Volatile Thermal Decomposition Products of β-Carotene - ACS

Oct 3, 1989 - 1 Current address: Bristol-Meyers, Evansville, IN 47721 ... were employed to simulate different food processes. β-Carotene in glycerol ...
0 downloads 0 Views 720KB Size
Chapter 23

Volatile Thermal Decomposition Products of β-Carotene 1

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

Philip N. Onyewu , Henryk Daun, and Chi-Tang Ho Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903

The volatile decomposition products of carotenoids formed during the processing of various foods were studied in a model system. Time and temperature para­ meters were employed to simulate different food proces­ ses. β-Carotene in glycerol was heated for 4 hrs. and 1 hr. at 210°C and 155°C, respectively. A continuous stream of nitrogen was maintained through the reaction vessel throughout the heating period. The collected volatiles were analyzed by GC-mass spectrometry. Among the compounds found include β-ionone and its 5,6-epoxide; β-ionol; β - c y c l o c i t r a l ; 3-methylcyclohexane-1,2dione; 2,6,6-trimethylcyclohexanone; 2,6,6-trimethyl-2hydroxycyclohexanal; 3-(2,6,6-trimethyl-1-eyelohexenyl)2-propenal; dihydroactinidiolide; dihydroactinidol; desoxyxanthin; 3-(l,3-butadienyl)-2,4,4-trimethyl-2-cyclohexene-1-one; ionene; 2,6-dimethylnaphthalene; ethyltoluene; 4-hydroxy-2,5-dimethyl-3(2H)-furanone; 2-pentyl-2-nonenal; 2-hexyl-2-decenal; retinal; 5,6,7,7tetrahydro-4,4,7-trimethyl-2(4H)-benzofuranone. C a r o t e n o i d s a r e one o f t h e most i m p o r t a n t groups o f n a t u r a l pigments. They a r e found i n a wide v a r i e t y o f foods such as c a r r o t s , tomatoes, eggs, s e a f o o d s , c o r n , s p i n a c h , b e r r i e s , mushrooms, o r a n g e s , a p p l e s , v e g e t a b l e and f r u i t o i l s ( 1 - 2 ) . The importance and uniqueness o f the pigments l i e n o t o n l y i n t h e i r f u n c t i o n as p r e c u r s o r s o f v i t a m i n A compounds (_3), b u t a l s o t h e i r r o l e i n l i g h t energy a b s o r p t i o n , O2 transport, protection against photosensitized oxidation, s i n g l e t oxygen quenchers, as r e g u l a t o r s o f p l a n t growth ( 4 - 5 ) , as food c o l o r a n t s ( 6 ) , as c o l o r a n t s f o r s u g a r - c o a t e d t a b l e t s ( 7 ) and i n t h e i r r e c e n t l y found r o l e as p o t e n t i a l i n h i b i t o r s o f c h e m i c a l c a r ­ cinogenesis ( 8 ) . C a r o t e n o i d pigments can be e x t r a c t e d from n a t u r a l s o u r c e s o r s y n t h e s i z e d and a r e used t o f o r t i f y and c o l o r foods. During the 1

Current address: Bristol-Meyers, Evansville, IN 47721 0097-6156/89/0409-0247$06.00/0 ο 1989 American Chemical Society Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

248

THERMAL GENERATION OF AROMAS

c o u r s e o f food p r o c e s s i n g , the pigment undergoes changes w h i c h i n f l u ­ ence the c o l o r , as w e l l as the n u t r i t i v e v a l u e . S t u d i e s have been c o n d u c t e d t o d e t e r m i n e the t h e r m a l d e g r a d a t i o n p r o d u c t s (TDP) o f 8~ c a r o t e n e — t h e most i m p o r t a n t c a r o t e n o i d . The n o n v o l a t i l e TDP o f c a r o t e n e have been r e p o r t e d ( 9 - 1 6 ) . S t u d i e s i n v o l v i n g a n a l y s i s and i d e n t i f i c a t i o n o f TDP o f c a n t h a x a n t h i n have been c o n d u c t e d ( 1 7 ) . O n l y f i v e o f t h e s e s t u d i e s were c o n d u c t e d i n a food system w h i c h employed time and t e m p e r a t u r e parameters t h a t were r e p r e s e n t a t i v e o f v a r i o u s food p r o c e s s e s ; and the n o n v o l a t i l e TDP were i d e n t i f i e d (12-14, 16,17). The n o n v o l a t i l e s have been a d d r e s s e d i n p r e v i o u s p u b l i c a t i o n s by the a u t h o r s . T h e r e f o r e , t h i s r e p o r t w i l l f o c u s on the v o l a t i l e TDP. Many s t u d i e s have been c o n d u c t e d on the v o l a t i l e t h e r m a l degradation products of c a r o t e n o i d s . S e v e r a l a u t h o r s have r e p o r t e d the f o r m a t i o n o f t o l u e n e and x y l e n e as TDP o f b i x i n and c a p s a n t h i n (18) and 8 - c a r o t e n e ( 1 0 , 1 1 , 1 8 - 2 5 ) , as w e l l as c a n t h a x a n t h i n (26). In a d d i t i o n , 2 , 6 - d i m e t h y l n a p h t h a l e n e was r e p o r t e d t o be formed from t h e r m a l l y t r e a t e d c a r o t e n o i d s ( 1 1 , 17, 2 0 - 2 9 ) . The f o r m a t i o n o f ionene as a TDP o f 8 - c a r o t e n e has been r e p o r t e d ( 1 1 , 19, 2 2 ) . The p r e s e n c e o f a - and 8 - i o n o n e s have a l s o been r e p o r t e d (24, 25). Among the o t h e r r e p o r t e d v o l a t i l e TDP o f 8 - c a r o t e n e i n c l u d e 8 - c y c l o c i t r a l , 5 , 6 - e p o x y - 8 - i o n o n e and d i h y d r o a c t i n i d i o l i d e ( 2 5 ) . These compounds were a l s o found by Isoe e t a l . (30, 3 1 ) , Wahlberg e t a l . (32) and Kawakami and Y a m a n i s h i (33) as p h o t o - o x y g e n a t i o n p r o d u c t s o f 8-carotene. V o l a t i l e t h e r m a l d e g r a d a t i o n o f c a r o t e n o i d s has been e x t e n s i v e l y s t u d i e d , m a i n l y i n nonfood s y s t e m s . H e n c e , the o b j e c t i v e o f t h i s s t u d y was t o i d e n t i f y the v o l a t i l e components o f the TDP o f 8 - c a r o t e n e formed i n a f o o d model s y s t e m . Experimental A p r e v i o u s l y d e v e l o p e d model system was employed ( 1 3 , 14, 3 4 ) . Ten grams o f 8 - c a r o t e n e (Hoffman L a R o c h e , N u t l e y , NJ) and 50 m l . o f g l y c e r o l were p l a c e d i n a 3 - n e c k f l a s k w h i c h was c o n n e c t e d i n s e r i e s w i t h an empty f l a s k and f o u r c o i l e d vacuum t r a p s . The c o i l e d t r a p s were immersed i n thermo o r dewar f l a s k s f i l l e d w i t h d r y i c e . The 3 - n e c k f l a s k c o n t a i n i n g 8 - c a r o t e n e and g l y c e r o l was p l a c e d i n a h i g h t e m p e r a t u r e o i l b a t h and h e a t e d f o r 4 h o u r s and 1 h o u r , r e s p e c t i v e l y , at 2 1 0 ° C and 1 5 5 ° C . A s t r e a m o f n i t r o g e n was c o n t i n u o u s l y f l u s h e d t h r o u g h the r e a c t i o n f l a s k t o sweep the v o l a t i l e s t o the c o l d t r a p s . A f t e r h e a t i n g , the f l a s k c o n t a i n i n g the 8 - c a r o t e n e n o n v o l a t i l e d e g r a d a t i o n p r o d u c t s and g l y c e r o l was removed from the o i l b a t h and allowed to c o o l before e x t r a c t i o n . The t r a p s , which c o n t a i n e d the v o l a t i l e TDP, were r i n s e d w i t h d i e t h y l e t h e r then the e x t r a c t s were t r a n s f e r r e d t o an amber g l a s s v i a l and s t o r e d i n a - 8 0 ° C chamber u n t i l t h e y were r e a d y t o be a n a l y z e d . GC-Mass S p e c t r o m e t r y . The e t h e r e x t r a c t s were c o n c e n t r a t e d u s i n g an Oldershaw column w i t h 30 t h e o r e t i c a l p l a t e s f o l l o w e d by a 2 0 0 - p l a t e s p i n n i n g band d i s t i l l a t i o n a p p a r a t u s (Kontes G l a s s C o . , V i n e l a n d , NJ). Two m i c r o l i t e r s o f the r e s p e c t i v e samples were i n j e c t e d ( t h e s o l v e n t was v e n t e d ) i n t o a 50 m χ 0.32 mm OV-1 m e t h y l s i l i c o n e GC c a p i l l a r y c o l u m n . The GC was programmed from an i n i t i a l temperature

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

23.

ONYEWUETAL.

Volatile Thermal Decomposition Products of β-Carotene

o f 60°C w i t h 2°C/min. t o 225°C. Mass s p e c t r a were r e c o r d e d u s i n g a K r a t o s MS25 d o u b l e - f o c u s i n g mass s p e c t r o m e t e r . The i o n i z a t i o n was at 70 ev and t h e i o n source was o p e r a t e d a t a temperature o f 200°C. R e s u l t s and D i s c u s s i o n

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

GC-MS I d e n t i f i c a t i o n s . Treatment 1: 210°C, 4 h o u r s . W h i l e more than s i x t y compounds were o b s e r v e d , o n l y t e n were i d e n t i f i e d by GC-MS u s i n g computer l i b r a r y s e a r c h e s as shown i n T a b l e I . The i d e n t i f i e d compounds i n c l u d e ionene, 2,6-dimethylnaphthalene, e t h y l t o l u e n e , t e t r a h y d r o - d i m e t h y l naphthalene, butadienyl-trimethylcyclohexenone, d i h y d r o a c t i n i d i o l i d e , β-cyclocitral, t r i m e t h y l - c y c l o h e x e n y l - p r o p e n a l , r e t i n o l and tetrahydro-trimethylbenzofuranone. Treatment 2; 210°, 1 hour. As w i t h t r e a t m e n t 1, many compounds were o b s e r v e d ; however, o n l y seven were i d e n t i f i e d ( T a b l e I ) . These i n ­ c l u d e methylhexanedione, r e t i n o l , b u t a d i e n y l - t r i m e t h y l c y c l o h e x e n o n e , e t h y l t o l u e n e , i o n e n e , d i m e t h y l n a p h t h a l e n e and t e t r a h y d r o d i m e t h y l n a p h t h a l e n e . Many o f t h e compounds formed d u r i n g heat Tratment 2 were low m o l e c u l a r weight a r o m a t i c h y d r o c a r b o n s ; t h e r e were fewer oxygenated v o l a t i l e s produced than i n Treatment 1. Treatment 3; 155°C, 4 h o u r s . U n l i k e t h e p r e c e d i n g e x p e r i m e n t s , most o f t h e v o l a t i l e s observed i n t h i s t r e a t m e n t were oxygenated compounds. Among them i n c l u d e 8-ionone, β-ionone e p o x i d e , 8 - i o n o l , d i h y d r o a c t i n i d i o l i d e and a c e t a l d e h y d e ( T a b l e I ) . I t i s i n t e r e s t i n g t o note t h a t many o f t h e oxygenated compounds observed i n t h i s t r e a t m e n t (as w e l l as p r e c e d i n g t r e a t m e n t s ) were a l s o found i n t h e p o l a r f r a c t i o n o f t h e n o n v o l a t i l e TDP from Treatment 3. The r e l a ­ t i v e i n t e n s i t i e s f o r the fragment i o n s from s e l e c t e d compounds ob­ s e r v e d i n the p o l a r f r a c t i o n o f t h e n o n v o l a t i l e TDP o f Treatment 3 are shown i n T a b l e I I . The compounds i d e n t i f i e d a r e shown i n T a b l e I I I ; t h e predominant compound was d i h y d r o a c t i n i d i o l i d e . Others i n c l u d e t r i m e t h y l - h y d r o x y c y c l o h e x a n o n e , 8-ionone, d e s o x y a n t h i n , d i h y d r o a c t i n i d o l and 8 - c y c l o c i t r a l . Treatment 4: 155°C, 1 hour. Compounds i d e n t i f i e d from t h i s t r e a t ­ ment a r e s i m i l a r t o those from Treatment 3, as shown i n T a b l e I . A l l o f t h e compounds were oxygenated p r o d u c t s , namely ionone s e r i e s compounds and some a l i p h a t i c a l d e h y d e s . Mechanism. The mechanism f o r t h e f o r m a t i o n o f t h e low m o l e c u l a r w e i g h t a r o m a t i c h y d r o c a r b o n s , namely ionene and t h e d i m e t h y l n a p h t h a ­ l e n e compounds can be e x p l a i n e d by t h e scheme o f Edmunds and John­ s t o n e ( 2 2 ) , advanced by V e t t e r e t a l . ( 3 5 ) . The mechanism i n v o l v e s c y c l i z a t i o n w i t h t w e l v e e l e c t r o n systems f o l l o w e d by rearrangement to a f o u r - r i n g i n t e r m e d i a t e , which leads t o the formation o f d i methycyclodecapentaene. T h i s l e a d s t o t h e e x p u l s i o n o f ionene and d i m e t h y l n a p h t h a l e n e from t h e c a r o t e n e m o l e c u l e as v o l a t i l e s and t h e r e s u l t i n g n o n v o l a t i l e component has been r e p o r t e d ( 1 3 ) .

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

249

250

THERMAL GENERATION OF AROMAS

Table I. Volatile thermal degradation products of ^-carotene

Heat Treatments 1 2 3 4

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

Compounds

-

+

+

+

+

+

+

β-Ionone

(Monone Epoxide

-

-

β-ΙόηοΙ

or P-Cyclodtral Ο

+ 3-lfethyi-1,2-cyclohexanedlone.

or'

'CHO

3-(2.e.e-Trlmethyl-1 -cyclohexenyl) -2-pro penal Continued on next page

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

ONYEWU ET AL.

Volatile Thermal Decomposition Products of β-Carotene Table I. Continued

Compounds

5.6.7,7a-Teti^ydro-4.4.7a-trlmethyi-2(4H)-l^

Heat Treatments 1 2 3

+



+

+

+

+

+

+

+

+

+

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

DihydrotcttnldloUde

3-| χ ,3-Butiullenyll-2.4.4-trlmethyl-2Kyck)hexeiu^

Ethyltoluene

σα ionene

^pt-

-

2.g-Dtonetnyfniphthalmr

3

+

-

+

-

1,2.3.4-Tetrahydro-1.1 -dlmethyinaphthalene

Acetaldehyde

-

Ethanol 4-Hydroxy-2.5-dlinethyl-3(2H)-furanone

-

-

+

+

+

+



+

2-Pentyl-2-nonenal







+

2-Hexyl-2-decenal

-

-

_

+

Retinol

+

-

-

-

Retinal

-

+

-

-

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

252

THERMAL GENERATION OF AROMAS

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

Table I I . C h a r a c t e r i s t i c MS Fragment Ions f o r S e l e c t e d Compounds i n t h e P o l a r F r a c t i o n o f N o n v o l a t i l e TDP from Treatment 3 (155°C, 4 h r . )

Compound 1

Molecular Ion 180

Fragment Ion O f , 19.7)

2

141

2.9)

3

156

Of*". 4.1)

4

152

(M

5

170

Of*. 2.2)

6

208

Of*. 3.8)

7

192

Of*". 5.7)

8

210

(M+, 1.4)

9

234

Of*". 0.8)

+ >

87)

( R e l a t i v e Abundance %)_ 111 ( 1 0 0 ) , 137 ( 3 5 . 9 ) , 109 ( 3 5 . 2 ) , 110 (21.9) 82 ( 1 0 0 ) , 69 ( 2 8 . 9 ) , 140 ( 2 7 . 9 ) , 56 (19.7) 71 ( 1 0 0 ) , 95 ( 7 1 . 8 ) , 110 ( 4 3 . 2 ) , 128 (38.9) 137 ( 1 0 0 ) , 123 ( 7 1 . 6 ) , 109 (70.4) 109 ( 1 0 0 ) , 69 ( 9 1 . 4 ) , 43 (64.3) 123 ( 1 0 0 ) , 121 ( 5 7 . 2 ) , 93 ( 4 4 . 5 ) , 136 (24.3) 123 ( 1 0 0 ) , 177 ( 9 1 . 1 ) , 43 ( 2 6 ) , 135 (23) 97 ( 1 0 0 ) , 43 ( 9 5 ) , 98 ( 7 2 ) , 165 ( 5 7 ) , 180 ( 7 . 7 ) , 193 ( 3 0 . 3 ) , 109 ( 6 9 . 6 ) , 137 ( 4 4 . 2 ) , 111 (42) 109 ( 1 0 0 ) , 43 ( 9 5 . 3 ) , 123 ( 5 6 . 2 ) , 97 ( 3 5 . 4 ) , 69 ( 3 1 ) , 165 ( 1 4 . 1 ) , 217 (3.3)

The f o r m a t i o n mechanism o f t h e oxygenated p r o d u c t s , namely ionone s e r i e s compounds and t h e l a c t o n e s — d i h y d r o a c t i n i d i o l i d e can be s a i d t o be v e r y s i m i l a r t o those o f Isoe e t a l . ( 3 0 ) , as w e l l as the d i o x e t h a n e mechanism by O h l o f f ( 3 6 ) . They proposed t h a t s i n g l e t oxygen i s i n v o l v e d by d i r e c t c y c l o - a d d i t i o n t o t h e double bond. Thus, oxygen a t t a c k a t t h e t e r m i n a l 5,6-double bond p o s i t i o n , f o l ­ lowed by t h e f o r m a t i o n o f a peroxy epoxide and c l e a v a g e o f t h e C-C and 0-0 bonds, r e s u l t e d i n 5,6-epoxy-B-ionone, w h i l e rearrangement o f t h e 5,6-epoxy d e r i v a t i v e , f o l l o w e d by r e d u c t i o n and o x i d a t i o n , r e s u l t e d i n t h e f o r m a t i o n o f d i h y d r o a c t i n i d i o l i d e . Furthermore, a peroxy d e r i v a t i v e was formed and c l e a v e d t o form β-ionone, w h i c h then l e d t o t h e f o r m a t i o n o f d i h y d r o a c t i n i d i o l i d e as a secondary o x i d a t i o n product. F l a v o r I m p l i c a t i o n s . I n t h i s s t u d y , f o u r experiments were conducted under d i f f e r e n t time and temperature c o n d i t i o n s . The l o s s o f c a r o ­ tene and t h e g e n e r a t i o n o f v o l a t i l e s observed i n t h e heat t r e a t ­ ments a t 210°C were d e p i c t i v e o f events o c c u r r i n g d u r i n g d e o d o r i z a t i o n o f e d i b l e o i l s and deep-fat f r y i n g o f v a r i o u s f o o d s . Nonvolat i l e s produced d u r i n g f r y i n g a l r e a d y have been r e p o r t e d ( 1 3 , 1 4 ) ; s t u d i e s a t lower temperature (155°C) would be analogous t o t h e f a t e o f c a r o t e n e i n foods s u b j e c t e d t o b a k i n g , c o o k i n g and f r y i n g , e s ­ p e c i a l l y u s i n g c r u d e , r e d palm o i l ( 3 7 ) . The f o r m a t i o n o f oxygen-

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

23.

ONYEWUETAL.

Volatile Thermal Decomposition Products of β-Carotene

Table III. Thermal degradation products of ^-carotene from the polar fraction of heat treatment 3 (155 C, 4 hr) β

Compounds #

Compound

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

Dihydroactinidiolide lydroactir

ft 2.6, β-Trlmethylcyclohexanone

2.6.6-Trlmethyl-2-bydroxycytJohexanone

P-Cyclodtrml

,CHO

2.6.6-Trlmethyl-2-hydnjxycyclohexanal

5.6-Epoxy-fJ-lonone

fMonone

Dlhydroactinldol

Desoxyxanthln

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

253

Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

254

THERMAL GENERATION OF AROMAS

a t e d v o l a t i l e compounds predominates a t the temperatures employed i n t h i s s t u d y . Most o f t h e s e have been r e p o r t e d t o be i m p o r t a n t f l a v o r compounds, e s p e c i a l l y the ionone compounds and d i h y d r o a c ­ t i n i d i o l i d e . Many o f the ionones and l a c t o n e s have been observed i n cooked c o r n and a l c o h o l i c beverages ( 2 4 ) , i n t e a and tobacco d u r i n g p r o c e s s i n g (30-32, 36, 38-39), and i n m i l k ( 4 0 ) . These oxy­ genated compounds were a l s o found i n the n o n v o l a t i l e f r a c t i o n o f β - c a r o t e n e , some o f w h i c h have been p r e v i o u s l y r e p o r t e d ( 1 4 ) . The presence o f oxygenated compounds i n both the v o l a t i l e and n o n v o l a t i l e f r a c t i o n s o f TDP o f c a r o t e n e suggests the s i g n i f i c a n c e o f t h e i r c o n t r i b u t i o n s t o the f l a v o r o f f o o d s . E x t e n s i v e s t u d i e s on the s t r u c t u r a l e l u c i d a t i o n o f d i h y d r o a c t i n i d i o l i d e and r e l a t e d com­ pounds have been conducted (35, 41-48). B e s i d e s the ionone com­ pounds and d i h y d r o a c t i n i d i o l i d e , aldehydes and ketones were a l s o o b s e r v e d . E x a m i n a t i o n o f a l l the oxygenated p r o d u c t s i n d i c a t e s the uniqueness o f t h e r m a l o x i d a t i o n o f the c a r o t e n e m o l e c u l e a t the t e r m i n a l double bond. Because i n such a c o n j u g a t e d system, the h i g h e s t e l e c t r o n d e n s i t y i s found i n the t e r m i n a l double bonds o f the m o l e c u l e ( 4 9 ) . Thus, as the c e n t r a l double i s approached, the e l e c t r o n d e n s i t y d e p l e t i o n becomes p r o g r e s s i v e . Hence, these r e ­ a c t i o n s r e q u i r i n g h i g h e l e c t r o n d e n s i t y would o c c u r a t the t e r m i n a l double bonds. S i n g l e t oxygen p l a y s an i m p o r t a n t r o l e i n the f o r m a t i o n o f the oxygenated p r o d u c t s observed i n t h i s s t u d y ; however, the mechanism f o r g e n e r a t i n g s i n g l e t oxygen under the t h e r m a l o x i d a t i o n o f βc a r o t e n e i s not known a t t h i s t i m e . S i n c e many oxygenated v o l a t i l e s were observed as TDP o f β - c a r o t e n e , the q u e s t i o n a r i s e s as t o the s o u r c e o f oxygen. The experiments were d e s i g n e d t o m i n i m i z e l i g h t and oxygen; however, r e s i d u a l oxygen c o u l d induce r e a c t i o n s t h a t l e a d t o the f o r m a t i o n o f oxygenated p r o d u c t s under the h e a t i n g c o n d i t i o n s employed. W h i l e g l y c e r o l i s r e l a t i v e l y s t a b l e a t the temperatures employed i n t h i s s t u d y (155°C, 210°C), i t i s a good oxygen t r a p p e r . Other p o s s i b l e sources o f r e s i d u a l oxygen c o u l d be from n i t r o g e n used t o sweep v o l a t i l e s t o the c o l d t r a p s , o r t r a c e amounts d i s s o l v e d i n β - c a r o t e n e . The second c l a s s o f v o l a t i l e p r o d u c t s observed were h y d r o c a r b o n s , namely the ionene compounds. The f o r m a t i o n o f t h e s e hydrocarbons d u r i n g h e a t i n g i s a l s o r e f l e c t i v e o f d e o d o r i z a t i o n and f r y i n g con­ ditions. The f o r m a t i o n o f low m o l e c u l a r weight a r o m a t i c h y d r o ­ carbons r e s u l t s from f r a g m e n t a t i o n o f the c a r o t e n e m o l e c u l e . The l o s s e s o f t o l u e n e and ionene compounds from β - c a r o t e n e y i e l d dodecahexaene and o c t a t e t r a e n e , r e s p e c t i v e l y . These n o n v o l a t i l e d e g r a d a t i o n p r o d u c t s have been p r e v i o u s l y r e p o r t e d i n our l a b o r a ­ t o r y ( 1 3 , 14). Conclusion Heat t r e a t m e n t o f c a r o t e n e under c o n d i t i o n s which s i m u l a t e d s e v e r a l food p r o c e s s e s l e d t o the f o r m a t i o n o f a l d e h y d e s , ketones and low m o l e c u l a r w e i g h t a r o m a t i c and s h o r t - c h a i n oxygenated h y d r o c a r b o n s , many o f which have been r e p o r t e d t o be i m p o r t a n t f l a v o r a t t r i b u t e s o f some f o o d s , a l c o h o l i c beverages and t o b a c c o .

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

23. ONYEWUETAL.

Volatile Thermal Decomposition Products of β-Carotene

Acknowledgements T h i s i s p u b l i c a t i o n No. D-10100-24-88 o f t h e New J e r s e y A g r i c u l t u r a l Experiment S t a t i o n , supported by S t a t e funds and U. S. Hatch A c t funds. The a u t h o r s a r e g r a t e f u l t o Robert T r e n k l e and I F F f o r t e c h n i c a l support i n s p e c t r o m e t r i c a n a l y s e s , and t o B r i s t o l - M y e r s USONG f o r t h e i r support i n p r e p a r a t i o n o f t h e m a n u s c r i p t .

Literature Cited 1. Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

Karrer, P.; Jucker, E. Carotenoids; Elsevier: New York, 1950; Chapters 1-10. Goodwin, T. W. In Chemistry and Biochemistry of Plant Pigments; 2nd Ed.; Goowdin, T. W., Ed.; Academic: New York, 1976, Vol. 1, p 225. Bauernfeind, J . C . ; Adams, C. R.; Marusich, W. L. In Carotenoids as Colorants and Vitamin A Precursors; Bauernfeind, J. C . , Ed.; Academic: New York, 1981, Chapter 6. Krinsky, Ν. I. In Carotenoids; Isler, O., Ed.; Birkhauser Verlag: Basel, 1971; p 669. Mathews-Roth, M. M. In Carotenoids as Colorants and Vitamin A Precorsors; Bauernfeind, J . C . , Ed.; Academic: New York, 1981; p 755. Klaui, H . ; Bauernfeind, J . C. In Carotenoids as Colorants and Provitamin A Precursors; Bauernfeind, J . C . , Ed.; Academic: New York, 1981; p 47. Munzel, K. In Carotenoids as Colorants and Vitamin A Pre­ cursors ; Bauernfeind, J . C . , Ed.; Academic: New York, 1981; p 745. Goodman, D. S. New Eng. J . Med. 1984, 310, 1023. Halaby, G. Α.; Fagerson, I. S. Proc. 3rd I n t ' l . Congr. Food Sci. Tech., 1971, p 820. Ishiwatari, M. J . Anal. Appli. Pyrolysis 1980, 2, 153. Ishiwatari, M. J . Anal. Appli. Pyrolysis 1980, 2, 339. Ouyang, J . - M . ; Daun, H . ; Chang, S. S.; Ho, C.-T. J. Food Sci. 1980, 45, p 1214. Onyewu, P.N.; Daun, H . ; Ho, C.-T. J . Agric. Food. Chem. 1982, 30, p 1147. Onyewu, P.N.; Ho, C . - T . ; Daun, H. J . Am. Oil Chem. Soc. 1986, 63, 1437. Byers, J . J . Org. Chem. 1983, 48, p 1515. Marty, C.; Berset, C. J . Food Sci. 1986, 51, p 698 Roshdy, T. H. Ph.D. Thesis, Rutgers State University, New Brunswick, 1987. Van Hasselt, J . F. B. Rec. Trav. Chem. 1911, 30, 33; Chem. Abstr. 1911, 5, 3397. Day, W. C . ; Erdman, J . G. Science 1963, 141, 808. Mulik, J . D.; Erdman, J . G. Science 1963, 141, 806. Mader, I. Science 1964, 144, Edmunds, F. S.; Johnstone, R. A. W. J . Chem. Soc. 1965, 2892. Schweiter, U.; Englert, G.; Rigassi, N.; Vetter, W. Pure Appl. Chem. 1969, 20, 365.

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

255

256 24. 25. 26. 27. 28. 29. 30. 31. Downloaded by NATL UNIV OF SINGAPORE on April 10, 2017 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch023

32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49.

THERMAL GENERATION OF AROMAS

LaRoe, E. G.; Shipley, P. A. J . Agric. Food Chem.. 1970, 18, 174. Schreir, P.; Drawert, F . ; Bhiwaparkar, S. Chem. Mikrobiol. Technol. Lebensm. 1979, 6, 90; Chem. Abstr. 1979, 92, 74646h. Kuhn, R.; Winterstein, A. Ber. 1932, 65, 1873. Kuhn, R.; Winterstein, A. Ber. 1933, 66, 429. Kuhn, R.; Winterstein, A. Ber. 1933, 66, 1733. Jones, R. N.; Sharpe, R. W. Can. J . Res. 1948, 26, 728. Isoe, S.; Hyeon, S.B.; Sakan, T. Tetrahedron Lett. 1969, 4, 279. Isoe, S.; Hyeon, S. B.; Katsumura, S.; Sakan, T. Tetrahedron Lett. 1972, 25, 2517. Wahlberg, I.; Karlsson, Κ.; Austin, D. J.; Junker, N.; Roeraade, J.; Enzell, C. R.; Johnson, W. H. Photochemistry 1977, 1, 1217. Kawakami, M.; Hamanishi, T. Nippon Nogei Kagaku Kaishi 1981, 53, 117. Onyewu, P.N., Ph.D. Thesis, Rutgers State University, New Brunswick, 1985. Vetter, W.; Englert, G.; Rigassi, N.; Schwieter, U. In Carotenoids; Isler, O., Ed.; Birkhauser Verlag: Basel, 1971, p 189. Ohloff, G. In Proc. 3rd I n t ' l . Congr. Food Sci. Technol., 1971, p 368. Mudambi, R.; Rajagopol, M. V. J . Food Sci. 1977, 42, 415. Bailey, W. C . ; Bose, A. K.; Ikeda, R. M.; Newman, R. H . ; Secor, Η. V . ; Varsel, C. J . Org. Chem. 1968, 33, 2819. Kawakami, M. Nippon Nogei Kagaku Kaishi 1982, 56, 917. Suyama, K.; Yeow, T . ; Nakai, S. J . Agric. Food Chem. 1983, 31, 22. Wada, T . ; Satoh, D. Chem. Pharm. Bull. 1964, 12, 752. Wada, T. Chem. Pharm. Bull. 1964a, 12, 1117. Wada, T. Chem. Pharm. Bull. 1964b, 13, 43. Sakan, T . ; Isoe, S.; Hyeon, S.G. Tetrahedron Lett. 1967 1623. Mousseron-Canet, M.; Mani, J . C . ; Dalle, J . P . ; Olive, J . Bull. Soc. Chim. Fr. 1966, 12, 3874. Legendre, M. P. Bull. Soc. Chim. Fr. 1963, 1523. Stevens, M. A. J . Am. Soc. Hort. Sci. 1970, 95, 461. Thomas, A. F . ; Willhalm, B. Tetrahedron Lett. 1967, 50, 5129. El-Tinay, A . H . ; Chichester, C. O. J . Org. Chem. 1979, 35, 2290.

RECEIVED July 7, 1989

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.