Vapor Pressure, Vapor−Liquid Equilibrium, and Excess Enthalpy Data

DOI: 10.1021/je000292j. Publication Date (Web): February 7, 2001. Copyright © 2001 American Chemical Society. Cite this:J. Chem. Eng. Data 46, 2, 337...
1 downloads 0 Views 102KB Size
J. Chem. Eng. Data 2001, 46, 337-345

337

Vapor Pressure, Vapor-Liquid Equilibrium, and Excess Enthalpy Data for Compounds and Binary Subsystems of the Chlorohydrin Process for Propylene Oxide Production Sven Horstmann,† Hergen Gardeler,† Kai Fischer,*,† Frank Ko1 ster,‡ and Ju 1 rgen Gmehling§ Laboratory for Thermophysical Properties (LTP GmbH), University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany, DOW Deutschland Inc., P.O. Box 1120, D-21677 Stade, Germany, and Department of Industrial Chemistry, University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany

Vapor-liquid equilibrium (VLE), excess enthalpy (HE), and vapor pressure (Pis) data for eight binary systems containing cis-1-chloropropene, trans-1-chloropropene, 1,2-dichloropropane, 1,2-propanediol, 1,2propylene glycol diacetate, propylene oxide, and water are presented in a temperature range from 276 to 368 K. The VLE and vapor pressure data were obtained by means of a computer-controlled static apparatus, and the heat of mixing data were measured using an isothermal flow calorimeter. Temperaturedependent NRTL interaction parameters were regressed by a simultaneous correlation of the experimental VLE and HE data. These parameters are required for a proper simulation of the different separation steps in the chlorohydrin process for the production of propylene oxide.

Introduction For the synthesis, design, and optimization of separation processes and for the extension of thermodynamic models (GE models, equations of state, and group contribution methods), a reliable knowledge of the phase equilibrium behavior is required. In the chlorohydrin process, propene is first hypochlorinated. After dehydrochlorination to propylene oxide, the mixture containing various byproducts must be separated in different stripping and distillation units. While for some of the binary subsystems appearing during the separation experimental data are available in the literature,1-19 only a limited number of experimental vapor-liquid equilibrium (VLE) and excess enthalpy (HE) data are published for systems containing 1-chloropropene and 1,2-propylene glycol diacetate.20 In this study, isothermal P-x data for eight binary systems as well as pure-component vapor pressures for the components cis-1-chloropropene, trans-1-chloropropene, and 1,2-propylene glycol diacetate were measured in a computeroperated static apparatus. In addition, HE data were measured by means of an isothermal flow calorimeter for all systems at two different temperatures. Excess enthalpy data are important to describe the temperature dependence of the activity coefficients following the Gibbs-Helmholtz equation

(

)

∂ ln γi ∂1/T

P,x

E

)

Hi R

(1)

The experimental VLE and HE data of this work are compared with correlated data using temperature-dependent NRTL interaction parameters. * Corresponding author. E-mail: [email protected]. † Laboratory for Thermophysical Properties (LTP GmbH), University of Oldenburg. ‡ DOW Deutschland Inc. § Department of Industrial Chemistry, University of Oldenburg.

Table 1. Experimental Vapor Pressure Data for cis-1-Chloro-1-propene T/K

Pis/kPa

T/K

Pis/kPa

276.33 276.62 279.09 279.36 283.48 286.27 289.99 290.27 292.45

32.16 32.92 36.63 37.02 44.03 49.97 58.00 58.68 63.78

294.87 298.56 301.30 310.75 317.74 319.00 332.73 332.99

69.93 80.60 88.11 123.67 156.27 162.19 246.51 248.37

Table 2. Experimental Vapor Pressure Data for trans-1-Chloro-1-propene T/K

Pis/kPa

T/K

Pis/kPa

277.18 283.82 288.11 293.48 298.30 305.18 309.83

26.68 35.65 42.65 53.03 64.12 82.88 97.59

314.68 314.76 319.79 319.80 328.34 334.25 340.63

115.59 115.83 136.89 136.93 179.15 213.99 257.21

Table 3. Experimental Vapor Pressure Data for 1,2-Propylene Glycol Diacetate T/K

Pis/kPa

T/K

Pis/kPa

318.21 322.83 338.18 347.73

0.196 0.266 0.667 1.153

356.90 363.87 367.61

1.887 2.690 3.244

Experimental Section Materials. All chemicals except water, which was distilled twice, were supplied by DOW and dried over a molecular sieve. For the VLE measurements, the chemicals were distilled and degassed as described by Fischer and Gmehling.21 For the HE measurements, the compounds were used without degassing. The final purities and water concentrations were checked by gas chromatography and

10.1021/je000292j CCC: $20.00 © 2001 American Chemical Society Published on Web 02/07/2001

338

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001

Figure 1. Experimental and calculated vapor pressure data. cis-1-Chloropropene: (O) vapor pressure measurement; (b) VLE measurement. trans-1-Chloropropene: (0) vapor pressure measurement; (9) VLE measurement. 1,2-Propylene glycol diacetate: ()) vapor pressure measurement; ([) VLE measurement. (;) Antoine. Table 4. Pure-Component Parameters: Antoine Coefficients Ai, Bi, and Ci, Range of Validity, and Liquid Densities at 298.15 K

a

component

Ai

Bi/K

Ci/K

range of validity/K

F(298.15 K)/ kg‚dm-3

cis/trans-1-chloropropene cis-1-chloropropene trans-1-chloropropene 1,2-dichloropropane 1,2-propanediol 1,2-propylene glycol diacetate propylene oxide water

6.049 68 5.870 99 6.113 76 6.105 64 8.079 36 8.796 53 6.139 33 7.196 21

1074.90 971.54 1118.16 1308.14 2692.19 3193.84 1086.37 1730.63

-40.150 -53.543 -38.688 -50.305 -17.940 17.879 -44.556 -39.724

280-338 276-332 277-340 318-369 318-461 318-367 254-388 273-373

0.9200a 0.9221a 0.9140a 1.1490 1.0328 1.0515a 0.8209 0.9970

Measured by means of a vibrating tube densimeter (model DMA 02 D, Anton Paar).

Table 5. Experimental P-x Data for the System Water (1) + 1,2-Propylene Glycol Diacetate (2) at 358.15 K x1 0.000 00 0.016 91 0.034 89 0.052 26 0.069 26 0.085 11 0.100 59 0.115 63 0.130 00 0.143 54 0.161 46 0.177 47 0.205 93 0.243 80 0.284 98 0.333 06 0.384 02 0.441 77 0.501 32 0.559 40 0.612 79 0.654 67

P/kPa 2.036 6.137 10.236 14.011 17.490 20.630 23.513 26.243 28.706 30.947 33.726 36.107 40.024 44.813 48.877 52.715 55.949 58.496 59.375 59.391 59.392 59.395

x1 0.690 75 0.723 77 0.753 52 0.781 13 0.803 17 0.822 75 0.840 69 0.855 32 0.869 64 0.881 37 0.913 92 0.922 08 0.930 39 0.937 16 0.944 03 0.951 02 0.957 40 0.963 50 0.968 97 0.974 50 0.978 98

P/kPa 59.407 59.420 59.421 59.435 59.430 59.445 59.447 59.461 59.459 59.480 59.430 59.423 59.419 59.415 59.414 59.420 59.423 59.423 59.414 59.409 59.400

x1 0.982 75 0.986 18 0.989 25 0.991 97 0.993 93 0.995 51 0.996 53 0.997 36 0.998 00 0.998 60 0.998 92 0.999 17 0.999 33 0.999 48 0.999 56 0.999 63 0.999 70 0.999 77 0.999 85 0.999 92 1.000 00

P/kPa 59.420 59.434 59.442 59.400 59.260 59.096 58.961 58.837 58.732 58.618 58.566 58.516 58.491 58.460 58.452 58.432 58.418 58.391 58.368 58.348 58.320

Karl Fischer titration, respectively. The cis/trans isomeric mixture of 1-chloroprepene was composed of a cis/trans ratio of about 75:25 mass %. To obtain the pure isomers, a distillation column with a diameter of 30 mm equipped with 2 m labor packings (model DX ID 30, Sulzer) was used. Apparatus and Procedures. The vapor pressure and the isothermal P-x data were measured with a computerdriven static apparatus. The experimental procedure for the determination of the VLE data is based on that

Table 6. Experimental HE Data for the System Water (1) + 1,2-Propylene Glycol Diacetate (2) 323.15 K and 1.55 MPa

363.15 K and 1.27 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.0505 0.0968 0.1783 0.2480 0.3082 0.4070 0.4847 0.5990 0.6791 0.7839 0.8495 0.8943 0.9270 0.9518 0.9713 0.9796

408.57 766.87 1170.2 1427.4 1564.9 1451.7 1272.2 976.92 783.64 518.09 352.58 241.66 159.97 97.982 49.613 30.366

0.0506 0.0968 0.1783 0.2480 0.3082 0.4070 0.4847 0.5990 0.6791 0.7839 0.8495 0.8944 0.9270 0.9518 0.9713 0.9796

453.00 821.86 1328.7 1668.3 1883.8 2063.3 2066.4 1613.7 1308.2 887.87 624.24 449.59 317.99 222.58 144.96 111.76

proposed by Gibbs and Van Ness,22 where the total pressure P for different overall compositions is measured at constant temperature. The apparatus was described previously23,24 and can be used at temperatures between 278 and 368 K and pressures up to 0.3 MPa. The thermostated, purified, and degassed compounds are charged into the VLE cell, which is evacuated and kept in a thermostatic oil bath. The pressure inside the cell is monitored with a Digiquartz pressure sensor (model 245A, Paroscientific), and the temperature is measured with a Pt100 resistance thermometer (model 1506, Hart Scientific). The overall compositions are determined from the known quantities of liquids injected into the equilibrium cell by stepping motor-driven injection pumps and auto-

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001 339 Table 10. Experimental HE Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Propylene Glycol Diacetate (2)

Table 7. Experimental P-x Data for the System 1,2-Dichloropropane (1) + 1,2-Propylene Glycol Diacetate (2) at 348.15 K x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.003 85 0.007 72 0.011 91 0.015 54 0.019 71 0.023 50 0.027 34 0.030 90 0.034 89 0.040 65 0.045 86 0.059 60 0.077 22 0.099 18 0.125 56 0.156 83 0.195 23 0.235 63 0.276 70

1.208 1.371 1.543 1.729 1.896 2.096 2.266 2.432 2.590 2.768 3.023 3.258 3.882 4.664 5.658 6.856 8.307 10.080 11.971 13.930

0.318 00 0.360 40 0.401 02 0.441 04 0.476 11 0.509 16 0.541 17 0.571 75 0.577 24 0.598 51 0.599 02 0.622 54 0.647 99 0.670 86 0.695 41 0.721 85 0.750 42 0.781 37 0.808 09 0.836 72

15.927 18.010 20.031 22.046 23.839 25.544 27.219 28.828 29.115 30.249 30.268 31.519 32.882 34.114 35.443 36.878 38.434 40.124 41.586 43.149

0.867 48 0.892 13 0.912 96 0.931 13 0.950 05 0.965 82 0.976 06 0.983 46 0.987 88 0.991 29 0.993 84 0.995 17 0.996 07 0.997 00 0.997 43 0.997 86 0.998 27 0.998 69 0.999 12 1.000 00

44.819 46.152 47.274 48.247 49.250 50.079 50.607 50.985 51.203 51.377 51.498 51.557 51.609 51.650 51.672 51.694 51.715 51.740 51.765 51.812

Table 8. Experimental HE Data for the System 1,2-Dichloropropane (1) + 1,2-Propylene Glycol Diacetate (2) 323.15 K and 1.41 MPa

363.15 K and 1.55 MPa

HE/J‚mol-1

x1

HE/J‚mol-1

0.0750 0.1462 0.2138 0.2781 0.3394 0.3978 0.4535 0.5068 0.5577 0.6532 0.6980 0.7411 0.7824 0.8222 0.8604 0.8973 0.9327 0.9670

-38.417 -72.627 -102.42 -127.38 -147.04 -162.41 -174.16 -181.42 -184.84 -178.44 -171.17 -160.17 -146.12 -129.39 -109.10 -85.999 -61.110 -33.878

0.0750 0.1462 0.2138 0.2781 0.3394 0.3978 0.4535 0.5068 0.5577 0.6532 0.6981 0.7411 0.7824 0.8222 0.8604 0.8973 0.9328 0.9670

-29.125 -61.698 -87.680 -108.12 -127.54 -146.21 -155.25 -161.74 -166.55 -161.70 -154.41 -147.48 -135.02 -113.77 -97.602 -77.615 -54.703 -27.232

Table 9. Experimental P-x Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Propylene Glycol Diacetate (2) at 323.15 K 0.000 00 0.006 62 0.013 60 0.020 89 0.028 03 0.034 97 0.041 09 0.047 72 0.054 40 0.060 70 0.070 38 0.079 52 0.101 87 0.126 95 0.155 21 0.187 07 0.222 86 0.264 18 0.306 92 0.349 66 0.391 33 0.433 18

P/kPa 0.286 1.456 2.716 4.018 5.292 6.536 7.669 8.887 10.089 11.223 12.913 14.509 18.547 22.944 27.987 33.552 39.800 47.003 54.396 61.705 68.820 75.892

x1 0.472 63 0.510 90 0.543 98 0.574 76 0.584 49 0.604 22 0.606 13 0.629 46 0.632 02 0.654 68 0.656 13 0.677 33 0.678 35 0.697 70 0.701 64 0.714 82 0.727 77 0.755 97 0.786 49 0.812 80 0.840 96

P/kPa 82.515 88.891 94.370 99.455 101.10 104.28 104.65 108.46 108.83 112.57 112.75 116.25 116.37 119.51 120.18 122.29 124.41 128.97 133.91 138.16 142.74

x1 0.871 19 0.895 40 0.915 84 0.933 64 0.952 15 0.967 56 0.977 52 0.984 69 0.988 94 0.992 21 0.994 33 0.995 57 0.996 20 0.996 85 0.997 52 0.998 13 0.998 74 0.999 07 0.999 39 0.999 68 1.000 00

363.15 K and 1.48 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.0883 0.1698 0.2452 0.3151 0.3802 0.4410 0.4977 0.5510 0.6009 0.6479 0.6923 0.7341 0.7737 0.8111 0.8467 0.8804 0.9125 0.9431 0.9722

39.748 73.958 99.558 118.48 132.16 140.07 145.29 146.48 143.89 140.97 133.38 124.43 112.61 99.555 86.467 71.055 54.961 38.128 18.723

0.0883 0.1698 0.2452 0.3151 0.3802 0.4410 0.4977 0.5510 0.6009 0.6479 0.6923 0.7341 0.7737 0.8111 0.8467 0.8804 0.9125 0.9431 0.9722

40.244 65.825 85.490 101.65 111.27 117.10 117.82 116.41 112.58 108.86 101.68 94.458 84.695 75.134 63.550 51.830 38.474 25.292 11.285

Table 11. Experimental P-x Data for the System 1,2-Dichloropropane (1) + 1,2-Propanediol (2) at 348.15 K

x1

x1

323.15 K and 1.45 MPa

P/kPa 147.69 151.68 155.08 158.08 161.23 163.88 165.62 166.87 167.62 168.17 168.54 168.75 168.86 168.95 169.06 169.17 169.28 169.30 169.36 169.40 169.45

x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.001 76 0.003 46 0.005 15 0.006 85 0.008 57 0.010 33 0.012 08 0.013 89 0.015 65 0.017 36 0.020 08 0.025 38 0.031 57 0.040 89 0.052 70 0.069 80 0.089 86 0.109 13 0.130 89 0.155 98

0.833 1.656 2.433 3.189 3.946 4.675 5.411 6.129 6.859 7.558 8.245 9.270 11.238 13.441 16.456 19.971 24.407 28.794 32.288 35.527 38.511

0.186 78 0.215 38 0.242 02 0.272 69 0.300 91 0.326 99 0.351 20 0.373 72 0.398 68 0.415 23 0.421 70 0.442 19 0.443 02 0.472 95 0.504 98 0.537 93 0.572 67 0.612 25 0.652 15 0.693 49

41.298 43.237 44.611 45.808 46.634 47.222 47.658 47.985 48.281 48.377 48.506 48.577 48.686 48.760 48.922 49.054 49.164 49.290 49.380 49.484

0.733 37 0.772 96 0.811 38 0.847 53 0.876 96 0.901 50 0.921 90 0.937 53 0.949 82 0.957 92 0.962 31 0.966 01 0.969 92 0.973 89 0.978 07 0.982 16 0.986 59 0.991 05 0.995 45 1.000 00

49.582 49.697 49.812 49.954 50.095 50.257 50.445 50.665 50.901 51.040 51.116 51.194 51.281 51.373 51.474 51.597 51.744 51.871 52.021 52.164

Table 12. Experimental HE Data for the System 1,2-Dichloropropane (1) + 1,2-Propanediol (2) 323.15 K and 1.27 MPa

363.15 K and 1.34 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.0190 0.0382 0.0773 0.1174 0.1585 0.2008 0.2441 0.2887 0.3344 0.3814 0.4298 0.4795 0.5306 0.5833 0.6375 0.6933 0.7509 0.8103 0.8715 0.9347 0.9671

62.246 152.07 324.72 485.67 632.60 760.68 870.38 961.89 1028.0 1074.6 1111.9 1120.0 1121.0 1113.8 1088.2 1057.9 1013.8 945.06 837.97 654.13 471.91

0.0190 0.0382 0.0773 0.1174 0.1586 0.2008 0.2442 0.2887 0.3344 0.3815 0.4298 0.4795 0.5307 0.5833 0.6375 0.6934 0.7509 0.8103 0.8715 0.9347 0.9671

110.04 234.01 485.86 712.96 917.82 1099.7 1260.0 1412.0 1536.0 1636.1 1713.3 1776.3 1812.3 1824.4 1813.1 1766.9 1695.0 1563.1 1344.3 952.86 569.16

340

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001

Table 13. Experimental P-x Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Propanediol (2) at 338.15 K x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.006 67 0.011 35 0.016 09 0.020 69 0.025 22 0.029 79 0.034 26 0.038 49 0.042 89 0.048 45 0.054 19 0.068 03 0.084 15 0.104 13 0.127 55

0.621 14.753 23.848 32.585 40.878 48.781 56.562 64.049 71.098 78.136 86.624 95.023 113.79 134.08 155.85 177.54

0.155 34 0.187 36 0.221 87 0.257 88 0.294 27 0.332 61 0.370 08 0.407 63 0.440 90 0.472 84 0.504 15 0.789 05 0.825 60 0.857 48 0.886 07 0.916 67

198.54 217.30 232.18 243.05 250.38 255.16 257.17 257.52 257.82 258.30 258.80 258.76 258.69 258.69 258.71 258.73

0.942 76 0.960 02 0.972 57 0.980 08 0.985 89 0.989 81 0.992 04 0.992 95 0.993 82 0.994 66 0.995 49 0.996 40 0.997 25 0.998 20 1.000 00

258.89 259.17 259.66 260.46 261.92 262.60 263.06 263.25 263.41 263.55 263.70 263.78 264.03 264.15 264.27

Table 14. Experimental HE Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Propanediol (2) 323.15 K and 1.14 MPa

363.15 K and 1.34 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.0448 0.0901 0.1359 0.1822 0.2290 0.2763 0.3242 0.3726 0.4216 0.4712 0.5213 0.5720 0.6233 0.6752 0.7277 0.7809 0.8347 0.8891 0.9442 0.9720

121.00 249.43 362.67 460.35 539.85 593.35 582.06 560.85 534.46 516.14 491.06 465.42 436.83 407.88 379.81 351.54 320.57 286.17 251.19 170.57

0.0448 0.0901 0.1359 0.1822 0.2290 0.2763 0.3242 0.3727 0.6233 0.6752 0.7277 0.7809 0.8347 0.8891 0.9442 0.9720

196.96 390.35 559.76 731.29 870.98 982.47 1065.1 1154.5 1207.1 1152.4 1105.8 1045.6 950.77 819.21 580.75 459.55

Table 15. Experimental P-x Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Dichloropropane (2) at 338.15 K x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.005 68 0.010 79 0.016 29 0.021 23 0.026 61 0.031 87 0.036 95 0.041 71 0.047 06 0.053 01 0.058 91 0.076 62 0.095 84 0.116 78 0.141 76 0.169 58 0.201 77

36.450 37.831 39.050 40.380 41.570 42.847 44.085 45.268 46.381 47.634 49.047 50.449 54.528 59.037 63.856 69.614 75.994 83.330

0.235 01 0.269 24 0.303 79 0.339 53 0.374 58 0.409 67 0.441 09 0.454 82 0.471 09 0.487 92 0.500 78 0.522 24 0.558 77 0.600 90 0.643 83 0.688 79 0.732 55 0.776 46

90.902 98.625 106.37 114.39 122.24 130.12 137.18 140.58 143.99 147.80 150.74 155.28 163.21 172.39 181.77 191.61 201.22 210.69

0.819 34 0.859 90 0.892 76 0.919 81 0.941 90 0.958 19 0.970 17 0.978 26 0.982 33 0.984 32 0.986 24 0.988 20 0.990 18 0.992 17 0.994 11 0.996 07 0.998 04 1.000 00

220.50 229.58 237.01 243.23 248.24 251.99 254.78 256.63 257.57 258.02 258.44 258.89 259.34 259.78 260.25 260.69 261.12 261.57

matic valves. The liquid-phase composition is obtained by solving mass and volume balance equations which also account for the VLE. At the low system pressure of this investigation, the calculated liquid-phase compositions are identical to the feed compositions within (0.005. The

Table 16. Experimental HE Data for the System cis/trans-1-Chloro-1-propene (1) + 1,2-Dichloropropane (2) 323.15 K and 1.27 MPa

363.15 K and 1.28 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.0296 0.0589 0.1166 0.1733 0.2290 0.2837 0.3374 0.3902 0.4420 0.4930 0.5430 0.5922 0.6406 0.6882 0.7349 0.7809 0.8262 0.8707 0.9145 0.9576 0.9789

11.865 26.951 47.395 64.554 80.456 93.359 104.17 108.32 110.43 112.34 112.38 108.71 103.17 95.981 88.901 79.013 66.261 51.285 35.951 19.467 8.802

0.0589 0.1166 0.1166 0.1733 0.1733 0.2290 0.2290 0.2837 0.2837 0.3374 0.3374 0.3902 0.3902 0.4420 0.4420 0.4929 0.5430 0.5922 0.6406 0.6881 0.6882 0.7349 0.7809 0.8262 0.8262 0.8707 0.9145 0.9576 0.9576

11.530 17.228 21.811 25.249 30.045 33.911 36.194 40.287 41.179 45.297 43.838 47.510 45.498 46.242 44.233 41.732 38.659 33.406 27.037 28.176 21.711 22.368 15.711 10.557 9.763 10.099 6.575 2.838 2.428

Table 17. Experimental P-x Data for the System cis-1-Chloro-1-propene (1) + Propylene Oxide (2) at 313.15 K x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.000 84 0.001 62 0.003 53 0.005 53 0.009 56 0.013 39 0.019 26 0.024 70 0.034 53 0.049 14 0.067 14 0.089 56 0.117 96 0.148 76 0.181 47 0.215 52 0.252 05

124.89 124.91 124.92 124.95 124.96 125.01 125.06 125.14 125.20 125.32 125.51 125.74 126.02 126.38 126.75 127.14 127.54 127.95

0.288 02 0.324 97 0.358 22 0.390 63 0.422 92 0.441 42 0.454 64 0.469 60 0.484 70 0.496 74 0.511 62 0.527 21 0.539 10 0.555 59 0.587 27 0.622 74 0.662 78 0.698 74

128.35 128.74 129.09 129.43 129.76 129.88 130.07 130.15 130.36 130.41 130.62 130.70 130.87 130.96 131.25 131.56 131.91 132.21

0.738 78 0.783 72 0.821 15 0.853 71 0.882 90 0.914 19 0.940 83 0.959 87 0.972 49 0.979 82 0.984 88 0.988 70 0.992 42 0.994 89 0.996 93 0.998 46 0.999 43 1.000 00

132.54 132.90 133.19 133.43 133.65 133.87 134.05 134.17 134.25 134.30 134.34 134.36 134.38 134.40 134.41 134.42 134.43 134.46

Table 18. Experimental HE Data for the System cis-1-Chloro-1-propene (1) + Propylene Oxide (2) 303.15 K and 1.41 MPa

323.15 K and 1.41 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.1091 0.2223 0.4617 0.7201 0.8572

-23.362 -42.783 -72.750 -64.120 -38.367

0.1091 0.2223 0.4617 0.7201 0.8572

-17.805 -34.057 -55.027 -50.335 -31.822

experimental uncertainties of this apparatus are as follows: σ(T) ) 0.03 K, σ(P) ) 20 Pa + 0.0001 (P/Pa), and σ(xi) ) 0.0001. The commercial isothermal flow calorimeter (model 7501, Hart Scientific) used for the determination of the HE data was described previously by Gmehling.25 In this apparatus,

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001 341

Figure 2. Experimental and calculated P-x(y) and excess enthalpy data for the system water (1) + 1,2-propylene glycol diacetate (2): experimental VLE data at 358.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

Figure 3. Experimental and calculated P-x(y) and excess enthalpy data for the system 1,2-dichloropropane (1) + 1,2-propylene glycol diacetate (2): experimental VLE data at 348.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

Figure 4. Experimental and calculated P-x(y) and excess enthalpy data for the system cis/trans-1-chloropropene (1) + 1,2-propylene glycol diacetate (2): experimental VLE data at 323.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

two syringe pumps (model LC-2600, ISCO) provide a flow of constant composition through a thermostated calorimeter cell equipped with a pulsed heater and a Peltier cooler. The Peltier cooler is working at constant power, producing a constant heat loss from the calorimeter cell. This arrangement allows measurement of endothermal as well as exothermal heat effects. A back-pressure regulator serves to keep the pressure at a level at which evaporation and

degassing effects can be prevented. The experimental uncertainties of this device are as follows: σ(T) ) 0.03 K, σ(HE) ) 2 J‚mol-1 + 0.01 (HE/J‚mol-1), and σ(xi) ) 0.0001. Results For the components cis-1-chloropropene, trans-1-chloropropene, and 1,2-propylene glycol diacetate, the Antoine equation with the constants Ai, Bi, and Ci

342

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001

Figure 5. Experimental and calculated P-x(y) and excess enthalpy data for the system 1,2-dichloropropane (1) + 1,2-propanediol (2): experimental VLE data at 348.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

Figure 6. Experimental and calculated P-x(y) and excess enthalpy data for the system cis/trans-1-chloropropene (1) + 1,2-propanediol (2): experimental VLE data at 338.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

Figure 7. Experimental and calculated P-x(y) and excess enthalpy data for the system cis/trans-1-chloropropene (1) + 1,2-dichloropropane (2): experimental VLE data at 338.15 K (O); experimental HE data at 323.15 K (0) and 363.15 K ()); NRTL (;).

log(Pis/kPa) ) Ai -

Bi Ci + T/K

(2)

was fitted to the experimental vapor pressures (Tables 1-3). The results are graphically shown in Figure 1. For the other components, the coefficients stored in the Dortmund Data Bank (DDB) were used for the calculations. The

constants for all components are given in Table 4 together with the liquid density at 298.15 K, which was also taken from the DDB or measured using a vibrating tube densimeter (model DMA 02 D, Anton Paar). The experimental P-x and HE data for the investigated systems are listed in Tables 5-20. For all systems the data were correlated simultaneously to obtain temperature-

Journal of Chemical and Engineering Data, Vol. 46, No. 2, 2001 343

Figure 8. Experimental and calculated P-x(y) and excess enthalpy data for the system cis-1-chloropropene (1) + propylene oxide (2): experimental VLE data at 313.15 K (O); experimental HE data at 303.15 K (0) and 323.15 K ()); NRTL (;).

Figure 9. Experimental and calculated P-x(y) and excess enthalpy data for the system propylene oxide (1) + trans-1-chloropropene (2): experimental VLE data at 313.15 K (O); experimental HE data at 303.15 K (0) and 323.15 K ()); NRTL (;). Table 20. Experimental HE Data for the System Propylene Oxide (1) + trans-1-Chloro-1-propene (2)

Table 19. Experimental P-x Data for the System Propylene Oxide (1) + trans-1-Chloro-1-propene (2) at 313.15 K

303.15 K and 1.31 MPa

x1

P/kPa

x1

P/kPa

x1

P/kPa

0.000 00 0.000 93 0.001 84 0.002 98 0.004 78 0.007 25 0.011 23 0.015 94 0.020 87 0.028 09 0.041 16 0.058 29 0.084 64 0.115 45 0.144 81 0.176 23 0.212 68

109.76 109.77 109.79 109.80 109.83 109.85 109.91 109.96 110.02 110.11 110.28 110.51 110.87 111.31 111.76 112.24 112.83

0.256 52 0.295 65 0.330 78 0.370 12 0.405 14 0.436 48 0.464 78 0.492 47 0.519 61 0.549 89 0.581 84 0.614 34 0.646 95 0.680 41 0.717 49 0.753 67

113.52 114.15 114.72 115.36 115.93 116.43 116.79 117.23 117.68 118.15 118.66 119.16 119.67 120.18 120.76 121.28

0.789 87 0.823 69 0.856 08 0.886 36 0.913 95 0.935 29 0.952 05 0.965 22 0.973 76 0.981 38 0.990 79 0.994 56 0.996 39 0.998 33 0.999 17 1.000 00

121.84 122.34 122.79 123.23 123.65 123.95 124.17 124.36 124.51 124.66 124.69 124.76 124.88 124.89 124.87 124.90

dependent NRTL26 interaction parameters. The following expression was used to describe the temperature dependence of the interaction parameters:

∆gij/J‚mol-1 ) aij + bij(T/K) + cij(T/K)2

(3)

The fitted parameters are given in Table 21. In the regression procedure, the coefficient Ai of the Antoine

323.15 K and 1.34 MPa

x1

HE/J‚mol-1

x1

HE/J‚mol-1

0.1439 0.2818 0.5407 0.7793 0.8918

-85.983 -130.39 -135.73 -76.429 -39.465

0.1440 0.2818 0.5407 0.7793 0.8918

-64.289 -94.556 -97.671 -56.347 -29.653

equation was adjusted to the experimental vapor pressures in order to eliminate systematic experimental errors for the calculation of the required excess Gibbs energies. The experimental data are presented in Figures 2-9 together with the values calculated by the NRTL model. For most of the systems, an excellent agreement between experimental and calculated values was achieved. The systems 1,2 dichloropropane + 1,2-propylene glycol diacetate (Figure 3), cis/trans-1-chloropropene + 1,2-propylene glycol diacetate (Figure 4), cis/trans-1-chloropropene + 1,2 dichloropropane (Figure 7), cis-1-chloropropene + propylene oxide (Figure 8), and propylene oxide + trans-1-chloropropene (Figure 9) show nearly ideal behavior (Raoult’s law), and only small values for the heats of mixing (