Volumetric Properties, Viscosity, and Refractive Indices of Different

Sep 5, 2017 - Thermophysical properties including densities and viscosities of naringenin in aqueous solutions of ethanol/1-propanol with alcohol conc...
2 downloads 8 Views 715KB Size
Article pubs.acs.org/jced

Volumetric Properties, Viscosity, and Refractive Indices of Different Naringenin Solutions at Several Temperatures Yingying Shan,† Behnaz Asadzadeh, and Weidong Yan* Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China S Supporting Information *

ABSTRACT: Thermophysical properties including densities and viscosities of naringenin in aqueous solutions of ethanol/1-propanol with alcohol concentrations of (24.00 to 40.00) mol·kg−1 have been measured as a function of concentration of naringenin at temperatures from (293.15 to 323.15) K and atmospheric pressure. Also, refractive indices for studied systems have been determined at 298.15 K. The measured data were used to calculate the apparent molar volume (Vϕ), standard partial molar volume (V0ϕ), partial molar volume (V̅ ), viscosity B-coefficients, and molar refractions (Rm). The viscosity and refractive index data have been analyzed by Jones−Dole and Lorentz−Lorenz equations, respectively. The trends of variation of experimental and calculated parameters have been discussed according to the interactions between solvents and solute. The obtained results imply that naringenin acts as a structure maker in the studied system.



INTRODUCTION

As a pharmaceutical drug, it is inevitable to study naringenin’s various interactions in aqueous solutions in order to determine the functional properties of it. There is some information regarding naringenin properties in different solvents solutions;11,12 however, information with respect to the densities, viscosities, and refractive indices of naringenin in aqueous solutions was not found in the relevant literature. Therefore, in the present work, densities and viscosities of naringenin in aqueous ethanol/1-propanol solution at temperatures from (293.15 to 323.15) K and different alcohol concentrations (m = 24.00 to 40.00 mol·kg−1 in water) have been measured. Also, for studied systems refractive indices have been determined at 298.15 K. The measured density data was used to calculate apparent molar volume and standard partial molar volume. Furthermore, measured viscosities and refractive indices data were used to compute the viscosity B-coefficients and molar refractions, respectively. All of the obtained parameters have been used to describe the solute−solvent interactions in the ternary systems. The viscosity and refractive indices data have been analyzed by Jones−Dole and Lorentz−Lorenz equations, respectively. All of the obtained parameters have been used to describe the solute−solvent interactions occurring between the various components in the studied ternary system.

Naringenin (C15H12O5, CAS: 480-41-1), a plant flavonoid, has attracted significant scientific and public interest in Chinese medicine by owning the versatile health-promoting effects of antioxidation,1 antiulcer,2 reducing cholesterol,3 and antiinflammation.4 Knowledge of thermophysical properties of drugs with organic solvents in chemical processes requires reliable and systematic data such as densities and viscosities.5 This information is useful to understand the intermolecular interactions present in liquid pharmaceutical systems.6,7 The intermolecular interactions are commonly connected with noncovalent interactions including hydrophobic interactions, electrostatic interactions, and hydrogen bonding, which are influenced by the surrounding solutes and solvent.8 Volumetric properties provide useful information to solute−solvent interactions. Also, volumetric properties could provide a better introduction to the interactions of the components in solutions. These properties not only depend on solvent−solvent, solute− solvent, and solute−solute interactions, but also the structural effects result in interstitial accommodation due to the difference in molar volume and free volume between components in the system.9 Viscometric properties give important information about solute−solute and solute−solvent interactions and could help us to confirm the results of volumetric properties. Literature survey indicates that, few experimental works have been performed to study thermophysical properties of drugs in different alcohols solutions. In this way, Li et al.10 measured the density and refractive indices of hexane-1,2,3,4,5,6-hexol in aqueous solutions of 1-propanol and 2-propanol, and Chen et al.6 have also studied 7-hydroxy-4-methylcoumarin’s viscometric, volumetric, and refractive index behavior in aqueous ethanol or 1-propanol solutions in different temperature ranges. © 2017 American Chemical Society



EXPERIMENTAL SECTION Materials. The purity of naringenin purchased from Aladdin Industrial Corporation (Shanghai, China), was more than 97% in mass fraction. The 1H NMR and 13C NMR spectra of naringenin were presented in Figure S1 (Supporting Information). Received: March 29, 2017 Accepted: August 17, 2017 Published: September 5, 2017 3229

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

Table 1. Sources and Purities of the Chemicals Used

a

chemical

CASRN

source

initial mass fraction purity

purification method

final mass fraction purity

analysis method

naringenin ethanol 1-propanol

480-41-1 64-17-5 71-23-8

Aladdin Sinopharm Sinopharm

0.97 0.99 0.99

recrystallization distillation distillation

0.985 0.997 0.995

HPLCa GCb GC

High performance liquid chromatography. bGas chromatography.

Table 2. Comparison of Experimental Density (ρ), Viscosities (η) and Refractive Indices (nD) with Literature Valuesa at Different Temperatures and the Experimental Pressure (p = 0.1 MPa)b ρ/103 kg·m−3 T/K

expt

293.15 298.15 308.15

0.998206 0.997046 0.994024

293.15 298.15

0.789476 0.788356

293.15 298.15

0.803675 0.800942

298.15 303.15

0.925800 0.923139

298.15 313.15

0.914360 0.903156

η/mPa·s lit.

expt

Water 0.998207 1.002 0.997047 0.887 0.994027 0.728 Ethanol 0.7895 1.159 0.788 1.091 1-Propanol 0.8036 2.407 0.7996 2.117 Water + Ethanol (16.00 mol·kg−1) 0.926799 2.367 0.922942 1.992 Water +1-Propanol (14.00 mol·kg−1) 0.914486 2.591 0.903277 1.618

nD lit.

expt

lit.

1.009 0.890 0.729

1.3327 1.3315

1.3320 1.3313

1.162 1.096

1.3607

1.3618

2.410 2.118

1.3862

1.3853

2.363 1.9886

1.3569

1.3564

2.599 1.626

1.3637

1.3640

a

Chen, A.; Liu, M.; Zheng, Y., et al. J. Chem. Eng. Data 2013, 58, 2474−2482. Tang, N.; Shi, W.; Yan, W. J. Chem. Eng. Data 2015, 61, 35−40. ́ Gonçalves, F.; Trindade, A R.; Costa, C., et al. J. Chem. Thermodynamics 2010, 42, 1039−1049. Martinez-Reina M.; Amado-González E.; GomézJaramillo W. J. Solution Chem. 2015, 44, 206−222. Dong, L.; Liu, M.; Li, G., et al. J. Chem. Eng. Data 2011, 56, 4031−4039. Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R., et al. J. Chem. Thermodyn. 2009, 41, 1432−1438. Li, H.; Xu, X Y.; Chi, C. J., et al. J. Chem. Eng. Data 2010, 55, 2909−2913. Li, D.; Li, G.; Bian, P., et al. J. Chem. Eng. Data 2016, 61, 1777−1792. Zafarani-Moattar M. T.; Hosseinzadeh S. J. Chem. Eng. Data 2006, 51, 1190−1193. b Standard uncertainties u for the molality of solvents is u(msolvent) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa. The relative standard uncertainties for densities and viscosity are ur (ρ) = 0.005, ur(η) = 0.01, and the standard uncertainty of refractive indices is u(nD) = 0.0005.

Viscosity measurements were carried out with an Anton Paar AMVn at different temperatures. By this apparatus, the working temperature can be controlled within ±0.01 K. The viscometer was calibrated with distilled deionized water before use. The measured data of solutions compared with literature are shown in Table 2. The percentage deviation of viscosities (η) with literature values were ±0.69%. The flow time of the solutions through the whole capillary was recorded, and the following equation was used to calculate the viscosities of the solution.

Ethanol and 1-propanol were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Water obtained by a Millipore, Milli-Q (Bedford, MA, USA) purification system was used to prepare the aqueous solution. The sources and purities of chemicals used in the experiment are listed in Table 1. Apparatus and Procedure. The studied solutions were prepared in glass vials in molal base concentration by mass using an analytical balance (A CP 225D balance (Sartorius, Germany) with an uncertainty of ±0.01 mg to achieve exact molality concentrations (m = 24.00, 28.00, 32.00, 36.00, and 40.00 mol·kg−1) of ethanol/1-propanol in water without a solute and concentrations (m = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05 mol·kg−1) of naringenin in the mixed solvents. The weight of the solute and solvents in the studied system are given in Table S1. All the solutions were kept in glass bottles with a cap to prevent evaporation before use. Measurements were performed immediately after preparation of solutions. The density data of the solutions at different temperatures were measured using an Anton Paar DMA 5000 M densimeter (with an accuracy of ±0.005 kg·m−3). The apparatus was calibrated with double distilled deionized, and degassed water, and dry air at atmospheric pressure. The measured density data of pure solvent and solutions compared with literature are shown in Table 2; however, there are no available literature data for naringenin. The percentage deviation of density (ρ) with literature values was ±0.17%.

η = k(7.680 − ρ)t

(1)

where ρ represents the density of the solution, t represents the flow time of the solution in the capillary. In this work, k was calibrated to be 0.010167 using distilled deionized water at 293.15 K (η = 1.002; ρ = 0.99820). Refractive index values nD of the studied solutions were determined using a WYA-2S refractometer (Shanghai BM Instruments Manufacture Co., Ltd., China) with an uncertainty of 5 × 10−4. The temperature of the solutions was maintained at 298.15 K using a constant temperature thermostatic bath (THD-2006, Ningbo Tianheng Instrument Works Co., Ltd., China) with a thermal stability of ±0.1 K. The measured refractive index value of pure water at 298.15 K was reported in Table 2 and compared with literature value. The percentage deviation of refractive indices (nD) with literature values were ±0.08%. 3230

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

3231

1.3456

0.0000

0.2769

0.5442

0.8101

1.0773

1.3456

0.0000

0.2742

0.5442

0.8128

1.0799

0.0000

0.0102

0.0201

0.0300

0.0400

0.0501

0.0000

0.0101

0.0201

0.0301

0.0401

1.3456

0.0501

1.0799

1.0799

0.0401

0.0501

0.8101

0.0300

0.0401

0.5442

0.0201

0.8128

0.2715

0.0100

0.0301

0.0000

0.0000

0.5442

1.3456

0.0501

0.0201

1.0799

0.0401

0.2769

0.8128

0.0301

0.0000

0.5442

0.0201

0.0102

0.2769

0.0102

0.0000

0.0000

%

mol·kg−1

0.0000

Wnaringenin

mnaringenin

883.956

883.098

882.221

881.323

880.390

890.239

889.426

888.601

887.749

886.888

885.981

896.583

895.799

894.997

894.178

893.341

892.458

903.989

903.232

902.462

901.672

900.845

899.992

913.065

912.245

911.393

910.532

909.641

908.710

kg·m−3

ρ 6

906.509 907.385 908.242 909.063

189.50 ± 0.24

190.91 ± 0.22

191.99 ± 0.18

193.30 ± 0.18

897.529 898.338 899.110 899.887

199.15 ± 0.23

200.61 ± 0.21

202.08 ± 0.15

203.20 ± 0.17

890.066 890.899 891.713 892.513

197.08 ± 0.22

198.48 ± 0.21

199.61 ± 0.16

200.75 ± 0.17

883.569 884.431 885.271 886.102

194.56 ± 0.20

195.58 ± 0.17

196.91 ± 0.21

198.08 ± 0.11

877.107 878.015 878.900 879.777

190.21 ± 0.30

191.25 ± 0.22

192.53 ± 0.16

193.78 ± 0.18

876.159

882.699

193.25 ± 0.29

881.777

889.212

195.64 ± 0.33

888.313

896.693

197.94 ± 0.34

895.830

905.615

904.674

kg·m−3

ρ

188.66 ± 0.31

m3·mol−1

Vϕ(×10 )

293.15 K 6

192.46 ± 0.13

191.47 ± 0.15

189.98 ± 0.22

188.62 ± 0.30

196.78 ± 0.11

195.76 ± 0.21

194.50 ± 0.17

193.41 ± 0.20

191.72 ± 0.35

199.30 ± 0.12

198.17 ± 0.16

196.92 ± 0.21

195.41 ± 0.21

194.04 ± 0.33

202.05 ± 0.11

201.15 ± 0.16

199.28 ± 0.22

198.10 ± 0.23

196.57 ± 0.34

192.86 ± 0.15

191.36 ± 0.16

190.14 ± 0.21

189.09 ± 0.24

187.80 ± 0.33

m3·mol−1

Vϕ(×10 )

298.15 K

875.549

874.677

873.776

872.854

871.898

881.917

881.075

880.225

879.350

878.467

877.532

888.342

887.537

886.716

885.865

885.006

884.095

895.917

895.151

894.347

893.527

892.671

891.793

904.998

904.170

903.303

902.425

901.522

900.572

kg·m−3

ρ 6

m3·mol−1

900.882

900.027

899.162

898.279

191.41 ± 0.11

190.39 ± 0.15

188.91 ± 0.23

187.29 ± 0.25

186.16 ± 0.29

(Wethanol = 0.5249)

897.364

886.977

891.180

890.391

889.576

888.745

887.870

199.32 ± 0.11

197.86 ± 0.16

196.36 ± 0.20

194.64 ± 0.22

193.58 ± 0.34

879.584

884.151

883.336

882.511

881.649

880.775

197.67 ± 0.12

196.37 ± 0.16

194.70 ± 0.22

193.50 ± 0.22

192.01 ± 0.33

873.214

877.658

876.803

875.941

875.058

874.161

194.48 ± 0.11

193.43 ± 0.17

192.09 ± 0.17

190.76 ± 0.20

189.21 ± 0.28

191.74 ± 0.13

190.16 ± 0.15

188.88 ± 0.22

187.90 ± 0.30

871.245

870.357

869.442

868.513

867.544

190.44 ± 0.13

188.99 ± 0.16

187.88 ± 0.21

186.51 ± 0.33

methanol = 40.00 mol·kg−1 (Wethanol = 0.6481)

195.63 ± 0.11

194.55 ± 0.21

193.20 ± 0.17

192.13 ± 0.20

190.42 ± 0.29

methanol = 36.00 mol·kg−1 (Wethanol = 0.6237)

198.53 ± 0.17

197.25 ± 0.16

195.85 ± 0.21

194.72 ± 0.22

192.91 ± 0.33

methanol = 32.00 mol·kg−1 (Wethanol = 0.5957)

200.81 ± 0.15

199.13 ± 0.15

197.78 ± 0.22

196.32 ± 0.23

195.02 ± 0.33

6

Vϕ(×10 )

308.15 K

methanol = 28.00 mol·kg−1 (Wethanol = 0.5632)

192.33 ± 0.12

190.80 ± 0.16

189.68 ± 0.21

188.31 ± 0.24

187.05 ± 0.32

−1

kg·m−3

ρ

896.404

methanol = 24.00 mol·kg

m3·mol−1

Vϕ(×10 )

303.15 K

866.881

865.980

865.055

864.118

863.138

873.356

872.493

871.623

870.738

869.827

868.871

879.832

879.027

878.182

877.311

876.421

875.489

887.032

886.232

885.409

884.565

883.688

882.783

896.690

895.834

894.956

894.065

893.142

892.171

kg·m−3

ρ 6

189.37 ± 0.18

188.02 ± 0.16

186.92 ± 0.22

185.35 ± 0.31

193.78 ± 0.12

192.71 ± 0.20

191.34 ± 0.18

189.59 ± 0.21

188.37 ± 0.27

196.91 ± 0.15

194.96 ± 0.16

193.53 ± 0.19

192.13 ± 0.20

190.97 ± 0.34

198.57 ± 0.12

197.17 ± 0.16

195.61 ± 0.21

194.13 ± 0.23

192.42 ± 0.33

190.75 ± 0.16

189.50 ± 0.15

188.13 ± 0.22

186.47 ± 0.26

185.12 ± 0.34

m3·mol−1

Vϕ(×10 )

313.15 K

862.458

861.550

860.614

859.669

858.677

868.960

868.087

867.207

866.305

865.383

864.413

875.511

874.679

873.822

872.942

872.043

871.096

883.069

882.274

881.440

880.576

879.693

878.777

892.436

891.577

890.687

889.786

888.854

887.872

kg·m−3

ρ 6

188.41 ± 0.13

186.94 ± 0.16

185.87 ± 0.22

184.03 ± 0.30

192.52 ± 0.11

191.34 ± 0.14

189.85 ± 0.17

188.25 ± 0.20

186.85 ± 0.29

195.41 ± 0.12

193.87 ± 0.16

192.46 ± 0.18

190.92 ± 0.22

189.31 ± 0.35

197.86 ± 0.11

196.00 ± 0.16

194.41 ± 0.21

193.40 ± 0.22

191.35 ± 0.33

189.98 ± 0.11

188.52 ± 0.16

187.23 ± 0.22

185.53 ± 0.27

184.06 ± 0.33

m3·mol−1

Vϕ(×10 )

318.15 K

857.959

857.042

856.104

855.147

854.144

864.481

863.605

862.721

861.805

860.877

859.898

871.115

870.272

869.417

868.527

867.622

866.666

878.331

877.515

876.676

875.809

874.913

873.986

888.111

887.252

886.350

885.432

884.496

883.502

kg·m−3

ρ

187.56 ± 0.13

186.10 ± 0.16

184.60 ± 0.22

182.81 ± 0.30

191.90 ± 0.12

190.58 ± 0.15

188.85 ± 0.16

187.56 ± 0.20

185.95 ± 0.29

194.91 ± 0.12

193.49 ± 0.16

191.72 ± 0.21

190.28 ± 0.22

188.53 ± 0.36

196.94 ± 0.11

195.39 ± 0.15

193.64 ± 0.21

192.25 ± 0.22

190.31 ± 0.33

189.19 ± 0.13

187.43 ± 0.17

186.13 ± 0.20

184.79 ± 0.25

182.85 ± 0.33

m3·mol−1

Vϕ(×106)

323.15 K

Table 3. Values of Densities (ρ) and Apparent Molar Volumes (Vϕ) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) K and p = 0.1 MPaa

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

0.5442

0.8101

1.0799

1.3430

0.0000

0.2742

0.5442

0.8128

1.0773

1.3403

0.0000

0.2742

0.5416

0.0401

0.0500

0.0000

0.0101

0.0201

0.0301

0.0400

0.0499

0.0000

0.0101

0.0200

0.8101

0.0300

0.0300

0.5416

0.0200

0.0201

0.2742

0.0101

0.2742

0.0000

0.0000

0.0000

1.3430

0.0500

0.0101

1.0799

0.0401

0.0000

0.8128

0.0301

1.3430

0.5442

0.0201

0.0500

0.2769

0.0102

1.0746

0.0000

0.0000

0.0399

1.3456

%

mol·kg−1

0.0501

Wnaringenin

mnaringenin

Table 3. continued

3232

868.467

867.585

866.652

875.457

874.672

873.845

872.998

872.129

871.227

880.571

879.832

879.059

878.270

877.452

876.598

886.797

886.006

885.187

884.353

883.495

882.598

894.689

893.887

893.056

892.201

891.331

890.414

884.797

kg·m−3

ρ 6

880.630

194.75 ± 0.12

888.381 889.252 890.100 890.921

193.18 ± 0.24

194.36 ± 0.18

195.73 ± 0.16

196.97 ± 0.13

874.368 875.165 875.948 876.702

201.72 ± 0.29

203.39 ± 0.27

204.74 ± 0.21

206.30 ± 0.15

869.043 869.902 870.730 871.547

196.01 ± 0.27

197.12 ± 0.20

198.30 ± 0.22

199.93 ± 0.17

863.564 864.462

191.43 ± 0.29

192.91 ± 0.25

862.617

868.167

194.40 ± 0.37

867.252

873.540

200.78 ± 0.37

872.673

882.945

199.73 ± 0.23

881.307

196.95 ± 0.28 882.134

880.458

195.57 ± 0.23

198.16 ± 0.15

879.594

194.26 ± 0.35

878.683

887.497

191.83 ± 0.35

886.561

kg·m−3

ρ

m3·mol−1

Vϕ(×10 )

293.15 K 6

191.23 ± 0.26

189.89 ± 0.31

198.59 ± 0.19

197.58 ± 0.19

196.07 ± 0.20

195.05 ± 0.31

193.03 ± 0.36

205.28 ± 0.19

203.83 ± 0.17

202.46 ± 0.22

200.63 ± 0.29

199.50 ± 0.39

198.50 ± 0.19

197.15 ± 0.15

195.82 ± 0.18

194.61 ± 0.23

192.81 ± 0.35

195.18 ± 0.15

194.01 ± 0.16

192.64 ± 0.18

191.43 ± 0.24

189.79 ± 0.34

193.47 ± 0.11

m3·mol−1

Vϕ(×10 )

298.15 K

192.84 ± 0.11

−1

6

m3·mol−1

Vϕ(×10 )

308.15 K

191.75 ± 0.11

(Wethanol = 0.6481)

kg·m−3

ρ

872.108

methanol = 40.00 mol·kg

m3·mol−1

Vϕ(×10 )

6

194.78 ± 0.13

193.46 ± 0.16

191.83 ± 0.18

190.49 ± 0.24

189.42 ± 0.35

878.651

883.102

882.265

881.403

880.518

879.606

193.56 ± 0.13

192.29 ± 0.16

190.71 ± 0.18

189.07 ± 0.25

188.01 ± 0.34

197.79 ± 0.13

196.03 ± 0.15

194.79 ± 0.21

193.40 ± 0.23

191.86 ± 0.35

870.680

875.052

874.212

873.375

872.506

871.614

196.38 ± 0.18

195.24 ± 0.15

193.43 ± 0.18

191.97 ± 0.23

190.50 ± 0.35

204.14 ± 0.15

202.78 ± 0.18

201.26 ± 0.21

199.65 ± 0.29

198.07 ± 0.37

864.588

868.712

867.937

867.147

866.324

865.476

203.65 ± 0.19

202.24 ± 0.18

200.34 ± 0.21

198.72 ± 0.28

197.53 ± 0.37

197.91 ± 0.17

196.18 ± 0.18

194.65 ± 0.20

193.33 ± 0.26

192.30 ± 0.36

859.057

863.438

862.626

861.764

860.893

859.992

197.04 ± 0.17

195.26 ± 0.21

194.24 ± 0.22

192.73 ± 0.27

191.02 ± 0.36

860.399

859.487

858.531 189.98 ± 0.25

188.99 ± 0.29

856.279

855.360

854.394 189.12 ± 0.25

187.93 ± 0.32

m1‑propanol = 40.00 mol·kg−1 (W1‑propanol = 0.7062)

867.517

866.713

865.872

865.004

864.105

863.182

m1‑propanol = 36.00 mol·kg−1 (W1‑propanol = 0.6839)

872.727

871.958

871.167

870.354

869.519

868.638

m1‑propanol = 32.00 mol·kg−1 (W1‑propanol = 0.6579)

879.002

878.195

877.354

876.497

875.619

874.698

m1‑propanol = 28.00 mol·kg−1 (W1‑propanol = 0.6273)

887.029

886.206

885.357

884.479

883.581

882.639

m1‑propanol = 24.00 mol·kg−1 (W1‑propanol = 0.5906)

876.407

kg·m−3

ρ

303.15 K

852.093

851.169

850.192

859.286

858.472

857.602

856.726

855.815

854.873

864.583

863.793

862.982

862.152

861.302

860.400

871.009

870.159

869.305

868.425

867.521

866.571

879.093

878.246

877.375

876.479

875.566

874.600

867.746

kg·m−3

ρ 6

188.34 ± 0.30

186.71 ± 0.31

196.54 ± 0.14

194.59 ± 0.23

193.58 ± 0.22

191.91 ± 0.31

190.38 ± 0.35

202.50 ± 0.15

201.19 ± 0.20

199.72 ± 0.21

198.04 ± 0.28

196.05 ± 0.37

195.00 ± 0.11

193.74 ± 0.11

192.04 ± 0.16

190.44 ± 0.19

188.71 ± 0.35

192.82 ± 0.13

191.59 ± 0.16

190.04 ± 0.18

188.64 ± 0.25

186.90 ± 0.34

190.92 ± 0.12

m3·mol−1

Vϕ(×10 )

313.15 K

847.850

846.918

845.933

855.103

854.266

853.399

852.520

851.598

850.649

860.478

859.674

858.868

858.026

857.162

856.251

866.883

866.025

865.159

864.269

863.355

862.393

875.028

874.172

873.295

872.386

871.462

870.485

863.337

kg·m−3

ρ 6

187.47 ± 0.30

185.87 ± 0.28

195.77 ± 0.15

194.32 ± 0.26

192.96 ± 0.26

190.99 ± 0.27

189.73 ± 0.33

201.72 ± 0.15

200.58 ± 0.18

198.53 ± 0.20

196.86 ± 0.29

195.21 ± 0.37

193.96 ± 0.12

192.61 ± 0.15

190.94 ± 0.16

189.28 ± 0.21

187.41 ± 0.34

191.85 ± 0.13

190.60 ± 0.16

188.82 ± 0.18

187.47 ± 0.24

185.83 ± 0.35

189.85 ± 0.13

m3·mol−1

Vϕ(×10 )

318.15 K

843.553

842.606

841.606

850.839

850.003

849.123

848.228

847.298

846.336

856.247

855.447

854.617

853.762

852.883

851.958

862.703

861.839

860.959

860.058

859.134

858.160

870.895

870.036

869.154

868.233

867.295

866.309

858.858

kg·m−3

ρ

185.62 ± 0.25

184.04 ± 0.31

194.76 ± 0.23

192.92 ± 0.22

191.57 ± 0.27

189.84 ± 0.30

188.30 ± 0.34

200.44 ± 0.14

198.72 ± 0.17

196.99 ± 0.21

195.25 ± 0.29

193.67 ± 0.37

192.87 ± 0.13

191.35 ± 0.15

189.77 ± 0.17

188.10 ± 0.22

186.09 ± 0.35

191.04 ± 0.13

189.58 ± 0.16

187.60 ± 0.18

186.28 ± 0.24

184.87 ± 0.34

188.70 ± 0.11

m3·mol−1

Vϕ(×106)

323.15 K

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

1.0773

1.3430

0.0400

0.0500

871.031

870.195

869.347

kg·m−3

ρ 6

kg·m−3 865.349 866.215 867.061

194.05 ± 0.22

195.35 ± 0.19

196.59 ± 0.19

ρ

m3·mol−1

Vϕ(×10 )

293.15 K 6

195.21 ± 0.17

193.86 ± 0.22

192.74 ± 0.23

m3·mol−1

Vϕ(×10 )

298.15 K

m3·mol−1

Vϕ(×10 )

6

863.015

862.169

861.296 194.47 ± 0.22

192.84 ± 0.21

191.58 ± 0.23

−1

6

m3·mol−1

Vϕ(×10 )

308.15 K

858.925

858.058 193.53 ± 0.19

192.28 ± 0.19

190.80 ± 0.22

(W1‑propanol = 0.7062)

kg·m−3

ρ

857.183

m1‑propanol = 40.00 mol·kg

kg·m−3

ρ

303.15 K

854.764

853.898

853.014

kg·m−3

ρ 6

192.73 ± 0.16

191.15 ± 0.17

189.59 ± 0.25

m3·mol−1

Vϕ(×10 )

313.15 K

850.544

849.667

848.773

kg·m−3

ρ 6

191.97 ± 0.21

190.48 ± 0.20

189.04 ± 0.26

m3·mol−1

Vϕ(×10 )

318.15 K

846.291

845.392

844.493

kg·m−3

ρ

190.19 ± 0.22

188.94 ± 0.22

187.12 ± 0.24

m3·mol−1

Vϕ(×106)

323.15 K

3233

0.6839

0.7062

36.00

40.00

298.15 K

303.15 K

308.15 K

318.15 K

323.15 K

197.8 ± 0.4 196.5 ± 0.1 195.7 ± 0.3 194.6 ± 0.1

191.9 ± 0.2 190.6 ± 0.2 189.6 ± 0.2 188.8 ± 0.2

188.5 ± 0.2 187.4 ± 0.4 186.4 ± 0.3 185.2 ± 0.2

199.1 ± 0.3

193.1 ± 0.2

190.2 ± 0.2

184.3 ± 0.3 182.4 ± 0.2 127.9 ± 1.3 132.9 ± 1.5 138.6 ± 3.1 144.0 ± 1.6

188.1 ± 0.2 186.6 ± 0.1 133.9 ± 3.2 137.1 ± 0.8 141.0 ± 4.6 146.3 ± 2.4

193.5 ± 0.3 191.8 ± 0.2 140.8 ± 2.7 147.9 ± 1.2 153.0 ± 1.5 157.8 ± 3.1

185.9 ± 0.2 184.5 ± 0.4 135.6 ± 3.5 139.3 ± 2.9 145.1 ± 1.8 150.7 ± 2.0

191.6 ± 0.3 190.4 ± 0.3 188.9 ± 0.3 187.2 ± 0.2

1-Propanol

182.7 ± 0.3 181.5 ± 0.3 116.1 ± 3.2 121.8 ± 1.7 127.4 ± 2.0 130.2 ± 0.9

148.9 ± 1.4 152.4 ± 0.9 156.8 ± 3.1

150.5 ± 2.9 154.6 ± 2.8 160.6 ± 4.2

160.6 ± 4.9 167.8 ± 1.7 170.5 ± 2.6

159.1 ± 2.7 164.6 ± 5.0 168.6 ± 1.8

148.3 ± 4.3 152.0 ± 2.3 156.9 ± 3.7

135.8 ± 1.4 141.8 ± 1.1 147.5 ± 3.4

147.2 ± 1.9 151.6 ± 2.7 159.8 ± 1.5 139.4 ± 2.6 144.3 ± 1.2 149.1 ± 1.8

185.4 ± 0.4 184.4 ± 0.3 120.2 ± 1.3 124.7 ± 1.3 128.5 ± 2.2 132.1 ± 1.0

153.2 ± 2.1 156.2 ± 3.1 163.9 ± 1.5

143.4 ± 1.4 148.7 ± 2.3 153.5 ± 2.1

313.15 K

187.8 ± 0.2 186.9 ± 0.3 127.8 ± 2.5 132.9 ± 1.0 137.8 ± 3.1 141.9 ± 0.7

189.9 ± 0.1 188.7 ± 0.1 134.5 ± 2.1 139.9 ± 2.5 143.7 ± 1.6 146.8 ± 4.5

188.5 ± 0.2 187.8 ± 0.4 186.4 ± 0.1 185. Five ±0.1 184.3 ± 0.2 183.1 ± 0.2 128.7 ± 1.7 134.1 ± 2.1 137.4 ± 2.6 143.6 ± 1.8

187.5 ± 0.2 186.4 ± 0.3 185.1 ± 0.4 184.0 ± 0.3

189.0 ± 0.3

293.15 K

192.8 ± 0.2

190.6 ± 0.1 189.3 ± 0.2 188.0 ± 0.3 186.9 ± 0.3

192.0 ± 0.4

323.15 K Ethanol

182.5 ± 0.2 181.4 ± 0.2 118.1 ± 0.9 124.1 ± 1.1 130.9 ± 1.2 136.5 ± 1.5

318.15 K

190.5 ± 0.3

192.7 ± 0.1 191.7 ± 0.4 190.5 ± 0.1 189.2 ± 0.2

194.4 ± 0.3

313.15 K

195.2 ± 0.2 193.4 ± 0.3 191.9 ± 0.3 190.9 ± 0.1

308.15 K

186.5 ± 0.4 185.6 ± 0.1 184.7 ± 0.1 183.6 ± 0.2

303.15 K

196.5 ± 0.2

298.15 K

187.3 ± 0.3

293.15 K

SV(×106)/m3·kg·mol−2

a

msolvent and Wsolvent are the molality and the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainty u for the molality of solvent is u(msolvent) = 0.01 mol·kg−1, u(T) = 0.01 K; the relative standard uncertainty ur(Vϕ(×106)) = 0.01 and ur(SV(×106)) = 0.01

0.6579

32.00

0.6481

40.00

0.6273

0.6237

36.00

0.5906

0.5957

32.00

28.00

0.5632

28.00

24.00

0.5249

24.00

msolvent / mol·kg−1 Wsolvent

V0ϕ(×106)/m3·mol−1

Table 4. Values of Standard Partial Molar Volumes (Vϕ0) and Experimental Slope (SV) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka

mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol or 1-propanol inaqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa, and the relative standard uncertainties u for densities and Vϕ are ur(ρ) = 0.005 and ur(Vϕ(×106)) = 0.01

a

0.8101

%

mol·kg−1

0.0300

Wnaringenin

mnaringenin

Table 3. continued

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data



Article

RESULTS AND DISCUSSION Volumetric Properties. To evaluate volumetric properties and intermolecular interactions of naringenin in aqueous ethanol/1-propanol solutions, the values of apparent molar volumes (Vϕ) were calculated. The apparent molar volume (Vϕ) of naringenin in the (ethanol/1-propanol + water) solutions at T = (293.15 to 323.15) K and alcohols molality = (24.00, 28.00, 32.00, 36.00 and 40.00) mol·kg−1 was computed from the experimental density data using the following equation: Vφ = M /ρ − 1000(ρ − ρ0 )/(mρρ0 )

(2)

where M and m are the molar mass and molality of naringenin, ρ0 and ρ are the densities of solvent (ethanol/1-propanol + water) and the solution (naringenin + ethanol/1-propanol + water), respectively. The data of density for naringenin in aqueous solutions of ethanol/1-propanol are reported in Table 3 and were plotted in Figures S2 and S3 (Supporting Information). The (Vϕ) values of the investigated systems at T = (293.15 to 323.15) K are presented in Table 3 and depicted graphically in Figures S4 and S5 (Supporting Information). According to Table 3, the Vϕ values are positive and decrease with a rise in temperature and increase with increasing the concentration of naringenin in the aqueous solutions at fixed temperature. The standard partial molar volume (V0ϕ) can be described by the linearly analysis of Vϕ versus the molality of naringenin according to the following equation: Vφ = V φ0 + SV m

Figure 1. Variation of standard partial molar volume (Vϕ0) of naringenin versus the molality of ethanol (a) or 1-propanol (b) in aqueous solution at different temperature. 293.15 K (■); 298.15 K (○); 303.15 K (▲); 308.15 K (▽); 313.15 K (●); 318.15 K (□); 323.15 K (◆).

(3)

(V0ϕ)

In this equation is the apparent molar volume at infinite dilution that has the same meaning as the standard partial molar

Table 5. Values of Partial Molar Volumes (V̅ ) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka V̅ (×106)/m3·mol−1 mnaringenin/mol·kg−1

Wnaringenin/%

293.15 K

298.15 K

303.15 K

308.15 K

methanol = 24.00 mol·kg

−1

313.15 K

318.15 K

323.15 K

(Wethanol = 0.5249)

0.0000 0.0102 0.0201 0.0301 0.0401 0.0501

0.0000 0.2769 0.5442 0.8128 1.0799 1.3456

189.86 191.87 194.46 196.73 199.22

189.07 191.58 193.88 196.34 199.08

188.39 187.55 190.94 190.03 193.62 193.02 196.05 195.86 198.89 198.25 methanol = 28.00 mol·kg−1 (Wethanol

186.58 189.35 192.45 195.25 197.93 = 0.5632)

185.58 188.52 191.71 194.48 197.43

184.42 187.88 190.75 193.59 196.88

0.0000 0.0100 0.0201 0.0300 0.0401 0.0501

0.0000 0.2715 0.5442 0.8101 1.0799 1.3456

199.29 201.85 204.65 207.47 209.94

197.97 200.91 203.48 206.76 209.06

196.46 195.05 199.21 197.59 202.09 200.76 204.89 203.75 208.01 206.67 methanol = 32.00 mol·kg−1 (Wethanol

193.95 197.21 200.21 203.31 206.25 = 0.5957)

192.91 196.54 199.10 202.26 205.69

191.95 195.54 198.56 201.96 205.15

0.0000 0.0102 0.0201 0.0301 0.0401 0.0501

0.0000 0.2769 0.5442 0.8128 1.0799 1.3456

196.94 199.65 202.33 204.73 207.15

195.40 198.08 200.92 203.50 205.96

194.32 193.46 197.49 196.35 200.00 198.97 202.78 202.06 205.43 204.78 methanol = 36.00 mol·kg−1 (Wethanol

192.47 195.09 197.96 200.86 204.28 = 0.6237)

190.86 193.97 197.02 199.95 203.01

190.16 193.49 196.53 199.90 202.92

0.0000 0.0102 0.0201

0.0000 0.2769 0.5442

194.48 196.98

192.99 195.92

189.79 192.39

188.32 191.15

187.47 190.56

191.73 194.71

3234

190.56 193.42

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

Table 5. continued V̅ (×106)/m3·mol−1 mnaringenin/mol·kg−1

Wnaringenin/%

293.15 K

298.15 K

303.15 K

308.15 K

methanol = 36.00 mol·kg−1 (Wethanol 197.06 196.05 199.69 198.71 202.07 201.10 methanol = 40.00 mol·kg−1 (Wethanol

313.15 K

318.15 K

323.15 K

= 0.6237) 195.52 198.29 200.76 = 0.6481)

194.18 197.11 199.75

193.32 196.54 199.37

0.0300 0.0400 0.0501

0.8101 1.0773 1.3456

199.19 201.72 204.10

198.24 200.75 203.03

0.0000 0.0101 0.0201 0.0301 0.0401 0.0501

0.0000 0.2742 0.5442 0.8128 1.0799 1.3456

191.38 193.58 196.02 198.44 200.57

189.85 192.43 195.14 197.34 199.57

189.19 187.83 186.72 191.44 190.50 189.65 193.99 192.91 192.11 196.85 195.66 194.82 199.22 198.27 197.72 m1‑propanol = 24.00 mol·kg−1 (W1‑propanol = 0.5906)

185.46 188.72 191.21 194.10 196.95

184.30 187.56 190.54 193.47 196.09

0.0000 0.0102 0.0201 0.0301 0.0401 0.0500

0.0000 0.2769 0.5442 0.8128 1.0799 1.3430

193.14 195.77 198.23 200.89 203.41

191.16 194.13 196.68 199.39 201.89

190.82 189.47 188.41 193.25 191.96 191.62 195.97 195.03 194.50 198.97 198.05 197.54 201.65 200.74 200.24 m1‑propanol = 28.00 mol·kg−1 (W1‑propanol = 0.6273)

187.38 190.53 193.40 196.70 199.45

186.47 189.43 192.32 195.87 198.89

0.0000 0.0101 0.0200 0.0300 0.0399 0.0500

0.0000 0.2742 0.5416 0.8101 1.0746 1.3430

195.63 198.28 201.02 203.57 206.51

194.22 197.40 200.00 202.71 205.47

193.33 192.02 190.32 196.30 194.98 193.62 199.14 197.95 196.81 201.82 201.25 200.09 205.05 203.92 202.96 m1‑propanol = 32.00 mol·kg−1 (W1‑propanol = 0.6579)

189.07 192.57 195.88 199.18 202.19

187.79 191.47 194.83 198.08 201.30

0.0000 0.0101 0.0201 0.0300 0.0401 0.0500

0.0000 0.2742 0.5442 0.8101 1.0799 1.3430

202.20 204.55 207.61 210.39 213.34

200.99 203.60 206.90 209.76 212.68

199.62 199.12 197.67 202.73 201.89 201.27 205.85 205.07 204.54 208.92 208.57 207.63 211.79 211.54 210.53 m1‑propanol = 36.00 mol·kg−1 (W1‑propanol = 0.6839)

196.90 200.23 203.56 207.31 210.11

195.39 198.68 202.11 205.56 208.97

0.0000 0.0101 0.0201 0.0301 0.0400 0.0499

0.0000 0.2742 0.5442 0.8128 1.0773 1.3403

195.75 198.70 201.15 203.66 206.61

194.41 197.81 200.20 203.06 205.43

193.72 192.50 191.90 196.16 195.67 194.94 198.89 198.64 198.11 201.82 201.11 200.61 204.95 204.34 204.05 m1‑propanol = 40.00 mol·kg−1 (W1‑propanol = 0.7062)

191.29 194.10 197.61 200.50 203.48

189.92 193.07 196.40 199.34 202.77

0.0000 0.0101 0.0200 0.0300 0.0400 0.0500

0.0000 0.2742 0.5416 0.8101 1.0773 1.3430

192.72 195.47 197.89 200.47 202.99

191.23 193.89 196.73 199.18 201.86

187.41 190.52 193.61 196.58 199.59

185.62 188.76 191.82 195.21 198.03

190.39 192.75 195.74 198.38 201.40

189.38 192.00 195.12 198.04 200.73

188.21 191.32 194.06 197.11 200.18

a

mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol or 1-propanol in aqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K.

volume and SV is the experimental slope which indicates the solute−solute interactions. At infinite dilution, each solute is surrounded only by the solvent molecules and is infinitely distant from other solutes. It follows that V0ϕ is unaffected by solute− solute interaction, and it is a measure only of the solute−solvent interaction.7 Values of V0ϕand SV are given in Table 4. From Table 4, it is also observed that the SV values for the studied systems are positive which indicate the presence of solute−solute interactions. The smaller values of SV compared to V0ϕ emphasize

that solute−solvent interactions dominate over solute−solute interactions. The variation tendency of the standard partial molar volume (V0ϕ) of naringenin with the molality of ethanol and 1-propanol were plotted in Figure 1a,b. It also can be seen from Figure 1 that at low concentrations of alcohols the V0ϕ values of naringenin increased at first then by rising the ethanol/ 1-propanol concentration decreased. The maximum value of corresponding molality of ethanol and 1-propanol was 28.00 and 32.00 mol·kg−1, respectively. The large amount of (V0ϕ) in 3235

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

Table 6. Values of Viscosities (η) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) K and p = 0.1 MPaa η/mPa·s mnaringenin/mol·kg−1

Wnaringenin/%

293.15 K

298.15 K

0.0000 0.0102 0.0201 0.0301 0.0401 0.0501

0.0000 0.2769 0.5442 0.8128 1.0799 1.3456

2.786 2.797 2.819 2.840 2.854 2.873

2.341 2.357 2.373 2.385 2.398 2.409

0.0000 0.0100 0.0201 0.0300 0.0401 0.0501

0.0000 0.2715 0.5442 0.8101 1.0799 1.3456

2.694 2.715 2.741 2.745 2.776 2.793

2.276 2.296 2.313 2.321 2.342 2.356

0.0000 0.0102 0.0201 0.0301 0.0401 0.0501

0.0000 0.2769 0.5442 0.8128 1.0799 1.3456

2.625 2.632 2.662 2.678 2.699 2.716

2.224 2.235 2.256 2.269 2.286 2.300

0.0000 0.0102 0.0201 0.0300 0.0400 0.0501

0.0000 0.2769 0.5442 0.8101 1.0773 1.3456

2.551 2.573 2.580 2.609 2.616 2.635

2.169 2.179 2.194 2.212 2.225 2.241

0.0000 0.0101 0.0201 0.0301 0.0401 0.0501

0.0000 0.2742 0.5442 0.8128 1.0799 1.3456

2.503 2.514 2.525 2.550 2.568 2.586

2.125 2.140 2.153 2.162 2.174 2.193

0.0000 0.0102 0.0201 0.0301 0.0401 0.0500

0.0000 0.2769 0.5442 0.8128 1.0799 1.3430

3.165 3.188 3.215 3.252 3.276 3.292

2.663 2.684 2.705 2.735 2.754 2.767

0.0000 0.0101 0.0200 0.0300 0.0399 0.0500

0.0000 0.2742 0.5416 0.8101 1.0746 1.3430

3.136 3.158 3.201 3.222 3.248 3.276

2.646 2.665 2.697 2.717 2.738 2.761

0.0000 0.0101 0.0201 0.0300 0.0401 0.0500

0.0000 0.2742 0.5442 0.8101 1.0799 1.3430

3.103 3.129 3.153 3.193 3.226 3.246

2.627 2.657 2.682 2.699 2.726 2.742

0.0000 0.0101 0.0201

0.0000 0.2742 0.5442

3.066 3.106 3.130

2.594 2.622 2.645

303.15 K methanol = 1.995 2.010 2.015 2.030 2.040 2.058 methanol = 1.944 1.960 1.976 1.983 2.000 2.012 methanol = 1.908 1.920 1.934 1.946 1.960 1.971 methanol = 1.869 1.884 1.894 1.908 1.914 1.926 methanol = 1.833 1.848 1.858 1.865 1.875 1.889 m1‑propanol = 2.270 2.289 2.306 2.330 2.346 2.357 m1‑propanol = 2.260 2.276 2.304 2.321 2.337 2.357 m1‑propanol = 2.246 2.272 2.285 2.308 2.331 2.344 m1‑propanol = 2.225 2.245 2.269

3236

308.15 K

313.15 K

24.00 mol·kg−1 (Wethanol = 1.716 1.729 1.736 1.746 1.754 1.765 28.00 mol·kg−1 (Wethanol = 1.678 1.691 1.705 1.708 1.725 1.735 32.00 mol·kg−1 (Wethanol = 1.652 1.660 1.674 1.685 1.696 1.705 36.00 mol·kg−1 (Wethanol = 1.621 1.634 1.638 1.654 1.661 1.671 40.00 mol·kg−1 (Wethanol = 1.595 1.603 1.615 1.624 1.630 1.641 24.00 mol·kg−1 (W1‑propanol 1.955 1.971 1.985 2.006 2.020 2.028 28.00 mol·kg−1 (W1‑propanol 1.950 1.964 1.987 2.000 2.015 2.032 32.00 mol·kg−1 (W1‑propanol 1.941 1.962 1.979 1.993 2.012 2.023 36.00 mol·kg−1 (W1‑propanol 1.929 1.948 1.967

0.5249) 1.492 1.503 1.510 1.516 1.523 1.535 0.5632) 1.462 1.473 1.483 1.490 1.502 1.511 0.5957) 1.443 1.450 1.461 1.470 1.480 1.489 0.6237) 1.418 1.428 1.433 1.446 1.452 1.461 0.6481) 1.401 1.407 1.415 1.424 1.432 1.443 = 0.5906) 1.700 1.714 1.726 1.743 1.755 1.762 = 0.6273) 1.697 1.709 1.728 1.741 1.752 1.767 = 0.6579) 1.691 1.711 1.721 1.735 1.752 1.761 = 0.6839) 1.682 1.697 1.715

318.15 K

323.15 K

1.308 1.317 1.325 1.329 1.335 1.346

1.154 1.164 1.168 1.174 1.179 1.184

1.284 1.293 1.304 1.306 1.318 1.326

1.137 1.145 1.154 1.155 1.166 1.173

1.270 1.276 1.286 1.293 1.302 1.309

1.126 1.135 1.139 1.146 1.154 1.160

1.251 1.260 1.265 1.275 1.280 1.287

1.111 1.119 1.125 1.132 1.136 1.143

1.238 1.243 1.251 1.257 1.266 1.273

1.096 1.101 1.106 1.113 1.121 1.127

1.491 1.503 1.513 1.528 1.537 1.544

1.317 1.327 1.336 1.349 1.357 1.363

1.489 1.499 1.516 1.527 1.535 1.549

1.317 1.325 1.340 1.350 1.357 1.368

1.484 1.500 1.510 1.523 1.538 1.545

1.313 1.328 1.336 1.346 1.359 1.365

1.479 1.493 1.506

1.309 1.320 1.332

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

Table 6. continued η/mPa·s mnaringenin/mol·kg−1

Wnaringenin/%

293.15 K

298.15 K

0.0301 0.0400 0.0499

0.8128 1.0773 1.3403

3.155 3.171 3.196

2.661 2.685 2.704

0.0000 0.0101 0.0200 0.0300 0.0400 0.0500

0.0000 0.2742 0.5416 0.8101 1.0773 1.3430

3.039 3.053 3.084 3.132 3.140 3.168

2.578 2.591 2.617 2.646 2.664 2.686

303.15 K

308.15 K

313.15 K

m1‑propanol = 36.00 mol·kg−1 (W1‑propanol 2.287 1.978 2.301 1.994 2.315 2.008 m1‑propanol = 40.00 mol·kg−1 (W1‑propanol 2.212 1.916 2.224 1.933 2.246 1.946 2.266 1.965 2.285 1.977 2.303 1.993

= 0.6839) 1.725 1.736 1.751 = 0.7062) 1.672 1.688 1.698 1.713 1.725 1.738

318.15 K

323.15 K

1.515 1.525 1.538

1.340 1.349 1.361

1.470 1.478 1.493 1.502 1.516 1.527

1.301 1.312 1.321 1.330 1.341 1.351

a

mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol and 1-propanol in aqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa, and the relative standard uncertainties u for viscosity are ur(η) = 0.01

Table 7. B-Coefficient (B) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka B(×103)/m3·mol−1 msolvent/ mol·kg

−1

Wsolvent

293.15 K

298.15 K

303.15 K

308.15 K

24.00 28.00 32.00 36.00 40.00

0.5249 0.5632 0.5957 0.6237 0.6481

0.614 ± 0.008 0.736 ± 0.011 0.690 ± 0.009 0.664 ± 0.007 0.635 ± 0.002

0.604 ± 0.004 0.710 ± 0.008 0.681 ± 0.007 0.643 ± 0.005 0.614 ± 0.011

0.595 ± 0.007 0.703 ± 0.009 0.661 ± 0.012 0.629 ± 0.008 0.598 ± 0.015

24.00 28.00 32.00 36.00 40.00

0.5906 0.6273 0.6579 0.6839 0.7062

0.835 ± 0.017 0.899 ± 0.009 0.941 ± 0.007 0.894 ± 0.005 0.851 ± 0.006

0.820 ± 0.009 0.883 ± 0.011 0.921 ± 0.015 0.875 ± 0.005 0.834 ± 0.007

0.807 ± 0.011 0.866 ± 0.010 0.905 ± 0.019 0.863 ± 0.009 0.820 ± 0.007

Ethanol 0.578 ± 0.003 0.687 ± 0.009 0.646 ± 0.007 0.614 ± 0.011 0.582 ± 0.009 1-Propanol 0.789 ± 0.007 0.842 ± 0.015 0.885 ± 0.009 0.845 ± 0.003 0.807 ± 0.005

313.15 K

318.15 K

323.15 K

0.565 ± 0.007 0.678 ± 0.005 0.638 ± 0.005 0.609 ± 0.006 0.568 ± 0.004

0.550 ± 0.002 0.657 ± 0.004 0.628 ± 0.011 0.592 ± 0.009 0.551 ± 0.013

0.541 ± 0.003 0.637 ± 0.008 0.617 ± 0.009 0.572 ± 0.010 0.545 ± 0.015

0.769 ± 0.006 0.829 ± 0.008 0.870 ± 0.012 0.827 ± 0.012 0.788 ± 0.008

0.750 ± 0.007 0.807 ± 0.013 0.855 ± 0.009 0.809 ± 0.005 0.772 ± 0.007

0.737 ± 0.004 0.782 ± 0.003 0.841 ± 0.008 0.794 ± 0.012 0.758 ± 0.009

a

msolvent and Wsolvent are the molality and the mass fraction of ethanol and 1-propanol in aqueous solutions, respectively. u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, and the combined expanded uncertainties uc(B (×103)) = 0.02 m3·mol−1

The partial molar volume of the solute (V̅ ) in the studied system could be calculated by apparent molar volume (Vϕ) according to eq 4:

1-propanol solutions can be explained by the longer alkyl chains in the 1-propanol molecule. The 1-propanol’s longer alkyl chains reinforce the cooperativity of hydrogen bonds between 1-propanol and water molecules in the hydration shell. This phenomenon weakens the hydrophobic interactions more than it does in ethanol, so the values of (V0ϕ) are larger in the 1-propanol solution. The variation tendency of the standard partial molar volume (V0ϕ) may be explained that at the water-rich region, the nonpolar group of naringenin makes a hydrophobic hydration layer. By increasing the alcohols concentration, the hydrophobic hydration layer of naringenin was disrupted and resulted in the increase values of V0ϕ due to the strong hydrogen bonding between alcohols and water molecules. This effect is highest at maximum value of V0ϕ. A greater increase of alcohols concentration in the alcohol-rich region causes an increase in the hydrophobic−hydrophobic and hydrophilic−hydrophobic interactions between naringenin and alcohols. These interactions have a negative contribution on volume and would lead to a reduction in the standard partial molar volume (V0ϕ). It can be seen from Figure 1 that the V0ϕ values of naringenin decrease with the increase in temperature. This can be interpreted in terms of releasing some water molecules from the hydrophobic hydration layer,13 which leads to a negative contribution to V0ϕ. Similar results have been obtained for (7-hydroxy-4-methylcoumarin + ethanol/1-propanol + water) systems.6

⎛ ∂Vφ ⎞ V̅ = Vφ + ms⎜ ⎟ ⎝ ∂ms ⎠

(4)

ms represents the molality of the solute in the studied system. The calculated V̅ of naringenin in the aqueous alcohol solution were shown in Table 5. These values increase with the increasing concentration of naringenin and decrease with rising temperature in the aqueous solutions. In fact, the variation tendency of V̅ is the same as the apparent molar volume (Vϕ). Viscometric Properties. The measured viscosities of ternary system containing different molalities of (naringenin + ethanol/ 1-propanol + water) at different temperatures were presented in Table 6. These measured data were plotted in Figures S6 and S7. The result showed that the viscosity of the studied solutions increases with a rise in naringenin molality at different concentrations of alcohols. The measured viscosity was analyzed with the Jones−Dole equation,5 The Jones−Dole equation introduce the relative viscosities of solutions as functions of its concentration: ηr = 3237

η = 1 + Ac1/2 + Bc η0

(5) DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

where ηr is the relative viscosity. η and η0 represent the viscosity of the solution (naringenin + ethanol/1-propanol + water) and solvent (ethanol/1-propanol + water), respectively, c is the molarity of the solution in (mol·dm−3), calculated from molality and density data. The A-coefficient (called Falkenhagen coefficient, representing the solute−solute interactions) can be calculated theoretically but is usually very small for nonelectrolytes and is neglected in eq 5.14 The viscosity B-coefficients were obtained from the slope of linear plot (η/η0 − 1) versus c. The viscosity B-coefficient is a tool to provide valuable information concerning the solute−solvent interactions and their effects on the structure of the solvent in the near environment of the solute molecules.7 Obtained viscosity B-coefficients for ternary solutions (naringenin + ethanol/ 1-propanol + water) are shown in Table 7. The obtained viscosity B-coefficients for the studied system are positive and decrease with increasing temperature. This means that the interactions between solute−solvent are strong and these interactions are further weakened with the increase in temperature. According to Table 7, the higher positive values of the viscosity B-coefficients in the case of 1-propanol as compared to ethanol solutions is due to the hydrophobic side chain in 1-propanol being longer than that of ethanol. The dB/dT values, which give important information regarding the structure-making and structure-breaking role of the solute in solvent media, are a better criterion15 than the B-coefficient. According to the presented values in Table 7, the negative dB/dT values of naringenin in aqueous alcohols solutions show that naringenin acts as a structure maker in aqueous alcohol solutions. The variation of B-coefficients versus the molality of ethanol/ 1-propanol is plotted in Figure 2. As can be from Figure 2, the

Figure 2. Variation of viscosity B-coefficients (B) of naringenin versus the molality of ethanol (a) or 1-propanol (b) in aqueous solution at different temperatures: 293.15 K(■); 298.15 K (○); 303.15 K (▲); 308.15 K (▽); 313.15 K (●); 318.15 K (□); 323.15 K (◆).

Table 8. Refractive Indices (nD) and Molar Refraction (Rm) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at 298.15 K and P = 0.1 MPaa mnaringenin/mol·kg−1

Wnaringenin/%

nD −1

0.0000 0.0102 0.0201 0.0301 0.0401 0.0501 0.0000 0.0100 0.0201 0.0300 0.0401 0.0501 0.0000 0.0102 0.0201 0.0301 0.0401 0.0501 0.0000 0.0102 0.0201 0.0300 0.0400

methanol = 24.00 mol·kg 0.0000 0.2769 0.5442 0.8128 1.0799 1.3456 methanol = 28.00 mol·kg−1 0.0000 0.2715 0.5442 0.8101 1.0799 1.3456 methanol = 32.00 mol·kg−1 0.0000 0.2769 0.5442 0.8128 1.0799 1.3456 methanol = 36.00 mol·kg−1 0.0000 0.2769 0.5442 0.8101 1.0773

(Wethanol 1.3601 1.3606 1.3610 1.3617 1.3622 1.3627 (Wethanol 1.3611 1.3617 1.3624 1.3629 1.3634 1.3640 (Wethanol 1.3616 1.3622 1.3627 1.3633 1.3639 1.3644 (Wethanol 1.3623 1.3626 1.3630 1.3636 1.3642

Rm(×106)/m3·mol−1 = 0.5249) 6.4569 6.4739 6.4897 6.5110 6.5288 6.5468 = 0.5632) 6.7679 6.7887 6.8103 6.8290 6.8482 6.8685 = 0.5957) 7.0456 7.0664 7.0860 7.1070 7.1283 7.1479 = 0.6237) 7.3058 7.3228 7.3398 7.3612 7.3829

mnaringenin/mol·kg−1

Wnaringenin/%

nD −1

± ± ± ± ± ±

0.0046 0.0046 0.0046 0.0046 0.0046 0.0046

0.0000 0.0102 0.0201 0.0301 0.0401 0.0500

± ± ± ± ± ±

0.0046 0.0046 0.0046 0.0046 0.0046 0.0046

0.0000 0.0101 0.0200 0.0300 0.0399 0.0500

± ± ± ± ± ±

0.0047 0.0047 0.0047 0.0047 0.0047 0.0047

0.0000 0.0101 0.0201 0.0300 0.0401 0.0500

± ± ± ± ±

0.0047 0.0047 0.0047 0.0047 0.0047

0.0000 0.0101 0.0201 0.0301 0.0400 3238

m1‑propanol = 24.00 mol·kg 0.0000 0.2769 0.5442 0.8128 1.0799 1.3430 m1‑propanol = 28.00 mol·kg−1 0.0000 0.2742 0.5416 0.8101 1.0746 1.3430 m1‑propanol = 32.00 mol·kg−1 0.0000 0.2742 0.5442 0.8101 1.0799 1.3430 m1‑propanol = 36.00 mol·kg−1 0.0000 0.2742 0.5442 0.8128 1.0773

(W1‑propanol 1.3714 1.3721 1.3724 1.3730 1.3733 1.3738 (W1‑propanol 1.3729 1.3734 1.3738 1.3744 1.3749 1.3755 (W1‑propanol 1.3740 1.3746 1.3750 1.3756 1.3762 1.3767 (W1‑propanol 1.3750 1.3756 1.3760 1.3766 1.3770

Rm(×106)/m3·mol−1 = 0.5906) 7.8591 7.8833 7.9006 7.9219 7.9396 7.9606 = 0.6273) 8.3236 8.3445 8.3641 8.3872 8.4092 8.4343 = 0.6579) 8.7370 8.7613 8.7821 8.8081 8.8336 8.8573 = 0.6839) 9.1207 9.1452 9.1671 9.1926 9.2142

± ± ± ± ± ±

0.0049 0.0049 0.0049 0.0049 0.0049 0.0049

± ± ± ± ± ±

0.0049 0.0049 0.0049 0.0049 0.0049 0.0049

± ± ± ± ± ±

0.0050 0.0050 0.0050 0.0050 0.0050 0.0050

± ± ± ± ±

0.0051 0.0051 0.0051 0.0051 0.0051

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data

Article

Table 8. continued mnaringenin/mol·kg−1

Wnaringenin/%

nD −1

0.0501 0.0000 0.0101 0.0201 0.0301 0.0401 0.0501

methanol = 36.00 mol·kg 1.3456 methanol = 40.00 mol·kg−1 0.0000 0.2742 0.5442 0.8128 1.0799 1.3456

Rm(×106)/m3·mol−1

(Wethanol = 0.6237) 1.3647 7.4023 (Wethanol = 0.6481) 1.3627 7.5411 1.3633 7.5621 1.3636 7.5780 1.3640 7.5968 1.3643 7.6137 1.3649 7.6345

mnaringenin/mol·kg−1

Wnaringenin/%

nD −1

± 0.0047

0.0499

± ± ± ± ± ±

0.0000 0.0101 0.0200 0.0300 0.0400 0.0500

0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

m1‑propanol = 36.00 mol·kg 1.3403 m1‑propanol = 40.00 mol·kg−1 0.0000 0.2742 0.5416 0.8101 1.0773 1.3430

Rm(×106)/m3·mol−1

(W1‑propanol = 0.6839) 1.3777 9.2423 (W1‑propanol = 0.7062) 1.3757 9.4700 1.3764 9.4965 1.3768 9.5185 1.3774 9.5439 1.3777 9.5642 1.3785 9.5953

± 0.0051 ± ± ± ± ± ±

0.0052 0.0052 0.0052 0.0052 0.0052 0.0052

a

mnaringenin and Wnaringenin are the molality and the mass fractions of naringenin in aqueous ethanol/1-propanol solutions. methanol and m1‑propanol are the molality of ethanol/1-propanol in aqueous solutions. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa. The standard uncertainty of refractive indices is u(nD) = 0.0005 and the combined expanded uncertainties of molar refraction is uc(Rm(×106)) = 0.005 m3·mol−1.

tendency of B-coefficients versus the molality of ethanol/ 1-propanol is consistent with the result obtained of the (V0ϕ) values. Refractometric Results. Experimental refractive indices data nD for the ternary solutions (naringenin + ethanol/ 1-propanol + water) were measured at T = 298.15 K, and their values were reported in Table 8. There is not much change in Rm within the temperature range, so in this work the refractive indices were measured at 298.25 K. The molar refraction Rm was calculated using Lorentz−Lorenz equation:5 3

R m = [(nD2 − 1)/(nD2 + 2)](∑ xiMi /ρ) i=1

(6)

where xi and Mi are the mole fraction and molecular mass of the components of the ternary solutions. In this work, eq 6 can be described as Rm =

M1 (nD2 − 1) ρ (nD2 + 2)

[1 + m2M 2 + m3M3(1 + m2M 2)] [1 + m2M1 + m3M1(1 + m2M 2)] (7)

M1, M2, and M3 represent the molar mass of water, ethanol/ propanol, and naringenin. m2 represents the molality of ethanol or propanol in water, m3 represents the molality of naringenin in the alcohol aqueous solution. The calculated molar refractions of the investigated solutions are also shown in Table 8. The variation of Rm at 298.15 K against different molalities of naringenin in ethanol/propanol is plotted in Figure 3. The value of Rm is a measure of molecular polarizability. As can be seen from Figure 3, the Rm values increase linearly with rising concentration of alcohols which indicates high polarizability of naringenin in aqueous ethanol/propanol solutions.7

Figure 3. Variation of molar refraction (Rm) of naringenin versus the molality of naringeninin ethanol (a) or 1-propanol (b) solution at 298.15 K: 24.00 mol·kg−1 (■); 28.00 mol·kg−1 (□); 32.00 mol·kg−1 (▲); 36.00 mol·kg−1 (△); 40.00 mol·kg−1 (●).



CONCLUSIONS In this work, various thermophysical parameters were calculated for the alcohol aqueous solutions of (naringenin + ethanol/ 1-propanol + water) at different temperatures and alcohol concentrations from the experimental density, viscosity, and refractive index data. The calculated parameters, such as standard partial molar volume and viscosity B-coefficients, decrease with an increase in temperature and reach a maximum with increasing solvent concentration, suggesting that with an increase in alcohols concentration the hydrophobic hydration layer of naringenin was disrupted, providing an enhancement in hydrophobic−hydrophobic and hydrophilic−hydrophobic interactions between solute and solvent in the alcohol-rich region.

The viscosity B-coefficient values of naringenin in the ternary aqueous solutions of ethanol/1-propanol show that naringenin acts as a structure-making agent because of the negative dB/dT values. The high polarizability of naringenin in aqueous ethanol/ 1-propanol solutions causes the Rm values to increase linearly with an increase in the concentration of alcohols.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications Web site at . The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.7b00299. 3239

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240

Journal of Chemical & Engineering Data



Article

Application of McMillan-Mayer and Kirkwood-Buff Theories. J. Phys. Chem. B 2006, 110, 18583−18593. (14) Zhao, H.; Jackson, L.; Song, Z.; Olubajo, O. Enhancing Protease Enantioselectivity by Ionic Liquids Based on Chiral-or ω-Amino Acids. Tetrahedron: Asymmetry 2006, 17, 1549−1553. (15) Sarma, T. S.; Ahluwalia, J. C. Experimental Studies on the Structures of Aqueous Solutions of Hydrophobic Solutes. Chem. Soc. Rev. 1973, 2, 203−232.

Weight of the solute and solvent in the studied system; 1 H NMR and 13C NMR spectra of naringenin; density, apparent molar volume (Vϕ), and viscosity of naringenin in aqueous ethanol solutions and in aqueous 1-propanol solutions (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel: +86-571-87951430. Fax: +86-571-87951895. E-mail: [email protected]. ORCID

Weidong Yan: 0000-0002-5125-310X Notes

The authors declare no competing financial interest. Present Address †

(Y.S.) College of Chemistry Sciene, Qufu Normal University, Qufu 273165, China



REFERENCES

(1) Jeon, S. M.; Kim, H. K.; Kim, H. J.; Do, G. M.; Jeong, T. S.; Park, Y. B.; Choi, M. S. Hypocholesterolemic and Antioxidative Effects of Naringenin and Its Two Metabolites in High-cholesterol Fed Rats. Transl. Res. 2007, 149, 15−21. (2) Martin, M. J.; Motilva, V.; On de la Lastra, C. A. Quercetin and Naringenin; Effects on Ulcer Formation and Gastric Secretion in Rats. Phytother. Res. 1993, 7, 150−153. (3) Santos, K. F. R.; Oliveira, T. T.; Nagem, T. J.; Pinto, A. S.; Oliveira, M. G. A. Hypolipidaemic Effects of Naringenin, Rutin, Nicotinic Acid and Their Associations. Pharmacol. Res. 1999, 40, 493−496. (4) Tsai, S. J.; Huang, C. S.; Mong, M. C.; Kam, W. Y.; Huang, H. Y.; Yin, M. C. Anti-inflammatory and Antifibrotic Effects of Naringenin in Diabetic Mice. J. Agric. Food Chem. 2011, 60, 514−521. (5) Malham, I. B.; Turmine, M. Viscosities and Refractive Indices of Binary Mixtures of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-2, 3-dimethylimidazolium Tetrafluoroborate with Water at 298K. J. Chem. Thermodyn. 2008, 40, 718−723. (6) Chen, A. J.; Liu, M.; Zheng, Y.; Sun, D. Z.; Wang, B. G.; Wang, L. P. Volumetric, Viscometric, and Refractive Index Behavior of 7-Hydroxy-4methylcoumarin in Aqueous Ethanol or 1-Propanol Solutions in the Temperature Range of (293.15 to 313.15) K. J. Chem. Eng. Data 2013, 58, 2474−2482. (7) Shekaari, H.; Zafarani-Moattar, M. T.; Mirheydari, S. N. Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T= (288.15 to 318.15) K. J. Chem. Eng. Data 2015, 60, 1572−1583. (8) Zhao, H. Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 2006, 122, 157−183. (9) Khanlarzadeh, K.; Iloukhani, H. Application of ERAS-model and Prigogine−Flory−Patterson theory to excess molar volumes for ternary mixtures of (2-chlorobutane+ butylacetate+ isobutanol) at T= 298.15 K. J. Chem. Thermodyn. 2011, 43, 1583−1590. (10) Li, H.; Xu, X. Y.; Chi, C. J.; Di, Y. Y.; Sun, D. Z.; Liu, M. Molar volumes and refractive indexes of hexane-1, 2, 3, 4, 5, 6-hexol in aqueous solutions of 1-propanol and 2-propanol. J. Chem. Eng. Data 2010, 55, 2909−2913. (11) Zhang, L.; Song, L.; Zhang, P.; Liu, T.; Zhou, L.; Yang, G.; Lin, R.; Zhang, J. Solubilities of Naringin and Naringenin in Different Solvents and Dissociation Constants of Naringenin. J. Chem. Eng. Data 2015, 60, 932−940. (12) Zhang, P.; Lin, R.; Yang, G.; Zhang, J.; Zhou, L.; Liu, T. Solubility of Naringenin in Ethanol and Water Mixtures. J. Chem. Eng. Data 2013, 58, 2402−2404. (13) Terdale, S. S.; Dagade, D. H.; Patil, K. J. Thermodynamic Studies of Molecular Interactions in Aqueous α-Cyclodextrin Solutions: 3240

DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240