Visualizing Cell Proximity with Genetically Encoded Bioluminescent

Feb 2, 2015 - Hashimoto , T., Adams , K. W., Fan , Z., McLean , P. J., and Hyman , B. T. (2011) ..... Michal E. Roth-Konforti , Christoph R. Bauer , D...
0 downloads 0 Views 2MB Size
Letters pubs.acs.org/acschemicalbiology

Visualizing Cell Proximity with Genetically Encoded Bioluminescent Reporters Krysten A. Jones,‡ David J. Li,∥ Elliot Hui,∥ Mark A. Sellmyer,⊥ and Jennifer A. Prescher*,†,‡,§ †

Department of Chemistry, ‡Department of Molecular Biology & Biochemistry, §Department of Pharmaceutical Sciences, and Department of Biomedical Engineering, University of California, Irvine, California 92697, United States ⊥ Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States ∥

S Supporting Information *

ABSTRACT: Cell−cell interactions underlie diverse physiological processes ranging from immune function to cell migration. Dysregulated cellular crosstalk also potentiates numerous pathologies, including infections and metastases. Despite their ubiquity in organismal biology, cell−cell interactions are difficult to examine in tissues and whole animals without invasive procedures. Here, we report a strategy to noninvasively image cell proximity using engineered bioluminescent probes. These tools comprise “split” fragments of Gaussia luciferase (Gluc) fused to the leucine zipper domains of Fos and Jun. When cells secreting the fragments draw near one another, Fos and Jun drive the assembly of functional, light-emitting Gluc. Photon production thus provides a readout on the distance between two cell types. We used the split fragments to visualize cell−cell interactions over time in vitro and in macroscopic models of cell migration. Further application of these tools in live organisms will refine our understanding of cell contacts relevant to basic biology and disease.

C

cells are exposed to luciferin, the photons produced can penetrate tissues and small organisms and be captured by sensitive cameras. Luciferase-expressing cells can also be serially imaged in live animals, enabling biological processes to be monitored noninvasivey over both long time and length scales.5 While ideal for global cell tracking, traditional bioluminescence imaging lacks the spatial resolution to image cell contacts.6 Interacting cells, in theory, could be visualized using unique luciferase−luciferin pairs to selectively illuminate the distinct cell types. In practice, though, these probes cannot be readily distinguished on time scales relevant to most cellular contacts (2 cm). We envisioned using Gluc complementation to monitor cellular movements in real time. Such assays would enable changes in cell proximity to be detected from media aliquots, without perturbing the cells themselves. Toward this end, we patterned cells secreting either Jun-NGluc or Fos-CGluc at different distances (3 or 30 mm) using the stencils pictured in Figure 4A. Upon adherence and stencil removal, cell migration was monitored over time via media sampling and bioluminescence imaging (Figure 4D, Supporting Information Figure 10). Media was also replaced every 24 h to prevent the D

DOI: 10.1021/cb5007773 ACS Chem. Biol. XXXX, XXX, XXX−XXX

Letters

ACS Chemical Biology

(4) Beerling, E., Ritsma, L., Vrisekoop, N., Derksen, P. W., and van Rheenen, J. (2011) Intravital microscopy: New insights into metastasis of tumors. J. Cell Sci. 124, 299−310. (5) Paley, M. A., and Prescher, J. A. (2014) Bioluminescence: A versatile technique for imaging cellular and molecular features. MedChemComm. 5, 255−267. (6) Prescher, J. A., and Contag, C. H. (2010) Guided by the light: Visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14, 80−89. (7) Weissleder, R., and Pittet, M. J. (2008) Imaging in the era of molecular oncology. Nature 452, 580−589. (8) Mishra, P., Banerjee, D., and Ben-Baruch, A. (2011) Chemokines at the crossroads of tumor−fibroblast interactions that promote malignancy. J. Leukoc. Biol. 89, 31−39. (9) Franco, O. E., Shaw, A. K., Strand, D. W., and Hayward, S. W. (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin. Cell Dev. Biol. 21, 33−39. (10) Alexander, S., Weigelin, B., Winkler, F., and Friedl, P. (2013) Preclinical intravital microscopy of the tumour−stroma interface: Invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25, 659−671. (11) Bonapace, L., Wyckoff, J., Oertner, T., Van Rheenen, J., Junt, T., and Bentires-Alj, M. (2012) If you don’t look, you won’t see: Intravital multiphoton imaging of primary and metastatic breast cancer. J. Mammary Gland Biol. Neoplasia 17, 125−129. (12) Chaffer, C. L., and Weinberg, R. A. (2011) A perspective on cancer cell metastasis. Science 331, 1559−1564. (13) Conway, J. R., Carragher, N. O., and Timpson, P. (2014) Developments in preclinical cancer imaging: Innovating the discovery of therapeutics. Nat. Rev. Cancer 14, 314−328. (14) Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., and June, C. H. (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73. (15) Harrison, S. C. (2008) Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690−698. (16) Gheysens, O., and Gambhir, S. S. (2005) Studying molecular and cellular processes in the intact organism. Prog. Drug Res. 62, 117− 150. (17) Contag, C. H. (2007) In vivo pathology: Seeing with molecular specificity and cellular resolution in the living body. Annu. Rev. Pathol. 2, 277−305. (18) Dothager, R. S., Flentie, K., Moss, B., Pan, M. H., Kesarwala, A., and Piwnica-Worms, D. (2009) Advances in bioluminescence imaging of live animal models. Curr. Opin. Biotechnol. 20, 45−53. (19) Sellmyer, M. A., Bronsart, L., Imoto, H., Contag, C. H., Wandless, T. J., and Prescher, J. A. (2013) Visualizing cellular interactions with a generalized proximity reporter. Proc. Natl. Acad. Sci. U.S.A. 110, 8567−8572. (20) Michnick, S. W. (2003) Protein fragment complementation strategies for biochemical network mapping. Curr. Opin. Biotechnol. 14, 610−617. (21) Villalobos, V., Naik, S., and Piwnica-Worms, D. (2007) Current state of imaging protein−protein interactions in vivo with genetically encoded reporters. Annu. Rev. Biomed. Eng. 9, 321−349. (22) Luker, K. E., Mihalko, L. A., Schmidt, B. T., Lewin, S. A., Ray, P., Shcherbo, D., Chudakov, D. M., and Luker, G. D. (2012) In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat. Med. 18, 172−177. (23) Massoud, T. F., Paulmurugan, R., and Gambhir, S. S. (2010) A molecularly engineered split reporter for imaging protein−protein interactions with positron emission tomography. Nat. Med. 16, 921− 926. (24) Remy, I., and Michnick, S. W. (2006) A highly sensitive protein−protein interaction assay based on Gaussia luciferase. Nat. Methods 3, 977−979. (25) Badr, C. E., and Tannous, B. A. (2011) Bioluminescence imaging: Progress and applications. Trends Biotechnol. 29, 624−633.

although split reporters with faster folding rates or improved photon outputs could potentially capture such interactions. Intriguingly, since Gluc is long-lived in the extracellular environment, the complemented probe should enable the direct detection of cell−cell interactions in locations that are distinct from, and perhaps far removed from, the actual site of cell−cell interaction in vivo (e.g., in the bloodstream). We are currently evaluating this possibility in mouse models and our results will be published in due course. We also envision imaging direct cell−cell contacts by anchoring the Gluc fragments to distinct cell membranes or antibody targets. Collectively, such tools will provide a unique vantage point for visualizing cell−cell communication and, as such, improve our mechanistic understanding of biology and disease.

■ ■

METHODS

Detailed methods are available in the Supporting Information.

ASSOCIATED CONTENT

S Supporting Information *

Methods and supplementary Figures 1−10. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Author Contributions

K.A.J., M.A.S., and J.A.P. designed experiments. K.A.J. performed experiments, K.A.J., D.J.L., E.E.H., M.A.S., and J.A.P. analyzed and interpreted data. D.J.L. and E.E.H. provided the fabricated stencils. The manuscript was written by K.A.J. and J.A.P., with input from all authors. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was supported by a fellowship from the Hellman Family Foundation (to J.A.P.), the National Science Foundation (NSF) (CAREER to J.A.P.), and Defense Advanced Research Projects Agency (DARPA) (DP13AP00044 to E.E.H.). K.A.J. was supported by an institutional Chemical and Structural Biology Training Grant predoctoral fellowship (T32-GM10856). D.J.L. was supported by a fellowship through the NSF LifeChips program (IGERT 0549479). We also thank members of the Weiss, Edinger, Martin, and Hughes laboratories for reagents and equipment. Finally, we thank members of the Prescher and Hui laboratories for helpful discussions.



REFERENCES

(1) Germain, R. N., Robey, E. A., and Cahalan, M. D. (2012) A decade of imagin cellular motility and interaction dynamics in the immune system. Science 336, 1676−1681. (2) Roh-Johnson, M., Bravo-Cordero, J. J., Patsialou, A., Sharma, V. P., Guo, P., Liu, H., Hodgson, L., and Condeelis, J. (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33, 4203−4212. (3) Felding-Habermann, B., O’Toole, T. E., Smith, J. W., Fransvea, E., Ruggeri, Z. M., Ginsberg, M. H., Hughes, P. E., Pampori, N., Shattil, S. J., Saven, A., and Mueller, B. M. (2001) Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci. U.S.A. 98, 1853−1858. E

DOI: 10.1021/cb5007773 ACS Chem. Biol. XXXX, XXX, XXX−XXX

Letters

ACS Chemical Biology (26) Tannous, B. A. (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat. Protoc. 4, 582−591. (27) Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., and Breakefield, X. O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 11, 435−443. (28) Venisnik, K. M., Olafsen, T., Gambhir, S. S., and Wu, A. M. (2007) Fusion of Gaussia luciferase to an engineered anticarcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Mol. Imaging Biol. 9, 267−277. (29) Patel, K. G., Ng, P. P., Kuo, C. C., Levy, S., Levy, R., and Swartz, J. R. (2009) Cell-free production of Gaussia princeps luciferase Antibody fragment bioconjugates for ex vivo detection of tumor cells. Biochem. Biophys. Res. Commun. 390, 971−976. (30) van Rijn, S., Wurdinger, T., and Nilsson, J. (2014) Multiplex functional bioluminescent reporters using Gaussia luciferase fused to epitope tags in an immunobinding assay. Methods Mol. Biol. 1098, 231−247. (31) Santos, E. B., Yeh, R., Lee, J., Nikhamin, Y., Punzalan, B., Punzalan, B., La Perle, K., Larson, S. M., Sadelain, M., and Brentjens, R. J. (2009) Sensitive in vivo imaging of T cells using a membranebound Gaussia princeps luciferase. Nat. Med. 15, 338−344. (32) Kim, S. B., Sato, M., and Tao, H. (2009) Split Gaussia luciferasebased bioluminescence template for tracing protein dynamics in living cells. Anal. Chem. 81, 67−74. (33) Ray, P., Lewin, S. A., Mihalko, L. A., Lesher-Perez, S. C., Takayama, S., Luker, K. E., and Luker, G. D. (2012) Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Biochem. J. 442, 433−442. (34) Wille, T., Blank, K., Schmidt, C., Vogt, V., and Gerlach, R. G. (2012) Gaussia princeps luciferase as a reporter for transcriptional activity, protein secretion, and protein−protein interactions in Salmonella enterica serovar typhimurium. Appl. Environ. Microbiol. 78, 250−257. (35) Muller, M., Cassonnet, P., Favre, M., Jacob, Y., and Demeret, C. (2013) A comparative approach to characterize the landscape of hostpathogen protein−protein interactions. J. Vis. Exp., e50404. (36) Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J., and Hyman, B. T. (2011) Characterization of oligomer formation of amyloid-β peptide using a split-luciferase complementation assay. J. Biol. Chem. 286, 27081−27091. (37) Hu, C. D., and Kerppola, T. K. (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539−545. (38) Shyu, Y. J., Suarez, C. D., and Hu, C. D. (2008) Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFCbased FRET. Proc. Natl. Acad. Sci. U. S. A. 105, 151−156. (39) Slavoff, S. A., Liu, D. S., Cohen, J. D., and Ting, A. Y. (2011) Imaging protein−protein interactions inside living cells via interactiondependent fluorophore ligation. J. Am. Chem. Soc. 133, 19769−19776. (40) Kaplan, J. B., Reinke, A. W., and Keating, A. E. (2014) Increasing the affinity of selective bZIP-binding peptides through surface residue redesign. Protein Sci. 23, 940−953. (41) Kohler, J. J., and Schepartz, A. (2001) Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization. Biochemistry 40, 130−142. (42) Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1988) The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759−1764. (43) Wurdinger, T., Badr, C., Pike, L., de Kleine, R., Weissleder, R., Breakefield, X. O., and Tannous, B. A. (2008) A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5, 171−173. (44) Friedl, P., den Boer, A. T., and Gunzer, M. (2005) Tuning immune responses: Diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532−545.

(45) Friedl, P., and Storim, J. (2004) Diversity in immune-cell interactions: States and functions of the immunological synapse. Trends Cell Biol. 14, 557−567. (46) Gupta, G. P., and Massague, J. (2006) Cancer metastasis: Building a framework. Cell 127, 679−695. (47) Helming, L., Tomasello, E., Kyriakides, T. R., Martinez, F. O., Takai, T., Gordon, S., and Vivier, E. (2008) Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci. Signal. 1, ra11. (48) Shibue, T., and Weinberg, R. A. (2011) Metastatic colonization: Settlement, adaptation, and propagation of tumor cells in a foreign tissue environment. Semin. Cancer Biol. 21, 99−106. (49) Wetzel, S. A., McKeithan, T. W., and Parker, D. C. (2002) Livecell dynamics and the role of costimulation in immunological synapse formation. J. Immunol. 169, 6092−6101. (50) Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., and Whitesides, G. M. (1999) Patterning proteins and cells using soft lithography. Biomaterials 20, 2363−2376. (51) Marshall, J. (2011) Transwell invasion assays. Methods Mol. Biol. 769, 97−110. (52) Chen, E. H., Grote, E., Mohler, W., and Vignery, A. (2007) Cell−cell fusion. FEBS Lett. 581, 2181−2193. (53) Wickner, W., and Schekman, R. (2008) Membrane fusion. Nat. Struct. Mol. Biol. 15, 658−664.

F

DOI: 10.1021/cb5007773 ACS Chem. Biol. XXXX, XXX, XXX−XXX