Chapter 27
UV Cure of Epoxysiloxanes and Epoxysilicones Richard P. Eckberg and Karen D. Riding
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
Silicone Products Division, General Electric Company, Waterford, NY 12188
Polydimethylsiloxanes, commonly referred to as silicones, are unique materials with a broad range of applications in industrial, consumer, and cosmetic products and processes. There are excellent opportunities for silicone suppliers to take advantage of growing market demand for radiation-curable silicone coatings used for release of pressure-sensitive adhesives, conformal coatings, and other diverse applications which combine unique silicone properties with low-temperature processing, high speed through-put, and the low energy and environmental impact of radiation processing. Among the most successful of the new radiation-curable silicone coating systems are compositions incorporating cycloaliphatic epoxy-functional silicone polymers with compatible iodonium salt photocatalysts (1 - 5). The syntheses, structures, UV cure response, and other properties of these materials and some of their derivatives and monomeric homologs are discussed in the balance of this chapter. Their specific application for release coatings has been described in great detail elsewhere (5,6) and is not the subject of this paper. A handy shorthand system of abbreviating silicone polymer structures has been developed by the industry and will be used herein. Chainstopper siloxy groups are designated "M" (monofunctional). Superscripts refer to organic functionality other than methyl, i.e.
Siloxane units making up linear polysiloxane molecules are designated "D" (difunctional), and are superscripted in the same fashion as above; subscripts refer to chainlength of linear polymers. 0097-6156/90/0417-0382$06.00/0 ©1990 American Chemical Society Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
27. ECKBERG & RIDING
D =
UVCure of Epoxysiloxanes and Epoxysilicones 383
CH, 3
H
SiO
SiO
CH
CH. 3
3
CH, 3
D
=
( S i l i c o n i n s i l i c o n e polymers i s always c o n s i d e r e d
SiO
4-coordinate).
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
EPOXYSILICONES P l a t i n u m - c a t a l y s e d r e a c t i o n o f o l e f i n e p o x i d e s t o S i H compounds, o r h y d r o s i l a t i o n , i s an e l e g a n t and c o n v e n i e n t means o f s y t h e s i z i n g e p o x y - f u n c t i o n a l s i l i c o n e s and s i l o x a n e s (7.) . The b a s i c r e a c t i o n i s p r e s e n t e d as e q u a t i o n ^ ! : HSiH
+
(1)
Two o l e f i n e p o x i d e s , a l l y l g l y c i d y l e t h e r and 4 - v i n y l c y c l o h e x e n e o x i d e (VCHO), a r e c o m m e r c i a l l y a v a i l a b l e t o the e x t e n t t h a t l a r g e scale production of their siloxane derivatives i s f e a s i b l e :
Since extremely f a s t - c u r i n g UV-sensitive s i l i c o n e m a t e r i a l s are d e s i r e d by t h e r e l e a s e c o a t i n g i n d u s t r y , e p o x y s i l i c o n e s d e r i v e d f r o m VCHO were chosen f o r development, s i n c e c a t i o n i c UV c u r e o f c y c l o a l i p l i a t i c e p o x i e s i s known t o be much f a s t e r than t h a t o f analogous g l y c i d y l e t h e r s ( 8 ) . Two c l a s s e s o f c y c l o a l i p h a t i c epoxy c o n t a i n i n g m a t e r i a l s have emerged from e a r l y r e s e a r c h e f f o r t s : e p o x y s i l i c o n e p o l y m e r s and e p o x y s i l o x a n e monomers ( o r o l i g o m e r s ) . E p o x y s i l i c o n e polymers s u i t a b l e f o r r a d i a t i o n - c u r e r e l e a s e c o a t i n g a p p l i c a t i o n s have t o s a t i s f y an i m p o r t a n t r e q u i r e m e n t i n o r d e r t o be u s e f u l : they must be c o a t a b l e by t h r e e r o l l o f f s e t g r a v u r e ( o r o t h e r m u l t i r o l l t e c h n i q u e ) c o a t e r s d e s i g n e d to p r o v i d e complete coverage o f s u b s t r a t e a t low c o a t w e i g h t s ( t y p i c a l l y 1 gram/meter o r l e s s ) w i t h o u t b e n e f i t o f s o l v e n t . Since v i s c o s i t y of such m a t e r i a l s i s c o n s t r a i n e d w i t h i n 200-2000 c e n t i s t o k e ( c s t k ) , w i t h 200-500 c s t k p r e f e r r e d , t h e m o l e c u l a r w e i g h t o f t h e s i l i c o n e used must be t i g h t l y c o n t r o l l e d , as w e l l , and i s n o r m a l l y between 500010,000 D a l t o n s , o r about 60 t o 150 d i m e t h y l s i l o x y (D) u n i t s . Two methods t o p r o d u c e such polymers have been e s t a b l i s h e d : (a) h y d r o s i l a t i o n a d d i t i o n o f VCHO t o an S i H - f u n c t i o n a l polymer p r e formed (by means o f a c i d e q u i l i b r a t i o n ) t o t h e d e s i r e d m o l e c u l a r w e i g h t and S i H c o n t e n t and (b) b a s i c e q u i l i b r a t i o n o f a l k o x y s i l a n e VCHO a d d u c t s w i t h o t h e r s i l o x a n e s (2). Since the t r i m e t h o x y s i l a n e (MeO) Si3
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
384
RADIATION CURING OF POLYMERIC MATERIALS
i s the o n l y such s i l a n e c o m m e r c i a l l y a v a i l a b l e (as A-186, trademark of Union C a r b i d e C o . ) , the former approach has p r o v e n to be the most v e r s a t i l e , and most r e a d i l y t r a n s l a t e d t o l a r g e s c a l e p r o d u c t i o n . T y p i c a l l i n e a r e p o x y s i l i c o n e polymers m a n u f a c t u r e d i n t h i s manner a r e r e p r e s e n t e d below: E
M D
E 5
D
9 5
M
m
\ F
(C H Ph) ISbF^
800
396
160
65
CY 179 ( C i b a - G e i g y )
2000
370
Epon 825 ( S h e l l )
4000
1460
/\^^J^
where Ε =
Limonenedioxide =
θ ζ ^ \ )
/
-^XJ^XÎO
CÏ179 Epon 825 =
E
E
The h i g h Tg o b s e r v e d f o r M M a n d i t s a n a l o g s might r e f l e c t t h e r m a l c u r e t a k i n g p l a c e d u r i n g t h e DSC measurements t h e m s e l v e s ; f u r t h e r a n a l y s i s i s required to resolve p o s s i b l e ambiguities. However, even r e l a t i v e l y low m o l e c u l a r weight W D ^ T type p o l y s i l o x a n e o l i g o m e r s ' cured f i l m p r o p e r t i e s resemble t h o s e o f conv e n t i o n a l c u r e d d i m e t h y l s i l i c o n e s , which r e t a i n t h e i r p r o p e r t i e s a t v e r y low t e m p e r a t u r e . EPOXYSILOXANES AND POLYOLS A l c o h o l s , p h e n o l s , and p o l y o l s r e a c t w i t h e p o x i e s under cat i o n i c UV-cure c o n d i t i o n s : 1
R R-OH
+
θ φ ^
OR
R
«
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
6
UV Cure of Epoxysiloxanes and Epoxysilicones
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
ECKBERG & RIDING
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
393
RADIATION CURING OF POLYMERIC MATERIALS
394 Table VI.
Approximate; Tg o f U V - c r o s s i i n k e d F i l m s * Tg,
Monomer
C
165-195 (broad
transition)
30-70
4
M W
(9-40 @-100
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
Ε-S iMe
200-215
iMe ~ E 2
190-195
E-SiMe CH CH SiMe -E 2
2
2
2
E - S i M e ^ 0 - < ^ SiMe -E
180-190
CY179
143
Epon 825
132
2
* 0.5 wt % ( C
2
1 2
H
2 5
Ph)
2
ISbF , 6
2j/cm
2
UV
flux
Numerous p u b l i s h e d r e p o r t s d e s c r i b e how p o l y o l o r a l c o h o l a d d i t i v e s improve e l o n g a t i o n , impact r e s i s t a n c e , and g e n e r a l toughness o f b r i t t l e , i n f l e x i b l e UV-cured c y c l o a l i p h a t i c epoxy r e s i n s (16,17). We endeavored t o determine i f f i l m p r o p e r t i e s o f t h e s e b r i t t l e UVc u r e d e p o x y s i l o x a n e s can be improved by h y d r o x y - f u n c t i o n a l a d d i t i v e s . I n i t i a l s t u d i e s were l i m i t e d t o t h e system M D ^ M / 2 - e t h y l - l , 3 h e x a n e d i o l (EHDO) w h i c h p r o v e d m i s c i b l e when χ = 0, 4, and 10, w i t h 0.5 wt % iodonium c a t a l y s t B. We i n v e s t i g a t e d t h e e f f e c t o f EHDO on epoxysiloxane cure response, w i t h r e s u l t s g r a p h i c a l l y d e p i c t e d i n F i g u r e 4. P o l y o l s a c t as c h a i n t r a n s f e r agents which a s s i s t UV c u r e o f c a t i o n i c epoxy systems. Our r e s u l t s w i t h EHDO and M DJMT d i d n o t i l l u s t r a t e t h i s e f f e c t , perhaps because a l l components o f these blends are d i f u n c t i o n a l * We r e p e a t e d t h i s experiment by d e t e r m i n i n g UV c u r e response o f wn/l,2,6-trihydroxyhexane mixture u s i n g the same iodonium c a t a l y s t and c o n c e n t r a t i o n . These r e s u l t s a r e l i s t e d i n Table V I I . Table V I I .
UV Cure Response, M ^ / T r i o l System 2
OH/Epoxy Mole R a t i o 1.00 0.75 0.5 0.25 0
UV F l u x f o r Cure,
MJ/cm
212 70 32 30 15
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
ECKBERG & RIDING
UVCure of Epoxysiloxanes and Epoxysilicones
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
300
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
395
396
RADIATION CURING OF POLYMERIC MATERIALS
S o l u b i l i t y of 1,2,6-trihydroxyhexane in was l i m i t e d , but t h i s t r i o l formed c l e a r b l e n d s w i t h M M and o c t a n o l . An 8:1:1 (wt:wt:wt) mix o f M M : t r i o l : o c t a n o l curbed t o a tough, t r a n s p a r e n t 2 m i l f i l m on i r r a d i a t i o n w i t h 70 MJ/cm UV energy i n the p r e s e n c e o f 0.5% iodonium s a l t B, s u g g e s t i n g t h a t b l e n d s o f v a r i o u s a l c o h o l s and p o l y o l s may be used w i t h e p o x y s i l o x a n e s o r e p o x y s i l i c o n e s to o v e r come s o l u b i l i t y c o n s t r a i n t s . M o n o f u n c t i o n a l a l c o h o l s may a l s o be c u r e d w i t h e p o x y s i l o x a n e s , a l t h o u g h t h e y a c t as c h a i n t e r m i n a t o r s and slow UV c u r e a s O H / o x i r a n e r a t i o s approach 1. T h i s e f f e c t i s i l l u s t r a t e d f o r the Μ *M / o c t a n o l system i n T a b l e V I I I below: E
Table V I I I .
UV
Cure Response, M V / N - o c t a n o l
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
2 OH/oxirane mole r a t i o
UV
f l u x f o r Cure, MJ/cm 2
1.0 0.75 0.5 0.25 0
No
c u r e a t 5000 MJ/cm 2700 140 70 15
P h y s i c a l p r o p e r t y measurement o f t h i c k s e c t i o n - U V c u r e d epoxys i l o x a n e / a l c o h o l b l e n d s were d i f f i c u l t t o o b t a i n b e c a u s e many o f the c u r e d f i l m s ( l i k e u n m o d i f i e d e p o x y s i l i c o n e s ) p r o v e d too weak and b r i t t l e to t e s t . S e l e c t e d r e s u l t s a r e d e p i c t e d i n T a b l e IX f o r 20 m i l f i l m s UV c u r e d w i t h 0.5 wt% (C. H -Ph) ISbF,. by e x p o s u r e t o 2 J/cm t o t a l UV f l u x . ^ 9
i
T a b l e IX. Mole R a t i o , 0 H / 0 x i r a n e E
EHD0/M M
Cured
?1
Film Properties
Peak T e n s i l e , p s i
E l o n g a t i o n a t Break, %
E
1.0 0.8 0.6 0.4
( v e r y low) 111 643 (very high) E
O c t a n o l /M M 0.5 0.4 0.33 0.25 EHDO/MVM
17 36.5 130 159
14 22.5 26 23
9 18 17 28
20 19 14.5 10.5
5 4 28
16 9 L8
5
0.83 0.66 0.5
iU
100 62 29 5
E
Γ7(Γ
EHDO/^D 1.0 0.75
?
Z
M
E
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
27. ECKBERG & RIDING
UV Cure of Epoxysiloxanes and Epoxysilicones
397
W h i l e most o f t h e s e f i l m s a r e c l e a r l y low-modulus m a t e r i a l s , they p o s s e s s p r o p e r t i e s u s e f u l f o r such r a d i a t i o n - c u r e c o a t i n g a p p l i c a t i o n s as c o n f o r m a i c o a t i n g s , e l e c t r o n i c e n c a p s u l e n t g e l s , o r f i b e r o p t i c c o a t i n g s , p a r t i c u l a r l y where such a p p l i c a t i o n s demand silicones b r o a d o p e r a t i o n a l temperature range. 1
Downloaded by COLUMBIA UNIV on January 2, 2017 | http://pubs.acs.org Publication Date: December 28, 1990 | doi: 10.1021/bk-1990-0417.ch027
SUMMARY E p o x y s i l i c o n e s r a n g i n g from l o w - m o l e c u l a r w e i g h t s i l o x a n e monomers t o h i g h m o l e c u l a r w e i g h t polymers have been d e v e l o p e d f o r a wide range of r a d i a t i o n - c u r a b l e c o a t i n g a p p l i c a t i o n s . M o d i f i c a t i o n s o f iodonium p h o t o c a t a l y s t s and o f e p o x y - f u n c t i o n a l d i m e t h y l s i l i c o n e s make t h e c a t a l y s t s and r e s i n s m u t u a l l y c o m p a t i b l e , thus r e n d e r i n g t h e s e systems c o m m e r c i a l l y f e a s i b l e . D i - c y c l o a l i p h a t i c epoxy-terminated s i l o x a n e monomers and o l i g o m e r s d i s p l a y e x t r e m e l y f a s t UV c u r e r e s ponse and c a n be used t o a c c e l e r a t e c u r e o f o r g a n i c epoxy r e s i n s . P h y s i c a l p r o p e r t i e s o f UV c u r e d e p o x y s i l o x a n e s a r e r e a d i l y m o d i f i e d by c o - c u r e w i t h a l c o h o l s and p o l y o l s .
REFERENCES 1. 2. 3. 4.
R.P. Eckberg and R.W. LaRochelle, U.S. 4,279,717 (7/21/81). R.P. Eckberg and R.W. LaRochelle, U.S. 4,421,904 (12/20/83). R.P. Eckberg, U.S. 4,547,431 (10/15/85). R.P. Eckberg, Radcure '84 Conference Proceedings, Atlanta, Georgia, pg. 2-1. 5. R.P. Eckberg, Radtech '88 North America Conference Proceedings, New Orleans, pp. 576-586. 6. Chemical & Engineering News, Nov 28, pg 32 (1988). 7. R.D. Mendecino, U.S. Pat. 4,046,930 (4/11/78). 8. J.V. Crivello, UV Curing: Science & Technology, (Ed. S. Peter Pappas), pp 24-77, Technology Marketing Corporation, (1978). 9. I. Yilgor and J.E. McGrath, Adv. Polymer Science, 86, 1-86 (1988) and references therein. 10. F.M. Beringer, M. Drexler, E.M. Gindler, and C.C. Lumpkin, J. Amer. Chem. Soc., 73, 2705 (1953). 11. F.M. Beringer, R.A Falk, M. Karmal, J. Lillien, G. Masullo, M. Mausner, and E. Sommer, J. Amer. Chem.Soc.,81,342 (1959). 12. G.F. Koser, R.H. Wettack, and C.S. Smith, J. Org. Chem., 45, 1543 (1980). 13. X. Coqueret, A. Lablache-Combier, and C. Loucheux, Eur. Polym. J., 24, 713-718 (1988). 14. R.P. Eckberg, U.S. 4,558,082 (12/16/85). 15. E.P. Plueddemann and G. Fanger, J. Amer. Chem.Soc.,81, 2632 (1959). 16. G.H. Smith, U.S. 4,256,828 (3/17/81). 17. J.V. Koleski, Radtech '88 North American Conference Proceedings, New Orleans, pp 353-371. RECEIVED September 13,
1989
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.