ο D

71

A PDA

40

= -Ci(Ash)-Cz(TS) +C (Coke Yield)+C4(Gas Yield) 3

+u(log MFE)+V(TI)+WRO(100-TI) +s

-L 60 80 Estimated price ( U S $ )

-i100

120

R e l a t i o n between e s t i m a t e d p r i c e and c o n t r a c t p r i c e .

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

18.

MATSUBARA ET AL.

Petroleum Coke in Metallurgical Coke Making

267

B l e n d i n g L i m i t o f P e t r o l e u m Coke, The b l e n d i n g l i m i t o f p e t r o l e u m coke i s c o n s i d e r e d t o be about 5% as a l r e a d y mentioned above. T h i s can be e x p l a i n e d from the c u r r e n t average v a l u e o f MF o f about 200 t o 500 DDPM f o r c o a l b l e n d s i n the Japanese c o k i n g i n d u s t r y . F i g u r e 13 shows l i m i t q u a n t i t i e s o f added p e t r o l e u m coke f o r v a r i o u s v a l u e s o f f l u i d i t y f o r the base c o a l s . I n t h e d e t e r m i n a t i o n o f t h e s e l i m i t q u a n t i t i e s , t h e q u a n t i t y o f added p e t r o l e u m coke w i t h w h i c h t h e f l u i d i t y o f the c o a l b l e n d d e c r e a s e d t o below 200 DDPM under t h e e f f e c t o f t h i s b l e n d i n g was deemed as t h e l i m i t . A c c o r d i n g t o F i g u r e 13, i f DPC i s b l e n d e d i n an amount o f 5% w i t h a base b l e n d h a v i n g an MF o f 400 DDPM, t h e r e s u l t a n t c o a l b l e n d has a s u f f i c i e n t maximum f l u i d i t y (MF), whereas a 10% b l e n d i n g r e s u l t s i n an MF f a r i n f e r i o r t o 200 DDPM, showing t h e i m p o s s i b i l i t y o f k e e p i n g a s a t i s f a c t o r y coke s t r e n g t h . T h i s i s a l s o t h e case w i t h the o t h e r p e t r o l e u m cokes, and the o r d e r i s : MPC > DPC > FPC. T h i s may be regarded as s u p p o r t i n g t h e i n f o r m a t i o n g i v e n i n Table I .

10

MF

F i g u r e 13.

of base blend ( D D P M )

Blending l i m i t o f petroleum

coke.

Conclusion P e t r o l e u m coke as a c o k i n g raw m a t e r i a l was e v a l u a t e d i n comparison w i t h r e s i d u a l o i l . W h i l e r e s i d u a l o i l shows e x c e l l e n t p r o p e r t i e s as a c o k i n g raw m a t e r i a l , p e t r o l e u m coke was found t o be f a r i n f e r i o r t o r e s i d u a l o i l , and q u a n t i t a t i v e f i g u r e s were determined.

268

PETROLEUM-DERIVED CARBONS

Literature Cited 1.

Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.

2. 3. 4. 5. 6.

Miyazu, T. et al., "The Evaluation and Design of Blend using Many Kinds of Coal for Coke Making", paper presented at IISC Meeting, Dusseldorf, 1974. Miyazu, T. et al., "New Technique for Producing Coke --Addi­ tion of Petroleum Pitch or Solvent Refined Coal", paper presented at IISC & AIME Meeting, Chicago, 1978. Miyazu, T. et al., "Selection of Coal and Additives for the Production of Coke Cost", paper presented at McMaster Symposium, Hamilton, 1980. Miyazu, T. et al., "Evaluation Method of Binding Materials for Coke Making", paper presented at Japan Coal Science Conference, Fukuoka, 1981 (Japanese). The Annual Report in RAROP, 1979 (Japanese). The Annual Report in RAROP, 1982 (Japanese). RAROP: Research Association for Residual O i l Processing in Japan

RECEIVED October 21, 1985