Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate

Oct 3, 2014 - Prausnitz , J. M. ; Lichtenthaler , R. N. ; Gomes de Azevedo , E. Molecular Thermodynamics of Fluid Phase Equilibria; Prentice Hall: New...
0 downloads 0 Views 492KB Size
Article pubs.acs.org/jced

Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols Divna M. Bajić, Emila M. Ž ivković, Slobodan S. Šerbanović, and Mirjana Lj. Kijevčanin* Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia S Supporting Information *

ABSTRACT: The density, viscosity, and refractive index of binary mixtures consisting of ethyl-butyrate + 1-propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, or 1-hexanol have been measured at atmospheric pressure and over the temperature range from (288.15 to 323.15) K. Excess and deviation functions have been calculated from these data and fitted to the Redlich−Kister equation. The values of excess molar volume and deviation functions were further used in the analysis of molecular interactions present in the mixture as well as the temperature influence on them.

1. INTRODUCTION Ethyl butyrate is one of the most common substances used as artificial flavoring due to its favorable properties and low price. Its natural odor is similar to pineapple, and it is often used in industry as additive to orange juice. It is also one of the volatile components present in winecongeners. Wine is a complex mixture consisting of more than 800 components, contributing to its aroma. Many of these components are present in very small amounts and thus very difficult to identify. Beside the main components water and ethanol, more than 50 compounds have been successfully extracted from wine samples and identified.1 Among the extracted components were mainly alcohols, including 1-propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl1-butanol, and 1-hexanol, esters, including ethyl butyrate and aldehydes/ketones. Reported concentrations of ethyl butyrate in wine range between (0.07 and 0.53) mg·L−1,2−5 and aroma characteristics usually attributed to it are floral, fruity, and strawberry. Binary mixtures of wine congeners have been analyzed before,6,7 but data on thermophysical properties for most of the systems reported in this work, to our knowledge, are not available in the literature. Densities of ethyl butyrate + 2-methyl-1-propanol mixture at only one temperature were previously reported in literature and are compared with our measurements later on. In this work, densities, refractive indices, and viscosities for five binary mixtures of ethyl-butyrate with alcohols (1-propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, or 1-hexanol) are reported at atmospheric pressure and at eight temperatures ranging from (288.15 to 323.15) K. From these data excess molar volumes (VE) and deviation functions (Δη, ΔnD) were calculated and correlated with the Redlich−Kister8 equation and used afterward for the analysis of molecular interactions existing in the mixture. © XXXX American Chemical Society

2. EXPERIMENTAL SECTION Basic information about the chemicals used in this investigation is given in Table 1. Experimental data on the density, viscosity, Table 1. Sample Information chemical name

source

initial mass fraction purity

ethyl butyrate 1-propanol 2-methyl-1-propanol 1-butanol 3-methyl-1-butanol 1-hexanol

Acros Organics Merck Fisher Chemical Merck Fisher Chemical Merck

0.99 ≥ 0.995 0.997 ≥ 0.995 0.99 > 0.99

and refractive index of these chemicals were compared with literature values at 298.15 K (Table S1, Supporting Information, refs 1 to 8 contained therein). The agreement was satisfactory with differences within 0.4 kg·m−3 for densities, less than 5·10−4 for refractive indices and ranging between 3·10−3 mPa·s for less viscous fluids up to 9·10−2 mPa·s for fluids with higher viscosities. A detailed description of measuring procedures and the instruments used in this research can be found in one of our previous papers.9 Densities of the investigated binary mixtures and pure components were measured on an Anton Paar DMA 5000 densimeter; refractive indices were measured on Anton Paar RXA-156 refractometer, and viscosity measurements were conducted on a Stabinger SVM 3000/G2 viscometer. Mixtures were prepared gravimetrically on a Mettler AG 204 balance. The balance precision is 1·10−7 kg, and the standard Received: June 23, 2014 Accepted: September 23, 2014

A

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Densities ρ, Excess Molar Volumes VE, Dynamic Viscosities η, Viscosity Deviations Δη, Refractive Indices nD, and Deviations in Refractive Indices ΔnD for the Binary Mixture Ethyl Butyrate (1) + 1-Propanol (2) at Temperature T = (288.15 to 323.15) K and Pressure p = 0.1 MPaa 10−3 ρ x1

kg·m

−3

106 VE

η

Δη

m3·mol−1

mPa·s

mPa·s

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.80775 0.81996 0.83048 0.83977 0.84808 0.85560 0.86245 0.86856 0.87416 0.87926 0.88416

0.0324 0.0694 0.0972 0.1072 0.1122 0.0985 0.0875 0.0725 0.0549

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.80377 0.81572 0.82603 0.83514 0.84330 0.85069 0.85744 0.86346 0.86899 0.87403 0.87890

0.0390 0.0799 0.1106 0.1227 0.1285 0.1135 0.1013 0.0840 0.0615

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.79976 0.81145 0.82155 0.83049 0.83850 0.84576 0.85240 0.85834 0.86380 0.86879 0.87362

0.0455 0.0909 0.1241 0.1385 0.1456 0.1304 0.1163 0.0960 0.0685

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.79572 0.80715 0.81704 0.82581 0.83368 0.84081 0.84735 0.85320 0.85859 0.86353 0.86833

0.0522 0.1024 0.1384 0.1556 0.1636 0.1481 0.1323 0.1089 0.0763

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002

0.79164 0.80283 0.81251 0.82110 0.82882 0.83583 0.84227

0.0581 0.1138 0.1537 0.1734 0.1823 0.1661

Ethyl Butyrate (1) + 1-Propanol (2) 288.15 K 2.514 1.784 −0.550 1.392 −0.764 1.151 −0.826 1.008 −0.791 0.9046 −0.714 0.8354 −0.603 0.7874 −0.473 0.7517 −0.329 0.7286 −0.173 0.7224 293.15 K 2.208 1.599 −0.456 1.262 −0.641 1.054 −0.696 0.9293 −0.669 0.8397 −0.605 0.7790 −0.512 0.7370 −0.402 0.7060 −0.280 0.6861 −0.147 0.6808 298.15 K 1.950 1.438 −0.381 1.147 −0.542 0.9686 −0.590 0.8586 −0.570 0.7808 −0.516 0.7275 −0.438 0.6906 −0.345 0.6636 −0.241 0.6465 −0.127 0.6430 303.15 K 1.727 1.300 −0.315 1.048 −0.455 0.8932 −0.498 0.7965 −0.483 0.7270 −0.440 0.6800 −0.375 0.6481 −0.295 0.6240 −0.207 0.6098 −0.109 0.6072 308.15 K 1.542 1.179 −0.266 0.9590 −0.389 0.8239 −0.428 0.7391 −0.416 0.6786 −0.379 0.6380 −0.323 B

nD

ΔnD

1.38751 1.38841 1.38928 1.39013 1.39096 1.39175 1.39252 1.39325 1.39396 1.39465 1.39533

0.00011 0.00021 0.00028 0.00033 0.00033 0.00032 0.00027 0.00020 0.00010

1.38543 1.38623 1.38705 1.38783 1.38860 1.38935 1.39008 1.39079 1.39148 1.39217 1.39285

0.00006 0.00014 0.00017 0.00020 0.00021 0.00020 0.00017 0.00011 0.00006

1.38340 1.38414 1.38486 1.38557 1.38627 1.38698 1.38768 1.38836 1.38904 1.38970 1.39034

0.00004 0.00007 0.00009 0.00010 0.00011 0.00011 0.00011 0.00008 0.00005

1.38137 1.38202 1.38267 1.38333 1.38399 1.38465 1.38531 1.38598 1.38664 1.38728 1.38791

0.00000 −0.00001 −0.00001 0.00000 0.00001 0.00002 0.00003 0.00003 0.00003

1.37918 1.37976 1.38034 1.38094 1.38154 1.38216 1.38280

−0.00004 −0.00008 −0.00010 −0.00012 −0.00012 −0.00010

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued 10−3 ρ x1

kg·m

−3

0.6998 0.8001 0.9001 1.0000

0.84803 0.85336 0.85826 0.86302

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.78752 0.79847 0.80794 0.81635 0.82393 0.83081 0.83716 0.84284 0.84811 0.85296 0.85770

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.78336 0.79406 0.80333 0.81158 0.81900 0.82577 0.83200 0.83762 0.84282 0.84764 0.85236

0.0000 0.1001 0.2000 0.2999 0.3994 0.4999 0.6002 0.6998 0.8001 0.9001 1.0000

0.77914 0.78962 0.79867 0.80674 0.81403 0.82068 0.82683 0.83237 0.83752 0.84230 0.84700

η

106 VE −1

m ·mol 3

0.1494 0.1222 0.0842

0.0643 0.1253 0.1702 0.1923 0.2025 0.1861 0.1675 0.1364 0.0928

0.0706 0.1378 0.1863 0.2119 0.2233 0.2078 0.1866 0.1517 0.1015

0.0766 0.1502 0.2048 0.2324 0.2453 0.2297 0.2062 0.1673 0.1105

Δη

mPa·s 308.15 0.6089 0.5882 0.5756 0.5736 313.15 1.378 1.073 0.8796 0.7599 0.6873 0.6338 0.5980 0.5722 0.5543 0.5440 0.5424 318.15 1.236 0.9782 0.8084 0.7044 0.6398 0.5926 0.5612 0.5398 0.5227 0.5138 0.5132 323.15 1.124 0.9018 0.7475 0.6572 0.6010 0.5568 0.5301 0.5106 0.4955 0.4880 0.4870

mPa·s

nD

ΔnD

−0.255 −0.179 −0.095

1.38344 1.38409 1.38474 1.38538

−0.00008 −0.00005 −0.00002

K

K −0.222 −0.332 −0.368 −0.357 −0.327 −0.279 −0.221 −0.155 −0.082

1.37702 1.37753 1.37804 1.37855 1.37911 1.37967 1.38026 1.38084 1.38146 1.38208 1.38271

−0.00006 −0.00012 −0.00017 −0.00018 −0.00019 −0.00018 −0.00016 −0.00012 −0.00007

−0.186 −0.283 −0.315 −0.308 −0.282 −0.241 −0.190 −0.135 −0.072

1.37482 1.37528 1.37575 1.37622 1.37672 1.37724 1.37777 1.37832 1.37890 1.37949 1.38014

−0.00007 −0.00013 −0.00019 −0.00022 −0.00023 −0.00025 −0.00022 −0.00018 −0.00011

−0.158 −0.249 −0.276 −0.269 −0.249 −0.212 −0.168 −0.119 −0.063

1.37262 1.37301 1.37342 1.37383 1.37425 1.37469 1.37515 1.37563 1.37615 1.37670 1.37732

−0.00008 −0.00015 −0.00020 −0.00025 −0.00028 −0.00029 −0.00028 −0.00023 −0.00015

K

K

a

x1 is the mole fraction of ethyl butyrate. Standard uncertainties u for each variables are u(T) = 0.01 K; u(p) = 5 %; u(x1) = 0.0001, and the combined expanded uncertainties Uc are Uc(ρ) = 8·10−2 kg·m−3; Uc(VE) = 4·10−9 m3·mol−1; Uc(η) = 1 %; Uc(Δη) = 0.4 %; Uc(nD) = 9·10−5, and Uc(ΔnD) = 6·10−5, with a 0.95 level of confidence (k ≈ 2).

uncertainty in mole fraction is evaluated as ± 1·10−4. The combined expanded uncertainty in density is within ± 8·10−2 kg·m−3 with a 0.95 level of confidence (k ≈ 2), and the uncertainty in excess molar volume is less than ± 4·10−9 m3·mol−1. The uncertainties in refractive indices and viscosity data are estimated as ± 9·10−5 units and ± 1 %, respectively, while for viscosity and refractive index deviation they are ± 0.4 % and ± 6·10−5 units.

3-methyl-1-butanol, ethyl-butyrate + 1-hexanol), measured at eight temperatures T = (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K and atmospheric pressure are given in Tables 2 to 6. For solutions of ethyl-butyrate with 1-propanol, 1-butanol, 3-methyl-1-butanol, or 1-hexanol, no other literature data were found, while densities of the ethyl butyrate + 2-methyl-1-propanol mixture at 298.15 K were previously measured.10 A comparison of literature density and excess molar volume data for the ethyl butyrate + 2-methyl-1propanol mixture with our measurements showed excellent agreement with less than 0.03 % differences for density and within 6.0 % differences for excess molar volume, as can be seen in Figure 1.

3. RESULTS AND DISCUSSION Densities ρ, viscosities η, and refractive indices nD for five binary systems (ethyl-butyrate + 1-propanol, ethyl-butyrate + 2-methyl-1-propanol, ethyl-butyrate + 1-butanol, ethyl-butyrate + C

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Densities ρ, Excess Molar Volumes VE, Dynamic Viscosities η, Viscosity Deviations Δη, Refractive Indices nD, and Deviations in Refractive Indices ΔnD for the Binary Mixture Ethyl Butyrate (1) + 2-Methyl-1-propanol (2) at Temperature T = (288.15 to 323.15) K and Pressure p = 0.1 MPaa 10−3 ρ x1

kg·m

−3

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.80588 0.81601 0.82550 0.83420 0.84257 0.85043 0.85777 0.86475 0.87145 0.87793 0.88416

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.80203 0.81192 0.82121 0.82972 0.83792 0.84564 0.85286 0.85973 0.86633 0.87273 0.87890

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.79816 0.80782 0.81689 0.82521 0.83326 0.84084 0.84792 0.85469 0.86120 0.86752 0.87362

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.79425 0.80367 0.81254 0.82068 0.82856 0.83600 0.84297 0.84963 0.85605 0.86229 0.86833

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999

0.79031 0.79949 0.80815 0.81612 0.82384 0.83114 0.83799

106 VE

η

Δη

m3·mol−1

mPa·s

mPa·s

Ethyl Butyrate (1) + 2-Methyl-1-propanol (2) 288.15 K 4.829 0.0698 2.899 −1.519 0.1191 2.000 −2.008 0.1764 1.516 −2.080 0.1903 1.240 −1.947 0.1964 1.057 −1.718 0.1992 0.9319 −1.434 0.1864 0.8287 −1.125 0.1497 0.7850 −0.758 0.0825 0.7449 −0.389 0.7224 293.15 K 4.052 0.0769 2.510 −1.204 0.1317 1.768 −1.609 0.1928 1.363 −1.677 0.2088 1.129 −1.575 0.2156 0.9727 −1.394 0.2176 0.8638 −1.166 0.2026 0.7883 −0.903 0.1623 0.7356 −0.619 0.0895 0.7006 −0.318 0.6808 298.15 K 3.431 0.0839 2.190 −0.962 0.1447 1.571 −1.302 0.2098 1.233 −1.361 0.2280 1.032 −1.284 0.2353 0.8977 −1.139 0.2365 0.8022 −0.956 0.2193 0.7366 −0.742 0.1751 0.6907 −0.510 0.0968 0.6599 −0.263 0.6430 303.15 K 2.923 0.0919 1.920 −0.771 0.1585 1.406 −1.053 0.2276 1.118 −1.110 0.2484 0.9462 −1.050 0.2565 0.8309 −0.934 0.2567 0.7472 −0.786 0.2368 0.6895 −0.612 0.1886 0.6488 −0.421 0.1047 0.6217 −0.218 0.6072 308.15 K 2.505 0.0996 1.693 −0.619 0.1724 1.262 −0.857 0.2457 1.018 −0.908 0.2687 0.8702 −0.863 0.2774 0.7709 −0.769 0.2768 0.6967 −0.650 D

nD

ΔnD

1.39784 1.39721 1.39666 1.39621 1.39577 1.39544 1.39525 1.39516 1.39512 1.39516 1.39533

−0.00038 −0.00068 −0.00088 −0.00107 −0.00114 −0.00108 −0.00093 −0.00071 −0.00041

1.39578 1.39507 1.39444 1.39394 1.39345 1.39309 1.39285 1.39269 1.39263 1.39267 1.39285

−0.00042 −0.00075 −0.00096 −0.00116 −0.00123 −0.00118 −0.00104 −0.00080 −0.00048

1.39371 1.39292 1.39221 1.39165 1.39111 1.39070 1.39041 1.39023 1.39015 1.39017 1.39034

−0.00045 −0.00082 −0.00105 −0.00126 −0.00133 −0.00128 −0.00112 −0.00086 −0.00050

1.39161 1.39074 1.38997 1.38933 1.38875 1.38832 1.38801 1.38781 1.38773 1.38776 1.38791

−0.00050 −0.00090 −0.00117 −0.00138 −0.00144 −0.00138 −0.00121 −0.00092 −0.00053

1.38948 1.38856 1.38770 1.38700 1.38640 1.38592 1.38558

−0.00052 −0.00097 −0.00126 −0.00144 −0.00151 −0.00144

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued 10−3 ρ x1

kg·m

−3

0.7001 0.8001 0.8997 1.0000

0.84455 0.85088 0.85704 0.86302

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.78631 0.79527 0.80372 0.81151 0.81909 0.82625 0.83298 0.83944 0.84569 0.85178 0.85770

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.78226 0.79100 0.79925 0.80687 0.81429 0.82133 0.82795 0.83431 0.84047 0.84650 0.85236

0.0000 0.1000 0.2001 0.3001 0.3999 0.5000 0.5999 0.7001 0.8001 0.8997 1.0000

0.77814 0.78667 0.79473 0.80218 0.80946 0.81636 0.82287 0.82914 0.83523 0.84118 0.84700

η

106 VE −1

m ·mol 3

0.2548 0.2024 0.1127

0.1074 0.1863 0.2643 0.2895 0.2990 0.2977 0.2732 0.2167 0.1204

0.1149 0.2003 0.2826 0.3106 0.3210 0.3189 0.2919 0.2310 0.1286

0.1223 0.2142 0.3012 0.3319 0.3432 0.3403 0.3108 0.2454 0.1369

Δη mPa·s

nD

ΔnD

−0.507 −0.350 −0.181

1.38535 1.38524 1.38526 1.38538

−0.00126 −0.00095 −0.00053

mPa·s 308.15 0.6458 0.6101 0.5862 0.5736 313.15 2.161 1.501 1.137 0.9295 0.8021 0.7166 0.6507 0.6059 0.5742 0.5531 0.5425 318.15 1.876 1.337 1.029 0.8513 0.7413 0.6676 0.6086 0.5690 0.5409 0.5224 0.5132 323.15 1.652 1.219 0.9403 0.7850 0.6914 0.6257 0.5716 0.5382 0.5126 0.4958 0.4870

K

K −0.498 −0.700 −0.746 −0.712 −0.635 −0.539 −0.422 −0.292 −0.152

1.38736 1.38628 1.38539 1.38460 1.38396 1.38344 1.38303 1.38276 1.38261 1.38259 1.38271

−0.00061 −0.00104 −0.00136 −0.00154 −0.00159 −0.00154 −0.00135 −0.00103 −0.00058

−0.403 −0.574 −0.615 −0.589 −0.527 −0.450 −0.353 −0.245 −0.128

1.38526 1.38408 1.38309 1.38229 1.38157 1.38102 1.38053 1.38021 1.38002 1.37999 1.38014

−0.00066 −0.00114 −0.00143 −0.00164 −0.00168 −0.00165 −0.00146 −0.00114 −0.00066

−0.316 −0.478 −0.517 −0.495 −0.444 −0.382 −0.298 −0.207 −0.108

1.38297 1.38173 1.38071 1.37978 1.37899 1.37835 1.37785 1.37750 1.37729 1.37719 1.37732

−0.00068 −0.00113 −0.00150 −0.00172 −0.00180 −0.00173 −0.00152 −0.00116 −0.00070

K

K

a

x1 is the mole fraction of ethyl butyrate. Standard uncertainties u for each variables are u(T) = 0.01 K; u(p) = 5 %; u(x1) = 0.0001, and the combined expanded uncertainties Uc are Uc(ρ) = 8·10−2 kg·m−3; Uc(VE) = 4·10−9 m3·mol−1; Uc(η) = 1 %; Uc(Δη) = 0.4 %; Uc(nD) = 9·10−5, and Uc(ΔnD) = 6·10−5, with a 0.95 level of confidence (k ≈ 2).

Experimental densities of the mixtures ρ and the pure components ρi were used to calculate the excess molar volumes VE from the equation: ⎡⎛ ⎞ ⎛ ⎞⎤ 1 1 ⎟ − ⎜⎜ ⎟⎟⎥ ⎢⎣⎝ ρ ⎠ ⎝ ρi ⎠⎥⎦

2

VE =

in which ΔY refers to viscosity deviation Δη or deviation in refractive index ΔnD, Y denotes mixture property, viscosity η or refractive index nD, while Yi is viscosity ηi, or refractive index nD,i, of the pure component i. The values of excess molar volume VE and deviation functions Δη and ΔnD are also presented in Tables 2 to 6. Excess molar volume VE and deviation functions, Δη and ΔnD, were correlated with the Redlich−Kister (RK) equation:8

∑ xiMi⎢⎜ i=1

(1)

in which Mi is the molecular weight of component i and xi is its mole fraction. The deviation functions were determined from the equation:

k

Z = x1x 2

∑ A p(2x1 − 1)p p=0

(3)

2

ΔY = Y −

∑ xiYi i=1

in which Z represents VE, Δη, or ΔnD, while Ap and k + 1 are fitting parameters, optimized by an F-test, and their number.

(2) E

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Densities ρ, Excess Molar Volumes VE, Dynamic Viscosities η, Viscosity Deviations Δη, Refractive Indices nD, and Deviations in Refractive Indices ΔnD for the Binary Mixture Ethyl Butyrate (1) + 1-Butanol (2) at Temperature T = (288.15 to 323.15) K and Pressure p = 0.1 MPaa 10−3 ρ x1

−3

kg·m

106 VE −1

m ·mol 3

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.81346 0.82284 0.83139 0.83943 0.84696 0.85406 0.86072 0.86700 0.87295 0.87866 0.88416

0.0451 0.0968 0.1264 0.1450 0.1501 0.1446 0.1310 0.1073 0.0651

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.80966 0.81880 0.82716 0.83501 0.84237 0.84932 0.85586 0.86201 0.86786 0.87347 0.87890

0.0499 0.1049 0.1374 0.1577 0.1635 0.1574 0.1429 0.1164 0.0707

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.80584 0.81475 0.82290 0.83057 0.83777 0.84457 0.85097 0.85700 0.86274 0.86827 0.87362

0.0548 0.1139 0.1487 0.1706 0.1771 0.1709 0.1551 0.1265 0.0769

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.80199 0.81068 0.81863 0.82612 0.83315 0.83980 0.84607 0.85198 0.85762 0.86305 0.86833

0.0604 0.1231 0.1607 0.1842 0.1917 0.1853 0.1683 0.1374 0.0830

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.79812 0.80658 0.81433 0.82163 0.82850 0.83501 0.84114 0.84694 0.85247 0.85782 0.86302

0.0659 0.1325 0.1733 0.1987 0.2070 0.2004 0.1820 0.1482 0.0898

η

Δη

mPa·s

mPa·s

Ethyl Butyrate (1) + 1-Butanol (2) 288.15 K 3.365 2.336 −0.765 1.762 −1.075 1.408 −1.164 1.186 −1.123 1.022 −1.022 0.9212 −0.858 0.8393 −0.676 0.7850 −0.466 0.7409 −0.245 0.7224 293.15 K 2.913 2.037 −0.653 1.581 −0.886 1.279 −0.965 1.085 −0.936 0.9419 −0.855 0.8544 −0.720 0.7817 −0.569 0.7316 −0.396 0.6958 −0.208 0.6808 298.15 K 2.563 1.841 −0.530 1.427 −0.752 1.166 −0.821 0.9988 −0.797 0.8734 −0.730 0.7967 −0.615 0.7315 −0.488 0.6849 −0.342 0.6560 −0.179 0.6430 303.15 K 2.257 1.648 −0.444 1.292 −0.635 1.068 −0.695 0.9215 −0.676 0.8111 −0.621 0.7434 −0.524 0.6856 −0.417 0.6447 −0.293 0.6181 −0.154 0.6072 308.15 K 1.994 1.479 −0.373 1.174 −0.535 −0.588 0.9797 0.8520 −0.574 0.7542 −0.530 0.6973 −0.445 0.6428 −0.357 0.6063 −0.252 0.5830 −0.133 0.5736

F

nD

ΔnD

1.40124 1.40021 1.39931 1.39843 1.39768 1.39708 1.39653 1.39607 1.39572 1.39546 1.39533

−0.00044 −0.00075 −0.00104 −0.00120 −0.00121 −0.00117 −0.00103 −0.00079 −0.00046

1.39922 1.39813 1.39713 1.39620 1.39539 1.39468 1.39409 1.39361 1.39323 1.39296 1.39285

−0.00046 −0.00082 −0.00112 −0.00128 −0.00136 −0.00131 −0.00115 −0.00089 −0.00052

1.39720 1.39600 1.39493 1.39394 1.39309 1.39233 1.39169 1.39117 1.39077 1.39048 1.39034

−0.00051 −0.00089 −0.00120 −0.00137 −0.00144 −0.00139 −0.00122 −0.00094 −0.00055

1.39509 1.39387 1.39271 1.39168 1.39076 1.38998 1.38932 1.38878 1.38836 1.38807 1.38791

−0.00051 −0.00094 −0.00126 −0.00146 −0.00153 −0.00147 −0.00129 −0.00099 −0.00056

1.39301 1.39171 1.39048 1.38939 1.38843 1.38760 1.38691 1.38634 1.38590 1.38558 1.38538

−0.00054 −0.00100 −0.00133 −0.00153 −0.00159 −0.00153 −0.00133 −0.00101 −0.00056

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. continued x1

10−3 ρ

106 VE

η

Δη

kg·m−3

m3·mol−1

mPa·s

mPa·s

nD

ΔnD

−0.313 −0.453 −0.500 −0.491 −0.455 −0.385 −0.310 −0.220 −0.117

1.39096 1.38952 1.38820 1.38708 1.38606 1.38518 1.38441 1.38378 1.38329 1.38293 1.38271

−0.00062 −0.00111 −0.00141 −0.00161 −0.00166 −0.00160 −0.00140 −0.00107 −0.00061

−0.265 −0.385 −0.426 −0.418 −0.389 −0.330 −0.264 −0.188 −0.100

1.38888 1.38735 1.38596 1.38478 1.38375 1.38283 1.38203 1.38133 1.38080 1.38041 1.38014

−0.00065 −0.00117 −0.00148 −0.00164 −0.00168 −0.00161 −0.00143 −0.00109 −0.00060

−0.220 −0.331 −0.367 −0.363 −0.338 −0.287 −0.230 −0.163 −0.086

1.38672 1.38508 1.38364 1.38240 1.38129 1.38034 1.37947 1.37870 1.37808 1.37754 1.37732

−0.00070 −0.00120 −0.00150 −0.00167 −0.00168 −0.00161 −0.00145 −0.00112 −0.00072

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.79422 0.80244 0.80999 0.81712 0.82382 0.83018 0.83619 0.84187 0.84730 0.85256 0.85770

0.0714 0.1422 0.1860 0.2136 0.2230 0.2158 0.1963 0.1597 0.0969

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.79028 0.79828 0.80563 0.81257 0.81912 0.82533 0.83121 0.83678 0.84211 0.84729 0.85236

0.0769 0.1524 0.1994 0.2290 0.2395 0.2323 0.2113 0.1716 0.1037

0.0000 0.1000 0.2001 0.2999 0.3998 0.5000 0.5999 0.6998 0.7999 0.9001 1.0000

0.78629 0.79408 0.80122 0.80799 0.81438 0.82045 0.82620 0.83166 0.83690 0.84200 0.84700

0.0826 0.1626 0.2130 0.2451 0.2566 0.2494 0.2270 0.1838 0.1106

313.15 K 1.779 1.342 1.078 0.9078 0.7938 0.7053 0.6517 0.6037 0.5700 0.5487 0.5425 318.15 K 1.576 1.204 0.9786 0.8314 0.7327 0.6556 0.6088 0.5678 0.5382 0.5197 0.5132 323.15 K 1.422 1.109 0.9039 0.7743 0.6850 0.6163 0.5736 0.5372 0.5114 0.4942 0.4870

a

x1 is the mole fraction of ethyl butyrate. Standard uncertainties u for each variables are u(T) = 0.01 K; u(p) = 5 %; u(x1) = 0.0001, and the combined expanded uncertainties Uc are Uc(ρ) = 8·10−2 kg·m−3; Uc(VE) = 4·10−9 m3·mol−1; Uc(η) = 1 %; Uc(Δη) = 0.4 %; Uc(nD) = 9·10−5, and Uc(ΔnD) = 6·10−5, with a 0.95 level of confidence (k ≈ 2).

Table 5. Densities ρ, Excess Molar Volumes VE, Dynamic Viscosities η, Viscosity Deviations Δη, Refractive Indices nD, and Deviations in Refractive Indices ΔnD for the Binary Mixture Ethyl Butyrate (1) + 3-Methyl-1-butanol (2) at Temperature T = (288.15 to 323.15) K and Pressure p = 0.1 MPaa 10−3 ρ x1

−3

kg·m

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.81229 0.82068 0.82859 0.83624 0.84364 0.85077 0.85771 0.86447 0.87118 0.87779 0.88416

0.0000 0.1001 0.2000 0.3000

0.80858 0.81674 0.82448 0.83195

106 VE

η

Δη

m3·mol−1

mPa·s

mPa·s

Ethyl Butyrate (1) + 3-Methyl-1-butanol 288.15 K 5.057 0.0198 3.238 0.0541 2.255 0.0831 1.754 0.1053 1.414 0.1248 1.184 0.1322 1.031 0.1302 0.9059 0.0988 0.8213 0.0439 0.7679 0.7224 293.15 K 4.288 0.0254 2.813 0.0628 2.000 0.0938 1.575 G

nD

ΔnD

1.40874 1.40690 1.40519 1.40353 1.40208 1.40070 1.39939 1.39818 1.39710 1.39615 1.39533

−0.00050 −0.00087 −0.00119 −0.00129 −0.00133 −0.00131 −0.00117 −0.00091 −0.00052

(2)

−1.385 −1.935 −2.003 −1.909 −1.706 −1.425 −1.117 −0.768 −0.390

−1.113 −1.566 −1.630

1.40672 1.40481 1.40304 1.40133

−0.00053 −0.00091 −0.00123

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

10−3 ρ

106 VE

η

Δη

kg·m−3

m3·mol−1

mPa·s

mPa·s

nD

ΔnD

−1.560 −1.398 −1.170 −0.920 −0.634 −0.322

1.39984 1.39840 1.39705 1.39580 1.39467 1.39368 1.39285

−0.00133 −0.00139 −0.00135 −0.00121 −0.00096 −0.00056

0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.83917 0.84615 0.85295 0.85956 0.86614 0.87263 0.87890

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.80484 0.81280 0.82034 0.82763 0.83470 0.84151 0.84816 0.85464 0.86109 0.86746 0.87362

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.80109 0.80884 0.81619 0.82331 0.83020 0.83686 0.84337 0.84971 0.85602 0.86227 0.86833

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.79731 0.80486 0.81202 0.81896 0.82569 0.83219 0.83855 0.84475 0.85094 0.85707 0.86302

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.79351 0.80085 0.80782 0.81458 0.82115 0.82750 0.83371 0.83978 0.84583 0.85185 0.85770

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000

0.78967 0.79681 0.80360 0.81018 0.81658 0.82278 0.82885

0.1174 0.1374 0.1442 0.1409 0.1073 0.0494

0.0303 0.0715 0.1049 0.1297 0.1498 0.1566 0.1517 0.1161 0.0546

0.0356 0.0803 0.1160 0.1421 0.1628 0.1691 0.1635 0.1254 0.0607

0.0411 0.0891 0.1273 0.1552 0.1766 0.1825 0.1753 0.1352 0.0668

0.0462 0.0980 0.1387 0.1680 0.1900 0.1962 0.1877 0.1452 0.0726

0.0510 0.1065 0.1498 0.1808 0.2037 0.2094

293.15 1.285 1.086 0.9530 0.8432 0.7689 0.7214 0.6808 298.15 3.671 2.462 1.785 1.422 1.172 0.9993 0.8831 0.7864 0.7207 0.6784 0.6430 303.15 3.155 2.164 1.598 1.288 1.073 0.9221 0.8204 0.7345 0.6764 0.6389 0.6072 308.15 2.730 1.914 1.439 1.172 0.9851 0.8530 0.7639 0.6872 0.6355 0.6026 0.5736 313.15 2.375 1.700 1.302 1.069 0.9071 0.7907 0.7128 0.6437 0.5975 0.5690 0.5425 318.15 2.076 1.516 1.181 0.9787 0.8373 0.7346 0.6658 H

K

K −0.906 −1.280 −1.341 −1.288 −1.158 −0.971 −0.765 −0.528 −0.269

1.40469 1.40270 1.40086 1.39914 1.39754 1.39605 1.39467 1.39340 1.39224 1.39122 1.39034

−0.00056 −0.00096 −0.00124 −0.00140 −0.00146 −0.00141 −0.00125 −0.00097 −0.00056

−0.735 −1.047 −1.102 −1.063 −0.959 −0.806 −0.637 −0.441 −0.224

1.40261 1.40056 1.39868 1.39689 1.39523 1.39371 1.39230 1.39101 1.38985 1.38882 1.38791

−0.00057 −0.00099 −0.00131 −0.00150 −0.00155 −0.00149 −0.00131 −0.00100 −0.00057

−0.600 −0.859 −0.911 −0.882 −0.799 −0.672 −0.533 −0.370 −0.188

1.40051 1.39841 1.39648 1.39463 1.39292 1.39135 1.38989 1.38859 1.38740 1.38634 1.38538

−0.00058 −0.00100 −0.00134 −0.00153 −0.00160 −0.00154 −0.00133 −0.00101 −0.00056

−0.492 −0.707 −0.756 −0.735 −0.668 −0.563 −0.448 −0.312 −0.158

1.39848 1.39623 1.39420 1.39232 1.39058 1.38896 1.38745 1.38606 1.38479 1.38368 1.38271

−0.00067 −0.00112 −0.00143 −0.00159 −0.00164 −0.00157 −0.00139 −0.00108 −0.00062

K

K

K

K −0.403 −0.583 −0.628 −0.614 −0.560 −0.472

1.39641 1.39408 1.39199 1.39005 1.38825 1.38660 1.38504

−0.00070 −0.00116 −0.00147 −0.00164 −0.00167 −0.00161

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

10−3 ρ

106 VE

η

Δη

kg·m−3

m3·mol−1

mPa·s

mPa·s

nD

ΔnD

−0.378 −0.263 −0.132

1.38360 1.38231 1.38114 1.38014

−0.00141 −0.00109 −0.00063

0.7000 0.7999 0.8995 1.0000

0.83478 0.84071 0.84661 0.85236

0.0000 0.1001 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7999 0.8995 1.0000

0.78579 0.79273 0.79934 0.80576 0.81199 0.81803 0.82396 0.82975 0.83556 0.84134 0.84700

0.2000 0.1551 0.0785

0.0560 0.1149 0.1608 0.1936 0.2177 0.2226 0.2125 0.1655 0.0851

318.15 K 0.6038 0.5626 0.5380 0.5132 323.15 K 1.841 1.371 1.080 0.8983 0.7743 0.6838 0.6195 0.5672 0.5303 0.5071 0.4870

−0.334 −0.490 −0.536 −0.525 −0.480 −0.409 −0.326 −0.228 −0.116

1.39430 1.39188 1.38970 1.38771 1.38585 1.38410 1.38245 1.38096 1.37958 1.37835 1.37732

−0.00072 −0.00120 −0.00150 −0.00165 −0.00171 −0.00166 −0.00146 −0.00114 −0.00067

a

x1 is the mole fraction of ethyl butyrate. Standard uncertainties u for each variables are u(T) = 0.01 K; u(p) = 5 %; u(x1) = 0.0001, and the combined expanded uncertainties Uc are Uc(ρ) = 8·10−2 kg·m−3; Uc(VE) = 4·10−9 m3·mol−1; Uc(η) = 1 %; Uc(Δη) = 0.4 %; Uc(nD) = 9·10−5, and Uc(ΔnD) = 6·10−5, with a 0.95 level of confidence (k ≈ 2).

Table 6. Densities ρ, Excess Molar Volumes VE, Dynamic Viscosities η, Viscosity Deviations Δη, Refractive Indices nD, and Deviations in Refractive Indices ΔnD for Binary Mixture Ethyl Butyrate (1) + 1-Hexanol (2) at Temperature T = (288.15 to 323.15) K and Pressure p = 0.1 MPaa 10−3 ρ x1

−3

kg·m

106 VE

η

Δη

m3·mol−1

mPa·s

mPa·s

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.82226 0.82832 0.83425 0.84039 0.84647 0.85262 0.85884 0.86511 0.87143 0.87777 0.88416

0.0661 0.1416 0.1786 0.2082 0.2179 0.2054 0.1784 0.1325 0.0742

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.81870 0.82457 0.83032 0.83629 0.84219 0.84818 0.85423 0.86032 0.86648 0.87265 0.87890

0.0689 0.1466 0.1850 0.2153 0.2249 0.2124 0.1850 0.1380 0.0780

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.81512 0.82080 0.82639 0.83217 0.83790 0.84372 0.84959 0.85552 0.86151 0.86752 0.87362

0.0711 0.1504 0.1910 0.2220 0.2317 0.2194 0.1917 0.1438 0.0818

Ethyl Butyrate (1) + 1-Hexanol (2) 288.15 K 6.308 4.176 −1.574 2.965 −2.227 2.214 −2.417 1.735 −2.338 1.399 −2.116 1.170 −1.788 0.9966 −1.402 0.8726 −0.967 0.7818 −0.500 0.7224 293.15 K 5.332 3.600 −1.268 2.600 −1.803 1.970 −1.966 1.563 −1.909 1.274 −1.732 1.075 −1.468 0.9233 −1.153 0.8142 −0.797 0.7339 −0.413 0.6808 298.15 K 4.538 3.124 −1.026 2.295 −1.465 1.762 −1.606 1.414 −1.565 1.166 −1.425 0.9910 −1.211 0.8570 −0.955 0.7610 −0.661 0.6898 −0.343 0.6430 I

nD

ΔnD

1.41955 1.41679 1.41407 1.41143 1.40887 1.40640 1.40404 1.40173 1.39951 1.39737 1.39533

−0.00034 −0.00064 −0.00085 −0.00099 −0.00103 −0.00098 −0.00086 −0.00067 −0.00039

1.41758 1.41475 1.41198 1.40928 1.40668 1.40414 1.40172 1.39936 1.39709 1.39491 1.39285

−0.00036 −0.00066 −0.00088 −0.00101 −0.00108 −0.00103 −0.00091 −0.00071 −0.00042

1.41561 1.41272 1.40988 1.40712 1.40445 1.40186 1.39937 1.39697 1.39466 1.39244 1.39034

−0.00038 −0.00068 −0.00090 −0.00105 −0.00112 −0.00108 −0.00095 −0.00074 −0.00043

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. continued x1

10−3 ρ

106 VE

η

Δη

kg·m−3

m3·mol−1

mPa·s

mPa·s

nD

ΔnD

−0.837 −1.200 −1.323 −1.294 −1.182 −1.005 −0.796 −0.552 −0.288

1.41365 1.41067 1.40776 1.40493 1.40221 1.39960 1.39706 1.39459 1.39229 1.39005 1.38791

−0.00041 −0.00074 −0.00099 −0.00114 −0.00119 −0.00115 −0.00105 −0.00077 −0.00044

−0.680 −0.985 −1.091 −1.072 −0.982 −0.839 −0.665 −0.463 −0.242

1.41169 1.40863 1.40564 1.40274 1.39998 1.39732 1.39472 1.39218 1.38982 1.38754 1.38538

−0.00043 −0.00079 −0.00105 −0.00118 −0.00122 −0.00119 −0.00110 −0.00082 −0.00047

−0.556 −0.811 −0.904 −0.891 −0.820 −0.703 −0.559 −0.390 −0.204

1.40974 1.40655 1.40350 1.40050 1.39771 1.39497 1.39230 1.38969 1.38723 1.38490 1.38271

−0.00050 −0.00085 −0.00113 −0.00122 −0.00126 −0.00123 −0.00114 −0.00089 −0.00052

−0.456 −0.670 −0.752 −0.745 −0.687 −0.591 −0.471 −0.330 −0.173

1.40778 1.40453 1.40135 1.39828 1.39545 1.39266 1.38992 1.38727 1.38473 1.38236 1.38014

−0.00049 −0.00090 −0.00119 −0.00127 −0.00130 −0.00128 −0.00116 −0.00093 −0.00055

−0.366 −0.558 −0.625 −0.621 −0.576 −0.497 −0.399 −0.278 −0.145

1.40577 1.40240 1.39915 1.39599 1.39309 1.39021 1.38738 1.38467 1.38207 1.37955 1.37732

−0.00054 −0.00094 −0.00124 −0.00130 −0.00133 −0.00133 −0.00119 −0.00095 −0.00062

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.81152 0.81702 0.82243 0.82803 0.83360 0.83924 0.84495 0.85071 0.85653 0.86238 0.86833

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.80789 0.81322 0.81846 0.82388 0.82927 0.83475 0.84028 0.84588 0.85154 0.85723 0.86302

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.80425 0.80940 0.81446 0.81970 0.82492 0.83023 0.83560 0.84102 0.84652 0.85206 0.85770

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.80056 0.80554 0.81043 0.81550 0.82055 0.82569 0.83089 0.83615 0.84148 0.84686 0.85236

0.0000 0.0997 0.1998 0.3002 0.4000 0.5000 0.5998 0.6999 0.7999 0.8998 1.0000

0.79685 0.80166 0.80638 0.81127 0.81615 0.82113 0.82616 0.83125 0.83643 0.84164 0.84700

0.0737 0.1546 0.1971 0.2289 0.2388 0.2267 0.1988 0.1497 0.0857

0.0760 0.1585 0.2031 0.2356 0.2457 0.2338 0.2057 0.1557 0.0896

0.0783 0.1625 0.2087 0.2423 0.2526 0.2409 0.2126 0.1616 0.0935

0.0800 0.1657 0.2143 0.2485 0.2589 0.2477 0.2192 0.1676 0.0979

0.0816 0.1691 0.2191 0.2543 0.2655 0.2545 0.2260 0.1730 0.1014

303.15 3.896 2.731 2.038 1.585 1.286 1.069 0.9185 0.7979 0.7129 0.6492 0.6072 308.15 3.361 2.403 1.819 1.433 1.174 0.9852 0.8501 0.7452 0.6686 0.6113 0.5736 313.15 2.917 2.124 1.631 1.300 1.076 0.9099 0.7898 0.6964 0.6277 0.5762 0.5425 318.15 2.546 1.887 1.469 1.184 0.9878 0.8422 0.7355 0.6520 0.5903 0.5440 0.5132 323.15 2.241 1.700 1.332 1.089 0.9186 0.7880 0.6919 0.6147 0.5594 0.5176 0.4870

K

K

K

K

K

a

x1 is the mole fraction of ethyl butyrate. Standard uncertainties u for each variables are u(T) = 0.01 K; u(p) = 5 %; u(x1) = 0.0001, and the combined expanded uncertainties Uc are Uc(ρ) = 8·10−2 kg·m−3; Uc(VE) = 4·10−9 m3·mol−1; Uc(η) = 1 %; Uc(Δη) = 0.4 %; Uc(nD) = 9·10−5, and Uc(ΔnD) = 6·10−5, with a 0.95 level of confidence (k ≈ 2).

J

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 1. Comparison of (a) densities ρ, (b) excess molar volumes VE, for the systems: ethyl butyrate (1) + 2-methyl-1-propanol (2) as a function of ethyl butyrate molar fraction x1: ■, this work; ○, literature data.10

Figure 2. Experimental values of excess molar volume VE as a function of ethyl butyrate molar fraction x1 for the systems: (a) ethyl butyrate (1) + 1-propanol (2); (b) ethyl butyrate (1) + 2-methyl-1-propanol (2); (c) ethyl butyrate (1) + 1-butanol (2); (d) ethyl butyrate (1) + 3-methyl-1-butanol (2); (e) ethyl butyrate (1) + 1-hexanol (2) at following temperatures: ◊, 288.15 K; ⧫, 293.15 K; ○, 298.15 K; ●, 303.15 K; △, 308.15 K; ▲, 313.15 K; □, 318.15 K; ■, 323.15 K; , RK equation. K

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 3. Experimental values of viscosity deviation Δη as a function of ethyl butyrate molar fraction x1 for the systems: (a) ethyl butyrate (1) + 1-propanol (2); (b) ethyl butyrate (1) + 2-methyl-1-propanol (2); (c) ethyl butyrate (1) + 1-butanol (2); (d) ethyl butyrate (1) + 3-methyl-1-butanol (2); (e) ethyl butyrate (1) + 1-hexanol (2) at following temperatures: ◊, 288.15 K; ⧫, 293.15 K; ○, 298.15 K; ●, 303.15 K; △, 308.15 K; ▲, 313.15 K; □, 318.15 K; ■, 323.15 K; , RK equation.

The values of fitting parameters for all investigated properties are presented in Table S2 in the Supporting Information. The quality of correlation was estimated by the value of the root-mean-square deviations (rmsd), σ, calculated from the equation:

As already stated in our previous work11 “the magnitude and the positive sign of excess molar volume VE can arise mainly from the following factors: (i) as a consequence of the rupture of the H bonds in the self-associated alcohol and the physical dipole−dipole interactions among molecules in the pure components; (ii) as a result of predominant intermolecular H bond stretching of the associated alcohol molecules in the presence of other substances; (iii) the steric hindrance due to interstitial accommodation of unlike molecules”. In mixtures of alcohols and esters conditions exist for intermolecular hydrogen bonds between the carbonyl group of ester which is a proton acceptor and the hydroxyl group of alcohol which acts as a proton donor. However, the strength of newly formed hydrogen bonds is not the only factor influencing the sign and the magnitude of the excess molar volume in ester + alcohol mixture. Disruption of hydrogen bonds in strongly selfassociated alcohols or weakening of dipole−dipole interactions between polar ester molecules (ethyl butyrate dipole moment is 1.811 D12) as well as steric hindrances could have a dominant effect. A FTIR study has also been performed on interactions through hydrogen bonds on a group of ester + alcohol binary systems13 where their existence was confirmed and further stated that “the strength of the intermolecular hydrogen bond formed between

m

σ = (∑ (Yexp − Ycal)2 /m)1/2 i=1

(4)

in which m is the number of experimental data points. The obtained values of excess molar volumes are graphically presented in Figure 2. The excess molar volumes for investigated binary systems are positive at all temperatures and for all mixture compositions as displayed in Figure 2. At most temperatures the magnitude of the positive sign is increasing in the following order: 1-propanol < 3-methyl-1-butanol < 1-butanol < 1-hexanol < 2-methyl-1propanol. At (313.15, 318.15, and 323.15) K, the magnitude of the positive sign for mixture with 1-propanol is higher than for a mixture with 3-methyl-1-butanol. Also, the same situation is with mixtures with 1-hexanol and 2-methyl-1-propanol; at first two temperatures, the magnitude is higher for 1-hexanol. This is the consequence of the asymmetrical curves for VE for some systems. The obtained results allow analysis of the molecular interactions existing in the mixture as well as the influence of alcohol chain length and branching on system behavior. L

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 4. Experimental values of deviation in refractive index ΔnD as a function of ethyl butyrate molar fraction x1 for the systems: (a) ethyl butyrate (1) + 1-propanol (2); (b) ethyl butyrate (1) + 2-methyl-1-propanol (2); (c) ethyl butyrate (1) + 1-butanol (2); (d) ethyl butyrate (1) + 3-methyl-1-butanol (2); (e) ethyl butyrate (1) + 1-hexanol (2) at following temperatures: ◊, 288.15 K; ⧫, 293.15 K; ○, 298.15 K; ●, 303.15 K; △, 308.15 K; ▲, 313.15 K; □, 318.15 K; ■, 323.15 K; , RK equation.

following order: 1-propanol < 1-butanol < 3-methyl-1-butanol < 2-methyl-1-propanol < 1-hexanol. At temperatures (308.15, 313.15, 318.15, and 323.15) K, the order is 1-propanol < 1-butanol < 2-methyl-1-propanol < 3-methyl-1-butanol < 1-hexanol, which has sense if we are looking the complexity of the molecules of alcohol, since negative deviations in viscosity are often influenced by size and shape of molecules. Deviations of refractive indices, plotted in Figure 4, are negative for most of the investigated systems at all temperatures, except for the solution with 1-propanol where positive deviations occur at lower temperatures. In general, a positive ΔnD function suggests the stronger dispersion attractive interactions between the unlike molecules in the mixture than in the pure components.17,18 The general behavior of the positive refractive indices deviations by temperature is that they decrease as temperature is increased, turning negative at higher temperatures, thus following the aforementioned decrease of the attractive interactions between the unlike molecules. However, negative deviations for the solutions with 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, or 1-hexanol indicate weaker interactions between unlike molecules, as a result of the prevailing strong attractive interactions between like ones.

a CO group and an ROH proton is dependent on the basicity of the CO group, the acidity of the ROH proton and the intermolecular distance between the acid and the basic sites”. Previous investigations of the ethyl butyrate + methanol binary mixture14,15 showed negative excess molar volumes, while with higher alcohols our measurements as well as literature data10 confirmed a positive VE function. However, the investigation of various ester + alcohol binary mixtures16 showed that positive VE values were obtained with methanol as well as with higher alcohols. In mixtures with ethyl butyrate, negative excess molar volumes for solutions with methanol and positive for higher alcohols are most likely the result of domination of structural factors. With temperature rise VE function of all investigated systems become more positive probably as a result of reduced cross-association equilibrium constant of the ester−alcohol complexes and decrease of the attractive interactions between the unlike molecules. Viscosity deviations shown at Figure 3 are negative over the whole temperature and composition range. For all analyzed mixtures negative Δη values are reduced with temperature rise. Lines for all five mixtures are asymmetrical with minimum around 0.3 mole fraction of ethyl butyrate. In this case, the magnitude of the negative sign, at first four temperatures, is increasing in the M

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(7) Resa, J. M.; González, C.; Goenaga, J. M. Density, refractive index, speed of sound at 298.15 K, and vapor-liquid equilibria at 101.3 kPa for binary mixtures of methanol plus 2-methyl-1-butanol and ethanol plus 2-methyl-1-butanol. J. Chem. Eng. Data 2005, 50, 1570−1575. (8) Redlich, O.; Kister, A. T. Algebric Representation of Thermodynamic Properties and Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (9) Kijevčanin, M. Lj.; Ž ivković, E. M.; Djordjević, B. D.; Radović, I. R.; Jovanović, J.; Šerbanović, S. P. Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, +1,2-propanediol, +1,3propanediol, and +glycerol). New UNIFAC-VISCO parameters determination. J. Chem. Thermodyn. 2013, 56, 49−56. (10) Ortega, J.; Hernandez, P. Thermodynamic Study of Binary Mixtures Containing an Isobutylalkanol and an Alkyl (Ethyl to Butyl) Alkanoate(Methanoate to Butanoate), Contributing with Experimental Values of Excess Molar Enthalpies and Volumes, and IsobaricVaporLiquid Equilibria. J. Chem. Eng. Data 1999, 44, 757−771. (11) Kijevčanin, M. Lj.; Djordjević, B. D.; Radović, I. R.; Ž ivković, E. M.; Tasić, A. Ž .; Šerbanović, S. P. Molecular Interaction, Modeling of Vol.tric Properties of Organic Mixtures Based on Molecular Interactions; Intech: Rijeka, 2012. (12) Yaws, C. L.; Narasimhan, P. K. Thermophysical Properties of Chemicals and Hydrocarbons; Elsevier: New York, 2009. (13) Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P. Hydrogen bonding interaction between acrylic esters and monohydric alcohols in non-polar solvents: An FTIR study. Spectrochim. Acta, Part A 2007, 66, 48−51. (14) Kijevcanin, M. Lj.; Ribeiro, I. S. A.; Ferreira, A. G. M.; Fonseca, I. M. A. Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K. J. Chem. Eng. Data 2003, 48, 1266−1270. (15) Resa, J. M.; González, C.; Ortiz de Landaluce, S.; Lanz, J. Density, Refractive Index, and Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + Ethyl Butyrate and Vinyl Acetate + Ethyl Butyrate. J. Chem. Eng. Data 2002, 47, 1123− 1127. (16) Djojoputro, H.; Ismadji, S. Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2005, 50, 1343−1347. (17) Prausnitz, J. M.; Lichtenthaler, R. N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid Phase Equilibria; Prentice Hall: New York, 1986. (18) Piñeiro, Á .; Brocos, P.; Amigo, A.; Pintos, M.; Bravo, R. Prediction of excess volumes and excess surface tensions from experimental refractive indices. Phys. Chem. Liq. 2000, 38, 251−260.

4. CONCLUSIONS Density (ρ), viscosity (η), and refractive index (nD) of five ester + alcohol binary mixtures are given in this paper at atmospheric pressure and at temperatures ranging from (288.15 to 323.15) K. Excess molar volumes (VE) and deviation functions (Δη, ΔnD) calculated from these data and correlated by Redlich−Kister equation were further used for interpretation of molecular interactions present in the mixtures. As expected, based on the previous thermodynamic investigations of ester + alcohol systems and FTIR analysis, VE values were positive for all five solutions: ethyl-butyrate + 1-propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, and 1-hexanol. Since literature data for the ethyl butyrate + methanol binary mixture showed negative excess molar volumes, it was concluded that with higher alcohols structural effects probably have the dominant effect. The deviations in refractive index (ΔnD) are negative for most of the investigated systems, except for the solution with 1-propanol at lower temperatures, which suggests that attractive dispersion interactions in the pure ester and alcohols are stronger than in their mixtures.



ASSOCIATED CONTENT

S Supporting Information *

Densities ρ, dynamic viscosities η, and refractive indices nD of the pure components studied in this work at 298.15 K; and deviation in refractive index ΔnD; and values of fitting parameters for all investigated properties. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Phone: +381 11 3370523; fax: +381 11 3370387. E-mail address: [email protected]. Funding

The authors gratefully acknowledge the financial support received from the Research Fund of Ministry of Science and Environmental Protection, Serbia and the Faculty of Technology and Metallurgy, University of Belgrade (project no. 172063). Notes

The authors declare no competing financial interest.



REFERENCES

(1) Ortega-Heras, M.; González-SanJosé, M. L.; Beltrán, S. Aroma composition of wine studied by different extraction methods. Anal. Chim. Acta 2002, 458, 85−93. (2) Aznar, M.; Arroyo, T. Analysis of wine volatile profile by purge-andtrap−gas chromatography−mass spectrometry: Application to the analysis of red and white wines from different Spanish regions. J. Chromatogr., A 2007, 1165, 151−157. (3) Ferreira, V.; Lopez, R.; Cacho, J. F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659−1667. (4) Gómez-Míguez, M. J.; Cacho, J. F.; Ferreira, V.; Vicario, I. M.; Heredia, F. J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464−1473. (5) Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027−3032. (6) Resa, J. M.; Cepeda, E. A.; Goenaga, J. M.; Ramos, A.; Aguirre, S.; Urbano, C. Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibrium at 101.3 kPa for Binary Mixtures of Methanol + Ethyl Lactate and 1-Propanol + Ethyl Lactate. J. Chem. Eng. Data 2010, 55, 1017−1021. N

dx.doi.org/10.1021/je5005752 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX