8 Variations in the Stability of Precipitated
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
Ferric Oxyhydroxides D O N A L D L A N G M U I R and D O N A L D O. W H I T T E M O R E Department of Geosciences, and Mineral Conservation Section, The Pennsylvania State University, University Park, Pa. 16802
The apparent
thermodynamic
ide precipitates pQ =
may
waters usually
and goethite, 37.3 to 43.3. 43.5.
Fe
2+
initially
+
-2
and suspended
Variations
leaching
soluble
including 10
in particle and relative
of precipitates
material.
occurs within
Measurable
a few
may take thousands
oxyhydroxproduct
Such precipitates
as mixed amorphous molar
In 24 well waters
trol on absolute H
begin
sometimes
tory solutions
of ferric
by the activity
in solution.
- 3
3+
natural
molar
[OH ]
-log[Fe ]
stability
be described
lepidocrocite. in Fe
containing
to
pQ
was 37.1
the major
of the
crystallization molar
of years in waters
of
Fe
2+
10
-6
10
-5.40
to
con-
oxyhydroxides.
raises pQ by removing -2
was
10
size are probably
hours in 10
laborapQ
3+
-3.33
oxyhydroxides, stabilities
In Fe ,
or
2+
in
material
the
most
precipitates
solutions, molar
in
but Fe . 2+
T t has g e n e r a l l y b e e n a s s u m e d that the t h e r m o d y n a m i c s t a b i l i t y of p r e c i p i t a t e d f e r r i c o x y h y d r o x i d e s increases c o n t i n u o u s l y w i t h a g i n g i n or out of aqueous s o l u t i o n ( J , 2 ) .
L i t t l e t h o u g h t has b e e n g i v e n to the
role of n a t u r a l w a t e r c h e m i s t r y i n changes i n the s t a b i l i t y of the o x y h y d r o x i d e s w i t h t i m e . T h i s r e p o r t first examines the effects of
changes
i n s o l u t i o n c o m p o s i t i o n o n the s t a b i l i t y of f e r r i c o x y h y d r o x i d e s p r e c i p i tated i n f e r r i c a n d ferrous sulfate solutions i n the l a b o r a t o r y . T h e s e s o l u tions are s i m i l a r i n c o m p o s i t i o n to some i r o n - r i c h a c i d m i n e discharges. Results of the l a b o r a t o r y studies a n d of w o r k b y others are t h e n u s e d to e x p l a i n o b s e r v e d v a r i a t i o n s i n the s t a b i l i t y of s u s p e n d e d f e r r i c o x y h y d r o x ides i n some g r o u n d waters of coastal p l a i n N e w Jersey a n d M a r y l a n d . 209 In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
210
NONEQUILIBRIUM
Naturally-Occurring
Ferric
SYSTEMS
IN
NATURAL
WATERS
Oxyhydroxides
F e r r i c o x y h y d r o x i d e m i n e r a l s or phases w h i c h o c c u r n a t u r a l l y are listed i n T a b l e I , a n d e x c e p t for akaganéite, t h e i r occurrences h a v e b e e n d e s c r i b e d b y P a l a c h e et al. (3).
T h e o x y h y d r o x i d e s f o u n d as p r e c i p i t a t e s
i n n a t u r a l waters are u s u a l l y goethite A m o r p h o u s m a t e r i a l , w h i c h comprises
and x-ray amorphous material. a relatively large proportion
of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
most fresh p r e c i p i t a t e s , is f o r m e d u n d e r c o n d i t i o n s of s u b s t a n t i a l s u p e r s a t u r a t i o n w i t h respect to the c r y s t a l l i n e o x y h y d r o x i d e s .
A n amorphous
phase develops b y r a p i d h y d r o l y s i s of d i s s o l v e d f e r r i c species, p a r t i c u l a r l y at p H ' s b e l o w 4 - 5 w h e r e the t o t a l c o n c e n t r a t i o n of s u c h species c a n e x c e e d 0.01 p p m . A m o r p h o u s m a t e r i a l is also p r o d u c e d d u r i n g the r a p i d o x i d a t i o n a n d h y d r o l y s i s of ferrous i r o n - r i c h solutions. Table I.
N a t u r a l l y O c c u r r i n g Ferric Oxyhydroxides Ferric
Oxyhydroxide
Amorphous Goethite Akaganéite Lepidocrocite Hematite Maghemite
Ideal
Formula
indefinite a-FeOOH $-FeOOH γ-FeOOH a-Fe2C>3 y-Fe 0 2
3
G o e t h i t e p r e c i p i t a t e s b y the r e l a t i v e l y s l o w o x i d a t i o n a n d h y d r o l y s i s of aqueous or s o l i d ferrous i r o n species.
U n d e r sterile l a b o r a t o r y c o n d i
tions, goethite forms most r a p i d l y at p H ' s greater t h a n 3.5 b e c a u s e the o x i d a t i o n rate of d i s s o l v e d ferrous i r o n is e x t r e m e l y s l o w u n d e r m o r e a c i d conditions ( 4 ) . phous
G o e t h i t e is also f o r m e d b y the l o n g - t e r m a g i n g of a m o r
m a t e r i a l p r e c i p i t a t e d d u r i n g h y d r o l y s i s of f e r r i c salt solutions.
U n d e r natural conditions, the oxyhydroxides w h i c h precipitate on a n d coat b o t t o m a n d b a n k sediments i n streams p o l l u t e d b y a c i d m i n e d i s charges are u s u a l l y m i x t u r e s of goethite a n d a m o r p h o u s m a t e r i a l . L e p i d o c r o c i t e has most often b e e n p r e c i p i t a t e d i n the l a b o r a t o r y at p H ' s b e t w e e n 4 a n d 7 b y the o x i d a t i o n of aqueous or s o l i d ferrous i r o n species.
T h e m i n e r a l is u s u a l l y a c c o m p a n i e d b y goethite.
the rarest of the o x y h y d r o x i d e s u n d e r n a t u r a l c o n d i t i o n s .
Akaganéite is Perhaps the
o n l y p u b l i s h e d d e s c r i p t i o n s of n a t u r a l occurrences are b y V a n T a s s e l and Chandy (6).
(5)
T h e m i n e r a l has b e e n p r e c i p i t a t e d i n the l a b o r a t o r y
at r o o m t e m p e r a t u r e s b y the s l o w h y d r o l y s i s of 0 . 0 2 - 0 . 0 8 M F e C l
3
solu-
tions ( 7 ) . M a g h e m i t e is r a r e as a d i r e c t p r e c i p i t a t e , a n d u s u a l l y forms b y t h e o x i d a t i o n of
magnetite
(Fe 0 ) 3
4
or the d e h y d r a t i o n of
lepidocrocite.
H e m a t i t e a n d goethite are p r o b a b l y the most stable f e r r i c o x y h y d r o x i d e s u n d e r earth-surface c o n d i t i o n s .
H e m a t i t e is rare as a d i r e c t p r e c i p i t a t e
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
211
Stability of Ferric Oxyhydroxides
LANGMUiR A N D WHITTEMORE
b u t s l o w l y c r y s t a l l i z e s f r o m a m o r p h o u s m a t e r i a l b y d e h y d r a t i o n or l o n g t e r m a g i n g out of s o l u t i o n . I n most cases, the first o x y h y d r o x i d e p r e c i p i t a t e is a m o r p h o u s , h a v i n g b e e n f o r m e d u n d e r c o n d i t i o n s of s u b s t a n t i a l s u p e r s a t u r a t i o n . E a r l y i n p r e c i p i t a t i o n , p o o r l y c r y s t a l l i n e goethite a n d p o o r l y c r y s t a l l i n e l e p i d o crocite m a y also f o r m . O t h e r o x y h y d r o x i d e s t h a n these three are r a r e l y precipitated from natural waters. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
O x y h y d r o x i d e p r e c i p i t a t e s are g e n e r a l l y m i x t u r e s of different phases. T h e a p p a r e n t t h e r m o d y n a m i c s t a b i l i t y or s o l u b i l i t y of
such mixtures
d e p e n d s i n l a r g e p a r t o n the s o l u b i l i t y of the least stable p h a s e present. T h i s phase is of course
often
amorphous.
u s u a l l y c o n t a i n s u b s t a n t i a l a m o u n t s of
O x y h y d r o x i d e precipitates
collodial-sized material.
Sizes
f r o m m o l e c u l a r F e ( O H ) ° to m i c r o n - s i z e crystals or c r y s t a l aggregates 8
are p o s s i b l e
(8).
B o t h crystalline and amorphous precipitates remain
c o l l o i d a l i n d e f i n i t e l y i n some solutions. major
P a r t i c l e size is p r o b a b l y
c o n t r o l o n the t h e r m o d y n a m i c s t a b i l i t y of
the
the
oxyhydroxides.
O t h e r i m p o r t a n t controls o n s t a b i l i t y are m i n e r a l o g y , c r y s t a l l i n i t y , the d e g r e e of h y d r a t i o n of the p r e c i p i t a t e , a n d the presence of i m p u r i t i e s . S o l u t i o n reactions for a l l the o x y h y d r o x i d e s c a n b e w r i t t e n i n the same f o r m , as s h o w n b y expressions 1, 2, a n d 3. Fe(OH) = Fe + + 3 0 H ~ amorphous α-FeOOH + 1/2 ( a - F e 0 ) 2
3
(1)
3
3
H 0 = Fe + + 3 0 H "
(2)
3
2
+ 3/2 H 0 = F e 2
3 +
+ 30H"
(3)
H e r e a n d h e n c e f o r t h , the c o m p o s i t i o n of a m o r p h o u s m a t e r i a l is g i v e n for s i m p l i c i t y as F e ( O H ) . T h e n e g a t i v e l o g a r i t h m of the t h e r m o d y n a m i c 3
a c t i v i t y p r o d u c t expressions f o r these reactions m a y b e w r i t t e n i n e a c h case as pK
=
-
log [ F e + ] [ O H - ] 3
w h e n the a c t i v i t y of w a t e r is close to u n i t y .
(4)
3
V a l u e s of p K r a n g e f r o m
a b o u t 37.1 for f r e s h , r a p i d l y p r e c i p i t a t e d a m o r p h o u s
m a t e r i a l (8)
to
p r o b a b l y 44 or m o r e for c r y s t a l l i n e goethite a n d h e m a t i t e , b a s e d o n other w o r k ( 9 ) a n d s o l u b i l i t y measurements d e s c r i b e d i n this p a p e r . Particle
Size
Effect
It m a y b e s h o w n t h a t the decrease i n p K ( — δ ρ Κ ) of a n o x y h y d r o x i d e r e l a t i v e to the p K of its t h e r m o d y n a m i c a l l y most stable f o r m a n d o w i n g to the p a r t i c l e size effect equals
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
212
NONEQUILIBRIUM
-Sptf =
SYSTEMS
IN
NATURAL
WATERS
(5)
10.5 S(gfw)/çx
I n this expression, S is the surface e n e r g y of the o x y h y d r o x i d e i n ergs p e r s q u a r e centimeter, gfw
is its g r a m f o r m u l a w e i g h t , ρ its d e n s i t y i n grams
p e r s q u a r e c e n t i m e t e r , a n d a s s u m i n g t h a t p a r t i c l e s of the o x y h y d r o x i d e are cubes, χ is the c u b e edge l e n g t h i n A n g s t r o m s . D e n s i t i e s of h e m a t i t e a n d goethite are 5.26 a n d 4.28 g m / c m , r e s p e c t i v e l y ( 3 ) . 3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
of s o l u t i o n measurements at 7 0 ° C , F e r r i e r (10) t h a l p i e s of h e m a t i t e ( as 1 / 2 « - F e 0 2
3
B a s e d o n heat
f o u n d the surface e n
) a n d goethite ( as α - F e O O H ) to be
770 a n d 1250 e r g s / c m , r e s p e c t i v e l y . A s s u m i n g as a n a p p r o x i m a t i o n that 2
surface enthalpies a n d G i b b s free energies are e q u a l , a n d constant f r o m 25° to 70 ° C , equations for the v a r i a t i o n i n δρΚ w i t h p a r t i c l e size of h e m a t i t e a n d goethite are, r e s p e c t i v e l y -hpK
=
123/z
(6)
-$pK
= 272/χ
(7)
and
a n d have b e e n p l o t t e d i n F i g u r e 1. H e m a t i t e a n d goethite particles of 100 Â a n d less i n average d i m e n s i o n are c o m m o n i n l a b o r a t o r y solutions a n d n a t u r a l waters. B a s e d o n F i g u r e 1, s u c h p a r t i c l e s are at least 1.2 a n d 2.7 p K units less stable t h a n w e l l - c r y s t a l l i z e d samples of h e m a t i t e a n d goethite, r e s p e c t i v e l y .
F e r r i e r s studies f u r t h e r s h o w t h a t t w o c o e x i s t i n g
o x y h y d r o x i d e s c a n reverse t h e i r r e l a t i v e stabilities because of p a r t i c l e size effects.
T h u s , for
example, if we
consider
equal-sized hematite
and
goethite p a r t i c l e s , at 70 ° C the e n t h a l p y of the r e a c t i o n 1/2 a - F e 0 2
3
+
1/2 H 0 = a - F e O O H 2
(8)
equals ΔΗ°343
(cal/mole) =
(-
1720 ±
250) +
1.90 X 10*/χ
( 1 0 ) , w h e r e χ is the e d g e l e n g t h of cubes of h e m a t i t e or goethite.
(9) This
expression is r o u g h l y e q u i v a l e n t to AG°
2 9
8
(cal/mole) =
for R e a c t i o n 8 ( 9 , 11).
(-
250 ±
300) +
1.90 X 10*/x
(10)
E x p r e s s i o n 10 is p l o t t e d i n F i g u r e 2 a n d shows
that for e q u a l - s i z e d h e m a t i t e a n d goethite crystals, goethite is m o r e stable t h a n h e m a t i t e w h e n χ exceeds 760 Â, b u t less stable t h a n h e m a t i t e at s m a l l e r p a r t i c l e sizes. V a r i a t i o n s i n A G °
2 9 8
c a n b e c o n s i d e r a b l y greater
t h a n this w h e n u n e q u a l p a r t i c l e sizes of h e m a t i t e a n d goethite are i n volved
(11).
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
L A N G M U i R AND W H I T T E M O R E
Eh-pH
213
Stability of Ferric Oxyhydroxides
Relations
T h e behavior of precipitated ferric oxyhydroxides i n solution c a n best b e d e s c r i b e d i n terms o f E h a n d p H . F i g u r e 3 is a n E h - p H d i a g r a m showing
fields
Fe-H 0-0 . 2
2
o f solids a n d p r e d o m i n a n t i o n i c species
i n t h e system
D e t a i l e d procedures for the construction of E h - p H
dia-
grams are g i v e n b y H e m a n d C r o p p e r ( 13) a n d G a r r e l s a n d C h r i s t (14). I n F i g u r e 3, i o n - i o n b o u n d a r i e s are d r a w n a t e q u a l i o n a c t i v i t i e s . I o n s o l i d b o u n d a r i e s a r e d r a w n f o r 1 0 " M d i s s o l v e d i r o n species
(5.6 p p m
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
4
i r o n ) , a t y p i c a l concentration i n the iron-rich ground waters of N e w Jersey a n d M a r y l a n d d e s c r i b e d b e l o w .
T h e f e r r i c a n d ferrous
species-
f e r r i c o x y h y d r o x i d e b o u n d a r i e s h a v e b e e n d r a w n f o r pfC values o f 37.1 a n d 44. T h i s différence i n p K means that for a g i v e n p H a n d E h , a w a t e r can
c o n t a i n r o u g h l y seven orders o f m a g n i t u d e m o r e d i s s o l v e d i r o n i n
e q u i l i b r i u m w i t h fresh, a m o r p h o u s
material than i n equilibrium w i t h
w e l l - c r y s t a l l i z e d goethite or h e m a t i t e .
10
100 1,000 10,000 Particle Size (Angstroms)
Figure 1. Decrease in pK (—SpK) with decreasing particle size of goethite (a-FeOOH) and hematite (l/2a-Fe O ) 2
s
T h e E h a n d p H o f i r o n - r i c h n a t u r a l w a t e r s , most o f w h i c h c o n t a i n s u s p e n d e d f e r r i c o x y h y d r o x i d e s , places these w a t e r s o n t h e f e r r i c o r ferrous
species-ferric
oxyhydroxide
boundary.
Acid-mine
discharges
u s u a l l y h a v e p H ' s b e t w e e n 2 a n d 5 a n d E h s f r o m w i t h i n the F e d o w n t o zero volts.
3 +
field
I r o n - r i c h g r o u n d waters a r e u s u a l l y o n t h e same
b o u n d a r y , w i t h p H ' s b e t w e e n 5 a n d 8 a n d E h s f r o m + 0 . 3 to —0.1 v o l t .
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
214
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Calculation
of Apparent
Stabilities
It is u s e f u l to c o m p u t e w h a t m a y b e c a l l e d t h e a p p a r e n t s t a b i l i t y of a m i x t u r e o f o x y h y d r o x i d e s . T h i s a p p a r e n t s t a b i l i t y m a y b e d e f i n e d i n terms o f pQ w h e r e i n the s o l u t i o n pQ = -
log [ F e ] [ O H - ] 3 +
(11)
3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
F o r solutions h a v i n g a constant aqueous c h e m i c a l c o m p o s i t i o n a n d c o n stant c o m p o s i t i o n o f associated f e r r i c o x y h y d r o x i d e s , t h e m e a s u r e d pÇ> w i l l e q u a l the s t a b i l i t y o f a l l the f e r r i c o x y h y d r o x i d e s present. F o r s o l u tions i n w h i c h o n e f e r r i c o x y h y d r o x i d e is a l t e r i n g o r d i s s o l v i n g t o f o r m another, the m e a s u r e d pQ w i l l represent a s t a b i l i t y greater t h a n t h a t of the d i s a p p e a r i n g phase a n d less t h a n t h a t o f the phase w h i c h is f o r m i n g . I n f e r r i c s u l f a t e - r i c h solutions, pQ m a y b e c a l c u l a t e d f r o m a k n o w l e d g e o f p H a n d [ F e ] , the a c t i v i t y o f u n c o m p l e x e d f e r r i c i o n . T h e c o m 3 +
plexes w h i c h must b e c o n s i d e r e d HS0 ", FeS0 4
4
+
, and F e O H . 2 +
t o evaluate i o n i c strength (I) a r e
D i s s o c i a t i o n constants f o r these
complexes
h a v e b e e n m e a s u r e d at 2 5 ° C b y N a i r a n d N a n c o l l a s ( 1 5 ) , W i l l i x ( 1 6 ) , a n d M i l b u r n (12), r e s p e c t i v e l y , a n d are -500
Porticle Size of Cubes (Angstroms)
Figure 2. Gibhs free energy of formation of goethite (a-FeOOH) from hematite (1 /2a-Fe O ) and water as a function of particle size, assuming equal particle sizes of goethite and hematite 2
s
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
Stability
L A N G M U i R AND WHITTEMORE
of Ferric Oxyhydroxides
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
τ
I
1
1
1
1
Ο
2
4
6
8
215
Γ
1
1
1
10
12
14
PH
Figure 3. Eh-pH relations between solids and predominant ionic species in the system Fe-H 0-0 . The posi tion of the Fe -ferric oxyhydroxide boundary is shown for pK's of 37.1 and 44. The position of the Fe *FeOH boundary is based on Milburn (12). Other thermochemical data used to construct the figure are from Langmuir (8). 2
2
2+
3
2+
ΚΗΒΟΓ =
[H+][S0
4
2
-]/[HS0 -] =
#Feso + = [ F e + ] [ S 0 - ] / [ F e S 0 + ] 3
4
4
10" · 1
4
2
4
= 10"
4 1 5
#Feo 2+ = [Fe +][OH~]/[FeOH +] = 1 0 ~ 3
H
2
(12)
9 6
U 8 3
(13) (14)
W h e n significant ferrous i r o n is present, this species m u s t also b e c o n sidered.
T r a n s p o s i n g a n d t a k i n g t h e a n t i l o g o f E q u a t i o n 2 5 gives t h e
relationship between
[Fe
2 +
],
[Fe
3 +
] , a n d the measured E h at 2 5 ° C ,
w h i c h is [Fe
2 +
]/[Fe
3 +
] =
10< °E
E H ) / 0
-
0 5 9 6 1
(15)
w h e r e E° is t h e s t a n d a r d e l e c t r o d e p o t e n t i a l o f t h e f e r r i c - f e r r o u s i r o n c o u p l e ( see b e l o w ). K n o w n c o n c e n t r a t i o n s o f t o t a l d i s s o l v e d i r o n , f e r r o us i r o n , a n d s u l fate species y i e l d t h e f o l l o w i n g mass b a l a n c e e q u a t i o n s .
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
216
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
raFe(total)
=
raFe + 3
+ mFeOH + + mFeS0 + + wFe + 2
mFe(II) m80
4
2
(16)
2
4
= mFe +
(17)
2
- (total) = m F e S 0 + +
roHSOr
4
+ mS0
4
2
"
(18)
I f N a O H is the base u s e d to p r e c i p i t a t e the o x y h y d r o x i d e s , t h e n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
mNa
+
(total) =
raNa+
(19)
T h e o v e r - a l l charge b a l a n c e e q u a t i o n for a c i d solutions is m N a + + raH+ + 3 m F e + +
2mFeOH + +
3
raFeS0 +
2
+
4
2wFe +
=
2
2mS0 " + m H S 0 " 2
4
(20)
4
T h e d e f i n i t i o n of i o n i c s t r e n g t h is I = where
1/2 Στη&*
(21)
a n d Zt are t h e m o l a l i t y a n d valence of i o n i c species i, respec
t i v e l y . T h e f u l l expression for I is t h e n / =
1/2 [mNa+ +
mH+ + 9mFe + + 4 m F e O H + + 3
raFeS0 +
2
4
+
4mFe + + 4 m S 0 " + w H S O r ] 2
4
(22)
2
B e c a u s e significant concentrations of c o m p l e x ions are present, J a n d [ F e ] m u s t b e c a l c u l a t e d b y a m e t h o d of successive 3 +
approximations.
T h e first step is to e s t a b l i s h w h i c h d i s s o l v e d species are the m a j o r ones. A t this p o i n t , differences ignored.
b e t w e e n i o n activities a n d m o l a l i t i e s m a y
T h e p H is u s e d to estimate the r e l a t i v e i m p o r t a n c e of
and m H S C V through K s o - , and H
raFe
3+
4
vs.
raFeOH
2
4
t h r o u g h ΚρβοΗ**·
2+
A s a first a p p r o x i m a t i o n i n most waters w i t h p H > 2.5, m S 0 " — m S 0 4
( t o t a l ) , w h i c h p e r m i t s a n estimate of
raFeSCV
vs. m F e
be
raS0 ~
3 +
2
2
4
"
through K s o . F e
4
+
W i t h a r o u g h estimate of I at values b e l o w 0.1, a p p r o x i m a t e i n d i v i d u a l i o n a c t i v i t y coefficients H u c k e l equation (17).
m a y be c a l c u l a t e d u s i n g the e x t e n d e d
Debye-
T o a g o o d a p p r o x i m a t i o n , the f o l l o w i n g equalities
m a y be a s s u m e d : y F e O H
2 +
— y F e , and y F e S 0 2 +
4
+
— yHS0 " = 4
yHC0 ". 3
S u b s t i t u t i n g values for these coefficients i n t o E x p r e s s i o n s 12 t h r o u g h 15, w e m a y refine the m o l a l r e l a t i o n s h i p s of free a n d c o m p l e x i o n
species.
C o m b i n i n g these r e l a t i o n s h i p s w i t h mass b a l a n c e E q u a t i o n s 16 a n d 18 p e r m i t s c a l c u l a t i o n of a p p r o x i m a t e
m o l a l i t i e s of
a l l the i o n i c
species
present a n d of a m o r e a c c u r a t e i o n i c strength t h r o u g h E x p r e s s i o n 22. T h e c y c l e is r e p e a t e d a b o u t t w o or three times u n t i l n o f u r t h e r c h a n g e i n i o n i c strength c a n be detected.
T h e final v a l u e of [ F e ] is t h e n u s e d 3 +
to c o m p u t e pÇ>.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
Stability of Ferric Oxyhydroxides
L A N G M u i R AND WHITTEMORE
217
T h e p r e c e d i n g c a l c u l a t i o n s are possible u s i n g a t o t a l d i s s o l v e d i r o n a n d E h analysis w i t h or w i t h o u t a n analysis for raFe ( I I ) , a l t h o u g h the most accurate results are o b t a i n e d w i t h b o t h t o t a l a n d ferrous i r o n values. Because m F e K
F e
on
2 +
in y F e
3 +
is a s m a l l p e r c e n t a g e of raFe ( I I I ) , errors i n K
are m a g n i f i e d i n the final v a l u e of [ F e ] .
F e
so
4
+
and
A l s o , the u n c e r t a i n t y
3 +
at m o d e r a t e i o n i c strengths is l i k e l y to b e significant. I n v i e w of
3 +
s u c h u n c e r t a i n t i e s , c a l c u l a t e d p Q values b a s e d o n the a b o v e a p p r o a c h Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
are c o n s i d e r e d a c c u r a t e to ± 0 . 4
u n i t w h e n o n l y a t o t a l i r o n analysis
is a v a i l a b l e , a n d to ± 0 . 2 u n i t w h e n m F e ( I I )
has also b e e n m e a s u r e d .
T h e most r e l i a b l e values of pQ are b a s e d o n the raFe ( I I ) analysis i n solutions of k n o w n i o n i c strength. T h i s a p p r o a c h is a p p l i c a b l e i n m i x e d f e r r i c - f e r r o u s salt solutions as a b o v e , or i n ferrous salt solutions.
An
e q u a t i o n r e l a t i n g p Q to s o l u t i o n c o m p o s i t i o n m a y b e d e r i v e d as f o l l o w s . F o r the r e d u c t i o n r e a c t i o n Fe E h = E° + w h e r e E°
3 +
+ e - = Fe +
(23)
2
1.9842 Χ Ι Ο " Τ X log ( [ F e ] / [ F e ] ) 4
3+
(24)
2+
is the s t a n d a r d e l e c t r o d e p o t e n t i a l of the r e a c t i o n a n d Τ the
t e m p e r a t u r e i n degrees K e l v i n . E x p a n d i n g the l o g t e r m a n d t r a n s p o s i n g gives - l o g [Fe +] = 3
A d d i n g —3 l o g [ O H ]
(E°
-
E h ) / 1 . 9 8 4 2 X 10~*T -
log [ F e ] 2+
(25)
to b o t h sides, the left h a n d side t h e n equals p Q
a n d the final expression m a y b e w r i t t e n E h ) / 1 . 9 8 4 2 X 10r*T -
log [Fe +] -
3(log K
+ pH)
(26)
pQ = (E°
-
where K
is the a c t i v i t y p r o d u c t of w a t e r . T h i s expression w a s u s e d t o
w
2
w
c a l c u l a t e pÇ) i n b o t h f e r r i c - f e r r o u s sulfate a n d ferrous sulfate l a b o r a t o r y solutions a n d i n c o a s t a l - p l a i n g r o u n d w a t e r s of N e w Jersey a n d M a r y l a n d . I o n i c strength was c o m p u t e d for the l a b o r a t o r y solutions f r o m the d e t a i l e d i o n content of the w a t e r t h r o u g h E q u a t i o n 21. T h e N e w Jersey g r o u n d waters s t u d i e d w e r e chiefly of the c a l c i u m b i c a r b o n a t e t y p e w i t h i o n i c strengths less t h a n 4 Χ 10" so that I c o u l d b e c o m p u t e d a c c u r a t e l y w i t h 3
the e m p i r i c a l e q u a t i o n I =
1.5 Χ 1 0 " μ
(27)
5
w h e r e μ is the specific c o n d u c t a n c e i n m i c r o m h o s at 25 ° C
(18).
Ionic
strengths of the M a r y l a n d g r o u n d waters s t u d i e d , w h i c h are a l l less t h a n 5 Χ 10" , w e r e p r o v i d e d b y W . B a c k 3
(19).
B e c a u s e p Q is q u i t e sensitive to £ ° a n d values of £ ° at other t e m peratures t h a n 25 ° C h a v e not b e e n p u b l i s h e d , c a r e f u l l a b o r a t o r y m e a s u r e -
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
218
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
ments of this q u a n t i t y w e r e m a d e f r o m 5 ° to 35° C at a p H of 1.5 i n m i x e d f e r r o u s - f e r r i c p e r c h l o r a t e solutions. A d e t a i l e d d e s c r i p t i o n of these m e a surements w i l l be g i v e n elsewhere (20). values of E°
Resultant smoothed and rounded
at 5 ° , 1 0 ° , 1 5 ° , 2 0 ° , 2 5 ° , 3 0 ° , a n d 3 5 ° C are 0.746, 0.752,
0.758, 0.764, 0.770, 0.775, a n d 0.780 volts, r e s p e c t i v e l y , a n d are p r o b a b l y accurate to ± 0 . 0 0 1 volt. T h e e q u a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
E° =
-
1.226 Χ Ι Ο " + 4.147 Χ 10-*!Γ 2
δ.111 X 1 0 - T 6
(28)
2
fits b o t h m e a s u r e d a n d s m o o t h e d values of E° w e l l w i t h i n the u n c e r t a i n t y of the measurements. FeOH
+
is the o n l y c o m p l e x i o n i n the f e r r o u s - r i c h l a b o r a t o r y s o l u
tions or the g r o u n d waters e x a m i n e d . T h e e q u i l i b r i u m constant, K ,
for
eq
the r e a c t i o n Fe + +
H 0 = FeOH+ +
2
2
H+
(29)
equals K
eg
= [FeOH+][H+]/[Fe +] = 2
10" · 8
(30)
30
at 25°C. A t t e m p e r a t u r e s near 25°C K
eq
= K
w
· 10*
(31)
7 0
T h i s expression is p r o b a b l y a c c u r a t e to a b o u t ± 0 . 0 5 l o g u n i t at The F e O H
(18).
+
c o m p l e x is c l e a r l y n e g l i g i b l e r e l a t i v e to F e
2 +
15°C
at p H ' s
b e l o w a b o u t 6.3, b u t a m o u n t s to a m a x i m u m of a b o u t 1 0 % of the t o t a l dissolved F e
2 +
content i n g r o u n d w a t e r s a m p l e 172 at a p H of 7.75
I I I ). V a l u e s of K
w
(Table
as a f u n c t i o n of t e m p e r a t u r e u s e d i n E x p r e s s i o n s 26
a n d 31 are f r o m A c k e r m a n
(21).
I n the l a b o r a t o r y studies, the largest uncertainties i n terms of E q u a t i o n 26 are i n the m e a s u r e d values of E h a n d p H , w h i c h l e a d to a n u n c e r t a i n t y of a b o u t ± 0 . 2 u n i t i n pQ.
Measurement uncertainties i n E h ,
p H , a n d m F e ( I I ) are significant f o r the g r o u n d w a t e r s e x a m i n e d . resultant u n c e r t a i n t y i n pQ about
±0.3
The
for g r o u n d waters h i g h e s t i n m F e ( I I )
u n i t ; for g r o u n d waters lowest i n m F e ( I I ) , a b o u t
is
±0.4
unit. Laboratory
Studies
Methods of Chemical Analysis. D u r i n g o x i d a t i o n a n d h y d r o l y s i s studies of ferrous sulfate solutions, ferrous i r o n concentrations w h i c h r a n g e d f r o m 570 to 157 p p m w e r e a n a l y z e d b y t i t r a t i o n w i t h p o t a s s i u m d i c h r o m a t e s o l u t i o n u s i n g s o d i u m d i p h e n y l a m i n e sulfonate as a n i n d i c a t o r (22). T h e same m e t h o d w a s u s e d to a n a l y z e for ferrous i r o n i n m i x e d f e r r i c - f e r r o u s sulfate solutions. T o t a l d i s s o l v e d i r o n concentrations, w h i c h r a n g e d f r o m 560 to 100 p p m d u r i n g h y d r o l y s i s of m i x e d f e r r i c - f e r r o u s
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
219
Stability of Ferric Oxyhydroxides
L A N G M u i R AND WHITTEMORE
sulfate solutions, w e r e s i m i l i a r l y t i t r a t e d after a c i d i f i c a t i o n w i t h H C 1 a n d b o i l i n g w i t h r e d u c t i o n b y S n C I (22). Samples for dissolved total iron analysis w e r e w i t h d r a w n f r o m the c l e a r e d s u p e r n a t a n t s o l u t i o n i n the r e a c t i o n vessels after the s o l u t i o n h a d stood u n d i s t u r b e d f o r 48 h o u r s . U p o n w i t h d r a w a l , samples w e r e passed t h r o u g h 0 . 4 5 - m i c r o n filter p a p e r p r i o r to analysis. A l t h o u g h some s u s p e n d e d f e r r i c o x y h y d r o x i d e s c o u l d h a v e b e e n present a n d h a v e p a s s e d t h r o u g h t h e filter p a p e r , the a m o u n t of s u c h m a t e r i a l m u s t h a v e b e e n n e g l i g i b l e for purposes of this s t u d y i n that pQ v a l u e s c a l c u l a t e d u s i n g the m F e ( t o t a l ) analyses w e r e i d e n t i c a l to s u c h values c a l c u l a t e d f r o m m F e ( I I ) concentrations m e a s u r e d i n the same samples. A n a l y z e d ferrous i r o n values are p r o b a b l y a c c u r a t e to ± 0 . 5 % ; t o t a l d i s s o l v e d i r o n values to ± 1 % . A c o m b i n a t i o n glass, s i l v e r - s i l v e r c h l o r i d e reference electrode w a s used for p H measurement, a p l a t i n u m t h i m b l e electrode a n d s i l v e r - s i l v e r c h l o r i d e reference electrode for E h m e a s u r e m e n t . E h a n d p H m e a s u r e ments w e r e m a d e w i t h a C o l e m a n M e d a l l i o n M o d e l 37 b a t t e r y - or l i n e o p e r a t e d p H - m i l l i v o l t m e t e r a n d / o r a C o r n i n g 12 R e s e a r c h p H - m i l l i v o l t meter. T h e p H measurements w e r e c a l i b r a t e d w i t h n o m i n a l p H 4 a n d 7 buffers. D o u b l e buffer checks w e r e w i t h i n ± 0 . 0 2 p H u n i t . E h m e a s u r e ments w e r e c a l i b r a t e d w i t h Z o b e l l s o l u t i o n [ 0 . 0 0 0 3 M K F e ( C N ) , 0 . 0 0 0 3 M K F e ( C N ) · 3 H 0 , a n d 0 . 1 M K C 1 ] . F r o m 0 ° to 2 5 ° C , the E h of Z o b e l l s o l u t i o n obeys the e q u a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
2
3
4
c
6
2
E h ( v o l t s ) = 0.429 + 0.0024(25 -
t)
(32)
w h e r e t is i n degrees C e l s i u s (23). L a b o r a t o r y E h a n d p H measurements are p r o b a b l y a c c u r a t e to ± 0 . 0 0 2 v o l t a n d 0.02 p H u n i t , r e s p e c t i v e l y . P r e c i p i t a t e s w e r e s m e a r - m o u n t e d a n d d r i e d o n a glass s l i d e for x - r a y diffraction analysis u s i n g a G e n e r a l E l e c t r i c x - r a y diffractometer a n d F e K a r a d i a t i o n . A n estimate of the size of c r y s t a l l i n e p a r t i c l e s i n the precipitates w a s m a d e b y m e a s u r e m e n t of the w i d t h of the m a j o r diffract i o n p e a k for the m i n e r a l of interest at h a l f - m a x i m u m i n t e n s i t y (24). P r e c i p i t a t e s f o r e x a m i n a t i o n b y e l e c t r o n m i c r o s c o p y w e r e first d i s a g g r e g a t e d w i t h a n u l t r a s o n i c v i b r a t o r so that single crystals c o u l d be s t u d i e d . A d r o p of the d i s p e r s i o n w a s t h e n p l a c e d o n a c o l l o d i o n - c o v e r e d g r i d i n a Zeiss e l e c t r o n m i c r o s c o p e , M o d e l 9S. E l e c t r o n m i c r o g r a p h s of the p r e c i p i t a t e s s h o w p r e f e r r e d o r i e n t a t i o n of goethite a n d l e p i d o c r o c i t e crystals ( F i g u r e s 5 a n d 7 ) . G e o t h i t e c o m m o n l y occurs as a c c i c u l a r a n d n a r r o w p r i s m a t i c crystals e l o n g a t e d i n the [001] or c-axis d i r e c t i o n . L e p i d o c r o c i t e is t y p i c a l l y present i n b l a d e d p r i s m a t i c o r m i c a c e o u s forms flattened o n {010} ( 3 ) . T h u s , sizes b a s e d o n the x - r a y d i f f r a c t i o n m e t h o d represent the m e a n thickness of goethite crystals i n the [110] d i r e c t i o n , a n d of l e p i d o c r o c i t e crystals i n the &-axis or [020] d i r e c t i o n . T h e a c c u r a c y of x-ray d e t e r m i n e d values for these m e a n d i m e n s i o n s is p r o b a b l y ± 2 0 - 4 0 % f o r the sizes e n c o u n t e r e d i n this s t u d y . Experimental Methods. Studies w e r e m a d e of the p r e c i p i t a t i o n a n d a g i n g of f e r r i c o x y h y d r o x i d e s f o r m e d i n sulfate solutions i n i t i a l l y a b o u t 1 0 " M i n ferrous i r o n . T h r e e representative r u n s are d e s c r i b e d b e l o w . O x i d a t i o n of ferrous i r o n was a c c o m p l i s h e d b y b u b b l i n g the solutions w i t h air. H y d r o l y s i s was w i t h 0 . 1 M N a O H or 0 . 5 M N a H C O a . Runs were m a d e i n a c o n s t a n t - t e m p e r a t u r e b a t h at 25° ± 0.2 ° C w i t h a b o u t 3.5 2
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
220
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Figure 4. Observed changes in Eh, pH, and calculated pQ values during Runs 5 and 8. Bracketed letters A, G, and L indicate that the precipitate is mostly amorphous, goethite, or lepidocrocite, respectively. Bracketed letters g and I indicate the presence of minor amounts of goethite or lepidocrocite, respectively. Runs 5 and 8 were begun at points labeled "acidify" and "start base," respectively. liters of s o l u t i o n i n 4 - l i t e r b o r o s i l i c a t e glass beakers. T h e beakers w e r e fitted w i t h a i r t i g h t L u c i t e covers w h i c h h a d holes to a c c o m m o d a t e stopper-fitted E h a n d p H electrodes, a specific c o n d u c t a n c e p r o b e , gas i n t a k e a n d d i s c h a r g e tubes, a t h e r m o m e t e r , a n d a b u r e t t i p for base a d d i t i o n . Sol u t i o n s w e r e s t i r r e d w i t h a teflon-coated s t i r r i n g b a r p o w e r e d f r o m b e n e a t h the b e a k e r b y a w a t e r - d r i v e n m a g n e t i c rotor. P e r i o d i c a l l y d u r i n g t h e r u n s , w h i c h l a s t e d f r o m 4 to 10 h o u r s , a n d later d u r i n g a g i n g , m e a s u r e ments w e r e m a d e of E h , p H , a n d specific c o n d u c t a n c e , samples of s o l u t i o n w e r e w i t h d r a w n for t o t a l d i s s o l v e d i r o n or ferrous i r o n analysis, a n d p r e c i p i t a t e w a s c o l l e c t e d for x-ray a n d e l e c t r o n m i c r o s c o p e analysis. Hydrolysis of F e ^ S O ^ a Solutions. R u n 8 i n v o l v e d the h y d r o l y s i s w i t h 0 . 1 M N a O H of a s o l u t i o n i n i t i a l l y 1 0 " M i n t o t a l i r o n . T h e s o l u t i o n w a s p r e p a r e d w i t h r e a g e n t - g r a d e f e r r i c sulfate w h i c h c o n t a i n e d a b o u t 1 % of ferrous i r o n . T h e base w a s a d d e d p e r i o d i c a l l y d u r i n g f o u r h o u r s of the r u n so t h a t the final s o l u t i o n c o n t a i n e d about 100 p p m of d i s s o l v e d t o t a l i r o n species. D u r i n g the r u n , o v e r 9 0 % of m F e ( I I I ) w a s present as t h e F e S C V c o m p l e x . E h a n d p H changes d u r i n g the r u n a n d subse2
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
LANGMuiR
221
Stability of Ferric Oxyhydroxides
AND W H i T T E M O R E
q u e n t a g i n g are s h o w n i n F i g u r e 4. O t h e r results e v a l u a t e d d u r i n g a g i n g are l i s t e d i n T a b l e I I . T h e s o l u t i o n w a s a l l o w e d to evaporate to a b o u t one t h i r d its o r i g i n a l v o l u m e d u r i n g 109 days f o l l o w i n g t h e r u n . T h e goethite w h i c h h a d a p p e a r e d as of 112 d a y s ' a g i n g e v i d e n t l y f o r m e d b y c r y s t a l l i z a t i o n of the a m o r p h o u s m a t e r i a l . E l e c t r o n m i c r o s c o p i c e x a m i n a t i o n of the p r e c i p i t a t e after 198 days s h o w e d r o d - l i k e crystals of goethite s u r r o u n d e d b y a m o r p h o u s - a p p e a r i n g m a t e r i a l . T h e goethite crystals w e r e a b o u t 50 to 100 Â t h i c k a n d 300 to 600 Â l o n g . Oxidation and Hydrolysis of F e S 0 Solutions. I n i t i a l s o l u t i o n of reagent grade F e S 0 i n R u n 5 ( F i g u r e 4 ) g a v e a h y d r o l y s i s p H of 4.12. T h e s m a l l amounts of s u s p e n d e d f e r r i c o x y h y d r o x i d e s present h a d a p Q v a l u e of 38.8. A d d i t i o n of a f e w d r o p s of c o n c e n t r a t e d H S 0 b r o u g h t the p H to 3.08 a n d l e a c h e d a w a y the most s o l u b l e o x y h y d r o x i d e m a t e r i a l present, l e a v i n g b e h i n d r e l a t i v e l y m o r e c r y s t a l l i n e p a r t i c l e s w i t h a pQ of 40.2. L e a c h i n g of the f e r r i c o x y h y d r o x i d e s i n c r e a s e d t h e [ F e ] / [ F e ] r a t i o a n d so r a i s e d the E h . W i t h the b e g i n n i n g of a e r a t i o n a n d base a d d i t i o n , E h d r o p p e d because of p r e f e r e n t i a l h y d r o l y s i s a n d p r e c i p i t a t i o n of F e , whereas the rate of F e o x i d a t i o n at these p H ' s is e x t r e m e l y s l o w ( 4 ) . S o l u t i o n c o m p o s i t i o n thus m o v e d a l o n g t h e ferrous i o n - f e r r i c o x y h y d r o x i d e b o u n d a r y . S u b s t a n t i a l p r e c i p i t a t i o n b e g a n at a p H of 4.34, w h e n pQ = 38.4, i n d i c a t i n g that the first p r e c i p i t a t e w a s chiefly a m o r p h o u s . T h e v a l u e of pQ s u b s e q u e n t l y i n c r e a s e d to 39.1 a n d p r o b a b l y h i g h e r for t w o reasons. F i r s t , i n i t i a l p r e c i p i t a t i o n occurs i n the v i c i n i t y of drops of a d d e d base a n d thus d e v e l o p s u n d e r h i g h l y s u p e r s a t u r a t e d c o n d i t i o n s . W i t h m i x i n g , m u c h of this r e l a t i v e l y u n s t a b l e p r e c i p i t a t e redissolves i n the b u l k of s o l u t i o n , l e a v i n g b e h i n d a m o r e stable (less s o l u b l e ) f r a c t i o n . A l s o as the degree of s u p e r s a t u r a t i o n decreases, p r e c i p i t a t i o n occurs m o r e s l o w l y w i t h the c o n s e q u e n t d e v e l o p m e n t of better c r y s t a l l i z e d m a t e r i a l . A t pQ = 39.1, the s o l u t i o n c o n t a i n e d 335 p p m of d i s s o l v e d ferrous i r o n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
4
4
2
4
3 +
2 +
3 +
2 +
W i t h the e n d of base a d d i t i o n , o x i d a t i o n of F e to f e r r i c o x y h y d r o x ides b y the a i r b e c a m e the i m p o r t a n t r e a c t i o n , c a u s i n g a n increase i n E h a n d decrease i n p H . T w o days after cessation of b u b b l i n g w i t h a i r , pQ = 41.0, a n d x-rays s h o w e d the c r y s t a l l i n e f r a c t i o n of the p r e c i p i t a t e to b e p r e d o m i n a n t l y l e p i d o c r o c i t e ( c r y s t a l thickness 64 ± 15 Â ) w i t h a f e w percent goethite ( c r y s t a l thickness 54 db 1 5 Â ) . A f t e r 93 days (last p o i n t s h o w n i n F i g u r e 4 ) , pQ = 43.3, a n d the goethite to l e p i d o c r o c i t e r a t i o h a d d o u b l e d . T h e thickness of goethite crystals r e m a i n e d u n c h a n g e d , w h i l e that of l e p i d o c r o c i t e h a d i n c r e a s e d to 75 d= 15 Â. X - r a y d i f f r a c t i o n 2 +
Table II. Days After Run 3 21 112 147 192
pH 2.65
-
2.15 2.14 2.11
Some Results D u r i n g A g i n g of R u n 8
Fe(II), ppm
— -
16.1 16.1
Fe(III), ppm 100
-
309
-
X-ray Analysis and Crystal Thickness, A 0
vQ 38.5
-
40.0 40.0
Amorphous Amorphous G o e t h i t e , 67 ± 20 G o e t h i t e , 58 =fc 20 G o e t h i t e , 61 ± 20
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
222
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Figure 5. Electron micrograph taken after 298 days' aging of Run 5, showing lath-like lepidocrocite crystak and smaller needle-like goethite crystals after 293 days s h o w e d the c r y s t a l thickness of goethite f a i r l y constant at 63 ± . 15 Â, w h i l e that of l e p i d o c r o c i t e h a d i n c r e a s e d to 93 ± 20 Â . A t this t i m e , the goethite to l e p i d o c r o c i t e r a t i o h a d a g a i n d o u b l e d . A f t e r 258 a n d 298 days, the e l e c t r o n m i c r o s c o p e s h o w e d l e p i d o c r o c i t e aggregates a n d l a t h - l i k e single crystals, a n d r e l a t i v e l y s m a l l e r goethite needles or rods ( F i g u r e 5 ) . T h e goethite crystals w e r e e l o n g a t e d i n the c-axis d i r e c t i o n , a n d the l e p i d o c r o c i t e laths l a y w i t h their fo-axis v e r t i c a l . T h i s o r i e n tation was c o n f i r m e d b y the r e l a t i v e intensities of reflections i n the x - r a y d i f f r a c t i o n patterns. A s s h o w n i n F i g u r e 5, the w i d t h of the l e p i d o c r o c i t e laths a v e r a g e d about 400 À, their l e n g t h a b o u t 2300 Â . T h e goethite rods w e r e 40 to 60 Â i n w i d t h , a n d a v e r a g e d a b o u t 500 Â i n l e n g t h . R u n 4 ( F i g u r e 6 ) was also b e g u n w i t h a 1 0 " M F e S 0 s o l u t i o n . A c i d l e a c h i n g of s m a l l amounts of s u s p e n d e d o x y h y d r o x i d e s i n i t i a l l y present r a i s e d pQ f r o m 40.1 to 41.8. I n c r e m e n t s of 0 . 5 M N a H C O * w e r e t h e n i n t r o d u c e d w i t h o u t a e r a t i o n . Base w a s a d d e d m o r e r a p i d l y t h a n i n R u n 5 so that the s o l u t i o n b e c a m e m o r e h i g h l y s u p e r s a t u r a t e d w i t h respect to c r y s t a l l i n e o x y h y d r o x i d e s , a n d p r e c i p i t a t i o n of a m o r p h o u s m a t e r i a l b e g a n w i t h pQ = 37.3. A s i n R u n 5, pQ i n c r e a s e d because of r e s o l u t i o n of the most s o l u b l e m a t e r i a l a n d a d e c r e a s i n g rate of p r e c i p i t a t i o n . X - r a y a n a l y sis at pQ = 38.4 s h o w e d the c r y s t a l l i n e f r a c t i o n of the p r e c i p i t a t e to be chiefly l e p i d o c r o c i t e ( c i y s t a l thickness 115 =t 35 Â ) w i t h m i n o r goethite ( c r y s t a l thickness 100 ± 30 Â ) . S u b s e q u e n t x - r a y analyses d u r i n g the r u n at pQ = 39.1 a n d 39.2 s h o w e d a r a p i d l y i n c r e a s i n g p r o p o r t i o n of goethite r e l a t i v e to l e p i d o c r o c i t e w i t h r o u g h l y e q u a l amounts of the t w o phases present at pÇ> = 39.2. T h e m e a n c r y s t a l thickness of goethite r e m a i n e d r o u g h l y constant d u r i n g this t i m e ; h o w e v e r , t h a t of l e p i d o c r o c i t e 2
4
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
LANGMuiR AND WHITTEMORE
Stability of Ferric Oxyhydroxides
223
i n c r e a s e d to a b o u t 200 db 60 Â, p r o b a b l y b e c a u s e s m a l l e r p a r t i c l e sizes of this m i n e r a l w e r e r e d i s s o l v e d o r c o n v e r t e d to goethite. A e r a t i o n w a s t h e n b e g u n , w i t h the r e s u l t t h a t F e concentrations d r o p p e d to n e g l i g i b l e values ( < 0.005 p p m ) . A f t e r one d a y a n d also after 216 d a y s ' a g i n g ( l a s t p o i n t i n F i g u r e 6 ) , the c r y s t a l l i n e f r a c t i o n of the p r e c i p i t a t e c o n t a i n e d r o u g h l y t w i c e as m u c h goethite as l e p i d o c r o c i t e , w h i l e c r y s t a l thicknesses r e m a i n e d a b o u t 100 a n d 200 Â, r e s p e c t i v e l y . I n 296 d a y s , the g o e t h i t e - t o - l e p i d o c r o c i t e r a t i o h a d i n c r e a s e d to greater t h a n 3, a l t h o u g h c r y s t a l thickness of the t w o m i n e r a l s r e m a i n e d u n c h a n g e d . E l e c t r o n m i c r o g r a p h s t a k e n at 262 a n d 302 d a y s ( F i g u r e 7 ) s h o w c o m p a c t aggregates w i t h single a n d i n t e r g r o w n crystals of goethite a n d l e p i d o c r o c i t e p r o j e c t i n g r a d i a l l y f r o m t h e i r surfaces. I s o l a t e d n e e d l e s h a p e d goethite crystals h a d a n average w i d t h a n d l e n g t h of r o u g h l y 100 a n d 2000 Â, r e s p e c t i v e l y . L e p i d o c r o c i t e o c c u r r e d o n l y i n the aggregates w h e r e its c r y s t a l l i n e d i m e n s i o n s c o u l d n o t b e a d e q u a t e l y m e a s u r e d . X - r a y d i f f r a c t i o n intensities i n d i c a t e d f a i r l y r a n d o m o r i e n t a t i o n of crystals i n the aggregates. D i s c u s s i o n . O b s e r v a t i o n s of other w o r k e r s p r o v i d e f u r t h e r insights
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
2 +
i n t o the b e h a v i o r of p r e c i p i t a t e d f e r r i c o x y h y d r o x i d e s . L a m b a n d J a c q u e s (25)
f o u n d that i n p u r e f e r r i c salt solutions the p a r t i c l e size a n d s t a b i l i t y
of o x y h y d r o x i d e s increases w i t h the c o n c e n t r a t i o n of d i s s o l v e d f e r r i c i r o n present d u r i n g p r e c i p i t a t i o n . F e i t k n e c h t a n d M i c h a e l i s (26) et al.
(7)
n o t e d that c r y s t a l l i n e o x y h y d r o x i d e s ι
•
1
.5--
and Watson
s u c h as goethite Π
1
Run 4 : O.OI M FeS0 , 4
-.2
J
«
1 4
1
1 6
'
1 8
l
-
J
PH
Figure 6. Observed changes in Eh, pH, and calcu lated pQ values during Run 4; bracketed letters have the same significance as in Figure 4
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
and
224
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
akaganéite g r o w r a p i d l y w i t h a g i n g i n f e r r i c salt solutions, b u t m a y f o r m or c r y s t a l l i z e e x t r e m e l y s l o w l y i f at a l l i n solutions w h i c h c o n t a i n o n l y trace amounts of d i s s o l v e d f e r r i c i r o n .
Feitknecht and Michaelis
(26)
o b s e r v e d the c o m p l e t e c r y s t a l l i z a t i o n of a m o r p h o u s m a t e r i a l to goethite w h e n the a m o r p h o u s phase w a s p r e c i p i t a t e d i n the presence of F e
2 +
ions.
T h i s s t u d y s i m i l a r l y shows that the rate of f o r m a t i o n of c r y s t a l l i n e p a r ticles of goethite or l e p i d o c r o c i t e is p r o p o r t i o n a l to the d i s s o l v e d ferrous Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
or f e r r i c i r o n c o n c e n t r a t i o n a n d is faster i n ferrous t h a n i n f e r r i c i r o n solutions of the same m o l a r i t y .
Figure 7. Electron micrograph taken after 302 days' aging at Run 4, showing compact crystalline intergrowth of goethite and lepidocrocite O t h e r generalizations b a s e d o n results of the s t u d y are
possible.
These are: 1. T h e i n i t i a l p r e c i p i t a t e of f e r r i c o x y h y d r o x i d e is u s u a l l y l o w i n p Q , reflecting the presence of r e l a t i v e l y large amounts of a m o r p h o u s m a t e r i a l . T h e faster the rate of p r e c i p i t a t i o n b y o x i d a t i o n a n d / o r h y d r o l y s i s , the greater the s u p e r s a t u r a t i o n w i t h respect to c r y s t a l l i n e o x y h y d r o x i d e s , a n d the l o w e r the i n i t i a l pÇ>. 2. B e c a u s e of the effect of p a r t i c l e size o n r e l a t i v e s t a b i l i t i e s , m i n e r als s u c h as l e p i d o c r o c i t e a n d goethite ( R u n 4 ) or goethite a n d h e m a t i t e m a y reverse i n s t a b i l i t y . 3. P a r t i a l s o l u t i o n or l e a c h i n g of p r e c i p i t a t e s removes the least stable ( most s o l u b l e ) m a t e r i a l first, so that pÇ> values i n s o l u t i o n increase.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
LANGMuiR
Stability of Ferric Oxyhydroxides
AND W H i T T E M O R E
225
A s was e v i d e n t f r o m R u n s 4, 5, a n d 8, after l o n g p e r i o d s of a g i n g , the average thickness of goethite rods or needles m a y r e m a i n i n the 50 to 100 Â r a n g e , w i t h average lengths of f r o m 500 to 2000 Â .
Lepidocrocite
crystals s i m i l a r l y c a n r e m a i n as laths a v e r a g i n g a b o u t 8 0 - 2 0 0 A t h i c k , 400 Â w i d e , a n d 2300 A i n l e n g t h . If the entire surfaces of s u c h crystals w e r e i n contact w i t h the s o l u t i o n , one c o u l d p r e d i c t a l a r g e p a r t i c l e size effect o n t h e r m o d y n a m i c s t a b i l i t y . F o r goethite,
Equation 5 may
be
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
m o d i f i e d to give - S p i f = 45.3 A/V
(33)
w h e r e A is the surface area of a c r y s t a l i n A n g s t r o m s s q u a r e d , a n d V is its volume i n Angstroms cubed.
A t the close of R u n 8, the m e a n d i a m e t e r
of the r o d l i k e goethite crystals w a s 60 =b 15 Â, t h e i r m e a n l e n g t h 500 =t 100 Â , a n d p Ç =
40.0. B a s e d o n E q u a t i o n 33, δρΚ is 3.2 for the goethite,
a n d the p K of m a c r o s c o p i c
goethite must t h e n e x c e e d 43.2 because the
goethite is f o r m i n g b y c r y s t a l l i z a t i o n of less-stable a m o r p h o u s m a t e r i a l . P r e l i m i n a r y estimates for goethite crystals i n R u n 5 ( F i g u r e 5 ) s i m i l a r l y y i e l d δρΚ =
3.2.
If the l e p i d o c r o c i t e crystals i n this r u n are c o n
s i d e r e d r e c t a n g u l a r p r i s m s w i t h a surface e n e r g y the same as that of goethite, t h e n δρΚ for the l e p i d o c r o c i t e equals 1.3. T h e a b o v e estimates of δρΚ are c a l c u l a t e d f r o m the g e o m e t r y of i s o l a t e d crystals a n d m a y b e i n error for several reasons, i n c l u d i n g n o n u n i f o r m i t y of c r y s t a l shapes a n d sizes for a p a r t i c u l a r m i n e r a l , u n c e r t a i n t y i n the surface energy of l e p i d o crocite, a n d differences i n the state a n d c o m p o s i t i o n of c r y s t a l aggregates. W h e n aggregates or i n t e r g r o w t h s of a m i n e r a l are present, as i n F i g u r e 7 (see
also W a t s o n et al., Réf. 2 7 ) , δρΚ values b a s e d o n the g e o m e t r y
of
i s o l a t e d crystals w i l l be too large.
Suspended
Ferric
Oxyhydroxides
in Some Ground
Waters
Methods of Chemical Analysis. A n a l y s e s of the i r o n content i n g r o u n d waters f r o m the C a m d e n , N e w Jersey area ( T a b l e I I I ) w e r e m a d e i n a trailer m o d i f i e d as a m o b i l e c h e m i c a l l a b o r a t o r y . F e r r o u s i r o n values w e r e m e a s u r e d w i t h i n one h o u r of c o l l e c t i o n u s i n g a m o d i f i e d v e r s i o n of the b a t h o p h e n a n t h r o l i n e s p e c t r o p h o t o m e t r i c m e t h o d of L e e a n d S t u m m (28) w h i c h involves e x t r a c t i o n of the ferrous i r o n - b a t h o p h e n a n t h r o l i n e c o m p l e x f r o m aqueous s o l u t i o n i n t o n - h e x y l a l c o h o l . T h e e x t r a c t i o n is desir able i n that c o l l o i d a l - s i z e d f e r r i c o x y h y d r o x i d e s present i n the s a m p l e are e x c l u d e d f r o m the extractant. A s e c o n d a d v a n t a g e is that l o w s a m p l e i r o n concentrations m a y be d e t e r m i n e d b y e x t r a c t i n g the i r o n f r o m a large s a m p l e v o l u m e i n t o a r e l a t i v e l y s m a l l v o l u m e of n - h e x y l a l c o h o l . L e e a n d S t u m m r e c o m m e n d a c i d i f y i n g a n d b o i l i n g the s a m p l e p r i o r to ferrous i r o n analysis. B o i l i n g a n d a c i d i f i c a t i o n w e r e a v o i d e d i n this s t u d y because S h a p i r o ( 2 9 ) has s h o w n that s u c h t r e a t m e n t reduces f e r r i c to ferrous i r o n , i n amounts d e p e n d e n t o n the p H a n d t i m e of b o i l i n g .
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
226
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
Table III.
Description of Wells and Chemical D a t a for and Magothy Formations
Well No.
Altitude above Sea Level Ft
Screen Setting, Interval in Ft
103 104 123 125 127 131 162
19 19 59 10 45 44 65
171 172 187 188 189
100 100 40 45 65
118-148 204-224 298-338 211-272 248-288 309-367 452-473, 541-594 425-445 369-389 325-375 258-293 220-272
a
Date
Temp., °C
12-17-69 12-17-69 12-15-69 12-14-69 12-13-69 12-16-69 12-15-69
13.0 12.9 13.8 13.1 13.0 14.2 15.0
12-14-69 12-14-69 12-15-69 12-13-69 12-15-69
16.2 15.9 13.2 13.8 14.0
Specific conductance (μ) is in micromhos at 25°C.
T o t a l i r o n concentrations g i v e n i n T a b l e I I I w e r e d e t e r m i n e d w i t h the u n m o d i f i e d b a t h o p h e n a n t h r o l i n e m e t h o d of L e e a n d S t u m m (28). A l l s p e c t r o p h o t o m e t r i c measurements w e r e m a d e w i t h a B a u s c h a n d L o m b S p e c t r o n i c 20, u s i n g 1-inch s a m p l e test tubes ( l i g h t p a t h 2.235 c m ) . T h e a c c u r a c y a n d r e p r o d u c i b i l i t y of ferrous a n d t o t a l i r o n analyses w i t h the b a t h o p h e n a n t h r o l i n e m e t h o d was a b o u t ± 0 . 0 0 5 p p m at c o n c e n t r a tions n e a r 0.02 p p m , a n d a b o u t ± 0 . 1 p p m at c o n c e n t r a t i o n s n e a r 10 p p m . T h e same electrodes w e r e u s e d for E h a n d p H m e a s u r e m e n t , b o t h i n the l a b o r a t o r y a n d the field. M e a s u r e m e n t s of p H w e r e m a d e w i t h the C o l e m a n M e d a l l i o n M o d e l 37 m e t e r after c a l i b r a t i o n i n n o m i n a l p H 4 a n d 7 buffers b r o u g h t to w i t h i n 0 . 5 ° C of g r o u n d w a t e r t e m p e r a t u r e . D o u b l e buffer checks w e r e a l w a y s w i t h i n ± 0 . 0 5 p H unit. E h values w e r e r e a d w i t h t h e C o l e m a n m e t e r or a n O r i o n M o d e l 407 b a t t e r y p o w e r e d p H - m i l l i v o l t meter. T h e E h response of the electrodes a n d meters was c h e c k e d d a i l y w i t h Z o b e l l s o l u t i o n . G r o u n d w a t e r for E h analysis was f o r c e d b y w e l l - p u m p pressure t h r o u g h one side a r m of a glass U t u b e a n d out the o p p o s i t e side a r m . T h e p l a t i n u m t h i m b l e a n d reference electrodes w e r e i n s e r t e d t h r o u g h r u b b e r stoppers into the l a r g e r U t u b e openings to g i v e a w a t e r - t i g h t seal. E h was r e c o r d e d w i t h t i m e d u r i n g constant flow t h r o u g h the U t u b e u n t i l v a l u e s c h a n g e d b y less t h a n 0.005 v o l t i n 20 m i n u t e s . A t this p o i n t , flow was s t o p p e d to e l i m i n a t e the flowing p o t e n t i a l ( u s u a l l y —0.010 to —0.030 v o l t ) a n d the final E h r e a d i n g t a k e n . E h measurements t y p i c a l l y r e q u i r e d f r o m one to t w o hours for c o m p l e t i o n because of r e l a t i v e l y l o w r e d o x c a p a c i t y of the g r o u n d w a t e r a n d the n e e d to flush a l l extraneous o x y g e n f r o m p l u m b i n g b e t w e e n the g r o u n d w a t e r a q u i f e r a n d electrodes. A d e t a i l e d e x p l a n a t i o n of t h e m e t h o d s , t h e o r y , a n d l i m i t a t i o n s of E h m e a s u r e m e n t are g i v e n elsewhere (23). F i e l d E h values l i s t e d i n T a b l e I I I are c o n s i d e r e d a c c u rate to ± 0 . 0 2 0 volt.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
LANGMuiR AND WHITTEMORE
227
Stability of Ferric Oxyhydroxides
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
Well-Water Samples from the Potomac G r o u p and Raritan near Camden, N e w Jersey" Feitotal), ppm
Fe(II), ppm
μ
pQ
+0.220 +0.246 -0.092 -0.049 -0.046 -0.088 -0.090
0.74 0.17 9.4 11.2 11.5 2.6 0.67
0.65 0.15 8.6 10.2 10.5 2.5 0.51
64 66 173 128 146 226 186
43.0 41.0 42.5 42.8 42.6 42.3 41.0
-0.034 -0.040 +0.295 -0.053 -0.085
0.22 0.21 0.024 10.3 0.61
253 253 40 170 212
39.9 39.5 42.9 42.7 41.8
pH
Eh, Volts
4.92 5.64 6.52 6.15 6.22 6.71 7.36 7.65 7.75 5.00 6.21 7.25
0.07 0.11 0.022 9.3 0.21
Specific c o n d u c t a n c e was m e a s u r e d w i t h a B e c k m a n c o n d u c t i v i t y b r i d g e , M o d e l R C - 1 6 8 2 , a n d a d i p p i n g glass c o n d u c t i v i t y c e l l w i t h a c e l l constant n e a r 1 c m " . T h i s e q u i p m e n t w a s c a l i b r a t e d p e r i o d i c a l l y i n a s t a n d a r d K C 1 s o l u t i o n . C o n d u c t a n c e values w e r e c o r r e c t e d to 25 ° C a n d are p r o b a b l y accurate to w i t h i n ± 2 % . 1
Results of t h e c h e m i c a l analyses of g r o u n d waters f r o m the t w e l v e w e l l s near C a m d e n , N e w Jersey, are g i v e n i n T a b l e I I I . G r o u n d Waters Near Camden, N e w Jersey. R e s u l t s of the l a b o r a t o r y studies a n d of r e l a t e d w o r k b y others m a y b e u s e d to e x p l a i n the b e h a v i o r of s u s p e n d e d f e r r i c o x y h y d r o x i d e s i n g r o u n d w a t e r . T h e g r o u n d waters to be c o n s i d e r e d are p u m p e d f r o m the P o t o m a c G r o u p a n d R a r i t a n a n d M a g o t h y F o r m a t i o n s of C r e t a c e o u s age as t h e y o c c u r n e a r C a m d e n , N e w Jersey, a n d i n s o u t h e r n M a r y l a n d . A d e t a i l e d d e s c r i p t i o n of the i r o n content of these g r o u n d waters i n N e w Jersey has b e e n p u b l i s h e d b y L a n g m u i r (18,30),
w h i l e the i r o n content of the M a r y l a n d g r o u n d waters
has b e e n e x a m i n e d b y B a c k a n d B a r n e s
(31).
The Potomac G r o u p and Raritan and Magothy Formations, w h i c h m a y be c o n s i d e r e d a single a q u i f e r system, are m a d e u p of sands, silts, a n d gravels w i t h a c o m b i n e d thickness of 2 0 0 - 2 5 0 feet i n the o u t c r o p area near C a m d e n , N e w Jersey ( F i g u r e 8 ) .
T h e formations d i p 40 to
100
f t / m i l e to the southeast w h e r e t h e y are o v e r l a i n b y silts a n d clays of t h e Merchantville and Woodbury
Formations.
G r o u n d w a t e r s present i n
artesian parts of the a q u i f e r system h a v e e n t e r e d as r e c h a r g e i n the o u t c r o p area a n d b y v e r t i c a l m o v e m e n t t h r o u g h o v e r l y i n g sediments w i t h i n a f e w miles southeast of the o u t c r o p area.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
228
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Figure 8. Location of the New Jersey study area and generalized pH values of ground water in the Potomac Group and Raritan and Magothy Formations as shown by contours, 1966-67; crosshatching denotes the outcrop area of the formations W h e r e f r e s h , the g r o u n d w a t e r is of the c a l c i u m b i c a r b o n a t e t y p e . Its d i s s o l v e d solids content ranges f r o m less t h a n 100 p p m w h e r e u n p o l l u t e d i n the o u t c r o p area to 500 p p m d o w n d i p ten or m o r e m i l e s , w h e r e fresh g r o u n d waters m i x w i t h r e s i d u a l saline g r o u n d waters. I n a n d near the o u t c r o p a r e a , p H ' s are u s u a l l y b e t w e e n 5 a n d 6 ( F i g u r e 8 ) b e c a u s e of H traces of the F e S
2
+
i o n p r o d u c t i o n r e s u l t i n g f r o m the o x i d a t i o n of
m i n e r a l s p y r i t e a n d m a r c a s i t e a n d f r o m s o l u t i o n of
soil-zone C 0 . G r o u n d waters i n this area are p r o b a b l y at most a f e w 2
m o n t h s i n age.
T h e chief H
i o n p r o d u c i n g reactions r e q u i r e o x y g e n .
+
W i t h o u t f r e s h sources of o x y g e n i n artesian parts of the a q u i f e r s y s t e m , p H values rise to a b o u t 8 as H
+
ions are d e p l e t e d w i t h t i m e b y h y d r o l y s i s
reactions w i t h s i l i c a t e m i n e r a l s a n d traces of c a r b o n a t e s h e l l m a t e r i a l s present i n the f o r m a t i o n s . A r g u m e n t s p r e s e n t e d e l s e w h e r e (30)
support
a n age of s e v e r a l t h o u s a n d years or m o r e for g r o u n d waters i n the area h a v i n g a p H of a b o u t 8. T h u s , the p H contours s h o w n i n F i g u r e 8 are a m e a s u r e of the r e l a t i v e age of the g r o u n d w a t e r . A m a p of t o t a l i r o n concentrations b a s e d o n analyses of 180 w e l l waters (30)
is s h o w n i n F i g u r e 9. A l s o i n d i c a t e d i n the figure are l o c a -
tions of 12 w e l l s w h i c h w e r e s a m p l e d a n d t h e i r w a t e r s c h e m i c a l l y a n a l y z e d i n D e c e m b e r 1969 ( T a b l e I I I ) . A c o m p a r i s o n of F i g u r e s 8 a n d 9 shows that t o t a l i r o n contours p a r a l l e l p H contours.
T h e latter
figure
shows that t o t a l i r o n concentrations increase r a p i d l y to a m a x i m u m a n d
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
LANGMuiR
AND W H i T T E M O R E
Stability of Ferric Oxyhydroxides
229
t h e n g r a d u a l l y decrease d o w n d i p . T o t a l i r o n is present c h i e f l y as ferrous i r o n species w h i c h r a n g e d f r o m 0.022 to 10.2 p p m i n the 12 w e l l w a t e r s . T h e differences b e t w e e n t o t a l a n d ferrous i r o n values i n T a b l e I I I are the c o n c e n t r a t i o n of s u s p e n d e d f e r r i c o x y h y d r o x i d e s w h i c h r e p r e s e n t e d f r o m 5 to 7 0 % of the t o t a l i r o n content i n the 12 w e l l w a t e r s . F i l t r a t i o n studies ( 1 8 )
h a v e s h o w n that the s u s p e n d e d m a t e r i a l ranges f r o m less
t h a n 0.01 m i c r o n (100 Â ) to greater t h a n 5 m i c r o n s a n d averages Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
microns.
1-2
U n f o r t u n a t e l y , i t was not possible to c o l l e c t e n o u g h of t h i s
m a t e r i a l o n a m e m b r a n e filter for x - r a y analysis. H o w e v e r , l a b o r a t o r y studies b y others d e s c r i b e d elsewhere (18)
s u p p o r t a m i x t u r e of a m o r -
p h o u s m a t e r i a l a n d goethite f o r the suspension. T a k i n g p H as a m e a s u r e of r e l a t i v e age, F i g u r e 10 is a p l o t of p H vs. other c a l c u l a t e d a n d m e a s u r e d p a r a m e t e r s i n the g r o u n d w a t e r . W e l l s 103, 104, a n d 187, w h i c h are at or adjacent to the o u t c r o p area, p l o t to the left of the d i a g r a m . T h e other w e l l s tap artesian g r o u n d w a t e r s d o w n -
Figure 9. Generalized total iron concentration in ground waters of the formations in parts per million, 1965 (18) ; total iron values used to construct the map were measured in the laboratory by the spectrophotometric bipyridine method (32)
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
230
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
d i p . T h e d i a g r a m shows t h a t specific c o n d u c t a n c e s increase w i t h age of the g r o u n d w a t e r f r o m 50 m i c r o m h o s i n the o u t c r o p area to 250 m i cromhos d o w n d i p .
I n the o u t c r o p of the f o r m a t i o n s , g r o u n d w a t e r r e -
c h a r g e , w h i c h is chiefly f r o m p r e c i p i t a t i o n , is l o w i n d i s s o l v e d solids b u t h i g h i n d i s s o l v e d o x y g e n so that E h is h i g h a n d ferrous i r o n c o n c e n t r a tions are less t h a n 1 p p m ( 1 0 " M ) .
The Fe
4 7
2 +
m a x i m u m just southeast
of the o u t c r o p area reflects the absence of sources of o x y g e n a n d m i x i n g Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
of the g r o u n d w a t e r w i t h i r o n - r i c h r e c h a r g e w h i c h enters the a q u i f e r system f r o m o v e r l y i n g sediments. F u r t h e r southeast, F e
2 +
concentrations
decrease b y h y d r o l y s i s a n d p r e c i p i t a t i o n as p H rises. T h e r e are n o other ferrous i r o n sources d o w n d i p . V a r i a t i o n s i n pÇ) m a y b e e x p l a i n e d i n l i g h t of the b e h a v i o r of f e r r i c oxyhydroxides
i n l a b o r a t o r y studies.
T h e two ground waters i n a n d
adjacent to the o u t c r o p area w i t h p H s near 5 ( w e l l s 103 a n d 187) supplied with H
+
ions b y reactions a l r e a d y n o t e d .
are
T h e a c i d i t y tends to
l e a c h a w a y the less stable o x y h y d r o x i d e s , r a i s i n g pÇ> values close to 43. I n the w a t e r f r o m w e l l 104 ( p H = relatively l o w F e
2 +
5.64), p r e c i p i t a t i o n is o c c u r r i n g at
concentrations so that p Q is r a t h e r l o w ( 4 1 . 0 ) .
Com-
p a r a t i v e l y h i g h pQ values ( 4 2 . 5 - 4 2 . 9 ) are f o u n d w i t h m a x i m u m ferrous
a
300
-ι
Γ"
5 m 250 » | 200
I
s
§.« 150
«ε
£.£ g
4
100
50 .3-
I
2
Ο
|.
ω
0-
\
Eh \
-.1· 3-
Γ Ν
4-
£
5-
i
β
-I
Η
Η
1^
1-
-LogCFe *3 2
Η
1
Κ
43 Ο
42
α.
PQ 4140-
Figure 10. pH vs. other measured and calculated chemical parameters for the 12 New Jersey well waters
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
231
Stability of Ferric Oxyhydroxides
L A N G M U i R AND W H i T T E M O R E
i r o n concentrations of a b o u t 10 p p m .
T h u s , as i n t h e l a b o r a t o r y , the
r e l a t i v e l y stable o x y h y d r o x i d e s d e v e l o p i n the presence of h i g h F e
2 +
con-
centrations, u n d e r w h i c h c o n d i t i o n s fresh p r e c i p i t a t e s c a n r e c r y s t a l l i z e t o m o r e stable forms. further d o w n d i p .
P r e c i p i t a t i o n continues as the g r o u n d w a t e r m o v e s H o w e v e r , p Q values g r a d u a l l y decrease b e c a u s e t h e
o x y h y d r o x i d e s r e c r y s t a l l i z e m o r e s l o w l y i n the presence of
decreasing
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
a m o u n t s of ferrous i r o n .
5.5
5.0
4.5
-logCFe D 2+
Figure 11. p Q vs. — Zog[Fe ] for 12 New Jersey well waters (circles) and 12 Maryland well waters (triangles); open symbols denote waters with pH values of 5.00 or less 2+
Comparison with G r o u n d Waters in Southern Maryland. T h e p r i n ciples d e s c r i b e d a b o v e also a p p l y to the b e h a v i o r of s u s p e n d e d
ferric
o x y h y d r o x i d e s i n g r o u n d waters f r o m the R a r i t a n a n d M a g o t h y f o r m a tions i n s o u t h e r n M a r y l a n d .
F i g u r e 11 is a p l o t of p Q vs. — l o g [ F e ] 2 +
for the 12 N e w Jersey w e l l waters a n d f o r 12 w e l l waters f r o m M a r y l a n d w h i c h w e r e s t u d i e d b y B a c k a n d B a r n e s (31). Fe
2 +
I n the M a r y l a n d w a t e r s ,
concentrations w e r e g e n e r a l l y h i g h e r (1.3 to 26 p p m ) , E h s s l i g h t l y
h i g h e r ( - 0 . 0 2 0 to + 0 . 3 8 4 v o l t ) a n d p H ' s l o w e r (3.66 to 6.87)
than i n
the N e w Jersey waters. T h e s e differences reflect r e l a t i v e l y greater a b u n dances of H
+
and F e - p r o d u c i n g minerals ( F e S , pyrite, a n d marcasite ) 2 +
2
i n l i g n i t e w i t h i n the M a r y l a n d sediments a n d the fact that a l l t h e M a r y l a n d w e l l s tap g r o u n d waters w h i c h are r e l a t i v e l y o x y g e n - r i c h , u n d e r w a t e r t a b l e or at m o s t s e m i c o n f i n e d
conditions.
Waters
being from
M a r y l a n d w e l l 18 h a v e a p H of 3.66 because of o x i d a t i o n of F e S m i n e r a l s 2
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
232
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
so that o x y h y d r o x i d e p r e c i p i t a t e s h a v e b e e n l e a c h e d , a n d p Q is a h i g h 43.5. F o r the other M a r y l a n d w e l l w a t e r s , the p l o t shows a g o o d c o r r e l a t i o n b e t w e e n pÇ) a n d — l o g [ F e ] , i n d i c a t i n g that the s t a b i l i t y of sus2 +
p e n d e d o x y h y d r o x i d e s increases w i t h the F e
2 +
concentration.
Summary
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
F e r r i c o x y h y d r o x i d e s p r e c i p i t a t e d i n n a t u r a l waters are u s u a l l y m i x tures of x - r a y a m o r p h o u s m a t e r i a l a n d goethite ( α - F e O O H ) . T h e a p p a r ent t h e r m o d y n a m i c s t a b i l i t y of o x y h y d r o x i d e p r e c i p i t a t e s m a y b e s c r i b e d i n terms of the i o n a c t i v i t y p r o d u c t pQ = solution.
V a l u e s of pQ
solved iron and (or)
de
—log[Fe ] [ O H ' ] 3 +
3
in
are c a l c u l a b l e f r o m measurements of t o t a l d i s ferrous i r o n , p H , E h , a n d a k n o w l e d g e o f i o n i c
strength. F e r r i c o x y h y d r o x i d e s p r e c i p i t a t e d i n the l a b o r a t o r y f r o m s o l u tions i n i t i a l l y 1 0 " M i n i r o n as f e r r i c sulfate or ferrous sulfate h a d 2
values r a n g i n g f r o m 37.3 to 43.3.
pQ
T h e lowest values w e r e f o u n d w i t h
freshly p r e c i p i t a t e d a m o r p h o u s m a t e r i a l , the h i g h e s t values w i t h m i x t u r e s of goethite a n d l e p i d o c r o c i t e f o r m e d i n F e S 0
4
aged
solutions. B a s e d
o n x - r a y d i f f r a c t i o n a n d e l e c t r o n m i c r o s c o p y , goethite o c c u r r e d as r o d or n e e d l e - l i k e crystals e l o n g a t e d p a r a l l e l to the c-axis d i r e c t i o n . T h e crystals t y p i c a l l y r a n g e d f r o m 50 to 100 Â i n d i a m e t e r a n d 500 to 2000 Â i n l e n g t h . L e p i d o c r o c i t e a p p e a r e d as laths r a n g i n g f r o m 60 to 200 Â t h i c k a l o n g the fo-axis, a v e r a g i n g 400 Â w i d e i n the c-axis d i r e c t i o n a n d 2300 Â l o n g i n the α-axis d i r e c t i o n . C h e m i c a l analyses w e r e m a d e of 24 w e l l w a t e r s f r o m coastal p l a i n N e w Jersey a n d M a r y l a n d i n w h i c h the i r o n is present i n s o l u t i o n chiefly as aqueous ferrous species ( 1 0 oxyhydroxides ( 1 0
3 3 3
to 10"
5 4
0
M F e ) and suspended ferric
to 1 0 ~ M F e , or 5 to 7 0 % of the t o t a l i r o n c o n
4 1 3
7 4
t e n t ) . T h e s u s p e n d e d o x y h y d r o x i d e s are p r o b a b l y m i x t u r e s of a m o r p h o u s m a t e r i a l a n d goethite.
B a s e d o n filtration studies, t h e y h a v e a p a r t i c l e
size f r o m < 1 0 0 to > 50,000 À a n d a v e r a g i n g 10,000 to to 20,000 Â . V a l u e s of pÇ> r a n g e d f r o m 37.1 i n a s h a l l o w , o x i d i z e d g r o u n d w a t e r w i t h a c t i v e p r e c i p i t a t i o n to 43.5 i n a s h a l l o w g r o u n d w a t e r w i t h a c t i v e l e a c h i n g of oxyhydroxides b y H
+
ions ( p H =
3.66) f r o m o x i d a t i o n of F e S m i n e r a l s . 2
T h e highest pQ values f o r d e e p e r , artesian g r o u n d w a t e r s r a n g e d f r o m a b o u t 41 to 43 a n d w e r e f o u n d i n r e l a t i v e l y y o u n g w a t e r s at the h i g h e s t m e a s u r e d ferrous i r o n concentrations.
G r o u n d waters at e v e n
greater
depths i n coastal p l a i n N e w Jersey, w h i c h are p r o b a b l y s e v e r a l t h o u s a n d years o l d , h a d pÇ) values as l o w as 39.5, h a v i n g a g e d a l o n g w i t h ferrous i r o n concentrations ( 1 0 "
5
9
0
low
M Fe).
S o m e g e n e r a l conclusions of the s t u d y a r e : 1.
T h e greater the s u p e r s a t u r a t i o n w i t h respect to c r y s t a l l i n e o x y -
h y d r o x i d e s , the faster the p r e c i p i t a t i o n a n d the l o w e r the i n i t i a l
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
pQ.
8.
LANGMUiR AND WHITTEMORE
2.
Stability of Ferric Oxyhydroxides
233
H i g h pÇ) values c a n result f r o m H i o n l e a c h i n g o f o x y h y d r o x i d e +
p r e c i p i t a t e s w h i c h p r e f e r e n t i a l l y dissolves t h e least stable m a t e r i a l . 3.
T h e rate o f c r y s t a l f o r m a t i o n a n d p Q increase o f a p r e c i p i t a t e
( u s u a l l y goethite ) is p r o p o r t i o n a l to t h e d i s s o l v e d i r o n c o n c e n t r a t i o n a n d is faster i n ferrous t h a n i n f e r r i c i r o n solutions. M e a s u r a b l e c r y s t a l l i z a t i o n of a m o r p h o u s m a t e r i a l occurs w i t h i n m i n u t e s i n 1 0 ~ M ferrous i r o n s o l u 2
tions, b u t m a y take thousands o f years i n waters w h i c h c o n t a i n
about
1 0 " M ferrous i r o n . Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
6
4.
F e r r i c o x y h y d r o x i d e s w i t h c r y s t a l thicknesses less t h a n 100 Â c a n
r e m a i n i n d e f i n i t e l y i n some waters. 5. T h e r e l a t i v e stabilities o f t w o c r y s t a l l i n e o x y h y d r o x i d e s s u c h as goethite a n d h e m a t i t e o r goethite a n d l e p i d o c r o c i t e c a n reverse w i t h t i m e o w i n g to p a r t i c l e size effects. Acknowledgment F i n a n c i a l s u p p o r t f o r this s t u d y w a s p r o v i d e d b y t h e M i n e r a l C o n s e r v a t i o n S e c t i o n a n d t h e Institute f o r R e s e a r c h o n L a n d a n d W a t e r R e sources, b o t h o f T h e P e n n s y l v a n i a State U n i v e r s i t y , U n i v e r s i t y P a r k , P a . Literature
Cited
(1) Garrels, R. M., in "Researches in Geochemistry," p. 25, Philip H . Abelson, Ed., Wiley, New York, 1959. (2) Welo, L . Α., Baudisch, O., Chem. Rev. (1934) 15, 1-43. (3) Palache, C., Berman, H . , Frondel, C., "The System of Mineralogy," Vol. I, p. 527, 642, 680, 708, Wiley, New York, 1944. (4) Singer, P. C., Stumm, W., Science (1970) 167, 1121-3. (5) Van Tassel, R., Bull. Soc. Belge Geol. (1959) 68, 360-7. (6) Chandy, K. C., Indian J. Phys. (1962) 36, 484-9. (7) Watson, J. H . L . , Heller, W., Poplawski, L . E., Third European Regional Conf. Elect. Microscopy (1964) 315-6. (8) Langmuir, D . , U. S. Geol. Surv. Profess. Paper
(9) (10) (11) (12)
(1969) 650-B, B180-
B184. Langmuir, D., Am. J. Sci. (1971), in press. Ferrier, Α., Rev. Chim. Minerale (1966) 3, 587-615. Langmuir, D., Geol. Soc. Am. Ann. Mtg., Milwaukee, with Abstracts. Milburn, R. M . , J. Am. Chem. Soc. (1957) 79, 537-40.
(13) Hem, J. D . , Cropper, W . H . , U. S. Geol. Surv. Water
(14) (15) (16) (17) (18) (19)
1970, Program Supply
Paper
(1959) 1459A, 4. Garrels, R. M . , Christ, C. L . , "Solutions, Minerals, and Equilibria," p. 172, Harper and Row, New York, 1965. Nair, R. L . S., Nancollas, G . H . , J. Chem. Soc. (1958) 4144-7. Willix, R. L . S., Trans. Faraday Soc. (1963) 59, 1315-24. Klotz, I. M., "Chemical Thermodynamics," revised ed., p. 419, Benjamin, New York, 1964. Langmuir, D., U. S. Geol. Surv. Profess. Paper (1969) 650-C, C224C235. Back, W., U . S. Geological Survey, Washington, D . C., written commu nication, 1970.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
234 (20) (21) (22) (23)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 17, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch008
(24) (25) (26) (27) (28) (29) (30) (31) (32)
NONEQUILIBRIUM
SYSTEMS IN N A T U R A L
WATERS
Whittemore, D . O., Langmuir, D . , i n preparation. Ackerman, T., Z. Electrochem. (1958) 62, 411-9. Kolthoff, I. M., Sandell, Ε. B . , "Textbook of Quantitative Analysis," 3rd ed., p. 571, 579, M a c M i l l a n , N e w York, 1952. Langmuir, D . , "Procedures i n Sedimentary Petrology," C h . 26, p. 5 9 7 635, Robert E . Carver, Ed., W i l e y , N e w York, 1971. Cullity, B. D . , "Elements of X - r a y Diffraction," p. 97, 261, AddisonWesley, Reading, Mass., 1956. L a m b , A . B., Jacques, A . G., J. A m . Chem. Soc. (1938) 60, 1215-25. Feitknecht, W . , Michaelis, W . , Helv. Chim. Acta (1962) 45, 212-24. Watson, J . H. L., Cardel, R. R., Jr., Heller, W., J. Phys. Chem. (1963) 66, 1757-63. Lee, G . F . , Stumm, W . , J. A m . Water Works Assoc. (1960) 52, 1767-74. Shapiro, J . , Limnol. Oceanog. (1966) 11, 293-8. Langmuir, D . , N. J. Department of Conservation and Economic Develop ment, N. J. Water Resources Circ. (1969) 19, 43 p. Back, W . , Barnes, L., U. S. Geol. Surv. Profess. Papers (1965) 498-C, C1-C16. Rainwater, F . H., Thatcher, L. L., U. S. Geol. Surv. Water Supply Papers (1960) 1454, 184.
R E C E I V E D July 30,
1970.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.