Editorial Cite This: Chem. Mater. 2017, 29, 8915-8917
pubs.acs.org/cm
Virtual Issue on Metal-Halide Perovskite NanocrystalsA Bright Future for Optoelectronics
T
road to 22% efficiency photovoltaics,4 other intriguing optoelectronic properties have been revealed, enabling applications as light-emitting diodes (LEDs) due to narrowband emission,5,6 as highly sensitive photodetectors, and as absorbers for photoelectrochemical water splitting.7 Modification of the composition of these perovskite materials provides some degree of control over materials properties, but tuning of size, shape, and dimensionality of metal-halide perovskite nanocrystals is proving to be an extremely rich and productive approach toward the exploration and manipulation of materials properties. From the first reported synthesis of perovskite nanocrystals by Perez-Prieto in 2014,8 to the state-of-the-art in late 2017, the diversity of lowdimensional, nanocrystalline materials accessible through straightforward, solution-phase synthetic chemistry is impressive. As shown visually in Figure 2, a range of colors arising from the photoluminescence of nanocrystalline cubes of CsPbX3 demonstrate fine control over electronic properties, enabled through a combination of composition and size, resulting in quantum confinement. Key questions remain as to stability and the replacement of lead to enable the potential widespread application of these materials. All these areas of research are still in their infancies and certainly are in their early days of investigation. This virtual issue draws together 34 recent publications from six ACS journals that represent the latest trends in this new area, specifically the design, synthesis, and application of metalhalide perovskite nanomaterials. The virtual issue is divided into four sections, starting with six just-published reviews and perspectives from leaders in the field (1−6 in the list below). The next three sections cover designer synthesis, physical properties and carrier dynamics, and devices and applications. The synthetic papers cover topics including shape control (7), anion exchange reactions (8), metal-perovskite nanocrystal hybrids (9), the ligand environment and its role in nanocrystal formation (10−12), nonlead and mixed-metal compounds (13−15), and mixed-halide systems (32). In order to harness these materials, the optoelectronic characteristics of the metalhalide perovskite nanocrystals must be fully investigated, and we have chosen papers that highlight some of these interesting properties. Characteristics include analysis of pressure effects (17), properties affecting light emission (18−23), and carrier dynamics (24−26). The last section, devices and applications, looks at integration of these nanocrystalline materials into solar cells (27−29), lasers (30, 31), photodetectors (32, 33), and light-emitting diodes (34). These nanocrystalline metal-halide materials are still in an early, exciting stage of researchwe hope that this virtual issue captures the strong sense of adventure, and enormous potential for applications, of nanocrystalline versions of lead- and tin-halide perovskites.
he explosion of research on ionic metal-halide perovskite compounds has revealed that these materials have remarkable properties, most notably for application in thin film solar cells.1,2 These materials of the absolute composition AMX3, where A is a large cation, M a metal (Pb, Sn being the most studied), and X a halide (Cl, Br, I), have been the subject of more than 3000 publications, with the vast majority published within the past 3 years.3 As shown in the Table 1, Table 1. Top Ten Journals Publishing Metal-Halide Perovskite Papersa Journal JOURNAL OF PHYSICAL CHEMISTRY LETTERS JOURNAL OF MATERIALS CHEMISTRY A JOURNAL OF PHYSICAL CHEMISTRY C ACS APPLIED MATERIALS INTERFACES ADVANCED MATERIALS ACS ENERGY LETTERS JOURNAL OF THE AMERICAN CHEMICAL SOCIETY CHEMISTRY OF MATERIALS NANO LETTERS PHYSICAL CHEMISTRY CHEMICAL PHYSICS
No. of Papers
Percentage
251
7.127%
240 175 151 103 97 95
6.814% 4.969% 4.287% 2.924% 2.754% 2.697%
91 90 86
2.584% 2.555% 2.442%
a
Source: Web of Science, Clarivate Analytics, October 12, 2017. Search term: [Perovskite and (lead or tin) and solar]. Data set: 3552 papers.
7 ACS publications appear in the top 10 journals disseminating new advances in perovskite research. In addition, the interest in metal-halides is clearly very international, with investigators from around the world working on the topic (Figure 1). On the
Figure 1. Spread of metal-halide perovskite publications across different countries. Source: Web of Science, Clarivate Analytics, October 12, 2017. Data set: 3552 papers. © 2017 American Chemical Society
Published: October 26, 2017 8915
DOI: 10.1021/acs.chemmater.7b04336 Chem. Mater. 2017, 29, 8915−8917
Chemistry of Materials
Editorial
Figure 2. Example of a solution-based synthetic approach toward metal-halide perovskite nanocrystals. (a) Photoluminescence of a panel of CsPbX3 nanocrystals of differing compositions and sizes. (b) High-resolution transmission electron micrograph of CsPbX3 nanocubes. (c) Idealized perovskite structure. Figure reproduced with permission from Huang, H., et al. ACS Energy Lett. 2017, 2 (9), 2071−2083. Copyright 2017 American Chemical Society.
Papers in the Metal-Halide Perovskite Nanocrystals Virtual Issue (1) Huang, H., et al. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Lett. 2017, 2 (9), 2071−2083; DOI: 10.1021/acsenergylett.7b00547 (2) Udayabhaskararao, T., et al. Nucleation, Growth, and Structural Transformations of Perovskite Nanocrystals. Chem. Mater. 2017, 29 (3), 1302−1308; DOI: 10.1021/ acs.chemmater.6b04841 (3) Weidman, M. C., et al. Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chem. Mater. 2017, 29 (12), 5019−5030; DOI: 10.1021/acs.chemmater.7b01384 (4) Saidaminov, M. I.; et al. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Lett. 2017, 2 (4), 889−896; DOI: 10.1021/ acsenergylett.6b00705 (5) Guria, A. K.; et al. Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges. ACS Energy Lett. 2017, 2 (5), 1014−1021; DOI: 10.1021/ acsenergylett.7b00177 (6) Swarnkar, A.; et al. Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping. ACS Energy Lett. 2017, 2 (5), 1089−1098; DOI: 10.1021/acsenergylett.7b00191 (7) Liang, Z.; et al. Shape-Controlled Synthesis of AllInorganic CsPbBr3 Perovskite Nanocrystals with Bright Blue Emission. ACS Appl. Mater. Interfaces 2016, 8 (42), 28824−28830; DOI: 10.1021/acsami.6b08528 (8) Guhrenz, C.; et al. Solid-State Anion Exchange Reactions for Color Tuning of CsPbX3 Perovskite Nanocrystals. Chem. Mater. 2016, 28 (24), 9033−9040; DOI: 10.1021/ acs.chemmater.6b03980 (9) Balakrishnan, S. K.; et al. Au−CsPbBr 3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals. ACS Energy Lett. 2017, 2 (1), 88−93; DOI: 10.1021/acsenergylett.6b00592 (10) Petrov, A. A.; et al. New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chem. Mater. 2017, 29 (2), 587−594; DOI: 10.1021/acs.chemmater.6b03965 (11) Liu, Z.; et al. Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals. J. Am. Chem. Soc. 2017, 139 (15), 5309−5312; DOI: 10.1021/jacs.7b01409 (12) Dolzhnikov, D. S.; et al. Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals. Chem. Mater. 2017, 29
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23) 8916
(18), 7901−7907; DOI: 10.1021/acs.chemmater.7b02803 Wang, A.; et al. Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. Chem. Mater. 2016, 28 (22), 8132−8140; DOI: 10.1021/acs.chemmater.6b01329 Wang, A.; et al. Controlled Synthesis of Lead-Free Cesium Tin Halide Perovskite Cubic Nanocages with High Stability. Chem. Mater. 2017, 29 (15), 6493−6501; DOI: 10.1021/acs.chemmater.7b02089 Akkerman, Q. A.; et al. Fluorescent Alloy CsPbxMn1−xI3 Perovskite Nanocrystals with High Structural and Optical Stability. ACS Energy Lett. 2017, 2 (9), 2183−2186; DOI: 10.1021/acsenergylett.7b00707 Su, Y.; et al. Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX3 (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light. ACS Appl. Mater. Interfaces 2017, 9 (38), 33020−33028; DOI: 10.1021/acsami.7b10612 Xiao, G.; et al. Pressure Effects on Structure and Optical Properties in Cesium Lead Bromide Perovskite Nanocrystals. J. Am. Chem. Soc. 2017, 139 (29), 10087−10094; DOI: 10.1021/jacs.7b05260 Vashishtha, P.; et al. Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes. Chem. Mater. 2017, 29 (14), 5965−5973; DOI: 10.1021/acs.chemmater.7b01609 Butkus, J.; et al. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals. Chem. Mater. 2017, 29 (8), 3644−3652; DOI: 10.1021/acs.chemmater.7b00478 Chirvony, V. S.; et al. Delayed Luminescence in Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C 2017, 121 (24), 13381−13390; DOI: 10.1021/ acs.jpcc.7b03771 Morozov, Y. V.; et al. Photoluminescence Up-Conversion in CsPbBr3 Nanocrystals. ACS Energy Lett. 2017, 2 (10), 2514−2515; DOI: 10.1021/acsenergylett.7b00902 Brennan, M. C.; et al. Existence of a Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. ACS Energy Lett. 2017, 2 (7), 1487−1488; DOI: 10.1021/ acsenergylett.7b00383 Jurow, M. J.; et al. Tunable Anisotropic Photon Emission from Self-Organized CsPbBr3 Perovskite Nanocrystals. DOI: 10.1021/acs.chemmater.7b04336 Chem. Mater. 2017, 29, 8915−8917
Chemistry of Materials
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31) (32)
(33)
(34)
Editorial
Gregory D. Scholes, Deputy Editor, Journal of Physical Chemistry Letters Peter J. Stang, Editor-in-Chief, Journal of the American Chemical Society Paul S. Weiss, Editor-in-Chief, ACS Nano
Nano Lett. 2017, 17 (7), 4534−4540; DOI: 10.1021/ acs.nanolett.7b02147 Wang, L.; et al. Scalable Ligand-Mediated Transport Synthesis of Organic−Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano 2017, 11 (3), 2689− 2696; DOI: 10.1021/acsnano.6b07574 Dai, J.; et al. Carrier Decay Properties of Mixed Cation Formamidinium−Methylammonium Lead Iodide Perovskite [HC(NH2)2]1−x[CH3NH3]xPbI3 Nanorods. J. Phys. Chem. Lett. 2016, 7 (24), 5036−5043; DOI: 10.1021/ acs.jpclett.6b01958 Yarita, N.; et al. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. J. Phys. Chem. Lett. 2017, 8 (7), 1413−1418; DOI: 10.1021/acs.jpclett.7b00326 Gratia, P.; et al. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138 (49), 15821−15824; DOI: 10.1021/jacs.6b10049 Yang, B.; et al. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM. ACS Appl. Mater. Interfaces 2016, 8 (47), 32333−32340; DOI: 10.1021/acsami.6b11341 Kirmani, A. R.; et al. Molecular Doping of the HoleTransporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics. ACS Energy Lett. 2017, 2 (9), 1952−1959; DOI: 10.1021/acsenergylett.7b00540 Li, P.; et al. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Appl. Mater. Interfaces 2017, 9 (14), 12759−12765; DOI: 10.1021/acsami.7b01709 Liu, P.; et al. Organic−Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano 2017, 11 (6), 5766− 5773; DOI: 10.1021/acsnano.7b01351 Deng, W.; et al. Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Lett. 2017, 17 (4), 2482−2489; DOI: 10.1021/acs.nanolett.7b00166 Waleed, A.; et al. Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Lett. 2017, 17 (1), 523−530; DOI: 10.1021/acs.nanolett.6b04587 Kim, Y.-H.; et al. Highly Efficient Light-Emitting Diodes of Colloidal Metal−Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano 2017, 11 (7), 6586−6593; DOI: 10.1021/acsnano.6b07617
■
AUTHOR INFORMATION
ORCID
Jillian M. Buriak: 0000-0002-9567-4328 Prashant V. Kamat: 0000-0002-2465-6819 Kirk S. Schanze: 0000-0003-3342-4080 A. Paul Alivisatos: 0000-0001-6895-9048 Catherine J. Murphy: 0000-0001-7066-5575 George C. Schatz: 0000-0001-5837-4740 Gregory D. Scholes: 0000-0003-3336-7960 Paul S. Weiss: 0000-0001-5527-6248 Notes
Views expressed in this editorial are those of the authors and not necessarily the views of the ACS.
■
REFERENCES
(1) Zhu, X. The Perovskite Fever and Beyond. Acc. Chem. Res. 2016, 49, 355−356. (2) Zhao, Y.; Zhu, K. Organic−Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev. 2016, 45, 655−689. (3) Using Web of Science (Clarivate Analytics), a search for (Perovskite and (lead or tin) and solar) resulting in a total of 3552 papers. Papers on both lead- and tin-free materials were, however, excluded. The main point of emphasis is that the rapid and recent growth of the area is substantiated by the fact that only 21 papers were published on the topic of “perovskite and lead and solar” in 2013, and over 1000 have already been published in 2017 alone (incomplete year). Search carried out October 12, 2017. (4) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376−1379. (5) Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; et al. Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells. Nat. Photonics 2016, 10, 699−704. (6) Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y. M.; Wei, M.; Sutherland, B. R.; Sargent, E. H.; You, J. Ultra-Bright and Highly Efficient Inorganic Based Perovskite LightEmitting Diodes. Nat. Commun. 2017, 8, 15640. (7) Chen, Y. S.; Manser, J. S.; Kamat, P. V. All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production. J. Am. Chem. Soc. 2015, 137, 974−981. (8) Schmidt, L. C.; Pertegas, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850−853.
Jillian M. Buriak, Editor-in-Chief, Chemistry of Materials Prashant V. Kamat, Editor-in-Chief, ACS Energy Letters Kirk S. Schanze, Editor-in-Chief, ACS Applied Materials & Interfaces A. Paul Alivisatos, Editor-in-Chief, Nano Letters Catherine J. Murphy, Deputy Editor, Journal of Physical Chemistry C George C. Schatz, Editor-in-Chief, Journal of Physical Chemistry 8917
DOI: 10.1021/acs.chemmater.7b04336 Chem. Mater. 2017, 29, 8915−8917