43 Vapor Adsorption on Zeolites Considered as Crystalline Specific Adsorbents
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
Α. V. K I S E L E V Department of Chemistry, M.V. Lomonosov State University of Moscow and Institute of Physical Chemistry, U S S R Academy of Sciences, Moscow
Adsorption
on zeolites is discussed
a general theory of molecular porous
adsorbents,
relating of
a system
and
taking
in deriving
chemical
constants
vestigation
of
constants
on the
molecule;
(4)
different surements; librium
the
from the
structure
within
the
the
these
zeolite
and
field
zeolite
and
the
with the
(5) molecular—statistical the
of
the
(3)
in
adsorbate of
the
interactions
energy
for
possible
use
adsorption
calculations particular
these
physico-
physicochemical
and
potential
cavity,
data in conjunction
use data
these interactions; of
of the of
equations
adsorbate-adsorbent
experimental
dependence
of and
characteristics
(2) the
and the molecule-molecule
between
molecular
selection
interactions;
calculation
points
spectroscopic
of
characterizing
the
molecule-zeolite
(1)
thermodynamic
into account
adsorbate-adsorbate
equations
The
the
the framework on nonporous
considering:
in a general way
within
adsorption
of the
of
mea equi
molecules.
w i t h i n the zeolite cavities, e s p e c i a l l y near
the
-•• c a v i t y w a l l s , is heterogeneous, b u t the d i s t r i b u t i o n of the field p o t e n t i a l , w h i c h is d e t e r m i n e d b y the c r y s t a l l i n e structure of the z e o l i t e , is r e g u l a r t h r o u g h o u t the s a m p l e ( a l l cages are almost i d e n t i c a l ) . to the r e g u l a r d i s t r i b u t i o n of the
field
Owing
p o t e n t i a l , the m a i n features of
a d s o r p t i o n o n porous zeolites are s i m i l a r to those o n n o n p o r o u s crystals. F o r e x a m p l e , f o r b o t h n o n p o r o u s adsorbents
a n d p o r o u s zeolites,
the
heat of a d s o r p t i o n o f t e n increases w i t h the a d s o r p t i o n l e v e l because of adsorbate-adsorbate
interaction.
Sometimes, o w i n g to the sequence of
increase a n d decrease of this i n t e r a c t i o n , the heat of a d s o r p t i o n c u r v e acquires a w a v e - s h a p e d p a t t e r n ( F i g u r e 1 ) a n d the a d s o r p t i o n isotherms pass t h r o u g h i n f l e c t i o n points ( F i g u r e 2).
T h i s s i m i l a r i t y shows that i t
37
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
38
M O L E C U L A R SIEVE ZEOLITES
5 Q , / J mole/m
10
10 a, m mole/gram
2
Figure
1.
II
Heat of adsorption, Q , at different values of adsorption level a a. Isobutyl alcohol on graphitized carbon black (6) b. Water (4) on zeolite KX L = heat of condensation of the vapor
10
10 20 30 40 50 60 o,ju moles /gram
0.02 .04 .06 .08 0.1 /?mm Hg Figure 2.
100
200 300 tf,mg/gram
400
10 /^mm Hg
Adsorption of CCl on graphitized carbon black (34) a. Heats of adsorption (15) b. Adsorption isotherms (34) Adsorption of phosphorus vapor on zeolite NaX (13) c. Heats of adsorption d. Adsorption isotherms h
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
On
Zeolites
39
is possible to a p p l y the m o l e c u l a r t h e o r y of a d s o r p t i o n (28,
35, 38)
to
p o r o u s zeolites. S u c h a n a p p r o a c h makes it unnecessary to assign to the adsorbate i n s i d e the m i c r o p o r e s the p r o p e r t i e s of c o n t i n u o u s c o m p r e s s e d l i q u i d , w h i c h u s u a l l y is d o n e i n the case of a d s o r p t i o n b y m i c r o p o r o u s adsorbents. T h e d e v e l o p m e n t of the m o l e c u l a r t h e o r y of a d s o r p t i o n s h o u l d c o n
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
sist of the f o l l o w i n g aspects: ( 1 ) E q u a t i o n s s h o u l d b e selected or a n e w m o r e g e n e r a l e q u a t i o n d e v e l o p e d w h i c h h a v e a m o l e c u l a r - s t a t i s t i c a l basis a n d d e s c r i b e the r e l a t i o n s h i p s b e t w e e n the a m o u n t of a d s o r p t i o n , the heat of a d s o r p t i o n , the heat c a p a c i t y of the system, the pressure, a n d the t e m p e r a t u r e . V a r i ous constants i n these equations m u s t h a v e a clear p h y s i c a l m e a n i n g . T h e s e equations m u s t d e s c r i b e the exact shape of the isotherms ( F i g u r e 2 ) a n d m u s t r e d u c e to the H e n r y e q u a t i o n at l o w coverage. ( 2 ) T h e d e v e l o p e d equations s h o u l d b e u s e d f o r a n a l y z i n g e x p e r i m e n t a l t h e r m o d y n a m i c d a t a to o b t a i n p h y s i c o c h e m i c a l constants—e.g., H e n r y constants—whose m a g n i t u d e is i n d e p e n d e n t of the fitting procedure. ( 3 ) T h e relationships s h o u l d b e e s t a b l i s h e d b e t w e e n these constants a n d s u c h parameters as the t y p e of the z e o l i t e lattice, the t y p e a n d c o n c e n t r a t i o n of cations, the degree of d e c a t i o n i z a t i o n , a n d the structure of the adsorbate m o l e c u l e . A s a result, s e m i e m p i r i c a l relationships m a y b e o b t a i n e d w h i c h c o u l d b e u s e d f o r the p r a c t i c a l c a l c u l a t i o n of the a d s o r p tion equilibrium. ( 4 ) T h e m o l e c u l a r field d i s t r i b u t i o n w i t h i n the channels m u s t b e i n v e s t i g a t e d , t a k i n g i n t o c o n s i d e r a t i o n the structure of the zeolite, a n d the c a l c u l a t i o n of the p o t e n t i a l e n e r g y of i n t e r a c t i o n b e t w e e n the zeolite a n d p a r t i c u l a r m o l e c u l e s m u s t b e m a d e . T h e s e investigations w o u l d b e assisted greatly b y spectroscopic studies w h i c h w o u l d m a k e it p o s s i b l e to e s t a b l i s h the n a t u r e of the zeolite surface, the presence a n d the n a t u r e of s t r u c t u r a l defects, a n d the state of the a d s o r b e d m o l e c u l e s . ( 5 ) T h e statistical c a l c u l a t i o n of t h e r m o d y n a m i c constants f o r the z e o l i t e - a d s o r b a t e system s h o u l d be m a d e . A c o m p a r i s o n of these c o n stants w i t h the e x p e r i m e n t a l values o b t a i n e d i n Stages 2 a n d 3 w o u l d a l l o w the i n t r o d u c t i o n of some c o r r e c t i o n factors for the constants de s c r i b i n g the p o t e n t i a l f u n c t i o n s of the i n t e r a c t i o n . A s a result, a m o r e a c c u r a t e g e n e r a l scheme of m o l e c u l a r - s t a t i s t i c a l c a l c u l a t i o n of the molecule—zeolite system w o u l d be o b t a i n e d . I n the present r e v i e w , an attempt is m a d e to a n a l y z e the e x p e r i m e n t a l d a t a a n d to relate the various aspects i n the d e v e l o p m e n t of the m o l e c u l a r t h e o r y of a d s o r p t i o n as a p p l i e d to zeolites. Selection of the Adsorption
Isotherm
T h e a d s o r p t i o n isotherms w i t h
Equation ( F i g u r e 2)
a n d w i t h o u t (11,
30)
points of i n f l e c t i o n c a n be d e s c r i b e d b y the same e q u a t i o n . T h i s e q u a t i o n necessarily takes into a c c o u n t the a d s o r b a t e - a d s o r b e n t
and
adsorbate-
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
40
M O L E C U L A R SIEVE
ZEOLITES
II
adsorbate i n t e r a c t i o n . It is b a s e d o n 2 s i m p l i f i e d m o d e l s . A t sufficiently h i g h temperatures, use is m a d e of the m o d e l for n o n l o c a l i z e d a d s o r p t i o n together w i t h the equations of state of the adsorbate.
T h e equations of
the v a n der W a a l s a n d v i r i a l types are r e l a t e d to the isotherms of a d s o r p t i o n of H i l l - d e B o e r (16)
a n d W i l k i n s (1, 11, 28, 40),
respectively. A n
other m o d e l i n v o l v i n g l o c a l i z e d a d s o r p t i o n f o l l o w e d b y association
of
a d s o r b e d molecules leads to i s o t h e r m equations c o n t a i n i n g a t e r m w h i c h i n c l u d e s the i n t e r a c t i o n energy of n e i g h b o r i n g m o l e c u l e s a n d their co o r d i n a t i o n n u m b e r (9)
or the association constant (6, 30).
B o t h models
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
satisfactorily describe a d s o r p t i o n isotherms w i t h or w i t h o u t a n inflection point. F r o m the p o i n t of v i e w of the m o r e g e n e r a l statistical t h e o r y of a d s o r p t i o n , i f the energy d i s t r i b u t i o n o n the surface is k n o w n w i t h suffi cient a c c u r a c y , there is n o necessity
to use a n y s p e c i a l model—e.g.,
localized adsorption. O n the basis of this g e n e r a l t h e o r y (35, 3 8 ) , the i n i t i a l r e g i o n of the i s o t h e r m is d e s c r i b e d b y a n e x p o n e n t i a l series w i t h v i r i a l coefficients: a ^
G = K
+
l P
K p*
+
2
...
(1)
or b y the reverse series: = KJa
V
+
KJa
2
+
. . .
(la)
H e r e , G is the a d s o r p t i o n p e r g r a m of zeolite (at l o w v a p o r pressure, p, the v a l u e of G is close to the a d s o r p t i o n l e v e l , a);
K
±
a n d Ki
are H e n r y
constants c h a r a c t e r i z i n g the a d s o r b a t e - a d s o r b e n t i n t e r a c t i o n ; K
2
are
constants
c h a r a c t e r i z i n g the
and K '
pair-wise adsorbate-adsorbate
a c t i o n w h i c h is i n f l u e n c e d b y the adsorbent
2
inter
field.
E q u a t i o n l a is a p a r t i c u l a r case ( a t l o w p a n d a)
of the W i l k i n s
equation: V = a exp ( d +
Ca 2
+
C a 3
2
+...)
= a exp
C , a * - ')
(2)
i = 1 T h i s series u s u a l l y converges r a p i d l y . T h u s , the isotherms of a d s o r p t i o n o n the n o n p o r o u s adsorbent ( 5 ) , as w e l l as i n the cavities of zeolite, c a n be d e s c r i b e d satisfactorily—i.e., u p to ^
75%
saturation of z e o l i t e — b y
u s i n g the first 3 or 4 C coefficients ( F i g u r e 3 a ) . t
E q u a t i o n 2 c l e a r l y de
scribes the isotherms, either w i t h or w i t h o u t i n f l e c t i o n , a n d also those i n c l u d i n g a phase t r a n s i t i o n ( F i g u r e 3 b ) . E q u a t i o n 2 describes not o n l y the nonspecific a d s o r p t i o n b y zeolites of m o l e c u l e s of g r o u p A (28, 29)
b u t also the a d s o r p t i o n of q u a d r u p o l e -
t y p e molecules s u c h as C 0 , w i t h respect to w h i c h zeolites are 2
heterogeneous
(1, 11).
T h i s heterogeneity, l i k e the
more
adsorbate-adsorbate
i n t e r a c t i o n , is reflected i n the s i g n a n d m a g n i t u d e of C*. T h u s , E q u a t i o n 2
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
41
On Zeolites
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
a
200
b
400 600 800 1000 P,mmHg
0.00005 0.00010 P,mmHg
Figure 3. Adsorption isotherms of ethane on zeolite LiX a. Experimental points (18) at 25°C are shown with the curves calculated by Equation 2; p = a exp (4.8600 - 0.22166a + 0.10249a 4- 0.009465a ) (A. G. Bezus). Curves 1-4 were calculated using 1, 2, 3, and 4 terms in the exponent, respectively. b. At —150°C; calculated according to Equation 4; constants are indicated in the caption for Figure 6. 2
3
I
2 3 a, m mole /gram Zhurnal Fizicheskoi Khimii
Figure 4. Values of constant C determined by A. G. Bezus from Equation 2 at i = 3 (O) and i = 4 (U) for different ranges of a in experimental adsorption isotherms of ethane on zeolite LiX (14) t
m a y b e u s e d w i t h a d v a n t a g e i n d e s c r i b i n g the v a p o r a d s o r p t i o n b y zeo lites, t h o u g h other a p p r o x i m a t e equations ods o f t a k i n g i n t o a c c o u n t
( i n v o l v i n g the different m e t h
the adsorbate-adsorbate
interaction)
give
satisfactory results f o r c e r t a i n systems (7, 9, 30). U n t i l n o w , E q u a t i o n 2
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
42
M O L E C U L A R SIEVE ZEOLITES
II
has b e e n a p p l i e d to s i m p l e cases w h e r e the a d s o r p t i o n i s o t h e r m contains n o m o r e t h a n one i n f l e c t i o n p o i n t . Treatment of Experimental
Data Using Virial
Equations
V a r i o u s c o m p l e x curves c a n be satisfactorily a p p r o x i m a t e d b y e q u a tions of the l a a n d 2 t y p e . H o w e v e r , the s e c o n d stage i n the d e v e l o p m e n t of the m o l e c u l a r t h e o r y of a d s o r p t i o n concerns the d e t e r m i n a t i o n of K i and K
or C
2
a n d C , w h i c h m u s t d e p e n d o n l y o n the properties of the
1
2
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
system ( t h e structure of the adsorbent a n d adsorbate m o l e c u l e ) a n d be i n d e p e n d e n t of the fitting p r o c e d u r e . W i t h the a i d of E q u a t i o n 2, there f o r e , one c a n o b t a i n v a l u e s f o r C
and C
1
2
w h i c h are p r a c t i c a l l y i n d e
p e n d e n t of the n u m b e r of terms w i t h i n the series a n d of the i n t e r v a l of e x p e r i m e n t a l values of a ( b e g i n n i n g at a l o w c o v e r a g e ) .
F i g u r e 4 shows
a n e x a m p l e i l l u s t r a t i n g the d e t e r m i n a t i o n of C i . T h e d e p e n d e n c e of C
o n t e m p e r a t u r e is s h o w n i n F i g u r e 5.
x
a p p r o x i m a t e f o r m of these d e p e n d e n c e s is Ci ^ T h e l i n e a r d e p e n d e n c e of C
±
adsorption, Q
u
Bi
-
(=\nKi)
The
(1,6,28):
Qi/RT
(3)
o n 1 / T i m p l i e s that the heat of
at zero coverage i n the p a r t i c u l a r i n t e r v a l of T is i n d e
p e n d e n t of t e m p e r a t u r e .
If the same a s s u m p t i o n is m a d e f o r Q , Q , etc., 2
the d e p e n d e n c e of a o n p a n d . T b e c o m e s (1,6, V =
i i a exp ( £ Bi a* ~ ') exp ( £ i = 1 i = 1
3
28): Q /RT)
(4)
{
F i g u r e 6 gives examples of isotherms that h a v e i n f l e c t i o n p o i n t s a n d also of those that d o not. I n these cases, use w a s m a d e of 4 terms i n E q u a t i o n 4.
It c a n be seen f r o m F i g u r e 6 that E q u a t i o n 2 s a t i s f a c t o r i l y
describes
a d s o r p t i o n o n m i c r o p o r o u s zeolites, as i n the case of a d s o r p t i o n o n n o n porous graphitized carbon black
(6).
It is v e r y i m p o r t a n t to o b t a i n a c c u r a t e l y the first 2 constants and C
2
(Ci
or K i a n d K ) f r o m the e x p e r i m e n t a l d a t a i n o r d e r to c o m p a r e 2
t h e m w i t h those c a l c u l a t e d f r o m the m o l e c u l a r - s t a t i s t i c a l t h e o r y . Ci and C
2
Here,
constants w e r e d e t e r m i n e d f r o m the e x p e r i m e n t a l i s o t h e r m b y
the least squares m e t h o d w i t h the a i d of a c o m p u t e r . H o w e v e r , f o r p r a c t i c a l p u r p o s e s , i t is necessary to d e s c r i b e the isotherms to a h i g h e r a d s o r p t i o n l e v e l . F r o m F i g u r e s 3 a n d 6, i t c a n b e seen that i n o r d e r to r e p r o d u c e the i s o t h e r m u p to >—75% s a t u r a t i o n of the a d s o r b e n t a n d to c a l c u l a t e a at different values of p a n d T, i t is sufficient to d e t e r m i n e o n l y 2 m o r e constants, C
3
and C . 4
Constants Bi a n d Qi i n E q u a t i o n 4 c a n be d e t e r m i n e d either f r o m a d s o r p t i o n measurements of a at v a r i o u s p a n d T or f r o m
measurements
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
43.
KISELEV
Vapor Adsorption
On Zeolites
3.0
3.5 I0 /T
43
4.0
3
Figure 5. Dependence of constant (see Figure 4) on I/T
a
b
100 P,mm
200
200 P,mm
d
J
1
c
400
200 400 P,mm
e
1
I—
1 2 3 4 a, m mole/gram
O
I
,
f
!
a n d QuQ
2
w h i c h can be used
f o r c o m p a r i s o n w i t h statistical c a l c u l a t i o n s so f a r h a v e b e e n
obtained
o n l y f o r t h e a d s o r p t i o n of gases. F i g u r e 7 shows the dependences of Qi a n d C o n the r a d i u s , r, f o r zeolite X c o n t a i n i n g a l k a l i cations. T h e c o m x
p o s i t i o n of t h e zeolite is d e s c r i b e d b y A v g u l (4).
F o r nonspecific adsorp
t i o n of ethane, Qx g r a d u a l l y increases w i t h the increase i n r. A c c o r d i n g l y , Ci (=
—In K i ) decreases. I n this case, Q
2
increases a n d C
2
F o r specific a d s o r p t i o n of ethylene, the heat of a d s o r p t i o n , Q
Li
0.5
1.0 r, A
1.5
0.5
decreases. on chang-
l9
+
1.0 r, A
1.5
Figure 7. Adsorption of ethane (open circles) and ethylene (solid circles) on zeolites X; dependence of Q and C on the ionic radii, r, of the exchange cations (calculated by A. G. Bezus and Pham Quang Du) t
t
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
On
45
Zeolites
i n g f r o m N a X to C s X zeolite, g r a d u a l l y decreases w h i l e C
x
correspond
i n g l y increases; the isotherms of these systems d o n o t e x h i b i t i n f l e c t i o n points ( F i g u r e 6 ) . A s m a l l increase i n Q i f o r ethylene o n g o i n g f r o m L i X to N a X zeolite a n d the c o r r e s p o n d i n g decrease i n C i m a y b e c a u s e d b y a l o w e r ( b y 7 % ) t o t a l c o n c e n t r a t i o n of the L i p l u s N a cations i n this +
p a r t i c u l a r s a m p l e of L i X zeolite (2, 12, For
+
27).
sufficiently strong a d s o r b a t e - a d s o r b a t e
interaction a n d w i t h a
c o r r e s p o n d i n g decrease i n t e m p e r a t u r e , E q u a t i o n 4 leads to a n i s o t h e r m h a v i n g a n i n f l e c t i o n p o i n t b o t h i n the case o f a d s o r p t i o n b y n o n p o r o u s Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
adsorbent—e.g., o n g r a p h i t i z e d t h e r m a l c a r b o n b l a c k (6)—and t i o n i n s i d e the zeolite channels.
of a d s o r p
A p p a r e n t l y , these p r o p e r t i e s are pos
sessed b y the system p h o s p h o r u s — z e o l i t e N a X (13),
F i g u r e 2. I n this
case, a r a p i d increase i n the heat of a d s o r p t i o n s h o u l d b e e x p e c t e d i n the r e g i o n of l o w coverage, as w a s o b s e r v e d f o r n o n p o r o u s adsorbent
(15)
( c o m p a r e F i g u r e s 2a a n d 2 c ) . A decrease i n the a d s o r p t i o n l e v e l a n d i n t h e heat of specific a d s o r p t i o n of C 0 has b e e n r e p o r t e d f o r zeolites w i t h a d e c r e a s i n g c o n c e n t r a t i o n 2
of exchange cations (2,12, 27).
T h e r e is a decrease i n the heat of specific
a d s o r p t i o n of b e n z e n e o n c h a n g i n g f r o m N a X z e o l i t e to H Y zeolite
(26).
I n the X - t y p e zeolite, the effect of s u b s t i t u t i o n of N a b y d o u b l y c h a r g e d +
Ca
2 +
32).
o n t h e heat of m o l e c u l a r a d s o r p t i o n also has b e e n i n v e s t i g a t e d
(26,
I n t h e w a l l s of large cavities there a p p e a r n o t o n l y centers o c c u p i e d
by C a
2 +
ions b u t also vacant centers free of a n y cations. A c o m p a r i s o n of
the dependences of the heat of a d s o r p t i o n f o r b e n z e n e f o r zeolites h a v i n g different c o n c e n t r a t i o n o f C a
2 +
indicates that the h i g h e r heat of a d s o r p
t i o n is r e l a t e d to the S - c e n t e r s o c c u p i e d b y C a n
2 +
ions, whereas o n centers
free of cations the heat of a d s o r p t i o n of b e n z e n e lies b e l o w that of the c a t i o n i z e d centers.
Further work should be carried out on deriving
q u a n t i t a t i v e relationships f o r Q
l9
C i and Q , C 2
2
as t h e f u n c t i o n of t h e
A l : S i r a t i o , types a n d c o n c e n t r a t i o n of exchange cations, a n d degree of d e c a t i o n i z a t i o n . T h e examples g i v e n above i n d i c a t e that these p r o b l e m s can be solved. Specific
interaction
molecules at s m a l l a.
causes
greater
l o c a l i z a t i o n of the
adsorbate
I n the case of s t r o n g l y a d s o r b i n g m o l e c u l e s c o n
t a i n i n g s u c h f u n c t i o n a l groups as H O — , H N — , etc., cations i n z e o l i t e 2
c a n a c q u i r e a c e r t a i n m o b i l i t y as a increases.
T h e relationships b e t w e e n
Q a n d a i n these cases b e c o m e v e r y c o m p l e x (see
Figure 1).
Water
molecules are l o c a l i z e d first b y the cations, t h e n they p o s s i b l y f o r m a k i n d of w a t e r cage b y m u t u a l h y d r o g e n b o n d s i n s i d e the zeolite c a v i t y , and
finally
fill
u p the c e n t r a l p a r t of this zeolite a n d w a t e r cage.
process d e p e n d s o n the t y p e o f c a t i o n (4).
This
T w o steps i n the p l o t o f Q
vs. a f o r a m m o n i a a d s o r p t i o n o n z e o l i t e C a A w e r e f o u n d i n R e f . 36. T h e
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
46
M O L E C U L A R SIEVE ZEOLITES
coordination of water a n d ammonia around C u
2 +
II
ions a t t h e s a t u r a t i o n
of z e o l i t e s i m i l a r t o that i n s o l u t i o n complexes w e r e f o u n d b y E S R a n d s p e c t r o s c o p i c m e t h o d s ( 3 3 ) . I t is i n f e r r e d thus that at h i g h a d s o r p t i o n l e v e l o f s m a l l s p e c i f i c a l l y a d s o r b e d m o l e c u l e s , t h e o r y m a y a c q u i r e some features s i m i l a r t o t h e t h e o r y o f b u l k solutions. T h u s , t h e d e t e r m i n a t i o n o f Q i a n d C i values o n t h e basis o f measure ments c a r r i e d o u t at o r d i n a r y temperatures i n these cases b e c o m e s diffi cult.
I n s u c h cases, h o w e v e r , o n e c a n a p p r o x i m a t e l y estimate t h e a d d i
tional contribution of the energy
o f specific i n t e r a c t i o n a r i s i n g f r o m
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
7r-bonds o r t h e f u n c t i o n a l g r o u p s at a s o m e w h a t h i g h e r a—e.g., w h e n values o f a c o r r e s p o n d to 1 m o l e c u l e p e r c a v i t y . A Q c i f i c is d e t e r m i n e d spe
b y s u b t r a c t i n g t h e heat o f a d s o r p t i o n of t h e reference m o l e c u l e ( i n c a p a b l e to specific i n t e r a c t i o n )
f r o m t h e heat o f a d s o r p t i o n o f t h e s p e c i f i c a l l y
a d s o r b e d m o l e c u l e (10, 28-30).
B o t h m o l e c u l e s m u s t h a v e s i m i l a r geome
try, close values o f p o l a r i z a b i l i t y a n d o f heat o f a d s o r p t i o n o n n o n s p e c i f i c adsorbent
(6).
F i g u r e 8 shows t h e r e l a t i o n s h i p s b e t w e e n t h e h e a t o f a d s o r p t i o n a n d the p o l a r i z a b i l i t y o f m o l e c u l e s ethers,
a n d n-alcohols.
AQ
spe
cifi
f o r a h o m o l o g o u s series o f n-alkanes, C
o f t h e f u n c t i o n a l groups — O — a n d
30-
0
2
4 6 8 10 Polarizability oe, A
12
3
Figure 8. Dependence of the heat of adsorption, Q , for zeolite NaX (at a = 1 molecule per cavity) on the polarizability of the molecule a for n-alkanes ( 3 0 ) , ethers ( 4 ) , and n-alcohols (4)
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
47
On Zeolites
H O — f o r t h e series o f c o m p o u n d s e x a m i n e d is p r a c t i c a l l y i n d e p e n d e n t o f the l e n g t h o f t h e h y d r o c a r b o n c h a i n i n these m o l e c u l e s . T h e d a t a s u m m a r i z e d i n T a b l e I i l l u s t r a t e h o w values f o r Q a n d AQspecific
d e p e n d o n t h e structure o f t h e adsorbate
molecules.
I n the
series o f g r o u p - B m o l e c u l e s , t h e m a x i m u m e n e r g y o f specific i n t e r a c t i o n is o b s e r v e d f o r n i t r o m e t h a n e a n d a c e t o n i t r i l e , b o t h o f w h i c h h a v e l a r g e dipole
moments.
Even
stronger
specific
interaction
is o b s e r v e d f o r
m o l e c u l e s o f the D - g r o u p , w h i c h c a n f o r m a n a d d i t i o n a l h y d r o g e n b o n d w i t h the n e g a t i v e l y c h a r g e d o x y g e n atoms o f t h e zeolite structure. F o r
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
the
i n v e s t i g a t e d c o m p o u n d s , t h e r e l a t i v e c o n t r i b u t i o n o f t h e specific
interaction
energy,
AQ
s p e c i f i c
decreases
/Q,
with
t h e increase
length of the hydrocarbon chain of the molecule.
in
T h e larger
the
value
of t h e h e a t o f a d s o r p t i o n f o r t e t r a h y d r o f u r a n c o m p a r e d w i t h that o f furan
(23)
is a t t r i b u t e d m a i n l y t o t h e difference
structure o f these g e o m e t r i c a l l y s i m i l a r m o l e c u l e s .
i n the electronic T h e conjugation of
the electrons o f t h e o x y g e n a t o m w i t h ?r-bonds i n f u r a n causes a m o r e u n i f o r m d i s t r i b u t i o n o f t h e e l e c t r o n d e n s i t y i n this m o l e c u l e . creases t h e d i p o l e m o m e n t a n d
AQ
s p e
cific.
This de
T h e h e a t of a d s o r p t i o n of f u r a n
o n t h e zeolite is thus close to that o f b e n z e n e . The magnitude of A Q
s p e c i f i c
thus o b t a i n e d m a y b e o f p r a c t i c a l v a l u e
f o r e s t i m a t i n g t h e heat o f a d s o r p t i o n f o r h y d r o c a r b o n d e r i v a t i v e s c o n taining functional groups, taking into account the molecule
geometry.
T h e heat o f a d s o r p t i o n o f a c o m p l e x m o l e c u l e , c a p a b l e o f specific i n t e r a c t i o n , c a n b e a p p r o x i m a t e l y expressed as t h e s u m of t h e nonspecific heat of a d s o r p t i o n , Q , o f t h e s u i t a b l e r e f e r e n c e m o l e c u l e o f g r o u p A a n d o f A
the c o n t r i b u t i o n o f t h e specific i n t e r a c t i o n energy f o r t h e c o r r e s p o n d i n g functional group,
AQ
s p e C
ific,
t a k e n f r o m T a b l e I. A c c o r d i n g to another
m e t h o d (see T a b l e I I I i n R e f . 4), t h e heat o f a d s o r p t i o n o f a c o m p l e x m o l e c u l e c a n b e expressed as t h e s u m o f t h e i n c r e m e n t s o f the t o t a l h e a t of a d s o r p t i o n f o r e a c h segment o f the m o l e c u l e . F o r these c a l c u l a t i o n s at different a, i t is necessary to s t u d y t h e dependences o f
AQ
s p e
cific
a n d of
increments of Q o n the adsorption level. Potential Energy of Interaction
of Molecules with Zeolite
T h e potential energy of adsorption f o r various cationized X - a n d A - t y p e zeolites has b e e n c a l c u l a t e d b y v a r i o u s authors (9, 12, 30). R e c e n t l y (17, 18), t h e p o t e n t i a l energy of a d s o r p t i o n w a s c a l c u l a t e d i n a large c a v i t y of t h e zeolite t y p e A . A s t h e S i : A l r a t i o is 1:1, i t w a s a s s u m e d that t h e excess o f n e g a t i v e charge o f t h e A 1 0
4 / 2
t e t r a h e d r o n is d i s t r i b u t e d
u n i f o r m l y over a l l t h e o x y g e n atoms. T h u s , a c h a r g e z =
— 0.25e ( h e r e ,
e = e l e m e n t a r y c h a r g e ) w a s assigned to e a c h o x y g e n a t o m . O n the basis of t h e a s s u m p t i o n o f t h e a d d i t i v e p r o p e r t y o f p a i r - w i s e interactions, t h e
American Chemical Society Library
In Molecular Sieve1155 Zeolites-II; E., et al.; 16th Flanigen, St., N.W. Advances in Chemistry; American Chemical Society: Washington, DC, 1971. WashinctofL D i L ?NHfi
48
MOLECULAR
SIEVE ZEOLITES
II
Table I. Heat of Adsorption, Q , and Contribution of the Specific Interaction Energy, A Q i f i c , for N a X Zeolite, Kcal/Mole 0
speC
Properties Which Determine the Specific Nature of Adsorption
A
Adsorbate
Q of Group
Molecules x-bonds, quadrupole moment
C2H4
CeHe N 2
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
co Dipole moment, ability to form hydrogen bonds through oxygen and nitrogen atoms only
2
(CH ) 0 (C H ) 0 CH N0 CH CN 3
2
2
6
2
3
2
3
0
2
6
3
7
4
9
3
3
B
8.9 18.0 5.0 10.0
3.0 4.5 2.3 6.0
0.34 0.25 0.46 0.55
16.4 21.0 19.9 10.0
7.6 7.6 10.0 11.0
0.46 0.36 0.50 0.58
(15.5) 13.2 13.2 13.2 13.2 (12.5) 11.5
(0.8) 0.72 0.63 0.57 0.51 (0.8) 0.64
18.5 18.4 20.9 23.2 26.0 16.0 18.0
H 0 CH3OH C H OH C H OH n-C H OH NH CH NH 2
[specific
Q
(^specific
of Group D
Molecules Dipole moment, ability to form hydrogen bonds through oxygen or n i t r o g e n a t o m s , as w e l l as t h r o u g h O H or N H hydrogen atoms
A
2
Value of a = 1 molecule per cavity, experimental data
8, 4, 7, 23, 30).
t o t a l p o t e n t i a l energy, V, o f N a d s o r b e d s p h e r i c a l m o l e c u l e s i n t h e field of a large c a v i t y o f z e o l i t e A has t h e f o l l o w i n g f o r m :
V(n,? ,...
,t )
2
N
= I > ( 7 \ - ) + Z * (I"" "I) i =
Here,
1
1
k
k
w h e r e is t h e i n t e r a c t i o n e n e r g y of i t h m o l e c u l e w i t h kih center o f z e o l i t e , a c c o u n t w a s t a k e n o n l y o f t h e cations L i , N a , a n d C a +
+
2 +
i n the various
positions a n d o f t h e o x y g e n atoms b e a r i n g n e g a t i v e c h a r g e z = 0
— 0.25e.
It w a s a s s u m e d that t h e c o n t r i b u t i o n a r i s i n g f r o m t h e charges d i s t r i b u t e d w i t h i n AIO4/2 a n d S i 0 / 2 t e t r a h e d r a c a n b e expressed a p p r o x i m a t e l y b y 4
a charge of z = 0
—0.25e l o c a t e d at t h e centers of t h e o x y g e n atoms. T h e
p o l a r i z a b i l i t y o f o x y g e n i n this state w a s e s t i m a t e d b y B r a u e r et al
(18).
O n t h e other h a n d , h i g h charges o n A l a n d S i w e r e assigned i n R e f . 22.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
Vapor Adsorption
KisELEV
On
49
Zeolites
T h e energy Φ ( ^ ) w a s expressed as i n earlier studies (18, 30) as t h e s u m of t h e d i s p e r s i o n , i n d u c t i o n , a n d r e p u l s i o n interactions.
I t w a s as
sumed that:
< ï w (rù =Zc \t-n\-«
(7)
k
induc. (u)
=
-
Φ β ηΐ. (rd = Σ Γ
Ρ
\ a
B
[E
m
Iu -
k
(u)}*
(8)
η |-
(9)
12
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
k C o n s t a n t C f o r the d i s p e r s i o n a t t r a c t i o n w a s d e t e r m i n e d f r o m the Slaterk
K i r k w o o d equation: Seh ^ where a
m
"
S K
4 χ (m)"* ·
(* /n y* m
m
+
(a*/n*)
1/2
{
W
)
a n d a are t h e p o l a r i z a b i l i t i e s ; η™,η& are t h e effective n u m b e r s k
of electrons f o r the adsorbate m o l e c u l e a n d exchange c a t i o n o r o x y g e n a t o m i n zeolite, r e s p e c t i v e l y ; h is t h e P l a n c k ' s constant a n d m the e l e c t r o n mass.
T h e electrostatic
field
strength v e c t o r at p o i n t r w a s c a l c u l a t e d {
from the equation: Ε (7*) = where e
k
-
g r a d (Σ
^ ^) €k
(ID
is t h e c a t i o n c h a r g e o r charge of t h e o x y g e n a t o m i n the zeolite.
Constants B
k
w e r e d e t e r m i n e d b y m i n i m i z i n g Φ ( ^ ) at t h e e q u i l i b r i u m
d i s t a n c e b e t w e e n t h e m o l e c u l e a n d t h e c o r r e s p o n d i n g kth center i n t h e w a l l s of t h e c a v i t y . T h e e q u i l i b r i u m distance w a s c a l c u l a t e d f r o m t h e v a n d e r W a a l ' s a n d i o n i c r a d i i o f m o l e c u l e s a n d kth. center. O w i n g to t h e h i g h s y m m e t r y of the lattice f o r the L i A a n d N a A zeo lites, a n analysis w a s m a d e o n l y of t h e section c o m p r i s i n g 1/48 of t h e t o t a l c a v i t y v o l u m e ( F i g u r e 9 ). T h e v o l u m e of the c o r r e s p o n d i n g section f o r C a A zeolite w a s 1 / 2 4 o f t h e t o t a l v o l u m e of t h e c a v i t y . T h e p o t e n t i a l energy w a s c a l c u l a t e d f o r t h e i n n e r c a v i t y of the selected section f o r 16 different d i r e c t i o n s i n t h e case of L i A a n d N a A zeolites a n d f o r 31 d i r e c tions i n t h e case o f t h e C a A zeolite.
F o r e a c h of these d i r e c t i o n s , the
Φ ( u ) w a s c a l c u l a t e d f o r 40 different positions of t h e m o l e c u l e . T h e lattice sums
and
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
50
M O L E C U L A R SIEVE ZEOLITES
II
Figure 9. Elementary, cell of zeolite A containing 8 univalent cations, O, inside six-membered rings and 6 cations, O, in eight-membered rings; a section is shown in which there are 16 selected directions a n d t h e field strength w e r e c a l c u l a t e d i n o r d e r to d e t e r m i n e t h e c o n t r i b u tions a r i s i n g f r o m Φ
2
+
(0.1364 -
(0.0500 -
106.8/7>
+
17.73/T)a ]
(3)
3
I n o r d e r to describe a d s o r p t i o n e q u i l i b r i a f o r ethane o n zeolite L i X f r o m three g i v e n a d s o r p t i o n isotherms f o r temperatures of 2 5 ° , 5 0 ° , a n d 75 ° C , e i g h t constants h a v e to b e d e t e r m i n e d , j u d g i n g b y E q u a t i o n 3. O b v i o u s l y , a d d i t i o n a l e x p e r i m e n t a l d a t a are r e q u i r e d , s u c h as isotherms or d i f f e r e n t i a l heats of a d s o r p t i o n . T h u s , to d e s c r i b e a d s o r p t i o n e q u i l i b r i a b y the m e t h o d p r o p o s e d , one s h o u l d first use, i n o r d e r to d e t e r m i n e the e q u a t i o n constants, s u c h extensive e x p e r i m e n t a l i n f o r m a t i o n as w i l l s u p p l y answers to a l l questions of interest to the p r a c t i c a l w o r k e r . T h e advantage of E q u a t i o n 3 is that it p r o v i d e s a n accurate d e s c r i p t i o n of a d s o r p t i o n e q u i l i b r i a over the ranges of temperatures a n d pres sures u s e d f o r the d e t e r m i n a t i o n of the constants. T h i s m a y b e of interest, f o r e x a m p l e , i n o b t a i n i n g expressions i n a n a n a l y t i c a l f o r m for d i f f e r e n t i a l heats a n d entropies of a d s o r p t i o n most closely c o r r e s p o n d i n g to e x p e r i mental data. T h e coefficient of the first t e r m of the v i r i a l series i n E q u a t i o n 1 is the inverse H e n r y constant for the t e m p e r a t u r e c o n s i d e r e d .
F r o m the
g r a p h of the i s o t h e r m i n F i g u r e 3 of the s u r v e y p a p e r , it f o l l o w s that the l i n e a r i t y of the i n i t i a l section of the a d s o r p t i o n i s o t h e r m of ethane o n z e o l i t e L i X i n a c c o r d a n c e w i t h the c a l c u l a t e d H e n r y constant is o b s e r v e d f o r a d s o r p t i o n values not e x c e e d i n g 0.7 m m o l e / g .
A c c o r d i n g to Κ. N .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
64
M O L E C U L A R SIEVE ZEOLITES
M i k o s ( 5 ) , d e h y d r a t e d zeolite L i X contains 3.99 χ
10
20
II
large v o i d s p e r
g r a m , c o r r e s p o n d i n g to 0.68 m m o l e / g . T h u s , f o r ethane, the u p p e r b o u n d a r y of the H e n r y r e g i o n corresponds, o n t h e average, to a m a x i m u m o f o n e m o l e c u l e p e r large v o i d of t h e zeolite.
I n t h e case u n d e r c o n s i d e r a t i o n ,
e a c h m o l e c u l e a d s o r b e d w i t h i n the H e n r y r e g i o n occupies a space i n a separate large v o i d of t h e z e o l i t e , w h i c h leads to the constancy of the a d s o r p t i o n energy a n d to t h e absence of i n t e r a c t i o n a m o n g the m o l e c u l e s a d s o r b e d . J u d g i n g b y t h e g r a p h of F i g u r e 6 of the s u r v e y , the d i f f e r e n t i a l heats of a d s o r p t i o n of ethane d o n o t v a r y s i g n i f i c a n t l y i n this r a n g e of Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
fillings. T h e increase i n the d i f f e r e n t i a l heats of a d s o r p t i o n w i t h
filling
is
u s u a l l y a t t r i b u t e d to t h e m a n i f e s t a t i o n of i n t e r a c t i o n , n a m e l y of attraction b e t w e e n the molecules a d s o r b e d . T h i s effect is chiefly expressed b y t h e s e c o n d t e r m of the v i r i a l e q u a t i o n . S u c h examples are i l l u s t r a t e d b y the curves of t h e g r a p h i n F i g u r e 6 of t h e s u r v e y p a p e r f o r a d s o r p t i o n of
Of kcrt/ηώ i0'
Active carbon
9
8
•ο—α
7
0
2
6
1
3
kcat/mÀ 10'
9·
δ
7,
0
Figure 1. Dependence of differential heats of adsorption of propane, Q , on adsorption values, a, for active carbon (above) and zeolite NaX (below)
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
On
Zeolites
65
x e n o n a n d ethane o n zeolite L i X . H o w e v e r , f o r carbonaceous
micro-
p o r o u s adsorbents, f o r w h i c h m i c r o p o r e sizes d e t e r m i n e d b y the s m a l l angle x-ray scattering m e t h o d a r e v e r y close t o those of l a r g e v o i d s of t h e X - t y p e zeolite, the d i f f e r e n t i a l heats of a d s o r p t i o n decrease w i t h
filling
i n t h e r e g i o n of s m a l l a n d m e d i u m fillings. O t h e r examples are the curves of d i f f e r e n t i a l heats of a d s o r p t i o n of p r o p a n e o n active c a r b o n a n d z e o l i t e N a X w h i c h w e r e s t u d i e d i n o u r l a b o r a t o r y ( 2 ) a n d are g i v e n i n the g r a p h of F i g u r e 1. Since p r o p a n e m o l e c u l e s are a p o l a r a n d d i s p e r s i o n i n t e r a c tions b e t w e e n t h e m are p r a c t i c a l l y i n d e p e n d e n t of the o r i e n t a t i o n of the Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
m o l e c u l e s , the effect o f attraction b e t w e e n the m o l e c u l e s a d s o r b e d s h o u l d m a n i f e s t itself regardless of the n a t u r e of the adsorbent.
I n a c t u a l fact,
one c a n observe a q u a l i t a t i v e difference i n the curves of d i f f e r e n t i a l heats of a d s o r p t i o n w h i c h calls f o r t h o r o u g h discussion. I b e l i e v e that at this j u n c t u r e elegant ( as regards t h e g e n e r a l scheme ) m o l e c u l a r - s t a t i s t i c a l c a l c u l a t i o n s as a p p l i e d to r e a l a d s o r p t i o n systems are b a s e d o n s u c h n u m e r o u s s i m p l i f i c a t i o n s a n d a p p r o x i m a t i o n s i n c a l c u l a t i o n , i n e s t i m a t i n g a d s o r p t i o n energies a m o n g other things, that t h e i r results are r a t h e r of a q u a l i t a t i v e nature. T h e i r q u a n t i t a t i v e significance should not be overestimated.
T h e m u l t i - c o n s t a n t v i r i a l equations f o l l o w
i n g f r o m these concepts i n e m p i r i c a l d e t e r m i n a t i o n of constants n a t u r a l l y d e s c r i b e a d s o r p t i o n e q u i l i b r i a w i t h a h i g h degree of a c c u r a c y . T h e concepts of a d s o r p t i o n i n m i c r o p o r e s w h i c h are b e i n g d e v e l o p e d b y us a n d are of g e n e r a l i m p o r t a n c e f o r m i c r o p o r o u s adsorbents of v a r i o u s natures are a i m e d at other targets. T h e i r c o m m o n g o a l is a p p r o x i m a t e d e s c r i p t i o n of a d s o r p t i o n e q u i l i b r i a a n d c a l c u l a t i o n of d i f f e r e n t i a l heats a n d entropies of a d s o r p t i o n o v e r sufficiently w i d e ranges of t e m p e r a t u r e a n d pressure o n the basis o f m i n i m u m e x p e r i m e n t a l i n f o r m a t i o n ; f o r i n stance, f r o m a single a d s o r p t i o n i s o t h e r m f o r the m e a n t e m p e r a t u r e .
They
are also a i m e d at substantiating a n a d s o r p t i o n e q u a t i o n w i t h a m i n i m u m n u m b e r of e x p e r i m e n t a l l y d e t e r m i n e d constants; f o r instance, t w o . T h e f o r m o f this e q u a t i o n , w h i c h expresses the d e p e n d e n c e of a d s o r p t i o n o n pressure a n d t e m p e r a t u r e , s h o u l d p e r m i t its a p p l i c a t i o n i n d e v e l o p i n g the f u n d a m e n t a l s of the t h e o r y of kinetics a n d d y n a m i c s of a d s o r p t i o n . W e c o n s i d e r a d i v e r g e n c e of ± 1 0 % b e t w e e n c a l c u l a t e d a n d e x p e r i m e n t a l a d s o r p t i o n values a c c e p t a b l e f o r p r a c t i c a l purposes. O n this basis, c r i t e r i a are established w h i c h d e t e r m i n e the l i m i t s of a p p l i c a b i l i t y of equations. T h e c o n c e p t of v o l u m e filling of m i c r o p o r e s u n d e r r e v i e w is b a s e d o n a r a d i c a l difference of a d s o r p t i o n i n m i c r o p o r e s as a l i m i t i n g case as c o m p a r e d w i t h the opposite l i m i t i n g case of a d s o r p t i o n o n t h e surface of n o n p o r o u s adsorbents of i d e n t i c a l c h e m i c a l n a t u r e .
T h e c o n c e p t of
a d s o r p t i o n i n m i c r o p o r e s is of a t h e r m o d y n a m i c a l nature, a n d its m a i n i n i t i a l p r i n c i p l e , w h i c h has the m e a n i n g of a r a t i o n a l a p p r o x i m a t i o n , c o n -
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
M O L E C U L A R SIEVE ZEOLITES-
Figure 3. correspond
Characteristic curve of C0 adsorption on LiX; points to experimental adsorption isotherms for temperatures from 273° to 363°K (A, cal/mole) 2
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
43.
KISELEV
Vapor Adsorption
On Zeolites
67
sists i n t h e a s s u m p t i o n of t e m p e r a t u r e i n v a r i a n c e of the d e p e n d e n c e of the d i f f e r e n t i a l m o l a r w o r k of a d s o r p t i o n or of the v a r i a t i o n i n G i b b s ' free energy o n the degree of filling of t h e m i c r o p o r e s .
This assumption
is f u l f i l l e d a p p r o x i m a t e l y o n l y f o r a d s o r p t i o n i n m i c r o p o r e s .
T h e nature
of the d i s t r i b u t i o n of t h e degree of filling of m i c r o p o r e s over d i f f e r e n t i a l m o l a r w o r k s of a d s o r p t i o n is a p p r o x i m a t e d b y W e i b u l F s statistical e q u a t i o n of d i s t r i b u t i o n . E x a m p l e s of a p p r o x i m a t e observance of the abovem e n t i o n e d t e m p e r a t u r e i n v a r i a n c e a n d of the a n a l y t i c a l expression of t h e d e p e n d e n c e s t u d i e d are i n t h e graphs of F i g u r e s 2 to 4, i n w h i c h t h e Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
e x p e r i m e n t a l p o i n t s c o r r e s p o n d i n g to isotherms f o r different temperatures are d e n o t e d b y different s y m b o l s , w h i l e t h e c o n t i n u o u s curves h a v e b e e n c a l c u l a t e d o n the basis of the parameters of the characteristic f o r e a c h a d s o r p t i o n system. sorption of b e n z e n e
equation
T h e g r a p h of F i g u r e 2 corresponds to a d
o n active c a r b o n C K over the t e m p e r a t u r e
range
f r o m 2 0 ° to 1 4 0 ° C a c c o r d i n g to experiments of E . F . P o l s t y a n o v (4), t h e g r a p h of F i g u r e 3 to a d s o r p t i o n of c a r b o n d i o x i d e o n zeolite L i X a c c o r d i n g to experiments of Ν. N . A v g u l et al. ( I ) over the range f r o m 0 ° to 9 0 ° C , a n d t h e g r a p h o f F i g u r e 4 to a d s o r p t i o n of w a t e r o n zeolite N a X over the range f r o m 2 0 ° to 2 5 0 ° C a c c o r d i n g to experiments of O . K a d l e c
Figure
4.
Characteristic curve of H 0 adsorption on NaX; range from 293° to 523°Κ (A, col/mole) 2
temperature
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
68
M O L E C U L A R SIEVE ZEOLITES
and A . Zukal (3).
II
I n m y p a p e r a n d the i n t r o d u c t i o n to it, I gave examples
of the d e s c r i p t i o n of a d s o r p t i o n e q u i l i b r i a a n d c a l c u l a t i n g of t h e r m o d y n a m i c f u n c t i o n s b a s e d o n the concept of v o l u m e
filling
of m i c r o p o r e s ,
w h i c h is i n most cases a p p l i c a b l e w i t h a satisfactory a c c u r a c y w i t h i n the r a n g e of m i c r o p o r e fillings f r o m 0.2 to 1. N a t u r a l l y , the c o n c e p t of v o l u m e
filling
of m i c r o p o r e s does not re
p l a c e , b u t m e r e l y s u p p l e m e n t s the concepts of a d s o r p t i o n d e v e l o p e d at the s o - c a l l e d " m o l e c u l a r l e v e l , " u s i n g , i n p a r t i c u l a r , the m o l e c u l a r - s t a tistical approach.
We
b e l i e v e that f u r t h e r d e v e l o p m e n t of b o t h
ap
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch043
proaches w i l l i n the l o n g r u n result i n the substantiation of the i n i t i a l approximate propositions regarding volume
filling
of m i c r o p o r e s , since
t h e y express the p r i n c i p a l e x p e r i m e n t a l facts. Literature (1) (2) (3) (4) (5)
Cited
Avgul, Ν. N . , Aristov, B. G., Kiselev, Α. V., Kurdyukova, L . Y., Frolova, Ν. N . , Zh. Fiz. Khim. 1968, 42, 2682. Bering, B. P., Zhukovskaya, E . G., Rakhmukov, B. Kh., Serpinsky, V. V., Izv. Akad. Nauk SSSR, Ser. Khim. 1967, 1662. Dubinin, M. M., Kadlec, O . , Zukal, Α., Coll. Czech. Chem. Commun. 1966, 31, 406. Dubinin, M . M . , Polstyanov, E. F., Izv. Akad. Nauk SSSR, Ser. Khim. 1966, 793. Mikos, Κ. N . , thesis, Moscow, 1970. Α . V . K i s e l e v : Zeolites are p o r o u s crystals. T h i s means that w e c a n
find the m o l e c u l a r field d i s t r i b u t i o n i n their channels.
T h e a d v a n t a g e of
d e s c r i b i n g the a d s o r p t i o n o n zeolites u s i n g the m o l e c u l a r t h e o r y consists i n o b t a i n i n g the constants w h i c h h a v e a definite p h y s i c a l m e a n i n g e x a m p l e , the H e n r y constant a n d s e c o n d v i r i a l c o e f f i c i e n t ) .
(for
F u r t h e r de
v e l o p m e n t of the t h e o r y needs a f u r t h e r i m p r o v e m e n t of the m o d e l b a s e d o n the i n v e s t i g a t i o n of the a d s o r b a t e - z e o l i t e systems b y the use of m o d e r n physical methods. T h e other w a y of treating the e x p e r i m e n t a l i s o t h e r m of a d s o r p t i o n is c o n n e c t e d w i t h the P o l a n y i a s s u m p t i o n that the adsorbate has a d e n s i t y w h i c h is close to the d e n s i t y of the c o r r e s p o n d i n g l i q u i d . T h e a d v a n t a g e of this m e t h o d consists i n the p o s s i b i l i t y of c a l c u l a t i n g the i s o t h e r m u s i n g o n l y a f e w constants.
T h e d i s a d v a n t a g e of this c o n c e p t is c o n n e c t e d w i t h
the e m p i r i c a l character of these constants a n d w i t h the i m p o s s i b i l i t y of d e s c r i b i n g b y this m e t h o d the i n i t i a l p a r t of the i s o t h e r m a n d also the isotherms h a v i n g a n i n f l e x i o n p o i n t .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.