Volumetric and Viscometric Studies on Saccharide-Disodium

Aug 22, 2013 - aqueous disodium tetra- borate (borax) solutions have been determined at (288.15 to 318.15) K, by using a vibrating-tube digital densim...
0 downloads 0 Views 357KB Size
Article pubs.acs.org/jced

Volumetric and Viscometric Studies on Saccharide-Disodium Tetraborate (Borax) Interactions in Aqueous Solutions Parampaul K. Banipal,* Vickramjeet Singh, and Tarlok S. Banipal Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India S Supporting Information *

ABSTRACT: The densities, ρ, and viscosities, η, of some mono-, di-, and trisaccharides in (0.05, 0.10, 0.12, and 0.15) mol·kg−1 aqueous disodium tetraborate (borax) solutions have been determined at (288.15 to 318.15) K, by using a vibrating-tube digital densimeter and an Ubbelohde-type capillary viscometer, respectively. From these data, the standard partial molar volumes at infinite dilution, V2° and Jones-Dole viscosity B coefficients have also been evaluated. Their significantly large positive values vary with the size of saccharides, i.e., from mono- to di- to trisaccharides. The results have been discussed in terms of the solute−cosolute interactions occurring in these solutions. more efficient protective agents than trehalose solutions.21 So it would be worthwhile to study the hydration behavior of saccharides in disodium tetraborate solutions. Therefore, in continuation5,22−26 of our work on saccharides in different electrolytic media, we have carried out the volumetric and viscometric measurements for saccharides (solute) in disodium tetraborate decahydrate (cosolute) solutions at various concentrations and temperatures. The results obtained from volumetric and viscometric studies have been discussed and compared with those reported earlier.

1. INTRODUCTION Saccharides being integral parts of biomacromolecules (glycoproteins, glycolipids, nucleic acids, etc.) participate in various biologically important processes such as fertilization, development, pathogenesis, etc.1,2 Saccharides are often used for the storage of biomedical materials.3 Mixed aqueous solutions of sucrose, glucose, and fructose and various additives (salts and ethanol) have been widely used for the preservation of fruits. Some micro-organisms can survive under extreme conditions of temperature, where saccharide−salt solutions play an important role for their survival by affecting the glass-transition temperature and ice formation. Rheological properties of saccharide solutions are employed in various industrial applications such as the control of gelling processes, osmoregulation of tissues and organs in cryoprotection.4−8 Saccharides and polyhydroxy compounds are well-known protein/enzyme stabilizing agents as these increase the thermal denaturation temperature of proteins.9 The micro- and macroscopic studies of sweetener−water interactions are useful to understand sweet taste chemoreception. Particularly, the role of apparent massic volumes has been extensively studied in this regard.10,11 Thermodynamic and transport data characterizing the hydration behavior of saccharides are needed for a better understanding the protein stabilization, taste chemoreception, and antidesiccation mechanisms.12−15 Goldberg and Tewari16 have studied hydrolysis of lactose (milk sugar) and sucrose, catalyzed by enzymes and suggested the direct determination of various thermodynamic parameters. It is well-known that borate forms chemical complexes with polyhydroxy compounds. The addition of disodium tetraborate decahydrate (which hydrolyzes to boric acid and sodium borate) to aqueous sugar and other polyol solutions results in the formation of various complexes.17 Some workers18−20 have investigated the borate esters of various saccharides in aqueous solutions by employing NMR spectroscopy and potentiometry. Aqueous mixtures of trehalose and disodium tetraborate are © XXXX American Chemical Society

2. EXPERIMENTAL SECTION The specifications of chemicals are given in Table 1. All of the chemicals were used as such after drying over anhydrous CaCl2 in a vacuum desiccator for 48 h at room temperature. The vibrating-tube digital densimeter (model DMA 60/602 Anton Paar, Austria) was used to measure the densities of the solutions at atmospheric pressure. The temperature of the water circulating around the densimeter cell was controlled by using an efficient constant temperature bath (Julabo F25/Germany) with stability within ± 0.01 K. The densimeter was calibrated with pure water and dry air. The density measurements of solutions were made relative to pure water. The densities of pure water have been taken from the literature.27 The uncertainty in the experimentally measured densities on an average is 3.7·10−3 kg·m−3. A Ubbelohde-type capillary viscometer was used to measure the viscosities of the solutions. The viscometer was calibrated by measuring the efflux time of pure water from (298.15 to 318.15) K. The efflux time measurements were made by using a digital stopwatch with a resolution of ± 0.01 s. The efflux time was taken as average of at least four flow-time readings. Received: March 9, 2012 Accepted: August 1, 2013

A

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Specifications of the Chemicals Used chemical name D(+)-xylose D(−)-arabinose D(−)-ribose L(−)-sorbose D(−)-fructose D(+)-galactose D(+)-glucose D(+)-mannose D(+)-cellobiose sucrose D(+)-melibiose D(+)-lactose monohydrate D(+)-trehalose dihydrate D(+)-maltose monohydrate D(+)-melezitose D(+)-raffinose pentahydrate disodium tetraborate decahydrate (Na2B4O7·10H2O)

a

mole fraction puritya

source Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Fluka Sigma Chemical Co. Lancaster Sisco Research Laboratories Sisco Research Laboratories Sisco Research Laboratories Sigma Chemical Co. Sisco Research Laboratories Fluka Qualigens

Pvt. Ltd. Pvt. Ltd. Pvt. Ltd. Pvt. Ltd.

0.99 0.99 0.99 ≥0.98 0.99 0.98 ≥0.99 ≥0.99 0.98 0.99 >0.99 >0.99 >0.99 0.95 >0.99 ≥0.99 >0.99

Declared by supplier.

with literature values have been reported earlier.5 No report is available for V°2 data for comparison in the presence of disodium tetraborate. The V2° values of saccharides in disodium tetraborate solutions increase with cosolute concentration and temperature. Standard partial molar volumes of transfer, ΔtV°2 of saccharides from water to aqueous disodium tetraborate solutions have been calculated as follows:

The temperature of the thermostatic water bath was controlled within ± 0.01 K. The measured viscosities have an uncertainty of ± 0.002 mPa·s. All of the solutions were prepared fresh by mass using a Mettler balance (model AB265-S) having a precision of ± 0.01 mg. The solutions were prepared in doubledistilled, deionized, and degassed water.

3. RESULTS AND DISCUSSION The densities, ρ, and viscosities, η ,of various saccharides have been measured in aqueous solutions of disodium tetraborate having molalities, mB = (0.05 and 0.10) mol·kg−1 at 288.15 K and (0.05, 0.10, 0.12, and 0.15) mol·kg−1 at (298.15, 308.15, and 318.15) K. Due to the low solubility of disodium tetraborate in water, the volumetric and viscometric properties of various saccharides in mB = (0.12 and 0.15) mol·kg−1 were not studied at 288.15 K. The densities of saccharides in aqueous disodium tetraborate solutions increase with concentration of solute as well as cosolute but decrease with temperature. Apparent molar volumes, V2,ϕ, of saccharides have been determined at different temperatures as V2, ϕ = [M /ρ] − [(ρ − ρ0 )/(mρρ0 )]

Δt V 2° = V 2°(in aqueous disodium tetraborate solutions) − V 2°(in water)

The variation of ΔtV2° values with mB has been illustrated in Figure 1a−d. The magnitudes of ΔtV°2 values follow the order: monosaccharides; [D(+)-mannose > D(+)-galactose > D(+)glucose > D(−)-fructose > L(−)-sorbose > D(+)-xylose > D(−)arabinose > D(−)-ribose] > disaccharides; [D(+)-trehalose dihydrate > D(+)-maltose monohydrate > D(+)-lactose monohydrate > sucrose > D(+)-cellobiose > D(+)-melibiose] > trisaccharides; [D(+)-raffinose pentahydrate > D(+)-melezitose]. The ΔtV2° values decrease with complexity of saccharides, which indicate that monosaccharides interact stronger with disodium tetraborate as compared to di- and trisaccharides. This may be due to strong complex formation between monosaccharides and disodium tetraborate, and this has been well documented in the literature.18−20 However, the ΔtV°2 values increase in a systematic manner with the complexity of saccharides in the presence of other electrolytes (NaOOCCH3, KCl, MgCl2, and NaCl).5,23−25 The V2° and ΔtV2° values for saccharides in the presence of disodium tetraborate have been compared with those in other cosolutes, which follow the order: Na2B4O7 > Na2SO4 (only disaccharides) > NaCl (at 298.15 K) > NaOOCCH3. It suggests that strong interactions exist among saccharide molecules and B4O72− anions in comparison to SO42−, Cl−, and CH3COO− anions as the cation (Na+) is the same in these electrolytes.5,22,25 Apparent massic volumes, vϕ, of saccharides in water and in aqueous solutions of disodium tetraborate (data not given) have also been calculated at temperatures (288.15, 298.15, 308.15, and 318.15) K from V2,ϕ data as vϕ = V2,ϕ/M. The vϕ values for various saccharides in water (at all concentrations

(1)

where M and m are respectively the molar mass and molality of the solute (saccharide) and ρ and ρ0 are the densities of solution and solvent (disodium tetraborate + water). The densities and V2,ϕ results for saccharides in disodium tetraborate solutions are given in Table 2. The combined uncertainty in the determined V2,ϕ values resulting from the experimentally measured quantities [u(ρ) = 3.7·10−3 kg·m−3, u(m) = 2.7·10−6 mol·kg−1), u(T) = 0.01 K] ranges from (0.138· 10−6 to 0.050·10−6) m3·mol−1 at low (≤ 0.04 mol·kg−1) and high concentration ranges of the saccharides, respectively (level of confidence = 0.95). Infinite dilution standard partial molar volumes, V2°, have been evaluated by least-squares fitting of the following relation to V2,ϕ data as V2, ϕ = V 2° + S Vm

(3)

(2)

The V°2 and the experimental slope, Sv, values for the studied systems are given in Table S1, Supporting Information. The V2° values of saccharides in water and their comparison B

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Densities, ρ, and Apparent Molar Volumes, V2,ϕ, of Some Saccharides in Aqueous Solutions of Disodium Tetraborate as a Function of Molalities of Saccharides and Disodium Tetraborate Over the Temperature Range (288.15 to 318.15) K ρ·10−3

ma mol·kg

−1

kg·m

−3

V2,ϕ·106 −1

m ·mol 3

ρ·10−3

m mol·kg

−1

kg·m

−3

V2,ϕ·106

ρ·10−3

m

−1

m ·mol 3

mol·kg

−1

kg·m

−3

(M = 150.13 g·mol−1)b mB = 0.05 mol·kg−1c T/K = 298.15 T/K = 308.15 0.00000 1.006923 0.00000 1.003768 0.05475 1.008872 113.77 0.05475 1.005640 0.07445 1.009572 113.71 0.07445 1.006311 0.09686 1.010365 113.66 0.09686 1.007074 0.13472 1.011702 113.57 0.13472 1.008360 0.15522 1.012423 113.53 0.15522 1.009054 mB = 0.10 mol·kg−1 0.00000 1.016136 0.00000 1.012828 0.04318 1.017481 117.42 0.04318 1.014111 0.07681 1.018526 117.33 0.07681 1.015108 0.10172 1.019299 117.27 0.10172 1.015845 0.13338 1.020280 117.18 0.13338 1.016781 0.15215 1.020860 117.13 0.15215 1.017336 mB = 0.12 mol·kg−1 0.00000 1.019668 0.00000 1.016334 0.06698 1.021675 118.18 0.06698 1.018209 0.07575 1.021937 118.16 0.07575 1.018455 0.09953 1.022646 118.11 0.09953 1.019119 0.13388 1.023670 118.02 0.13388 1.020077 0.16004 1.024449 117.95 0.16004 1.020805 mB= 0.15 mol·kg−1 0.00000 1.025014 0.00000 1.021572 0.05407 1.026530 119.61 0.05407 1.022951 0.07105 1.027007 119.53 0.07105 1.023384 0.10316 1.027907 119.44 0.10316 1.024201 0.13981 1.028936 119.31 0.13981 1.025130 0.15003 1.029222 119.28 0.15003 1.025388 −1 D(−)-arabinose (M = 150.13 g·mol ) mB = 0.05 mol·kg−1 0.05261 1.008971 110.48 0.05261 1.005725 0.07191 1.009719 110.44 0.07191 1.006442 0.09427 1.010585 110.38 0.09427 1.007269 0.13549 1.012175 110.29 0.13549 1.008792 mB = 0.10 mol·kg−1 0.05048 1.017891 113.88 0.05048 1.014494 0.06912 1.018538 113.82 0.06912 1.015108 0.09103 1.019296 113.77 0.09103 1.015829 0.13208 1.020716 113.65 0.13208 1.017175 mB = 0.12 mol·kg−1 0.05644 1.021563 114.73 0.05644 1.018113 0.07541 1.022198 114.68 0.07541 1.018710 0.10708 1.023254 114.62 0.10708 1.019704 0.15886 1.024975 114.51 0.15886 1.021323 mB = 0.15 mol·kg−1 0.05914 1.026865 116.47 0.05914 1.023297 0.07460 1.027346 116.45 0.07460 1.023745 0.08949 1.027809 116.42 0.08949 1.024178 0.14141 1.029417 116.33 0.14141 1.025677 −1 D(−)-ribose (M = 150.13 g·mol ) mB = 0.05 mol·kg−1 0.04972 1.008812 111.42 0.04972 1.005545 0.06903 1.009543 111.37 0.06903 1.006234 0.09341 1.010467 111.28 0.09341 1.007104 0.12838 1.011786 111.20 0.12838 1.008348

V2,ϕ·106 m ·mol 3

−1

ρ·10−3

m mol·kg

−1

kg·m

−3

V2,ϕ·106 m3·mol−1

D(+)-xylose

T/K = 288.15 0.00000 1.009275 0.05475 1.011303 0.07445 1.012030 0.09686 1.012856 0.13472 1.014248 0.15522 1.015001

112.16 112.12 112.06 111.96 111.90

0.00000 0.04318 0.07681 0.10172 0.13338 0.15215

115.62 115.54 115.48 115.41 115.38

1.018646 1.020062 1.021161 1.021973 1.023003 1.023610

0.05261 0.07191 0.09427 0.13549

1.011414 1.012197 1.013101 1.014764

108.61 108.55 108.50 108.39

0.05048 0.06912 0.09103 0.13208

1.020491 1.021170 1.021968 1.023458

111.96 111.91 111.85 111.74

0.04972 0.06903 0.09341 0.12838

1.011236 1.011995 1.012953 1.014323

109.82 109.77 109.70 109.60

C

115.42 115.37 115.31 115.21 115.16

T/K = 318.15 0.00000 0.999796 0.05475 1.001602 0.07445 1.002250 0.09686 1.002986 0.13472 1.004226 0.15522 1.004895

116.95 116.90 116.84 116.75 116.70

119.11 119.02 118.96 118.87 118.82

0.00000 0.04318 0.07681 0.10172 0.13338 0.15215

1.008736 1.009956 1.010903 1.011602 1.012489 1.013013

120.92 120.84 120.80 120.73 120.69

120.39 120.36 120.30 120.21 120.14

0.00000 0.06698 0.07575 0.09953 0.13388 0.16004

1.012205 1.013957 1.014186 1.014807 1.015702 1.016385

122.58 122.55 122.49 122.40 122.32

122.36 122.31 122.23 122.15 122.13

0.00000 0.05407 0.07105 0.10316 0.13981 0.15003

1.017375 1.018629 1.019023 1.019767 1.020616 1.020855

125.01 124.95 124.87 124.77 124.73

112.43 112.36 112.31 112.20

0.05261 0.07191 0.09427 0.13549

1.001658 1.002338 1.003126 1.004575

114.54 114.51 114.44 114.33

115.87 115.81 115.75 115.65

0.05048 0.06912 0.09103 0.13208

1.010304 1.010882 1.011559 1.012826

118.12 118.07 118.02 117.92

117.00 116.94 116.86 116.74

0.05644 0.07541 0.10708 0.15886

1.013859 1.014413 1.015337 1.016846

119.52 119.48 119.40 119.26

118.81 118.80 118.75 118.67

0.05914 0.07460 0.08949 0.14141

1.018972 1.019389 1.019791 1.021193

121.29 121.24 121.20 121.03

113.89 113.83 113.74 113.64

0.04972 0.06903 0.09341 0.12838

1.001453 1.002095 1.002904 1.004062

116.63 116.57 116.51 116.42

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

114.41 114.35 114.28 114.20

0.05039 0.07032 0.09271 0.11939

1.010360 1.011004 1.011726 1.012585

116.97 116.87 116.79 116.70

115.93 115.87 115.82 115.76

0.04673 0.07432 0.08871 0.11937

1.013611 1.014439 1.014870 1.015785

118.79 118.72 118.69 118.63

117.56 117.50 117.49 117.37

0.04763 0.07189 0.08301 0.12862

1.018715 1.019394 1.019706 1.020978

120.23 120.19 120.16 120.08

131.72 131.66 131.60 131.56 131.51 131.43

0.05336 0.07650 0.09199 0.10844 0.11823 0.14686

1.002255 1.003317 1.004027 1.004779 1.005224 1.006531

133.77 133.68 133.62 133.56 133.54 133.42

134.52 134.45 134.42 134.38 134.31 134.23

0.05379 0.07988 0.08749 0.09764 0.12268 0.14915

1.011029 1.012134 1.012457 1.012886 1.013937 1.015051

136.40 136.34 136.30 136.27 136.23 136.14

136.85 136.77 136.72 136.66 136.62 136.53

0.05209 0.07355 0.08817 0.10955 0.12544 0.15417

1.014288 1.015141 1.015720 1.016563 1.017192 1.018318

138.67 138.62 138.60 138.56 138.50 138.45

139.01 138.93 138.88 138.83 138.74 138.68

0.05271 0.08194 0.08887 0.10370 0.12448 0.14236

1.019320 1.020392 1.020645 1.021189 1.021948 1.022599

141.16 141.09 141.08 141.02 140.96 140.91

134.28 134.23 134.18 134.15 134.08 134.01

0.05105 0.06829 0.08972 0.09913 0.11910 0.14091

1.002010 1.002755 1.003677 1.004083 1.004941 1.005876

136.51 136.45 136.39 136.35 136.28 136.20

138.40 138.33 138.28 138.24 138.19 138.12

0.05063 0.07140 0.08858 0.10285 0.11292 0.13764

1.010675 1.011465 1.012116 1.012656 1.013036 1.013966

140.69 140.66 140.63 140.60 140.58 140.53

−1

0.05039 0.07032 0.09271 0.11939

1.020574 1.021333 1.022185 1.023196

110.30 110.27 110.21 110.16

0.05039 0.07032 0.09271 0.11939 0.04673 0.07432 0.08871 0.11937 0.04763 0.07189 0.08301 0.12862

0.05336 0.07650 0.09199 0.10844 0.11823 0.14686

1.012019 1.013202 1.013992 1.014827 1.015326 1.016777

127.67 127.61 127.57 127.54 127.50 127.41

0.05336 0.07650 0.09199 0.10844 0.11823 0.14686

0.05379 0.07988 0.08749 0.09764 0.12268 0.14915

1.021243 1.022496 1.022861 1.023347 1.024541 1.025801

130.00 129.92 129.90 129.86 129.80 129.72

0.05379 0.07988 0.08749 0.09764 0.12268 0.14915 0.05209 0.07355 0.08817 0.10955 0.12544 0.15417 0.05271 0.08194 0.08887 0.10370 0.12448 0.14236

0.05105 0.06829 0.08972 0.09913 0.11910 0.14091

1.011791 1.012636 1.013682 1.014140 1.015111 1.016165

129.80 129.76 129.72 129.70 129.65 129.62

0.05105 0.06829 0.08972 0.09913 0.11910 0.14091

0.05063 0.07140 0.08858 0.10285 0.11292 0.13764

1.020896 1.021814 1.022570 1.023197 1.023638 1.024718

133.74 133.69 133.66 133.62 133.60 133.55

0.05063 0.07140 0.08858 0.10285 0.11292 0.13764

mB = 0.10 mol·kg 112.16 0.05039 1.014566 112.14 0.07032 1.015252 112.10 0.09271 1.016022 112.07 0.11939 1.016939 mB = 0.12 mol·kg−1 1.021303 113.40 0.04673 1.017860 1.022266 113.32 0.07432 1.018758 1.022767 113.29 0.08871 1.019227 1.023832 113.22 0.11937 1.020220 mB = 0.15 mol·kg−1 1.026586 114.88 0.04763 1.023025 1.027387 114.78 0.07189 1.023763 1.027755 114.73 0.08301 1.024100 1.029257 114.59 0.12862 1.025483 −1 L(−)-sorbose (M = 180.16 g·mol ) mB = 0.05 mol·kg−1 1.009560 129.84 0.05336 1.006318 1.010698 129.76 0.07650 1.007417 1.011459 129.70 0.09199 1.008153 1.012264 129.66 0.10844 1.008930 1.012744 129.61 0.11823 1.009395 1.014141 129.52 0.14686 1.010743 mB = 0.10 mol·kg−1 1.018614 132.36 0.05379 1.015203 1.019811 132.26 0.07988 1.016348 1.020160 132.23 0.08749 1.016682 1.020625 132.19 0.09764 1.017128 1.021767 132.11 0.12268 1.018221 1.022975 132.00 0.14915 1.019373 mB = 0.12 mol·kg−1 1.021927 134.68 0.05209 1.018493 1.022853 134.62 0.07355 1.019379 1.023484 134.55 0.08817 1.019982 1.024401 134.51 0.10955 1.020860 1.025079 134.48 0.12544 1.021510 1.026306 134.40 0.15417 1.022685 mB = 0.15 mol·kg−1 1.027164 136.65 0.05271 1.023611 1.028350 136.57 0.08194 1.024736 1.028630 136.55 0.08887 1.025004 1.029230 136.51 0.10370 1.025574 1.030069 136.44 0.12448 1.026374 1.030788 136.39 0.14236 1.027059 −1 D(−)-fructose (M = 180.16 g·mol ) mB = 0.05 mol·kg−1 1.009333 132.04 0.05105 1.006077 1.010143 131.99 0.06829 1.006853 1.011147 131.93 0.08972 1.007814 1.011588 131.90 0.09913 1.008236 1.012520 131.84 0.11910 1.009130 1.013534 131.78 0.14091 1.010104 mB = 0.10 mol·kg−1 1.018279 136.02 0.05063 1.014864 1.019155 135.94 0.07140 1.015696 1.019877 135.90 0.08858 1.016382 1.020475 135.86 0.10285 1.016951 1.020897 135.83 0.11292 1.017354 1.021928 135.77 0.13764 1.018336 1.017977 1.018701 1.019513 1.020475

D

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

140.73 140.68 140.63 140.62 140.57 140.53

0.05283 0.07080 0.09041 0.09896 0.11877 0.13658

1.014078 1.014713 1.015405 1.015706 1.016403 1.017029

143.12 143.06 142.99 142.96 142.90 142.83

144.54 144.51 144.47 144.45 144.43 144.40

0.05403 0.07040 0.09005 0.10446 0.12123 0.13818

1.019037 1.019539 1.020141 1.020582 1.021096 1.021616

147.12 147.07 147.01 146.96 146.89 146.82

134.30 134.25 134.16 134.10 134.02 133.92

0.06148 0.07419 0.09175 0.10701 0.12237 0.14538

1.002466 1.003018 1.003779 1.004441 1.005108 1.006107

136.39 136.31 136.22 136.14 136.05 135.91

138.36 138.30 138.25 138.19 138.14 138.09

0.05849 0.07271 0.09024 0.10562 0.12217 0.14322

1.010975 1.011517 1.012182 1.012764 1.013389 1.014181

140.67 140.62 140.59 140.56 140.52 140.48

140.88 140.82 140.78 140.75 140.68 140.62

0.05343 0.07150 0.09013 0.10293 0.12015 0.14123

1.014071 1.014700 1.015345 1.015787 1.016381 1.017106

143.64 143.58 143.54 143.51 143.47 143.42

144.40 144.36 144.31 144.28 144.25 144.19

0.05246 0.07233 0.09055 0.10198 0.11745 0.14391

1.018986 1.019593 1.020148 1.020495 1.020967 1.021767

147.18 147.14 147.10 147.07 147.02 146.96

136.11 136.05 136.00 135.98 135.91 135.84

0.04930 0.07255 0.08894 0.09837 0.12051 0.14190

1.001865 1.002836 1.003519 1.003911 1.004829 1.005713

137.93 137.86 137.81 137.78 137.72 137.67

139.84 139.78 139.74 139.71 139.67 139.61

0.04859 0.07275 0.08623 0.09968 0.11929 0.14181

1.010518 1.011400 1.011890 1.012378 1.013087 1.013899

142.31 142.24 142.21 142.18 142.14 142.09

−1

0.05283 0.07080 0.09041 0.09896 0.11877 0.13658 0.05403 0.07040 0.09005 0.10446 0.12123 0.13818

0.06148 0.07419 0.09175 0.10701 0.12237 0.14538

1.012278 1.012899 1.013754 1.014497 1.015245 1.016366

130.17 130.08 130.00 129.93 129.84 129.71

0.06148 0.07419 0.09175 0.10701 0.12237 0.14538

0.05849 0.07271 0.09024 0.10562 0.12217 0.14322

1.021227 1.021853 1.022621 1.023295 1.024018 1.024936

134.00 133.93 133.89 133.83 133.78 133.71

0.05849 0.07271 0.09024 0.10562 0.12217 0.14322 0.05343 0.07150 0.09013 0.10293 0.12015 0.14123 0.05246 0.07233 0.09055 0.10198 0.11745 0.14391

0.04930 0.07255 0.08894 0.09837 0.12051 0.14190

1.011618 1.012719 1.013491 1.013935 1.014976 1.015978

131.54 131.45 131.42 131.39 131.32 131.26

0.04930 0.07255 0.08894 0.09837 0.12051 0.14190

0.04859 0.07275 0.08623 0.09968 0.11929 0.14181

1.020752 1.021792 1.022371 1.022948 1.023787 1.024748

134.81 134.77 134.74 134.70 134.65 134.59

0.04859 0.07275 0.08623 0.09968 0.11929 0.14181

mB = 0.12 mol·kg 138.02 0.05283 1.018313 137.97 0.07080 1.018983 137.89 0.09041 1.019712 137.87 0.09896 1.020028 137.81 0.11877 1.020761 137.76 0.13658 1.021417 mB = 0.15 mol·kg−1 1.026932 141.71 0.05403 1.023352 1.027510 141.67 0.07040 1.023888 1.028202 141.63 0.09005 1.024529 1.028707 141.60 0.10446 1.024997 1.029295 141.56 0.12123 1.025540 1.029886 141.53 0.13818 1.026088 −1 D(+)-galactose (M = 180.16 g·mol ) mB = 0.05 mol·kg−1 1.009805 132.31 0.06148 1.006544 1.010399 132.25 0.07419 1.007116 1.011220 132.17 0.09175 1.007907 1.011928 132.13 0.10701 1.008592 1.012643 132.07 0.12237 1.009283 1.013711 131.98 0.14538 1.010314 mB = 0.10 mol·kg−1 1.018598 136.20 0.05849 1.015180 1.019194 136.16 0.07271 1.015750 1.019927 136.10 0.09024 1.016451 1.020568 136.07 0.10562 1.017065 1.021255 136.03 0.12217 1.017724 1.022129 135.97 0.14322 1.018559 mB = 0.12 mol·kg−1 1.021791 138.18 0.05343 1.018327 1.022504 138.15 0.07150 1.018998 1.023238 138.11 0.09013 1.019687 1.023741 138.07 0.10293 1.020160 1.024418 138.02 0.12015 1.020798 1.025244 137.96 0.14123 1.021574 mB = 0.15 mol·kg−1 1.026886 141.54 0.05246 1.023308 1.027591 141.50 0.07233 1.023962 1.028235 141.46 0.09055 1.024560 1.028638 141.44 0.10198 1.024935 1.029181 141.42 0.11745 1.025440 1.030110 141.36 0.14391 1.026303 −1 D(+)-glucose (M = 180.16 g·mol ) mB = 0.05 mol·kg−1 1.009151 134.05 0.04930 1.005908 1.010197 133.98 0.07255 1.006912 1.010932 133.93 0.08894 1.007618 1.011355 133.90 0.09837 1.008023 1.012344 133.83 0.12051 1.008973 1.013299 133.76 0.14190 1.009889 mB = 0.10 mol·kg−1 1.018124 137.41 0.04859 1.014711 1.019108 137.33 0.07275 1.015642 1.019656 137.29 0.08623 1.016161 1.020200 137.26 0.09968 1.016677 1.020995 137.19 0.11929 1.017426 1.021901 137.15 0.14181 1.018285 1.021776 1.022490 1.023269 1.023607 1.024390 1.025092

E

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

142.06 142.00 141.95 141.90 141.85 141.79

0.05242 0.06847 0.08824 0.10262 0.11964 0.14075

1.013995 1.014541 1.015213 1.015701 1.016277 1.016992

144.40 144.36 144.29 144.24 144.19 144.11

143.50 143.46 143.38 143.36 143.29 143.20

0.05042 0.07016 0.09209 0.09977 0.12046 0.14831

1.018991 1.019620 1.020318 1.020561 1.021214 1.022093

145.89 145.85 145.79 145.77 145.74 145.67

134.76 134.73 134.70 134.68 134.65 134.59

0.04780 0.07084 0.08951 0.09907 0.11374 0.15089

1.001852 1.002837 1.003631 1.004038 1.004659 1.006227

136.89 136.84 136.81 136.78 136.76 136.68

139.33 139.28 139.26 139.23 139.20 139.16

0.04996 0.06937 0.08803 0.09976 0.11494 0.13848

1.010556 1.011259 1.011932 1.012354 1.012899 1.013739

142.54 142.50 142.47 142.45 142.42 142.39

142.21 142.17 142.11 142.05 141.99 141.92

0.05526 0.07008 0.08713 0.09879 0.11657 0.13515

1.014018 1.014502 1.015058 1.015437 1.016016 1.016620

145.70 145.67 145.62 145.59 145.53 145.47

145.85 145.79 145.74 145.72 145.64 145.57

0.05035 0.06945 0.08917 0.09827 0.11934 0.14164

1.018779 1.019311 1.019858 1.020110 1.020692 1.021309

149.94 149.87 149.81 149.79 149.74 149.67

218.95 218.90 218.87 218.80 218.77

0.05071 0.07347 0.09266 0.12318 0.13533

1.005863 1.008546 1.010788 1.014318 1.015711

221.34 221.29 221.26 221.22 221.20

219.57 219.51 219.44 219.39 219.34

0.04603 0.07141 0.09520 0.11779 0.13533

1.014184 1.017146 1.019897 1.022485 1.024482

221.82 221.75 221.67 221.60 221.53

220.34 220.30

0.04795 0.06805

1.017819 1.020140

222.66 222.62

−1

0.05242 0.06847 0.08824 0.10262 0.11964 0.14075 0.05042 0.07016 0.09209 0.09977 0.12046 0.14831

0.04780 0.07084 0.08951 0.09907 0.11374 0.15089

1.011582 1.012688 1.013581 1.014037 1.014736 1.016502

130.82 130.76 130.72 130.70 130.66 130.55

0.04780 0.07084 0.08951 0.09907 0.11374 0.15089

0.04996 0.06937 0.08803 0.09976 0.11494 0.13848

1.020858 1.021712 1.022533 1.023046 1.023712 1.024736

133.90 133.86 133.80 133.78 133.72 133.68

0.04996 0.06937 0.08803 0.09976 0.11494 0.13848 0.05526 0.07008 0.08713 0.09879 0.11657 0.13515 0.05035 0.06945 0.08917 0.09827 0.11934 0.14164

0.05071 0.07347 0.09266 0.12318 0.13533

1.015613 1.018416 1.020761 1.024455 1.025914

215.10 215.06 215.02 214.94 214.91

0.05071 0.07347 0.09266 0.12318 0.13533

0.04603 0.07141 0.09520 0.11779 0.13533

1.024286 1.027351 1.030197 1.032876 1.034939

216.75 216.70 216.64 216.58 216.54

0.04603 0.07141 0.09520 0.11779 0.13533 0.04795 0.06805

mB = 0.12 mol·kg 139.31 0.05242 1.018226 139.27 0.06847 1.018804 139.21 0.08824 1.019512 139.16 0.10262 1.020028 139.11 0.11964 1.020636 139.05 0.14075 1.021389 mB = 0.15 mol·kg−1 1.026863 140.61 0.05042 1.023288 1.027584 140.55 0.07016 1.023956 1.028383 140.48 0.09209 1.024699 1.028662 140.46 0.09977 1.024958 1.029415 140.39 0.12046 1.025657 1.030423 140.31 0.14831 1.026595 −1 D(+)-mannose (M = 180.16 g·mol ) mB = 0.05 mol·kg−1 1.009151 132.66 0.04780 1.005908 1.010218 132.61 0.07084 1.006932 1.011079 132.58 0.08951 1.007759 1.011518 132.57 0.09907 1.008181 1.012191 132.55 0.11374 1.008828 1.013885 132.50 0.15089 1.010457 mB = 0.10 mol·kg−1 1.018225 136.52 0.04996 1.014790 1.019031 136.49 0.06937 1.015548 1.019804 136.45 0.08803 1.016273 1.020288 136.43 0.09976 1.016728 1.020916 136.38 0.11494 1.017316 1.021885 136.32 0.13848 1.018223 mB = 0.12 mol·kg−1 1.021824 138.87 0.05526 1.018319 1.022400 138.82 0.07008 1.018849 1.023060 138.78 0.08713 1.019459 1.023511 138.75 0.09879 1.019877 1.024197 138.70 0.11657 1.020511 1.024911 138.66 0.13515 1.021174 mB = 0.15 mol·kg−1 1.026785 142.04 0.05035 1.023163 1.027455 141.97 0.06945 1.023765 1.028145 141.91 0.08917 1.024384 1.028465 141.86 0.09827 1.024669 1.029201 141.79 0.11934 1.025331 1.029979 141.71 0.14164 1.026029 −1 D(+)-cellobiose (M = 342.30 g·mol ) mB = 0.05 mol·kg−1 1.013178 216.94 0.05071 1.009936 1.015945 216.89 0.07347 1.012664 1.018258 216.85 0.09266 1.014944 1.021903 216.78 0.12318 1.018537 1.023342 216.75 0.13533 1.019955 mB = 0.10 mol·kg−1 1.021740 217.75 0.04603 1.018362 1.024786 217.70 0.07141 1.021370 1.027616 217.62 0.09520 1.024163 1.030278 217.56 0.11779 1.026790 1.032328 217.52 0.13533 1.028815 mB = 0.12 mol·kg−1 1.025451 218.46 0.04795 1.022041 1.027843 218.40 0.06805 1.024400 1.021690 1.022306 1.023064 1.023614 1.024264 1.025068

F

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

220.27 220.23 220.20

0.09196 0.11898 0.14417

1.022876 1.025938 1.028760

222.57 222.50 222.46

221.87 221.81 221.74 221.66 221.51

0.05105 0.07088 0.09046 0.10437 0.14980

1.023212 1.025447 1.027638 1.029185 1.034175

224.70 224.65 224.58 224.52 224.40

219.19 219.16 219.14 219.13 219.10 219.08

0.04932 0.07310 0.08905 0.09766 0.12226 0.13598

1.005690 1.008489 1.010351 1.011352 1.014191 1.015764

221.51 221.48 221.45 221.43 221.39 221.36

221.88 221.85 221.80 221.78 221.75 221.70

0.05068 0.06925 0.08942 0.09979 0.11842 0.14416

1.014580 1.016690 1.018964 1.020126 1.022200 1.025043

224.71 224.69 224.65 224.63 224.60 224.54

222.85 222.79 222.75 222.72 222.69 222.66

0.04741 0.06868 0.08981 0.10319 0.12109 0.13356

1.017594 1.019978 1.022323 1.023799 1.025760 1.027117

226.03 225.97 225.95 225.92 225.89 225.87

224.29 224.26 224.22 224.21 224.17 224.15

0.05154 0.07145 0.08962 0.09919 0.11968 0.13506

1.023118 1.025304 1.027282 1.028318 1.030523 1.032164

227.52 227.47 227.44 227.42 227.38 227.36

218.04 217.94 217.82 217.72 217.61

0.04901 0.07096 0.09712 0.12158 0.14788

1.005730 1.008354 1.011454 1.014327 1.017389

219.94 219.84 219.72 219.61 219.49

218.54 218.46 218.37 218.28 218.20

0.04769 0.07182 0.09527 0.12207 0.14486

1.014437 1.017281 1.020022 1.023119 1.025728

220.61 220.54 220.45 220.40 220.35

219.22 219.17 219.14 219.09 219.03

0.04992 0.07205 0.09607 0.11942 0.15814

1.018126 1.020711 1.023493 1.026168 1.030551

221.12 221.09 221.03 221.00 220.94

−1

0.09196 0.11898 0.14417 0.05105 0.07088 0.09046 0.10437 0.14980

0.04932 0.07310 0.08905 0.09766 0.12226 0.13598

1.015408 1.018322 1.020261 1.021303 1.024261 1.025899

215.77 215.72 215.69 215.68 215.62 215.59

0.04932 0.07310 0.08905 0.09766 0.12226 0.13598

0.05068 0.06925 0.08942 0.09979 0.11842 0.14416

1.024846 1.027087 1.029502 1.030737 1.032943 1.035964

216.82 216.77 216.72 216.69 216.64 216.58

0.05068 0.06925 0.08942 0.09979 0.11842 0.14416 0.04741 0.06868 0.08981 0.10319 0.12109 0.13356 0.05154 0.07145 0.08962 0.09919 0.11968 0.13506

0.04901 0.07096 0.09712 0.12158 0.14788

1.015435 1.018157 1.021372 1.024349 1.027520

214.46 214.39 214.31 214.24 214.16

0.04901 0.07096 0.09712 0.12158 0.14788

0.04769 0.07182 0.09527 0.12207 0.14486

1.024565 1.027517 1.030359 1.033574 1.036281

215.17 215.13 215.08 215.03 214.99

0.04769 0.07182 0.09527 0.12207 0.14486 0.04992 0.07205 0.09607 0.11942 0.15814

mB = 0.12 mol·kg 218.33 0.09196 1.027180 218.23 0.11898 1.030289 218.17 0.14417 1.033155 mB = 0.15 mol·kg−1 1.031065 219.83 0.05105 1.027534 1.033383 219.77 0.07088 1.029818 1.035654 219.72 0.09046 1.032056 1.037256 219.68 0.10437 1.033640 1.042433 219.54 0.14980 1.038743 sucrose (M = 342.30 g·mol−1) mB = 0.05 mol·kg−1 1.012991 217.29 0.04932 1.009757 1.015874 217.24 0.07310 1.012601 1.017793 217.21 0.08905 1.014493 1.018824 217.19 0.09766 1.015509 1.021748 217.15 0.12226 1.018393 1.023367 217.13 0.13598 1.019989 mB = 0.10 mol·kg−1 1.022215 219.38 0.05068 1.018795 1.024410 219.36 0.06925 1.020950 1.026777 219.32 0.08942 1.023274 1.027985 219.31 0.09979 1.024461 1.030145 219.27 0.11842 1.026580 1.033103 219.22 0.14416 1.029482 mB = 0.12 mol·kg−1 1.025303 220.16 0.04741 1.021855 1.027795 220.13 0.06868 1.024298 1.030248 220.11 0.08981 1.026703 1.031791 220.09 0.10319 1.028216 1.033842 220.06 0.12109 1.030226 1.035262 220.04 0.13356 1.031618 mB = 0.15 mol·kg−1 1.031036 221.44 0.05154 1.027461 1.033329 221.39 0.07145 1.029702 1.035406 221.34 0.08962 1.031731 1.036493 221.32 0.09919 1.032793 1.038808 221.27 0.11968 1.035054 1.040532 221.24 0.13506 1.036737 −1 D(+)-melibiose (M = 342.30 g·mol ) mB = 0.05 mol·kg−1 1.013011 216.12 0.04901 1.009777 1.015701 216.05 0.07096 1.012433 1.018880 215.95 0.09712 1.015572 1.021830 215.82 0.12158 1.018480 1.024969 215.72 0.14788 1.021580 mB = 0.10 mol·kg−1 1.021984 216.86 0.04769 1.018609 1.024902 216.78 0.07182 1.021495 1.027714 216.70 0.09527 1.024275 1.030896 216.61 0.12207 1.027421 1.033579 216.53 0.14486 1.030073 mB = 0.12 mol·kg−1 1.025743 217.36 0.04992 1.022330 1.028397 217.31 0.07205 1.024950 1.031251 217.27 0.09607 1.027765 1.033998 217.23 0.11942 1.030478 1.038496 217.18 0.15814 1.034917 1.030665 1.033825 1.036738

G

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

220.78 220.72 220.68 220.65 220.61

0.05283 0.07395 0.09672 0.11848 0.14237

1.023514 1.025933 1.028516 1.030962 1.033623

222.84 222.77 222.73 222.69 222.64

236.99 236.96 236.88 236.84 236.78 236.74

0.05095 0.06405 0.08995 0.09768 0.11638 0.12963

1.005894 1.007439 1.010470 1.011367 1.013527 1.015046

239.19 239.18 239.12 239.11 239.07 239.05

241.67 241.63 241.60 241.58 241.54 241.51

0.04877 0.07043 0.08904 0.09851 0.11955 0.13621

1.014285 1.016711 1.018776 1.019821 1.022125 1.023936

244.03 243.98 243.95 243.92 243.89 243.85

242.51 242.48 242.44 242.42 242.37 242.33

0.05020 0.06912 0.08902 0.09936 0.12243 0.13914

1.017833 1.019920 1.022096 1.023220 1.025705 1.027489

245.18 245.15 245.12 245.10 245.07 245.05

243.53 243.48 243.43 243.41 243.35 243.31

0.05083 0.07017 0.08643 0.09869 0.11863 0.13646

1.022981 1.025080 1.026833 1.028145 1.030264 1.032144

246.25 246.21 246.14 246.12 246.07 246.02

256.13 256.08 256.03 255.99 255.94

0.05089 0.06831 0.09165 0.11305 0.13225

1.005823 1.007854 1.010549 1.012994 1.015169

258.37 258.31 258.25 258.21 258.15

259.81 259.77 259.73 259.62 259.55

0.05064 0.07009 0.08463 0.12719 0.14541

1.014468 1.016632 1.018237 1.022870 1.024826

262.32 262.29 262.25 262.17 262.13

261.10 261.07 261.04 260.98 260.94

0.04931 0.07222 0.09120 0.12353 0.14541

1.017707 1.020218 1.022278 1.025744 1.028060

263.43 263.39 263.35 263.27 263.22

262.31 262.26 262.24 262.22

0.04619 0.06413 0.08185 0.09443

1.022528 1.024498 1.026427 1.027788

262.75 262.72 262.68 262.64

−1

0.05283 0.07395 0.09672 0.11848 0.14237

0.05095 0.06405 0.08995 0.09768 0.11638 0.12963

1.015637 1.017251 1.020414 1.021352 1.023607 1.025193

232.95 232.91 232.86 232.84 232.80 232.78

0.05095 0.06405 0.08995 0.09768 0.11638 0.12963

0.04877 0.07043 0.08904 0.09851 0.11955 0.13621

1.024482 1.027035 1.029208 1.030307 1.032734 1.034641

237.03 236.97 236.94 236.92 236.87 236.83

0.04877 0.07043 0.08904 0.09851 0.11955 0.13621 0.05020 0.06912 0.08902 0.09936 0.12243 0.13914 0.05083 0.07017 0.08643 0.09869 0.11863 0.13646

0.05089 0.06831 0.09165 0.11305 0.13225

1.015564 1.017686 1.020503 1.023064 1.025341

251.96 251.88 251.78 251.67 251.59

0.05089 0.06831 0.09165 0.11305 0.13225

0.05064 0.07009 0.08463 0.12719 0.14541

1.024667 1.026940 1.028625 1.033489 1.035541

255.31 255.29 255.27 255.22 255.20

0.05064 0.07009 0.08463 0.12719 0.14541 0.04931 0.07222 0.09120 0.12353 0.14541 0.04619 0.06413 0.08185 0.09443

mB = 0.15 mol·kg 1.031323 218.94 0.05283 1.027799 1.033808 218.89 0.07395 1.030252 1.036463 218.84 0.09672 1.032872 1.038978 218.79 0.11848 1.035352 1.041717 218.72 0.14237 1.038050 −1 D(+)-lactose monohydrate (M = 360.31 g·mol ) −1 mB = 0.05 mol·kg 1.013193 234.99 0.05095 1.009954 1.014783 234.96 0.06405 1.011523 1.017899 234.92 0.08995 1.014600 1.018822 234.91 0.09768 1.015514 1.021044 234.87 0.11638 1.017709 1.022606 234.85 0.12963 1.019254 mB = 0.10 mol·kg−1 1.021874 239.29 0.04877 1.018468 1.024382 239.25 0.07043 1.020933 1.026518 239.22 0.08904 1.023032 1.027597 239.21 0.09851 1.024093 1.029981 239.17 0.11955 1.026436 1.031853 239.14 0.13621 1.028275 mB = 0.12 mol·kg−1 1.025498 240.29 0.05020 1.022071 1.027661 240.26 0.06912 1.024199 1.029916 240.22 0.08902 1.026419 1.031080 240.20 0.09936 1.027564 1.033658 240.16 0.12243 1.030101 1.035509 240.13 0.13914 1.031924 mB = 0.15 mol·kg−1 1.030821 241.41 0.05083 1.027291 1.032997 241.36 0.07017 1.029433 1.034811 241.32 0.08643 1.031221 1.036170 241.30 0.09869 1.032559 1.038366 241.25 0.11863 1.034722 1.040313 241.21 0.13646 1.036639 −1 D(+)-trehalose dihydrate (M = 378.33 g·mol ) mB = 0.05 mol·kg−1 1.013130 253.87 0.05089 1.009881 1.015222 253.81 0.06831 1.011941 1.018000 253.73 0.09165 1.014673 1.020524 253.64 0.11305 1.017152 1.022767 253.58 0.13225 1.019357 mB = 0.10 mol·kg−1 1.022053 257.66 0.05064 1.018658 1.024287 257.63 0.07009 1.020860 1.025944 257.59 0.08463 1.022493 1.030727 257.52 0.12719 1.027210 1.032745 257.49 0.14541 1.029205 mB = 0.12 mol·kg−1 1.025352 258.73 0.04931 1.021922 1.027946 258.69 0.07222 1.024472 1.030074 258.65 0.09120 1.026563 1.033655 258.58 0.12353 1.030081 1.036049 258.53 0.14541 1.032432 mB = 0.15 mol·kg−1 1.030253 259.81 0.04619 1.026716 1.032257 259.76 0.06413 1.028683 1.034219 259.73 0.08185 1.030608 1.035603 259.68 0.09443 1.031964 H

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

262.14

0.13766

1.032403

262.52

238.93 238.90 238.85 238.83 238.79 238.74

0.05340 0.07033 0.09080 0.09804 0.11800 0.13538

1.006066 1.008024 1.010372 1.011198 1.013460 1.015413

241.41 241.36 241.31 241.28 241.24 241.21

243.57 243.49 243.41 243.38 243.30 243.24

0.05109 0.07381 0.08459 0.09930 0.12242 0.13933

1.014454 1.016957 1.018137 1.019737 1.022229 1.024037

245.81 245.73 245.68 245.64 245.59 245.54

244.76 244.70 244.61 244.58 244.53 244.47

0.04810 0.06942 0.08750 0.10003 0.12041 0.13678

1.017510 1.019826 1.021775 1.023116 1.025283 1.027009

247.02 246.96 246.88 246.84 246.77 246.72

246.26 246.19 246.11 246.08 246.03 245.96

0.05020 0.06916 0.09084 0.09989 0.11944 0.14214

1.022768 1.024772 1.027044 1.027987 1.030007 1.032331

249.04 249.01 248.96 248.92 248.89 248.84

325.42 325.38 325.29 325.22

0.04796 0.06430 0.09428 0.11819

1.008120 1.010901 1.015930 1.019877

328.22 328.16 328.09 328.02

327.31 327.26 327.21 327.14

0.04562 0.07167 0.09350 0.11920

1.016503 1.020838 1.024419 1.028572

330.25 330.20 330.14 330.08

327.94 327.90 327.84 327.78

0.05425 0.06854 0.08986 0.12364

1.021336 1.023690 1.027164 1.032572

331.13 331.09 331.03 330.96

329.54 329.50 329.44 329.39

0.05362 0.07468 0.10156 0.12568

1.026291 1.029711 1.034009 1.037807

332.30 332.24 332.19 332.13

403.03 403.00 402.96 402.92 402.86

0.05305 0.06903 0.09039 0.11482 0.14231

1.009620 1.012501 1.016296 1.020563 1.025271

405.41 405.37 405.34 405.29 405.24

−1

0.13766

0.05340 0.07033 0.09080 0.09804 0.11800 0.13538

1.015872 1.017933 1.020406 1.021277 1.023660 1.025720

234.19 234.14 234.07 234.04 233.99 233.94

0.05340 0.07033 0.09080 0.09804 0.11800 0.13538

0.05109 0.07381 0.08459 0.09930 0.12242 0.13933

1.024636 1.027256 1.028492 1.030167 1.032776 1.034668

239.32 239.27 239.23 239.20 239.16 239.13

0.05109 0.07381 0.08459 0.09930 0.12242 0.13933 0.04810 0.06942 0.08750 0.10003 0.12041 0.13678 0.05020 0.06916 0.09084 0.09989 0.11944 0.14214

0.04796 0.06430 0.09428 0.11819

1.017876 1.020748 1.025944 1.030021

321.05 321.03 320.97 320.93

0.04796 0.06430 0.09428 0.11819

0.04562 0.07167 0.09350 0.11920

1.026681 1.031166 1.034869 1.039163

322.96 322.92 322.89 322.86

0.04562 0.07167 0.09350 0.11920 0.05425 0.06854 0.08986 0.12364 0.05362 0.07468 0.10156 0.12568

0.05305 0.06903 0.09039 0.11482 0.14231

1.019405 1.022380 1.026302 1.030712 1.035582

397.62 397.53 397.44 397.34 397.24

0.05305 0.06903 0.09039 0.11482 0.14231

mB = 0.15 mol·kg 1.040294 259.58 0.13766 1.036564 −1 D(+)-maltose monohydrate (M = 360.31 g·mol ) −1 mB = 0.05 mol·kg 1.013418 236.35 0.05340 1.010144 1.015447 236.29 0.07033 1.012134 1.017883 236.21 0.09080 1.014522 1.018739 236.19 0.09804 1.015362 1.021088 236.11 0.11800 1.017662 1.023119 236.04 0.13538 1.019651 mB = 0.10 mol·kg−1 1.022032 241.42 0.05109 1.018634 1.024613 241.34 0.07381 1.021176 1.025828 241.32 0.08459 1.022377 1.027478 241.27 0.09930 1.024001 1.030049 241.22 0.12242 1.026536 1.031915 241.16 0.13933 1.028375 mB = 0.12 mol·kg−1 1.025143 242.58 0.04810 1.021723 1.027534 242.51 0.06942 1.024075 1.029545 242.44 0.08750 1.026056 1.030928 242.42 0.10003 1.027418 1.033165 242.34 0.12041 1.029617 1.034952 242.26 0.13678 1.031371 mB = 0.15 mol·kg−1 1.030635 243.61 0.05020 1.027079 1.032727 243.54 0.06916 1.029128 1.035100 243.44 0.09084 1.031451 1.036086 243.39 0.09989 1.032415 1.038198 243.33 0.11944 1.034481 1.040631 243.24 0.14214 1.036860 −1 D(+)-melezitose (M = 504.48 g·mol ) −1 mB = 0.05 mol·kg 1.015443 323.06 0.04796 1.012197 1.018288 323.04 0.06430 1.015012 1.023432 323.01 0.09428 1.020107 1.027467 322.98 0.11819 1.024105 mB = 0.10 mol·kg−1 1.024101 324.83 0.04562 1.020701 1.028549 324.76 0.07167 1.025096 1.032224 324.69 0.09350 1.028725 1.036487 324.62 0.11920 1.032937 mB = 0.12 mol·kg−1 1.029045 325.51 0.05425 1.025605 1.031462 325.48 0.06854 1.027995 1.035028 325.44 0.08986 1.031522 1.040586 325.35 0.12364 1.037014 mB = 0.15 mol·kg−1 1.034131 327.42 0.05362 1.030602 1.037627 327.39 0.07468 1.034065 1.042023 327.33 0.10156 1.038419 1.045907 327.27 0.12568 1.042265 −1 D(+)-raffinose pentahydrate (M = 594.53 g·mol ) −1 mB = 0.05 mol·kg 1.016939 400.25 0.05305 1.013672 1.019878 400.19 0.06903 1.016576 1.023751 400.14 0.09039 1.020403 1.028110 400.03 0.11482 1.024704 1.032923 399.92 0.14231 1.029452 I

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ma

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

m

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

ρ·10−3

V2,ϕ·106

m

ρ·10−3

V2,ϕ·106

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.022210 1.025339 1.028967 1.033456 1.040518

406.71 406.64 406.58 406.47 406.35

0.05181 0.06956 0.09045 0.11674 0.15921

1.018019 1.021112 1.024699 1.029131 1.036106

409.53 409.51 409.46 409.41 409.33

1.025467 1.029274 1.032275 1.035499 1.041587

408.65 408.59 408.53 408.49 408.38

0.05121 0.07318 0.09076 0.10993 0.14688

1.021244 1.025010 1.027978 1.031167 1.037183

411.41 411.37 411.33 411.30 411.23

1.030271 1.033296 1.036967 1.041411 1.044817

410.96 410.93 410.89 410.85 410.80

0.04976 0.06754 0.08946 0.11652 0.13764

1.025990 1.028984 1.032618 1.037018 1.040389

413.61 413.59 413.56 413.52 413.48

−1

0.05181 0.06956 0.09045 0.11674 0.15921

1.028252 1.031454 1.035166 1.039757 1.046979

401.18 401.15 401.12 401.06 400.99

0.05181 0.06956 0.09045 0.11674 0.15921

1.025623 1.028785 1.032451 1.036981 1.044109

0.05121 0.07318 0.09076 0.10993 0.14688

1.028916 1.032771 1.035811 1.039080 1.045244

0.04976 0.06754 0.08946 0.11652 0.13764

1.033821 1.036884 1.040601 1.045105 1.048556

mB = 0.10 mol·kg 403.98 0.05181 403.95 0.06956 403.91 0.09045 403.87 0.11674 403.81 0.15921 mB = 0.12 mol·kg−1 405.69 0.05121 405.64 0.07318 405.57 0.09076 405.50 0.10993 405.42 0.14688 mB = 0.15 mol·kg−1 408.06 0.04976 408.02 0.06754 407.98 0.08946 407.91 0.11652 407.86 0.13764

a

m is the molality of saccharide in water or water + disodium tetraborate. bM is the molar mass of saccharide. cmB is the molality of disodium tetraborate in water. Standard uncertainties u are u(T) = 0.01 K, u(m) = 2.7·10−6 mol·kg−1, u(ρ) = 3.7·10−3 kg·m−3and the combined uncertainties Uc are Uc (V2,ϕ) = (0.138·10−6 to 0.050·10−6) m3·mol−1 for low and high concentration range of saccharides (level of confidence = 0.95, k ≈ 2).

Figure 1. Plots of standard partial molar volumes of transfer, ΔtV°2 versus molalities, mB of disodium tetraborate of (a) D(−)-ribose, (b) D(−)fructose, (c) D(+)-trehalose dihydrate, and (d) D(+)-raffinose pentahydrate at T = ⧫, 288.15 K; ■, 298.15 K; ▲, 308.15 K; ×, 318.15 K. J

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Viscosities, η, of Some Saccharides in Aqueous Disodium Tetraborate Solutions From T = (288.15 to 318.15) K mBa saccharide D(+)-xylose

mol·kg

η

mb −1

mol·kg

−1

mPa·s T/K = η0c =

0.05 0.05475 0.07445 0.09686 0.13472 0.15522

η0c =

0.10 0.04318 0.07681 0.10172 0.13338 0.15215

288.15 1.1876 1.2542 1.2785 1.3055 1.3510 1.3754 1.2451 1.3029 1.3474 1.3806 1.4217 1.4461

η0c =

0.12 0.06698 0.07575 0.09953 0.13388 0.16004

η0c =

0.15

D(−)-arabinose

0.05

0.10

0.12

0.15

D(−)-ribose

0.05

0.10

0.12

0.15

L(−)-sorbose

0.05

0.05407 0.07105 0.10316 0.13981 0.15003 0.05261 0.07191 0.09427 0.13549 0.05046 0.06912 0.09103 0.13208 0.05644 0.07541 0.10708 0.15886 0.05914 0.07730 0.08949 0.14141 0.04972 0.06903 0.09341 0.12838 0.05039 0.07032 0.09271 0.11939 0.04673 0.07432 0.08871 0.11937 0.04763 0.07189 0.08301 0.12862 0.05336 0.07650

1.2478 1.2693 1.2950 1.3418 1.3093 1.3334 1.3608 1.4127

1.2496 1.2731 1.3042 1.3460 1.3140 1.3404 1.3707 1.4065

1.2625 1.2946

K

298.15 0.9284 0.9767 0.9939 1.0140 1.0465 1.0641 0.9681 1.0114 1.0450 1.0694 1.1003 1.1186 0.9845 1.0547 1.0640 1.0890 1.1242 1.1510 1.0081 1.0702 1.0897 1.1257 1.1669 1.1783 0.9736 0.9894 1.0081 1.0422 1.0148 1.0315 1.0518 1.0892 1.0411 1.0601 1.0915 1.1424 1.0716 1.0906 1.1035 1.1576 0.9742 0.9921 1.0143 1.0460 1.0182 1.0384 1.0607 1.0865 1.0344 1.0637 1.0787 1.1110 1.0626 1.0903 1.1029 1.1541 0.9843 1.0082

308.15 0.7526 0.7905 0.8039 0.8194 0.8449 0.8587 0.7823 0.8143 0.8390 0.8575 0.8802 0.8935 0.7945 0.8472 0.8538 0.8723 0.8987 0.9187 0.8122 0.8576 0.8717 0.8985 0.9283 0.9367 0.7871 0.7998 0.8142 0.8408 0.8179 0.8309 0.8461 0.8744 0.8360 0.8500 0.8730 0.9103 0.8578 0.8717 0.8809 0.9201 0.7862 0.7991 0.8154 0.8388 0.8196 0.8342 0.8506 0.8700 0.8311 0.8526 0.8636 0.8872 0.8521 0.8721 0.8813 0.9188 0.7932 0.8106

318.15 0.6216 0.6501 0.6602 0.6718 0.6911 0.7015 0.6508 0.6749 0.6935 0.7072 0.7245 0.7346 0.6626 0.7027 0.7080 0.7221 0.7424 0.7576 0.6806 0.7149 0.7258 0.7461 0.7688 0.7751 0.6466 0.6557 0.6662 0.6854 0.6774 0.6871 0.6986 0.7199 0.6946 0.7053 0.7232 0.7520 0.7162 0.7269 0.7344 0.7653 0.6474 0.6576 0.6701 0.6879 0.6796 0.6907 0.7033 0.7181 0.6915 0.7085 0.7172 0.7358 0.7110 0.7264 0.7333 0.7619 0.6529 0.6663

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued mBa saccharide

mol·kg

0.10

0.12

0.15

D(−)-fructose

0.05

0.10

0.12

0.15

D(+)-galactose

0.05

0.10

0.12

η

mb −1

mol·kg

−1

mPa·s

0.09199 0.10844 0.11823 0.14686 0.05379 0.07988 0.08749 0.09764 0.12268 0.14915 0.05209 0.07355 0.08817 0.10955 0.12544 0.15417 0.05271 0.08194 0.08887 0.10370 0.12448 0.14236 0.05105 0.06829 0.08972 0.09913 0.11910 0.14091 0.05063 0.07140 0.08858 0.10285 0.11292 0.13764 0.05283 0.07080 0.09041 0.09896 0.11877 0.13658 0.05403 0.07040 0.09005 0.10158 0.12123 0.13818 0.06148 0.07419 0.09174 0.10808 0.12151 0.14538 0.05850 0.07271 0.09024 0.10562 0.12217 0.14322 0.05343

1.3161 1.3388 1.3522 1.3913 1.3285 1.3562 1.3848 1.4164 1.4351 1.4680

1.2615 1.2858 1.3165 1.3300 1.3580 1.3890 1.3267 1.3869 1.4039 1.4096 1.4255 1.4645

1.2782 1.2973 1.3224 1.3460 1.3655 1.3998 1.3408 1.3640 1.3923 1.4170 1.4436 1.4768

L

1.0241 1.0410 1.0510 1.0802 1.0292 1.0485 1.0699 1.0924 1.1073 1.1305 1.0472 1.0674 1.0914 1.1068 1.1277 1.1554 1.0760 1.0968 1.1153 1.1293 1.1611 1.1954 0.9830 1.0012 1.0237 1.0337 1.0546 1.0773 1.0276 1.0720 1.0845 1.0886 1.1001 1.1285 1.0498 1.0716 1.0957 1.1063 1.1298 1.1514 1.0789 1.1001 1.1253 1.1401 1.1652 1.1867 0.9956 1.0094 1.0281 1.0457 1.0601 1.0857 1.0392 1.0563 1.0771 1.0957 1.1153 1.1402 1.0524

0.8221 0.8344 0.8417 0.8629 0.8279 0.8422 0.8579 0.8745 0.8852 0.9028 0.8408 0.8552 0.8731 0.8844 0.8998 0.9201 0.8612 0.8767 0.8901 0.9002 0.9234 0.9482 0.7943 0.8084 0.8255 0.8331 0.8490 0.8664 0.8274 0.8612 0.8702 0.8734 0.8821 0.9036 0.8440 0.8604 0.8785 0.8865 0.9042 0.9206 0.8656 0.8819 0.9009 0.9121 0.9311 0.9474 0.8042 0.8147 0.8296 0.8431 0.8544 0.8738 0.8364 0.8495 0.8655 0.8794 0.8946 0.9136 0.8459

0.6752 0.6847 0.6903 0.7066 0.6856 0.6966 0.7083 0.7210 0.7292 0.7426 0.6978 0.7090 0.7226 0.7312 0.7429 0.7584 0.7188 0.7308 0.7416 0.7493 0.7673 0.7867 0.6530 0.6634 0.6764 0.6818 0.6939 0.7068 0.6854 0.7110 0.7184 0.7206 0.7273 0.7438 0.7005 0.7130 0.7270 0.7331 0.7470 0.7593 0.7214 0.7333 0.7482 0.7567 0.7711 0.7835 0.6623 0.6705 0.6818 0.6924 0.7010 0.7164 0.6928 0.7028 0.7150 0.7260 0.7376 0.7523 0.7026

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued mBa saccharide

mol·kg

0.15

D(+)-glucose

0.05

0.10

0.12

0.15

D(+)-mannose

0.05

0.10

0.12

0.15

η

mb −1

mol·kg

−1

mPa·s

0.07150 0.09013 0.10293 0.12015 0.14123 0.05246 0.07233 0.09055 0.10198 0.11745 0.14391 0.04930 0.07255 0.08894 0.09837 0.12051 0.14190 0.04859 0.07275 0.08623 0.09968 0.11929 0.14181 0.05242 0.06847 0.08824 0.10262 0.11964 0.14075 0.05042 0.07016 0.09209 0.09977 0.12046 0.14831 0.04780 0.07084 0.08951 0.09907 0.11374 0.15089 0.04996 0.06937 0.08803 0.10004 0.11461 0.13848 0.05526 0.07008 0.08713 0.09879 0.11657 0.13515 0.05035 0.06945 0.08917 0.09827 0.11934 0.14164

1.2597 1.2933 1.3167 1.3303 1.3621 1.3925 1.3249 1.3643 1.3859 1.4080 1.4392 1.4752

1.2604 1.2950 1.3229 1.3371 1.3590 1.4138 1.3284 1.3613 1.3918 1.4118 1.4351 1.4739

M

1.0752 1.0985 1.1145 1.1356 1.1620 1.0784 1.1050 1.1291 1.1441 1.1648 1.1989 0.9820 1.0069 1.0247 1.0346 1.0581 1.0807 1.0276 1.0570 1.0732 1.0892 1.1128 1.1396 1.0500 1.0699 1.0942 1.1118 1.1325 1.1583 1.0749 1.1011 1.1299 1.1397 1.1666 1.2021 0.9820 1.0075 1.0281 1.0386 1.0549 1.0951 1.0299 1.0535 1.0758 1.0909 1.1076 1.1363 1.0559 1.0748 1.0964 1.1112 1.1338 1.1569 1.0775 1.1033 1.1300 1.1423 1.1705 1.2002

0.8631 0.8809 0.8929 0.9091 0.9287 0.8650 0.8848 0.9028 0.9141 0.9293 0.9554 0.7934 0.8124 0.8257 0.8335 0.8514 0.8686 0.8266 0.8481 0.8603 0.8722 0.8896 0.9094 0.8438 0.8588 0.8771 0.8905 0.9060 0.9253 0.8626 0.8822 0.9038 0.9113 0.9313 0.9586 0.7938 0.8136 0.8295 0.8375 0.8499 0.8809 0.8296 0.8477 0.8652 0.8764 0.8899 0.9121 0.8486 0.8630 0.8793 0.8906 0.9076 0.9254 0.8642 0.8838 0.9039 0.9130 0.9342 0.9564

0.7160 0.7297 0.7393 0.7517 0.7670 0.7214 0.7367 0.7508 0.7593 0.7713 0.7912 0.6532 0.6679 0.6782 0.6842 0.6979 0.7113 0.6852 0.7020 0.7115 0.7208 0.7344 0.7498 0.7016 0.7136 0.7281 0.7387 0.7509 0.7662 0.7203 0.7356 0.7526 0.7585 0.7743 0.7956 0.6540 0.6697 0.6822 0.6886 0.6985 0.7229 0.6883 0.7027 0.7165 0.7256 0.7361 0.7534 0.7057 0.7173 0.7305 0.7395 0.7532 0.7674 0.7219 0.7372 0.7533 0.7606 0.7774 0.7951

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued mBa saccharide D(+)-cellobiose

mol·kg 0.05

0.10

0.12

0.15

sucrose

0.05

0.10

0.12

0.15

D(+)-melibiose

0.05

0.10

0.12

0.15

η

mb −1

mol·kg

−1

mPa·s

0.05071 0.07347 0.09266 0.12318 0.04603 0.07141 0.09520 0.11779 0.04795 0.06805 0.09196 0.11898 0.05105 0.07088 0.09046 0.10437 0.04932 0.07310 0.08905 0.09766 0.12226 0.13598 0.05068 0.06925 0.08942 0.09979 0.11842 0.14416 0.04741 0.06868 0.08981 0.10319 0.12109 0.13356 0.05154 0.07145 0.08962 0.09919 0.11968 0.13506 0.04901 0.07096 0.09712 0.12158 0.14788 0.04769 0.07182 0.09527 0.12207 0.14486 0.04992 0.07205 0.09607 0.11942 0.15814 0.05283 0.07395 0.09672 0.11848

1.2777 1.3178 1.3509 1.4033 1.3342 1.3826 1.4275 1.4695

1.2804 1.3289 1.3718 1.3822 1.4028 1.4548 1.3509 1.3893 1.4304 1.4514 1.4889 1.5403

1.2751 1.3141 1.3606 1.4034 1.4499 1.3374 1.3842 1.4288 1.4798 1.5235

N

0.9961 1.0260 1.0509 1.0901 1.0345 1.0704 1.1039 1.1354 1.0569 1.0850 1.1198 1.1584 1.0884 1.1192 1.1491 1.1704 0.9981 1.0346 1.0671 1.0746 1.0900 1.1291 1.0468 1.0754 1.1059 1.1214 1.1492 1.1876 1.0615 1.0957 1.1293 1.1505 1.1784 1.1978 1.0979 1.1321 1.1630 1.1794 1.2137 1.2393 0.9936 1.0229 1.0572 1.0894 1.1239 1.0366 1.0712 1.1047 1.1427 1.1751 1.0595 1.0924 1.1284 1.1632 1.2205 1.0922 1.1247 1.1607 1.1948

0.8049 0.8279 0.8474 0.8777 0.8335 0.8613 0.8870 0.9114 0.8501 0.8731 0.8984 0.9281 0.8746 0.8985 0.9217 0.9382 0.8062 0.8341 0.8589 0.8650 0.8768 0.9067 0.8431 0.8651 0.8889 0.9009 0.9225 0.9519 0.8542 0.8805 0.9065 0.9229 0.9445 0.9595 0.8814 0.9078 0.9313 0.9443 0.9704 0.9903 0.8031 0.8260 0.8531 0.8780 0.9048 0.8356 0.8623 0.8883 0.9179 0.9430 0.8531 0.8786 0.9063 0.9335 0.9781 0.8773 0.9032 0.9309 0.9578

0.6629 0.6811 0.6964 0.7204 0.6916 0.7138 0.7344 0.7536 0.7069 0.7253 0.7469 0.7691 0.7303 0.7495 0.7679 0.7813 0.6641 0.6861 0.7060 0.7107 0.7201 0.7439 0.6992 0.7167 0.7353 0.7450 0.7622 0.7855 0.7102 0.7312 0.7519 0.7647 0.7822 0.7941 0.7360 0.7570 0.7762 0.7860 0.8072 0.8230 0.6619 0.6798 0.7012 0.7211 0.7424 0.6932 0.7149 0.7353 0.7588 0.7789 0.7092 0.7297 0.7519 0.7735 0.8090 0.7326 0.7533 0.7754 0.7964

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued mBa saccharide D(+)-lactose

mol·kg 0.05

monohydrate

0.10

0.12

0.15

D(+)-trehalose dihydrate

0.05

0.10

0.12

0.15

D(+)-maltose monohydrate

0.05

0.10

0.12

η

mb −1

mol·kg

−1

mPa·s

0.14237 0.05095 0.06405 0.08995 0.09768 0.11638 0.12963 0.04877 0.07043 0.08904 0.09851 0.11955 0.13621 0.05020 0.06912 0.08902 0.09936 0.12243 0.13914 0.05083 0.07017 0.08643 0.09869 0.11863 0.13646 0.05089 0.06831 0.09165 0.11305 0.05064 0.07009 0.08463 0.12719 0.04931 0.07222 0.09120 0.12353 0.14541 0.04619 0.06413 0.08185 0.09443 0.13766 0.05340 0.07033 0.09080 0.09804 0.11800 0.13538 0.05109 0.07381 0.08459 0.09930 0.12242 0.13933 0.04810 0.06942 0.08750 0.10003

1.2890 1.3150 1.3654 1.3799 1.4163 1.4416 1.3540 1.4016 1.4423 1.4626 1.5077 1.5432

1.3078 1.3480 1.4017 1.4503 1.3731 1.4213 1.4570 1.5602

1.2982 1.3330 1.3741 1.3885 1.4284 1.4628 1.3613 1.4121 1.4361 1.4685 1.5190 1.5556

O

1.2320 1.0044 1.0237 1.0613 1.0726 1.0995 1.1184 1.0493 1.0844 1.1147 1.1300 1.1636 1.1899 1.0705 1.1024 1.1357 1.1527 1.1909 1.2180 1.1007 1.1355 1.1641 1.1859 1.2208 1.2518 1.0189 1.0496 1.0903 1.1269 1.0640 1.1002 1.1270 1.2043 1.0815 1.1257 1.1618 1.2228 1.2638 1.1039 1.1405 1.1764 1.2015 1.2867 1.0120 1.0380 1.0694 1.0803 1.1104 1.1364 1.0550 1.0930 1.1111 1.1351 1.1729 1.2002 1.0693 1.1064 1.1373 1.1585

0.9866 0.8121 0.8276 0.8569 0.8661 0.8871 0.9017 0.8456 0.8731 0.8967 0.9086 0.9348 0.9553 0.8615 0.8864 0.9122 0.9257 0.9552 0.9764 0.8842 0.9111 0.9336 0.9505 0.9775 1.0015 0.8236 0.8474 0.8790 0.9077 0.8563 0.8841 0.9049 0.9646 0.8705 0.9050 0.9336 0.9814 1.0133 0.8869 0.9157 0.9434 0.9630 1.0296 0.8176 0.8379 0.8623 0.8710 0.8942 0.9144 0.8500 0.8799 0.8939 0.9128 0.9424 0.9636 0.8608 0.8896 0.9139 0.9305

0.8197 0.6685 0.6803 0.7036 0.7104 0.7270 0.7386 0.7014 0.7232 0.7418 0.7519 0.7725 0.7888 0.7161 0.7361 0.7566 0.7673 0.7909 0.8078 0.7385 0.7600 0.7781 0.7917 0.8133 0.8326 0.6778 0.6967 0.7219 0.7444 0.7109 0.7336 0.7504 0.7989 0.7234 0.7511 0.7738 0.8120 0.8374 0.7410 0.7641 0.7866 0.8026 0.8564 0.6731 0.6890 0.7083 0.7150 0.7336 0.7495 0.7050 0.7284 0.7396 0.7546 0.7781 0.7951 0.7157 0.7388 0.7581 0.7717

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued mBa saccharide

mol·kg

0.15

D(+)-melezitose

0.05

0.10

0.12

0.15

D(+)-raffinose pentahydrate

0.05

0.10

0.12

0.15

η

mb −1

mol·kg

−1

mPa·s

0.12041 0.13678 0.05020 0.06916 0.09084 0.09989 0.11944 0.14214 0.04796 0.06430 0.09428 0.11819 0.04562 0.07167 0.09350 0.11920 0.05425 0.06854 0.08986 0.12364 0.05351 0.07048 0.08869 0.12405 0.05305 0.06903 0.09039 0.11482 0.05181 0.06956 0.09045 0.11674 0.05121 0.07318 0.09076 0.10993 0.04976 0.06754 0.08946 0.11652

1.2941 1.3298 1.3941 1.4445 1.3545 1.4157 1.4660 1.5244

1.3118 1.3483 1.3963 1.4502 1.3750 1.4182 1.4683 1.5302

1.1931 1.2205 1.1013 1.1360 1.1751 1.1915 1.2266 1.2664 1.0083 1.0351 1.0833 1.1211 1.0498 1.0953 1.1329 1.1764 1.0850 1.1109 1.1491 1.2086 1.1112 1.1433 1.1775 1.2419 1.0215 1.0487 1.0847 1.1250 1.0646 1.0968 1.1340 1.1801 1.0844 1.1261 1.1588 1.1940 1.1097 1.1451 1.1879 1.2398

0.9575 0.9790 0.8853 0.9125 0.9431 0.9560 0.9832 1.0146 0.8150 0.8358 0.8734 0.9029 0.8455 0.8808 0.9099 0.9437 0.8727 0.8928 0.9224 0.9687 0.8919 0.9166 0.9430 0.9928 0.8256 0.8471 0.8752 0.9069 0.8575 0.8825 0.9116 0.9474 0.8725 0.9049 0.9305 0.9580 0.8912 0.9188 0.9521 0.9924

0.7931 0.8103 0.7394 0.7614 0.7861 0.7965 0.8184 0.8437 0.6711 0.6876 0.7175 0.7409 0.7012 0.7294 0.7526 0.7795 0.7253 0.7414 0.7652 0.8023 0.7448 0.7647 0.7860 0.8260 0.6791 0.6959 0.7181 0.7431 0.7105 0.7303 0.7534 0.7818 0.7244 0.7501 0.7704 0.7922 0.7439 0.7659 0.7926 0.8248

a mB is the molality of disodium tetraborate in water. bm is the molality of saccharide in water + disodium tetraborate (solvent). cηo is the viscosity of disodium tetraborate in water. Standard uncertainty u is u (η) = 0.002 mPa·s.

and temperatures) fall in the (0.61·10−3 to 0.67·10−3) m3·kg−1 range, assigned to sweet taste as reported by Shamil et al.10 The vϕ values of disodium tetraborate in water [(0.46·10−3 to 0.51· 10−3) m3·kg−1] at all concentrations and temperatures fall in sour taste28 range (0.33·10−3 to 0.52·10−3) m3·kg−1. The effect of cosolute concentration on vϕ values decreases in the following order: monosaccharide > disaccharide > trisaccharide. As a result, the vϕ values of monosaccharides shift from sweet taste range to the bitter taste range (0.71·10−3 to 0.93·10−3) m3·kg−1, however di- and trisaccharides remain in the sweet taste range. It again suggests that the interactions between (Na+/B4O7 2−) ions and monosaccharides are stronger than those between (Na+/B4O72−) ions and di- and trisaccharides. The viscosities, η, of the solutions were calculated by using the following equation: η /ρ = at − b/t

where ρ is the density of solution, t is the efflux time, and a and b are the viscometric constants. It has been observed that the η values of saccharides (Table 3) in disodium tetraborate solutions increase with the concentration of both solute and cosolute but decrease with a rise of temperature of the solution. The viscosity B coefficients were calculated by least-squares fitting of the Jones-Dole equation to relative viscosity, ηr, data

ηr = (η /η0) = 1 + Bc

(5)

where c is the molarity of the solution, η is the viscosity of the solution, and η0 is the viscosity of the solvent. In general, the plot of ηr versus c for the saccharides in disodium tetraborate solutions increase linearly with the concentration of solute, but decrease with rise of temperature (a representative plot for −1 D(+)-lactose monohydrate in mB = 0.05 mol·kg disodium tetraborate has been shown in Figure 2). The signs of viscosity

(4) P

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Viscosity B Coefficients of Some Saccharides in Aqueous Solutions of Disodium Tetraborate from T = (288.15 to 318.15) K B·103/m3·mol−1 mBb saccharide D(−)-arabinose D(−)-ribose D(+)-xylose L(−)-sorbose D(−)-fructose D(+)-galactose D(+)-mannose D(+)-glucose D(+)-cellobiose D(+)-melibiose sucrose D(+)-lactose monohydrate D(+)-maltose monohydrate D(+)-trehalose dihydrate D(+)-melezitose D(+)-raffinose pentahydrate

D(−)-arabinose D(−)-ribose D(+)-xylose L(−)-sorbose D(−)-fructose D(+)-galactose D(+)-mannose D(+)-glucose D(+)-cellobiose D(+)-melibiose sucrose D(+)-lactose monohydrate D(+)-maltose monohydrate D(+)-trehalose dihydrate D(+)-melezitose D(+)-raffinose pentahydrate

D(−)-arabinose D(−)-ribose D(+)-xylose L(−)-sorbose D(−)-fructose D(+)-galactose D(+)-mannose D(+)-glucose D(+)-cellobiose D(+)-melibiose sucrose D(+)-lactose monohydrate D(+)-maltose monohydrate D(+)-trehalose dihydrate D(+)-melezitose D(+)-raffinose pentahydrate

D(−)-arabinose D(−)-ribose D(+)-xylose L(−)-sorbose D(−)-fructose

watera

0.05

0.316 0.331 0.368 0.458 0.485 0.490 0.511 0.497 0.913 0.923 1.032 1.086 1.128 1.326 1.434 1.543

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.001c 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001

0.961 1.046 1.027 1.179 1.213 1.241 1.276 1.227 1.500 1.493 1.611 1.684 1.750 1.994 1.883 1.996

0.313 0.317 0.338 0.426 0.449 0.457 0.471 0.460 0.878 0.884 0.995 1.045 1.088 1.275 1.379 1.477

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.002 0.003 0.001 0.002 0.003

0.914 0.994 0.952 1.127 1.151 1.179 1.206 1.170 1.443 1.427 1.552 1.616 1.696 1.932 1.811 1.917

0.285 0.291 0.327 0.393 0.422 0.425 0.440 0.432 0.843 0.852 0.955 1.027 1.053 1.237 1.325 1.430

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002

0.875 0.900 0.921 1.013 1.089 1.125 1.150 1.103 1.381 1.375 1.474 1.572 1.633 1.869 1.748 1.861

0.270 0.282 0.311 0.369 0.377

± ± ± ± ±

0.002 0.002 0.001 0.001 0.001

0.769 0.844 0.843 0.950 0.992

0.10

T = 288.15 ± 0.003 ± 0.004 ± 0.002 ± 0.001 ± 0.002 ± 0.002 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.002 ± 0.001 ± 0.001 ± 0.001 ± 0.001 T = 298.15 ± 0.001 ± 0.003 ± 0.003 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.002 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ± 0.001 T = 308.15 ± 0.001 ± 0.001 ± 0.001 ± 0.002 ± 0.002 ± 0.003 ± 0.002 ± 0.001 ± 0.001 ± 0.004 ± 0.002 ± 0.003 ± 0.001 ± 0.003 ± 0.001 ± 0.001 T = 318.15 ± 0.002 ± 0.001 ± 0.001 ± 0.002 ± 0.001 Q

0.12

0.15

K 1.014 1.088 1.080 1.244 1.279 1.302 1.329 1.304 1.540 1.529 1.666 1.782 1.817 2.018 1.920 2.035

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.003 0.002 0.001 0.006 0.001 0.001 0.003 0.001 0.002 0.002 0.001 0.001 0.001 0.003 0.002 0.001

0.945 1.023 1.024 1.169 1.207 1.246 1.260 1.222 1.481 1.466 1.597 1.710 1.751 1.951 1.847 1.951

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.002 0.003 0.001 0.005 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001

1.008 1.070 1.056 1.209 1.235 1.276 1.296 1.254 1.499 1.502 1. 639 1.729 1.777 1.985 1.879 1.985

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.001

1.042 1.115 1.118 1.241 1.276 1.310 1.340 1.294 1.540 1.537 1.707 1.786 1.821 2.031 1.899 2.018

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.002 0.003 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.004 0.001 0.001 0.002 0.001 0.001 0.001

0.941 0.940 0.941 1.134 1.134 1.178 1.204 1.152 1.419 1.413 1.533 1.657 1.699 1.897 1.776 1.887

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

0.980 0.975 0.980 1.105 1.160 1.201 1.222 1.174 1.436 1.453 1.576 1.675 1.727 1.935 1.816 1.926

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.001 0.001 0.004 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.002

1.019 1.014 1.019 1.123 1.203 1.223 1.254 1.215 1.489 1.491 1.639 1.729 1.778 1.974 1.827 1.955

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

0.003 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.002 0.002

0.809 0.871 0.855 0.990 1.049

± ± ± ± ±

0.002 0.001 0.001 0.001 0.001

0.854 0.896 0.902 1.015 1.072

± ± ± ± ±

0.001 0.001 0.001 0.002 0.002

0.878 0.927 0.927 1.050 1.098

± ± ± ± ±

0.001 0.001 0.002 0.002 0.002

K

K

K

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. continued B·103/m3·mol−1 mBb saccharide D(+)-galactose D(+)-mannose D(+)-glucose D(+)-cellobiose D(+)-melibiose sucrose D(+)-lactose monohydrate D(+)-maltose monohydrate D(+)-trehalose dihydrate D(+)-melezitose D(+)-raffinose pentahydrate

a

water 0.388 0.418 0.410 0.807 0.813 0.918 0.976 1.006 1.190 1.279 1.367

± ± ± ± ± ± ± ± ± ± ±

a

0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001

0.05 1.070 1.103 1.037 1.326 1.327 1.423 1.498 1.570 1.800 1.687 1.781

0.10

T = 318.15 K ± 0.002 ± 0.002 ± 0.001 ± 0.001 ± 0.001 ± 0.002 ± 0.001 ± 0.002 ± 0.001 ± 0.002 ± 0.001

1.101 1.152 1.085 1.365 1.360 1.470 1.596 1.632 1.833 1.710 1.807

± ± ± ± ± ± ± ± ± ± ±

0.12

0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.001 0.001 0.001 0.001

1.125 1.176 1.120 1.381 1.395 1.513 1.610 1.665 1.862 1.754 1.838

± ± ± ± ± ± ± ± ± ± ±

0.15 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

1.134 1.193 1.144 1.420 1.420 1.570 1.664 1.716 1.912 1.764 1.875

± ± ± ± ± ± ± ± ± ± ±

0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002

ref 26. bmB is the molality of disodium tetraborate in water. cSD is the standard deviation.

B coefficients (Table 4) generally represent the structuremaking or -breaking ability of solute, which helps in understanding the solvation effects of cations and anions.29 The B-coefficient values are positive and fairly large, and their magnitudes increase with complexity of saccharides and this may be attributed to the increase in size of saccharide molecules from mono- to di- to trisaccharides. Higher magnitude of viscosity B coefficients for studied saccharides in aqueous solutions of disodium tetraborate than that in water, indicate that disodium tetraborate strengthens the structure of the solution. The B values for saccharides studied in various cosolutes22,26 follow the order: Na2B4O7 > NaOOCCH3 > Na2SO4 (only disaccharides). This suggests that the saccharides behave as strong structure makers in disodium tetraborate solutions. The negative dB/dT values (Table S2, Supporting Information) increase with concentration of disodium tetraborate, which further indicate an enhancement of structural order in solution. The viscosity B coefficients of transfer, ΔtB have been calculated by using thte following equation Figure 2. Plot of relative viscosity, ηr, versus concentration, c, of D(+)lactose monohydrate in 0.05 mol·kg−1 disodium tetraborate solutions at different temperatures.

Δt B = B(in aqueous solutions of disodium tetraborate) − B(in water)

(6)

Figure 3. Plots for ΔtB versus molalities, mB, of disodium tetraborate of (a) D(−)-ribose and (b) D(+)-raffinose pentahydrate, at T = ⧫, 288.15 K; ■, 298.15 K ; ▲, 308.15 K ; ×, 318.15 K. R

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

The plots of Δ tB versus mB are shown in Figure 3. The magnitudes of ΔtB values increase with concentration of cosolute. The ΔtB values decrease with rise of temperature, and the decrease is more in case of pentoses (among the monosaccharides) and less in di- and trisaccharides. The ΔtB values of saccharides in disodium tetraborate solutions follow the order: monosaccharide > disaccharide > trisaccharide.

(6) Zhuo, K.; Liu, Q.; Wang, Y.; Ren, Q.; Wang, J. Volumetric and Viscosity Properties of Monosaccharides in Aqueous Amino Acid Solutions at 298.15 K. J. Chem. Eng. Data 2006, 51, 919−927. (7) Chalikian, T. V. Ultrasonic and Densimetric Characterizations of the Hydration Properties of Polar Groups in Monosaccharides. J. Phys. Chem. B 1998, 102, 6921−6926. (8) Miller, D. P.; de Pablo, J. J. Calorimetric Solution Properties of Simple Saccharides and Their Significance for the Stabilization of Biological Structure and Function. J. Phys. Chem. B 2000, 104, 8876− 8883. (9) Bellavia, G.; Cottone, G.; Giuffrida, S.; Cupane, A.; Cordone, L. Thermal Denaturation of Myoglobin in Water-Disaccharide Matrixes: Relation with the Glass Transition of the System. J. Phys. Chem. B 2009, 113, 11543−11549. (10) Shamil, S.; Birch, G. G.; Mathlouthi, M.; Clifford, M. N. Apparent Molar Volumes and Tastes of Molecules with More Than One Sapophore. Chem. Senses 1987, 12, 397−409. (11) Birch, G. G. Role of Water in Sweet Taste Chemoreception. Pure Appl. Chem. 2002, 74, 1103−1108. (12) Bai, T.-C.; Yan, G.-B. Viscosity B-coefficients and Activation Parameters for Viscous Flow of a Solution of Heptanedioic Acid in Aqueous Sucrose Solution. Carbohydr. Res. 2003, 338, 2921−2927. (13) Longinotti, M. P.; Corti, H. R. Electrical Conductivity and Complexation of Sodium Borate in Trehalose and Sucrose Aqueous Solutions. J. Sol. Chem. 2004, 33, 1029−1040. (14) Pagnotta, S. E.; McLain, S. E.; Soper, A. K.; Bruni, F.; Ricci, M. A. Water and Trehalose: How Much Do They Interact with Each Other? J. Phys. Chem. B 2010, 114, 4904−4908. (15) Seuvre, A. M.; Mathlouthi, M. Solutions Properties and SoluteSolvent Interactions in Ternary Sugar-Salt-Water Solutions. Food Chem. 2010, 122, 455−461. (16) Goldberg, R. N.; Tewari, Y. B. Thermodynamic and Transport Properties of Carbohydrates and their Monophosphates: The Pentoses and Hexoses. J. Phys. Chem. Ref. Data 1989, 18, 809−880. (17) Izutsu, K.; Rimando, A.; Aoyagi, N.; Kojima, S. Effect of Sodium Tetraborate (Borax) on the Thermal Properties of Frozen Aqueous Sugar and Polyol Solutions. Chem. Pharma. Bull 2003, 51, 663−666. (18) van den Berg, R.; Peters, J. A.; van Bekkum, H. The Structure and (Local) Stability Constants of Borate Esters of Mono- and DiSaccharides as Studied by 11B and 13C NMR Spectroscopy. Carbohydr. Res. 1994, 253, 1−12. (19) Chapelle, S.; Verchere, J. F. A 11B and 13C NMR Determination of the Structures of Borate Complexes of Pentoses and Related Sugars. Tetrahedron 1988, 44, 4469−4482. (20) Verchere, J. F.; Hlaibi, M. Stability Constants of Borate Complexes of Oligosaccharides. Polyhedron 1987, 6, 1415−1420. (21) Miller, D. P.; de Pablo, J. J.; Corti, H. R. Viscosity and Glass Transition Temperature of Aqueous Mixtures of Trehalose with Borax and Sodium Chloride. J. Phys. Chem. B 1999, 103, 10243−10249. (22) Banipal, P. K.; Dhanjun, H. S.; Sharma, S.; Hundal, H.; Banipal, T. S. Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of Some Disaccharides in Aqueous Solutions at Different Temperatures. Z. Phys. Chem. 2008, 222, 177−204. (23) Banipal, P. K.; Chahal, A. K.; Banipal, T. S. Studies on Volumetric Properties of Some Saccharides in Aqueous Potassium Chloride Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2009, 41, 452−483. (24) Banipal, P. K.; Hundal, A. K.; Banipal, T. S. Effect of Magnesium Chloride (2:1 electrolyte) on the Aqueous Solution Behavior of Some Saccharides over the Temperature Range of 288.15−318.15 K: A Volumetric Approach. Carbohydr. Res. 2010, 345, 2262−2271. (25) Banipal, P. K.; Banipal, T. S.; Ahluwalia, J. C.; Lark, B. S. Partial Molar Heat Capacities and Volumes of Transfer of Some Saccharides from Water to Aqueous Sodium Chloride Solutions at T = 298.15 K. J. Chem. Thermodyn. 2002, 34, 1825−1846. (26) Banipal, P. K.; Singh, V.; Hundal, A. K.; Banipal, T. S. Effect of Sodium Acetate on the Rheological Behaviour of Some Mono-, Di-,

4. CONCLUSION The densities and viscosities of some saccharides have been measured in aqueous solutions of disodium tetraborate (borax) at (288.15 to 318.15) K. The V2° and the viscosity B coefficients were obtained from these data. These are positive and fairly large, and their magnitudes increase from mono- to di- to trisaccharides. The dB/dT values also suggest an enhancement of structural order in solution. The vϕ values for the saccharides studied in water fall in sweet taste range. The vϕ values for the saccharides increase with concentration of cosolute and temperature, and this increase is more in case of monosaccharides in comparison to di- and trisaccharides. Thus, the vϕ values for monosaccharides fall in the bitter taste range. Overall the volumetric and viscometric parameters are higher in the presence of Na2B4O7 solutions than in NaOOCCH3, Na2SO4, and NaCl solutions, which indicates that solute−cosolute interactions are stronger between saccharides and B4O72− in comparison to SO42−, Cl−, and CH3COO− anions.



ASSOCIATED CONTENT

S Supporting Information *

Additional material as discussed in the text. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Tel.: +91 183 2451357. Fax: +91 183 2258819/20. E-mail: [email protected] (P.K.B.). Funding

V.S. is thankful to the University Grants Commission for financial support under the Rajiv Gandhi National Fellowship Program, New Delhi, India. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Ramesh, H. P.; Tharanathan, R. N. Carbohydrates - The Renewable Raw Materials of High Biotechnological Value. Crit. Rev. Biotechnol. 2003, 23, 149−173. (2) Annunziata, O.; Miller, D. G.; Albright, J. G. Quaternary Diffusion Coefficients for the Sucrose-NaCl-KCl-Water System at 25 °C. J. Mol. Liq. 2010, 156, 33−37. (3) Bordat, P.; Lerbret, A.; Demaret, J.-P.; Affouard, F.; Descamps, M. Comparative Study of Trehalose, Sucrose and Maltose in Water Solutions by Molecular Modelling. Europhys. Lett. 2004, 65, 41−47. (4) Pincu, M.; Brauver, B.; Gerber, R. B.; Buch, V. Sugar-Salt and Sugar-Salt-Water Complexes: Structure and Dynamics of GlucoseKNO3-(H2O)n. Phys. Chem. Chem. Phys. 2010, 12, 3550−3558. (5) Banipal, P. K.; Singh, V.; Banipal, T. S. Effect of Sodium Acetate on the Volumetric Behaviour of Some Mono-, Di-, and TriSaccharides in Aqueous Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2010, 42, 90−103. S

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

and Tri-Saccharides in Aqueous Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2011, 43, 290−299. (27) Kell, G. S. Density, Thermal Expansivity, and Compressibility of Liquid Water from (0 to 150) °C. Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale. J. Chem. Eng. Data 1975, 20, 97−105. (28) Parke, S. A.; Birch, G. G.; Dijk, R. Some Taste Molecules and Their Solution Properties. Chem. Senses 1999, 24, 271−279. (29) Jenkins, H. D. B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695−2724.

T

dx.doi.org/10.1021/je400264a | J. Chem. Eng. Data XXXX, XXX, XXX−XXX