Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
18 Utilization of Petroleum Coke in Metallurgical Coke Making Kenji Matsubara, Hidetoshi Morotomi, and Takashi Miyazu Technical Research Center, Nippon KokanK.K.,Minamiwatarida-cho 1-1, Kawasaki-ku, Kawasaki 210, Japan In Japan, NKK was the f i r s t company to use petroleum coke as the source for metallurgical coke making in 1967. Since then, petroleum coke has been utilized to increase carbon content and decrease ash content of coal blends used by Japanese iron and steel companies. This report includes the following subjects: 1. The development of the procedure for the use of petroleum coke by Japanese iron and steel companies. 2. The discussions about the effect of petroleum coke on coke strength. 3. The pitch addition as the advanced utilization. In order t o maintain high p r o d u c t i v i t y i n a b l a s t furnace, i t i s n e c e s s a r y t o u s e h i g h - q u a l i t y coke h a v i n g h i g h s t r e n g t h and c o n t a i n i n g few i m p u r i t i e s such a s ash and s u l f u r . S t r e n g t h i s p a r t i c u l a r l y i m p o r t a n t among t h e p r o p e r t i e s o f coke. S i n c e coke s t r e n g t h l a r g e l y depends upon c o a l i f i c a t i o n rank and f l u i d i t y o f c o a l b l e n d s , i t i s p o s s i b l e t o manufacture h i g h - s t r e n g t h coke b y k e e p i n g t h e s e p r o p e r t i e s at appropriate l e v e l s . Japan i m p o r t s c o k i n g c o a l s from t h e U n i t e d S t a t e s , Canada, A u s t r a l i a and many o t h e r f o r e i g n c o u n t r i e s . F u t u r e s u p p l i e s o f c o k i n g c o a l s i n v o l v e s some u n c e r t a i n t y r e l a t i v e t o procurement o f g o o d - q u a l i t y c o a l s i n s u f f i c i e n t q u a n t i t i e s . V a r i o u s measures have been examined t o s o l v e t h i s p r o b l e m i n Japan. One such measure i s t h e e x p a n s i o n o f t h e scope o f raw m a t e r i a l s used f o r coke-making. Use o f p e t r o l e u m coke as a raw m a t e r i a l f o r coke-making f a l l s i n t o t h i s c a t e g o r y . F i g u r e 1 shows a n n u a l consumptions o f p e t r o l e u m coke and raw m a t e r i a l s f o r coke-making b y t h e Japanese c o k i n g i n d u s t r y . W i t h a v i e w toward t h e e f f e c t i v e u t i l i z a t i o n o f c a r b o n s o u r c e s , Nippon Kokan K.K. s u c c e s s f u l l y u t i l i z e d p e t r o l e u m coke f o r t h e f i r s t t i m e i n Japan i n 1967, t a k i n g advantage o f t h e l o w e r a s h c o n t e n t r e l a t i v e t o t h a t i n c o a l s . Now t h a t p e t r o l e u m coke i s used f o r coke-making i n t h e Japanese coke i n d u s t r y as shown i n F i g u r e 1, i t s a p p l i c a t i o n may be c o n s i d e r e d as an e s t a b l i s h e d t e c h n o l o g y . The r a t i o o f i t s u s e r e l a t i v e t o c o k i n g c o a l s i s , however, s t i l l a t t h e v e r y low l e v e l o f 1.0%. T a b l e I shows r e s u l t s o f e x a m i n a t i o n s 0097-6156/86/0303-0251$06.00/0 © 1986 American Chemical Society
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
252 PETROLEUM-DERIVED CARBONS
F i g u r e 1. i n Japan. Annual consumption o f raw m a t e r i a l s f o r coke making
18.
MATSUBARA ET AL.
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
Table I .
Petroleum Coke in Metallurgical Coke Making
Views o f Japanese s t e e l companies on u s e o f p e t r o l e u m coke
Status of petroleum coke blending test
Company C
Company D
NKK
View on blending limit
Blending ratio: DPC: 0, 3, 5 and 7% FPC: 2, 4, 6 and 8%
1. Blending l i m i t : 5-6%; 2. No marked difference between DPC and FPC, DPC being slightly better. 3. Increased blending of PC decreased coke ash and increased TS, and particularly because of S problem, actual use of PC is limited to about 3%.
Blending ratio: DPC: 2 and'5% FPC: 5% selective blending to partial briquetting of coal charge is also applied.
1. Blending l i m i t is 3-5%; partial briquetting of coal charge; 2. DPC is superior to FPC.
Blending ratio: DPC: 0-15%
1. Increasing the amount of added DPC leads to almost linear decrease in DI. 2. Decrease in DI is eliminated by keeping constant Ro and T.In. and maintaining MF at a certain level.
Blending ratio: DPC: 0, 5, 10 and 15% FPC: 0, 5, 10 and 15%
1. Blending l i m i t is about 10%; 2. No marked difference between FPC and DPC.
Blending ratio: 1) To ordinary and partial briquetting of coal charge: 6% DPC 2) To partial briquetting of coal charge: 0, 2, 4, 6, 8, 10 and 12% FPC
1. Blending l i m i t : Ordinary coal : 4-5% partial briquetting of coal charge: 8%
Company A
Company Β
253
2. FPC is a l i t t l e inferior to DPC.
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
254
PETROLEUM-DERIVED CARBONS
r e g a r d i n g use o f p e t r o l e u m coke a t t h e f i v e major s t e e l companies i n Japan. (5) A c c o r d i n g t o t h e comprehensive summary o f t h e i r v i e w s , the b l e n d i n g l i m i t o f p e t r o l e u m coke i n o r d i n a r y b l e n d r e l a t i v e t o c o k i n g c o a l s i s about 5% a t t h e h i g h e s t , and t h e q u a l i t y o f d e l a y e d coke i s b e t t e r t h a n t h a t o f f l u i d coke. I n t h i s r e p o r t , t h e a u t h o r s e v a l u a t e p e t r o l e u m coke as a raw m a t e r i a l f o r coke-making and examine t h e above-mentioned b l e n d i n g limit. B e s i d e s p e t r o l e u m coke, e x a m i n a t i o n and e v a l u a t i o n o f p e t r o l e u m r e s i d u a l o i l a r e a l s o p r e s e n t e d as a more e f f e c t i v e use as a raw m a t e r i a l . E v a l u a t i o n o f Coking
Coals
Japan i m p o r t s c o k i n g c o a l s f o r b l a s t f u r n a c e s from many f o r e i g n c o u n t r i e s . The q u a l i t y o f coke d e r i v e d from t h e s e c o a l s , b e i n g s u b j e c t t o o p e r a t i n g c o n d i t i o n s o f t h e coke oven b a t t e r y , m a i n l y depends upon p r o p e r t i e s o f t h e c o k i n g c o a l s ; coke o f an e x c e l l e n t q u a l i t y i s a v a i l a b l e from a p p r o p r i a t e c o m b i n a t i o n s o f c o a l s . Blendi n g d e s i g n o f c o a l s forms one o f t h e most remarkable f e a t u r e s o f t h e Japanese coke-making t e c h n o l o g y . B l e n d i n g d e s i g n o f c o a l s may be summarized as f o l l o w s . ( 1 ) The most i m p o r t a n t coke p r o p e r t y i s t h e s t r e n g t h , w h i c h i s commonly e x p r e s s e d by J I S drum i n d e x i n Japan. L a r g e - c a p a c i t y b l a s t f u r n a c e e n g i n e e r s i n Japan a s s e r t t h a t coke s h o u l d have a J I S drum s t r e n g t h , as e x p r e s s e d i n DI30/15, o f a t l e a s t 92. E v a l u a t i o n o f a c o k i n g c o a l r e l a t i v e t o t h e coke s t r e n g t h may be e x p r e s s e d w i t h two p a r a meters: t h e mean maximum r e f l e c t a n c e o f v i t r i n i t e p a r t o f c o a l (Ro) r e p r e s e n t i n g t h e degree o f c o a l i f i c a t i o n rank o f t h e c o a l , and t h e maximum f l u i d i t y (MF) i n d i c a t i n g t h e c o k i n g p r o p e r t y o f t h e c o a l . F i g u r e 2 i l l u s t r a t e s t h e r e l a t i o n s h i p between t h e coke s t r e n g t h (DI30/15) and t h e maximum f l u i d i t y (MF) o f b l e n d e d c o a l s i n t h e coke oven b a t t e r y a t Nippon K o k a n s Fukuyama Works w i t h t h e r e f l e c t a n c e (Ro) o f b l e n d e d c o a l s as t h e parameter. A c c o r d i n g t o t h i s f i g u r e , a t an MF o v e r 200 DDPM ( D i a l D i v i s i o n p e r Minute) w i t h a c o n s t a n t Ro, t h e v a l u e o f DI30/15 i s maximized. W i t h i n t h e range o f o v e r 200 DDPM, i t i s n e c e s s a r y t o i n c r e a s e Po w h i c h c o r r e s p o n d s t o t h e c o a l i f i c a t i o n rank o f b l e n d e d c o a l s , i n o r d e r t o r a i s e t h e s t r e n g t h . T h i s range i s t h e r e f o r e r e f e r r e d t o as the c o a l rank c o n t r o l r e g i o n . I n t h e r e g i o n o f MF under 200 DDPM, i t s u f f i c e s t o i n c r e a s e t h e f l u i d i t y (MF) o f b l e n d e d c o a l s i n o r d e r t o r a i s e t h e coke s t r e n g t h : t h i s range i s t h e r e f o r e c a l l e d t h e f l u i d i t y c o n t r o l r e g i o n . W i t h an Ro o f b l e n d e d c o a l s o f 1.15, a DI30/15 o f 92 can be ensured b y h o l d i n g MF a t 200 DDPM. A s i m i l a r t e s t was c a r r i e d o u t i n a 20-kg t e s t oven a t Nippon Kokan s T e c h n i c a l Research C e n t e r as shown i n F i g u r e 3. (2) C o k i n g c o n d i t i o n s i n c l u d e d a c o k i n g t e m p e r a t u r e o f 880°C and a c o k i n g t i m e o f 6.5 Hrs. I n t h i s c a s e , t h e c o k i n g speed i s v e r y h i g h , so t h a t MF c o r r e s p o n d i n g t o t h e s a t u r a t i o n o f s t r e n g t h i s r a t h e r low a t about 80 DDPM. I f Ro o f b l e n d e d c o a l s i s k e p t a t 1.15 under t h e s e c o n d i t i o n s , a DI30/15 o f 92 c a n be ensured. Use o f t h i s s m a l l - c a p a c i t y t e s t oven c a n f a c i l i t a t e an e x p e r iment, and t h e e x p e r i m e n t s p r e s e n t e d i n t h i s r e p o r t were conducted i n t h i s oven. I n t h i s t e s t oven, t h e v a l u e o f MF o f 80 DDPM forms the boundary between t h e f l u i d i t y c o n t r o l r e g i o n and t h e c o a l rank control region. 1
1
18.
255
Petroleum Coke in Metallurgical Coke Making
MATSUBARA ET AL.
15
92.5 92
Fluidity Control Region
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
91
Ν
Coal Rank Control Region
90 X
Fluidity Control Region (negative)
Boundary Region
a> T3
_c Ε
Û
1.5
2.0
2.5
3.0
3.5
1000
2000 3000
1
30
50
100
200
300
500
log MF DDPM
F i g u r e 2 . R e l a t i o n between G i e s e l e r max. f l u i d i t y o f b l e n d s and drum s t r e n g t h o f coke y i e l d e d i n Fukuyama Works.
''jr' / / /
,
•- ι --π
ο
—m
- Ο
Ο
S
S
Fluidity Control Region
ι—-ο
/s / Λ6/ /
O.Coal blend
Q
74μ 72 70 1.5
I :Ro=1 .20 II : Ro = 1.15 III : Ro = 1.10
1.6 1
40
1.7 50
1.
1.9
mJ
I
2.0 I
2.1
2.2
10g MF
1
60 70 80 90 100 120 140 160180 MF(ddpm)
F i g u r e 3. R e l a t i o n between MF o f c o a l b l e n d s and s t r e n g t h o f coke made b y s m a l l t e s t oven.
256
PETROLEUM-DERIVED CARBONS
C o a l s produced i n v a r i o u s p a r t s o f t h e w o r l d may be a r r a n g e d i n terms o f Ro and MF as shown i n F i g u r e 4, w h i c h i s r e f e r r e d t o as t h e MOF diagram. Thus, Ro and MF have s i g n i f i c a n t meanings i n t h e e v a l u a t i o n o f a c o a l i n terms o f coke s t r e n g t h . I n a d d i t i o n t o Ro and MF i n e r t m a t t e r s o f c o a l such as a s h and s u l f u r , which do n o t s o f t e n and m e l t , a r e i m p o r t a n t p r o p e r t i e s o f c o a l t o be e v a l u a t e d . The r e l a t i o n s between FOB p r i c e s o f c o a l s from v a r i o u s p a r t s o f t h e w o r l d and t h e above-mentioned f a c t o r s were a n a l y z e d by m u l t i p l e r e g r e s s i o n a n a l y s i s . (3) T h i s p e r m i t s economic e v a l u a t i o n o f c o a l s as raw m a t e r i a l s f o r coke-making. Petroleum r e s i d u a l o i l s and p e t r o l e u m coke can s i m i l a r l y be e v a l u a t e d as raw m a t e r i a l s . The most d i f f i c u l t problem here i s how t o e v a l u a t e f a c t o r s c o r r e s p o n d i n g t o Ro and MF i n c o a l s . (6^) This report presents p r i m a r i l y an e s t i m a t i o n o f such f a c t o r s f o r e v a l u a t i o n .
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
f
T e s t Method T e s t Samples. Main p r o p e r t i e s o f t h e r e s i d u a l o i l s used i n t h e p r e s e n t t e s t a r e r e p r e s e n t e d i n Table I I . I t s h o u l d be n o t e d i n t h i s t a b l e t h a t : No. 1 i s propane d e a s p h a l t e d a s p h a l t ; Nos. 2 t o 7 a r e p e t r o l e u m p i t c h e s d e r i v e d from r e s i d u a l o i l h e a t t r e a t e d under v a r i o u s c o n d i t i o n s ; No. 8 i s KRP p i t c h made by Kureha Chemical I n d u s t r y from crude o i l h e a t t r e a t e d w i t h h o t steam a t temperatures o v e r 1,000°C; and Nos. 9 and 10 a r e b o t h r e s i d u a l o i l s from c o a l , No. 9 b e i n g s o l v e n t r e f i n e d c o a l made by NKK and No. 10 b e i n g h e a t t r e a t e d c o a l t a r p i t c h . These Nos. 1 t o 10 a r e t y p i c a l examples o f b i n d i n g m a t e r i a l f o r coke-making i n Japan. Table I I
Residual Oil (NO.) 1 2 3 4 5 6 7 8 9 10
Ash
Properties of residual o i l VM
T.S
C/H
Reflectance
(dbX) (dbX) (dbx) (atomic) Ro tr
94.8
0.19
0 . 5 6
0 . 0 5
85.9
5.30
0 . 6 7
tr
75.7
6.75
0 . 8 2
0 . 8 0
55.5
3.75
0.96
40.3
0 . 3 8 0.11
tr
—
Ra
fa
(%)
QS
log (MFc) (*)
4.26
0.142
too
5.27
0.316
100
15.0
0.30
6.25
0.471
100
13.4
1.03
0 . 4 3
7.30
0.581
8 0 . 2
11.1
6.80
1.23
1.10
9.28
0.637
85.1
11.4
35.1
6.44
1.29
1.05
9.11
0.651
63.7
9.2
36.5
5.93
1.83
0 . 7 3
7.95
0.874
83.9
14.2
-
8.1
33.0
0.22
1.68
1.87
9.91
0.912
74.9
0.81
60.5
0.76
1.23
0.86
8.78
0.777
99.0
15.9
8.7
0 . 5 0
53.7
0.47
1.78
1.51
9.95
0.939
9 1 . 2
13.8
P r o p e r t i e s o f t h e p e t r o l e u m cokes used i n t h e p r e s e n t t e s t a r e shown i n Table I I I . The symbol MPC r e p r e s e n t s p e t r o l e u m coke manufactured w i t h t h e use o f Minas heavy o i l by t h e d e l a y e d c o k i n g p r o c e s s , and DPC and FPC a r e , r e s p e c t i v e l y , p e t r o l e u m cokes p r o v i d e d by a d e l a y e d c o k e r and a f l u i d c o k e r c o m m e r c i a l l y a v a i l a b l e i n Japan.
18.
MATSUBARA ET AL.
257
Petroleum Coke in Metallurgical Coke Making
DDPM 30,000 r-
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
20,000 L-
/ Kyoei Oyubari M i i k e J â t ÈL\ Jap. H.V.(A) Heiwa Yubari >27,500
V.M. 42-46 Inerts 48-96 V.M. 35-36 Inerts 16-20
10,000 h
V.M. 22-31 Inerts 12-26
Relations between max. fluidity and rank of coals in case of low inerts contents
2M%) Lower rank \-
Field of coking coals
Mean Reflectance in cedar oil
^ Higher rank
Note: V.M. contents are shown as percent on dry, ash free basis; Inerts contents are shown as volume percent. F i g u r e 4. (MOF
R e l a t i o n between max. f l u i d i t y and r a n k o f c o a l s
diagram).
1
2 2.62
4.433 1.98
7.87 15.68
·
2.29
»
1.98
—
1.73
ι 6.98 92.49 91.38
14.72
»
5.02
4.67 14.29
·
0.47 2.003 1.73
0.36
—
1.74
0.49 1.807
·
2.33
0.30
Pétrographie analysis
Calorific value (kcal/kg)
ο co
8.49 91.16 91.62 3.84
1.60
Ul
0.53
FC O
12.47 87.53 93.22 4.33
VM CO H
0.35
Ash
Ultimate analysis (d.a.f.%) A
tr
Sample
Proximate analysis (d.b.%)
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
258 PETROLEUM-DERIVED CARBONS
CO
ο ro to ο οι f>|
CO CO CO
Ο ο Ο ο — »
ο ο
ο α. S
ο ο_ Q
ο α..
Lu
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
18.
M A T S U B A R A E T A L .
Petroleum Coke in Metallurgical Coke Making
259
R e s i d u a l O i l A d d i t i o n T e s t . As p r e v i o u s l y shown i n F i g u r e s 2 and 3, t h e e f f e c t o f t h e r e f l e c t a n c e and the f l u i d i t y o f b l e n d e d c o a l s on t h e s t r e n g t h o f coke t h a t i s produced can be e x p r e s s e d i n the form o f a model as i n F i g u r e 5. (_3) U s i n g the t e s t oven, t h e l o w - v o l a t i l e c o a l i n the base b l e n d s was r e p l a c e d by t h e o t h e r c o a l s w i t h d i f f e r e n t c o a l ranks i n t h e c o a l rank c o n t r o l r e g i o n , and t h e r e l a t i o n s h i p between DI o f the coke produced and Ro o f the replacement c o a l was determined. The r e g r e s s i o n l i n e i s i l l u s t r a t e d i n F i g u r e 6. Then, DI o f t h e coke produced by a d d i n g r e s i d u a l o i l i n an amount e q u a l t o t h a t o f t h e replacement c o a l i n the manner d e s c r i b e d above was d e t e r m i n e d , and t h e r e f l e c t a n c e o f the r e s i d u a l o i l was determined from the r e g r e s s i o n l i n e g i v e n i n F i g u r e 6. The r e f l e c t ance t h u s determined i s h e r e i n d e f i n e d as t h e e f f e c t i v e r e f l e c t a n c e , Ro . A f t e r d e t e r m i n a t i o n o f R o , DI i s determined on t h e coke produced from a b l e n d o f c o a l and r e s i d u a l c o i l i n t h e f l u i d i t y control region. S i n c e t h e v a l u e s o f Ro o f the b l e n d e d c o a l s a r e known, i t i s p o s s i b l e t o determine the v a l u e o f M F f o r the b l e n d o f r e s i d u a l o i l and c o a l s from F i g u r e 5, and hence t o determine t h e v a l u e o f M F f o r the r e s i d u a l o i l because M F f o r the r e m a i n i n g p o r t i o n i s known. The v a l u e o f M F o f the r e s i d u a l o i l t h u s o b t a i n e d i s d e f i n e d as t h e effective fluidity, MFE. E
E
P e t r o l e u m Coke A d d i t i o n T e s t . P e t r o l e u m coke may be c o n s i d e r e d as t h e r e s i d u a l o i l w h i c h i s f u r t h e r coked. Base b l e n d s used i n t h i s a d d i t i o n t e s t and the b l e n d s s u b j e c t e d t o the a d d i t i o n t e s t a r e shown i n Table IV, w h i c h a l s o g i v e s t h e p r o p e r t i e s o f t h e coke carbonized a f t e r blending. When b l e n d i n g p e t r o l e u m coke, t h e s t r e n g t h o f t h e coke carboni z e d a f t e r b l e n d i n g i s not s a t i s f a c t o r y unless the p r o p e r t i e s o f b l e n d i n g c o a l s are good. The degree o f c o n t r i b u t i o n o f p e t r o l e u m coke t o t h e coke s t r e n g t h i s c o n s i d e r e d t o be much l o w e r t h a n t h a t of residual o i l . T h i s means t h a t p e t r o l e u m coke i s c o n s i d e r e d t o e x h i b i t p r o p e r t i e s c o n s i d e r a b l y d i f f e r e n t from t h o s e o f a c o k i n g c o a l . W i t h t h i s f a c t i n v i e w , p e t r o l e u m coke was b l e n d e d on t h e assumption t h a t p e t r o l e u m coke was t h e same as t h e i n e r t m a t t e r o f c o a l , and the r e a c t i v e p o r t i o n was n u l l , and t a k e s o n l y t h e f l u i d i t y i n t o account. E x a m i n a t i o n was based on t h e f o l l o w i n g c o m b i n a t i o n s w i t h t h e base b l e n d s : 1. Changes i n the s t r e n g t h o f the coke p r o d u c t were s t u d i e d b y b l e n d i n g p e t r o l e u m coke s i m p l y a t 5% and 10% i n t o base b l e n d s ; 2. P e t r o l e u m coke i s assumed t o be t h e same as i n e r t m a t t e r o f c o a l a s d e s c r i b e d above. Decrease i n Ro o f the b l e n d i s compensated by c o a l s o t h e r than p e t r o l e u m coke. By c o n s i d e r i n g t h e amount o f b l e n d e d p e t r o l e u m coke, t h e b l e n d i s d e s i g n e d so t h a t MF o f the b l e n d may be m a i n t a i n e d o n l y w i t h t h a t o f c o a l s i n t h e base b l e n d , on the assumption, however, t h a t p e t r o l e u m coke has a log[MF] o f 0. P a r t i c u l a r s i n t h i s case a r e shown i n T a b l e I V . Results R e s u l t s o f R e s i d u a l O i l T e s t . V a l u e s o f R O E and M F E a s d e r i v e d from the r e s u l t s o f t h e t e s t a r e g i v e n i n T a b l e V, w h i c h s u g g e s t s t h a t a l l t h e r e s i d u a l o i l s demonstrate e x c e l l e n t p r o p e r t i e s i n many c a s e s . These v a l u e s a r e a r r a n g e d i n t o an MOF diagram i n F i g u r e 7.
15.0
21.4 10.0
10
5.8
50,000
0.84
Yutoku(Jp.Hv)
Coke s t r e n g t h
P r o p e r t i e s of coal blend
90.5
92.5 89.8
90.6 91.1 89.3 90.0
90.4
90.9
91.3
91.5
91.6
89.4
107 107 107 107 107 107 83 83 83
107
107
107
136
MF (DDPM)
J I S D:
1.15 1.15 1.15
1.15 1.15 1.15 1.15 1.15
1.15
1.15
1.15
1.15
FPC
1.15
10
DPC
Ro [%)
100
6.0 23.8
10.1
25
36.4
39
0.84
Witbank(S.A.Hv)
0
8.5 9.0
10
39.2
1,000
1.08
Wellondilly ( A u s t r a l i a Mv)
Petroleum coke
4.2
4.5
10
35.1
1.30
Fording(Ca.Lv)
>90
30
34.5
10
155
1.36
Bal mer (Ca.Lv) •95
4.2 |29.8
4.5
FPC
31.5
DPC
5
MPC
18.1
FPC
14,000
DPC
1.10
MPC
P i t t s o n (US Mv)
FPC
8.5
DPC 9.0
MPC
10
II-3
13.8
(X)
T.In.
(%)
2
MF DDPM
Blending r a t i o
1.60
Ro (X)
Properties
R e s u l t s o f p e t r o l e u m coke a d d i t i o n t e s t
Prime (US Lv)
Blended with
Table IV.
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
Ο
TO CO
η >
α
< m
S
D m
2
Ο r m c
73
m H
no
18.
MATSUBARA ET AL.
Table V
Effective reflectance of r e s i d u a l o i l
( R O E ) and e f f e c t i v e f l u i d i t y ( M F E )
Effective reflectance (Ro )
Effective fluidity (log MF )
1
0.027
2.55
2
0.208
5.04
3
0.377
5.98
4
0.926
5.01
5
1.144
5.99
6
1.055
5.25
7
1.228
5.38
8
1.605
6.20
9
0.924
5.95
10
1.545
5.82
Residual No. Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
261
Petroleum Coke in Metallurgical Coke Making
oil
E
E
R e s u l t s o f P e t r o l e u m Coke T e s t , The r e s u l t s o f t h e t e s t a r e g i v e n i n T a b l e I V . From t h e d a t a shown, t h e r e l a t i o n s h i p between t h e s t r e n g t h (DI) and t h e r a t i o o f a d d i t i o n i s r e p r e s e n t e d i n F i g u r e 8. A c c o r d i n g t o t h i s f i g u r e , s i m p l e a d d i t i o n t o t h e base b l e n d r e s u l t s i n a sharp decrease i n D I , and even when Ro and MF a r e compensated, t h e r e i s s t i l l a lower v a l u e o f DI, s u g g e s t i n g t h a t a t l e a s t t h e log[MF] o f p e t r o l e u m coke i s l o w e r than 0. E x a m i n a t i o n and E v a l u a t i o n E x a m i n a t i o n on R e s i d u a l O i l . V a l u e s o f R O E and M F E residual o i l have been determined as d e s c r i b e d above. T h i s measurement, however, r e q u i r e s much l a b o r . E f f o r t s were t h e r e f o r e made t o e s t a b l i s h a method f o r e s t i m a t i n g R O E and M F E from t h e v a r i o u s parameters o f residual o i l . F i g u r e 9 shows t h e r e l a t i o n s h i p between R O E and faQs(100 - VM); and F i g u r e 10, t h e ^ r e l a t i o n s h i p between M F E and faQs. A l l t h e s e f i g u r e s demonstrate h i g h c o r r e l a t i o n s . These r e s u l t s were a r r a n g e d and s u b j e c t e d t o m u l t i p l e r e g r e s s i o n a n a l y s i s , and t h e r e s u l t s a r e g i v e n i n Table V I . A c c o r d i n g t o t h i s t a b l e , R O E has t h e c l o s e s t c o r r e l a t i o n w i t h faQs(100 - VM), and M F E ' w i t h faQs. f
o
r
E x a m i n a t i o n on P e t r o l e u m Coke. E v a l u a t i o n has been made b y assuming t h a t p e t r o l e u m coke was a t o t a l l y i n e r t c o n t e n t and log[MF] o f t h e f l u i d i t y was n u l l , b u t t h i s i s n o t always t h e case as shown i n t h e r e s u l t s i n t h e former s e c t i o n .
PETROLEUM-DERIVED CARBONS (Fluidity control region) -
^
Coke strenjgth (
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
Q
(Coal rank control region) 1 -
1 1
High Ro Medium Ro
DI(MF)
Low Ro
ι ι MFbj
[
M F of coal charge
F i g u r e 5. E f f e c t o f f l u i d i t y and c o a l rank o f c o a l b l e n d on coke s t r e n g t h .
e*
DI obtained by addition of an additive (10%)
ι /
\U—'
ο
_1
0.8
1.0
1.2
5
.Estimated value 1.4
1.6
Vitrinite reflectance of coal added (10%)
F i g u r e 6. E s t i m a t i o n o f e f f e c t i v e r e f l e c t a n c e ( R O E ) o f c a k i n g additives. 7.0
6.0 5.0
£
4 0
S
3.0
Έ
_J
9
ο
Ο ^
Jap.H.V
j I
u_\; ι
I I
ο ! Heavy oil
I USA.H.V.
ο/ ο Jap.H.V.
2.0 1.0 0
"
ψ
! !
ij.AustM.V. USA.L.V, Aust.H.V. i * \ >TN
V I 0.5
I l! \ \ v
1.0
-i
C a n
e.
1.5
l
v\\ L V
^ 2.0 Ro.
F i g u r e 7.
3.0 Rok
MOF diagram f o r c a k i n g a d d i t i v e s ( r e s i d u a l o i l )
MATSUBARA ET AL.
Petroleum Coke in Metallurgical Coke Making
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
92.Oh
90.Oh ο
in
Q : Simple addition : MF
compensation
88.0 X: M P C O: D P C
·:
FPC
86.0
l
0
5
10
15
Ratio of added petroleum coke F i g u r e 8.
(%)
Change i n DI30/15 by a d d i t i o n o f p e t r o l e u m coke.
-0.1
0
10
20
30
40
fa · QS · (lOO-VM)XIO"
F i g u r e 9.
50
2
R e l a t i o n between R o and faQS(100-VM). E
264
PETROLEUM-DERIVED CARBONS Table V I
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
Ro
E s t i m a t i n g e q u a t i o n s o f R O E and M F E for residual o i l Ro
E
= -0.02060 (VM) + 2.021
Ro
E
= 1.1245(C/H) - 0.518
Ro
E
- 0.03376(FAQS(100 - VM)) + 0.0148
Ro
E
= 0.00285(RaQS(100 - VM) + 0.0287
E
(R=-0.8167, N=56) (R=0.8503, N=56)
log MF = 2.445 + 5.564(FAQS)
(R=0.8724, N=52)
(R=0.6988, N=50)
E
log MF = 1.492 + 0.6024(RaQS) E
MF
(R=0.9037, N=56)
(R=0.6540, N=43)
E
log MF = 2.429 + 0.218 log MFc
(R=0.6689, N=60)
E
log MF = 4.031 + 0.0052(TDc) E
(R=0.5416, N=60)
The v a l u e s o f M F were t h e r e f o r e reviewed w h i l e r e t a i n i n g t h e assumption t h a t p e t r o l e u m coke was a t o t a l l y i n e r t c o n t e n t . The r e s u l t s shown i n T a b l e V I I demonstrate t h a t l o g M F t a k e s l a r g e n e g a t i v e v a l u e s . The average o f t h e s e v a l u e s i s d e f i n e d as M F E o r a p a r t i c u l a r p e t r o l e u m coke. The r e l a t i o n s h i p between t h i s M F E and V M f o r p e t r o l e u m coke and r e s i d u a l o i l i s r e p r e s e n t e d i n F i g u r e 11, w h i c h shows t h e p o s s i b i l i t y o f e x p r e s s i n g M F E *>Υ V M f
Table V I I
Effective fluidity
(Simple addition) Sample
MPC
DPC
FPC
log MF
E
( M F E ) o f p e t r o l e u m coke
(MF compensation) log MF
E
-1.17
(10%)
-2.26
(10%) -2.65
(15%)
-2.17
(5%)
-2.75
(10%)
-3.56
(10%) -3.70
(15%)
-2.52
(5%)
-4.83
(10%)
-5.66
(10%) -5.53
(15%)
-4.44
(5%)
Note) Figures in ( ratios.
(Average) log MF
E
-2.20
-3.13
-5.12
) represent blending (adding)
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
M ATS U Β ARA ET AL.
Petroleum Coke in Metallurgical Coke Making
0.2
0.4
0.6
fa - Q S X 1 0 -
0.8
1.0
2
F i g u r e 10. R e l a t i o n between MFg and faQS.
K
*
SRC
P
+5
Ô PDA
li.
I
/ / / O MPC
Ç> DPC -5
FPC 50
100 VM
F i g u r e 11. R e l a t i o n between e f f e c t i v e f l u i d i t y and VM o f heavy r e s i d u e s .
266
PETROLEUM-DERIVED CARBONS
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
Evaluation Economic E v a l u a t i o n , An a d d i t i v e used a s a c o k i n g raw m a t e r i a l c a n be e v a l u a t e d from v a l u e s o f R O E r M F E , i n e r t m a t t e r , a s h , s u l f u r and so on i n t h e same manner a s i n a c o a l , a s shown above. The r e l a t i o n s h i p s between t h e i n d i v i d u a l parameters f o r c o a l and t h e FOB p r i c e s have p r e v i o u s l y been d e t e r m i n e d a t Nippon Kokan. These v a l u e s a r e a p p l i c a b l e t o t h o s e o f a d d i t i v e s a s shown i n F i g u r e 12. I n t h i s f i g u r e , t h e p r i c e i s n o t shown, b u t o n l y t h e r e l a t i v e p o s i t i o n was e s t i m a t e d b y an e q u a t i o n . F o r heavy r e s i d u e s , t h e economic e v a l u a t i o n i s shown a l s o i n t h i s f i g u r e . I n t h e e s t i m a t i o n f o r m u l a , C I , C2, C3 and C4 a r e c o n s t a n t c o e f f i c i e n t s d e t e r m i n e d from economic and t e c h n i c a l p o i n t s o f v i e w , and u. v. w and s a r e c o e f f i c i e n t s determined by m u l t i p l e r e g r e s s i o n a n a l y s i s . F o r p e t r o l e u m coke, t h e same e v a l u a t i o n i s shown a l s o i n F i g u r e 12. I t w i l l be u n d e r s t o o d t h a t t h e v a l u e o f p e t r o l e u m heavy o i l i s b e t t e r t h a n t h a t o f p e t r o l e u m coke a s a raw m a t e r i a l f o r coke making. P e t r o l e u m heavy o i l s can more a d v a n t a g e o u s l y be u t i l i z e d than p e t r o l e u m coke.
/
100
80
KRP
SRC
Οο •
ο Ο
Ο 40
/u
MPC
60
DPC
20
ι
Ο
» Price (F.O.B.)
'
20
F i g u r e 12.
'
ι
Ο D
71
A PDA
40
= -Ci(Ash)-Cz(TS) +C (Coke Yield)+C4(Gas Yield) 3
+u(log MFE)+V(TI)+WRO(100-TI) +s
-L 60 80 Estimated price ( U S $ )
-i100
120
R e l a t i o n between e s t i m a t e d p r i c e and c o n t r a c t p r i c e .
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
18.
MATSUBARA ET AL.
Petroleum Coke in Metallurgical Coke Making
267
B l e n d i n g L i m i t o f P e t r o l e u m Coke, The b l e n d i n g l i m i t o f p e t r o l e u m coke i s c o n s i d e r e d t o be about 5% as a l r e a d y mentioned above. T h i s can be e x p l a i n e d from the c u r r e n t average v a l u e o f MF o f about 200 t o 500 DDPM f o r c o a l b l e n d s i n the Japanese c o k i n g i n d u s t r y . F i g u r e 13 shows l i m i t q u a n t i t i e s o f added p e t r o l e u m coke f o r v a r i o u s v a l u e s o f f l u i d i t y f o r the base c o a l s . I n t h e d e t e r m i n a t i o n o f t h e s e l i m i t q u a n t i t i e s , t h e q u a n t i t y o f added p e t r o l e u m coke w i t h w h i c h t h e f l u i d i t y o f the c o a l b l e n d d e c r e a s e d t o below 200 DDPM under t h e e f f e c t o f t h i s b l e n d i n g was deemed as t h e l i m i t . A c c o r d i n g t o F i g u r e 13, i f DPC i s b l e n d e d i n an amount o f 5% w i t h a base b l e n d h a v i n g an MF o f 400 DDPM, t h e r e s u l t a n t c o a l b l e n d has a s u f f i c i e n t maximum f l u i d i t y (MF), whereas a 10% b l e n d i n g r e s u l t s i n an MF f a r i n f e r i o r t o 200 DDPM, showing t h e i m p o s s i b i l i t y o f k e e p i n g a s a t i s f a c t o r y coke s t r e n g t h . T h i s i s a l s o t h e case w i t h the o t h e r p e t r o l e u m cokes, and the o r d e r i s : MPC > DPC > FPC. T h i s may be regarded as s u p p o r t i n g t h e i n f o r m a t i o n g i v e n i n Table I .
10
MF
F i g u r e 13.
of base blend ( D D P M )
Blending l i m i t o f petroleum
coke.
Conclusion P e t r o l e u m coke as a c o k i n g raw m a t e r i a l was e v a l u a t e d i n comparison w i t h r e s i d u a l o i l . W h i l e r e s i d u a l o i l shows e x c e l l e n t p r o p e r t i e s as a c o k i n g raw m a t e r i a l , p e t r o l e u m coke was found t o be f a r i n f e r i o r t o r e s i d u a l o i l , and q u a n t i t a t i v e f i g u r e s were determined.
268
PETROLEUM-DERIVED CARBONS
Literature Cited 1.
Petroleum-Derived Carbons Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 03/14/16. For personal use only.
2. 3. 4. 5. 6.
Miyazu, T. et al., "The Evaluation and Design of Blend using Many Kinds of Coal for Coke Making", paper presented at IISC Meeting, Dusseldorf, 1974. Miyazu, T. et al., "New Technique for Producing Coke --Addi tion of Petroleum Pitch or Solvent Refined Coal", paper presented at IISC & AIME Meeting, Chicago, 1978. Miyazu, T. et al., "Selection of Coal and Additives for the Production of Coke Cost", paper presented at McMaster Symposium, Hamilton, 1980. Miyazu, T. et al., "Evaluation Method of Binding Materials for Coke Making", paper presented at Japan Coal Science Conference, Fukuoka, 1981 (Japanese). The Annual Report in RAROP, 1979 (Japanese). The Annual Report in RAROP, 1982 (Japanese). RAROP: Research Association for Residual O i l Processing in Japan
RECEIVED October 21, 1985