Water as a Promoter and Catalyst for Dioxygen Electrochemistry in

Sep 30, 2015 - Department of Electrochemical Materials, J. Heyrovsky Institute of Physical Chemistry, Prague, Czech Republic. ⊥. Northwestern Univer...
0 downloads 12 Views 2MB Size
Subscriber access provided by CMU Libraries - http://library.cmich.edu

Article

Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media Jakub S.-Jirkovsky, Ram Subbaraman, Dusan Strmcnik, Katharine L. Harrison, Charles E. Diesendruck, Rajeev S. Assary, Otakar Frank, Lukáš Kobr, Gustav K.H. Wiberg, Bostjan Genorio, Justin G. Connell, Pietro Papa Lopes, Vojislav Stamenkovic, Larry A Curtiss, Jeffrey S. Moore, Kevin R. Zavadil, and Nenad M. Markovic ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.5b01779 • Publication Date (Web): 30 Sep 2015 Downloaded from http://pubs.acs.org on October 1, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media Jakub S. Jirkovský†, Ram Subbaraman†, Dusan Strmcnik†, Katharine L. Harrison‡, Charles E. Diesendruck¶, Rajeev Assary†, Otakar Frank#, Lukáš Kobr+, Gustav K. H. Wiberg†, Bostjan Genorio†,=, Justin G. Connell†, Pietro P. Lopes†, Vojislav R. Stamenkovic†, Larry Curtiss†, Jeffrey S. Moore¶, Kevin R. Zavadil‡ and Nenad M. Markovic†* †

Materials Science Division, Argonne National Laboratory, Argonne, IL, USA



Sandia National Laboratory, Albuquerque, NM, USA



University of Illinois at Urbana-Champaign, Urbana, IL, USA

+ Northwestern University, Evanston, IL, USA #J. Heyrovsky Institute of Physical Chemistry, Prague, Czech Republic = University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia

Water and oxygen electrochemistry lies at the heart of interfacial processes controlling energy transformations in fuel cells, electrolyzers, and batteries. Here, by comparing results for the ORR obtained in alkaline aqueous media to those obtained in ultra-dry organic electrolytes with known amounts of H2O added intentionally, we propose a new rationale in which water itself plays an important role in determining the reaction kinetics. This effect derives from the formation of HOad···H2O (aqueous solutions) and LiO2···H2O (organic solvents) complexes that place water in a configurationally favorable position for proton transfer to weakly adsorbed intermediates. We also find that even at low concentrations ( Pt(111) >Au (111) with Pt3Ni(111) being the most active catalyst for the ORR ever observed in aqueous environments; (c) schematic of a proposed OHad-H2O complex (“activated water”) formed via hydrogen bonding emphasizing that this complex might be a key descriptor for controlling the reaction pathway of the ORR in aqueous environments.

(d) schematic

representation of the effect of “activated water” on peroxide and hydroxyl formation on surfaces with a low coverage of OHad-H2O complexes; (e) schematic representation of further peroxide reduction on a surface covered with two active OHad centers that are required for the peroxide OO bond cleavage and final production of three hydroxyl ions. Note that schematics are meant to illustrate the most probable reaction pathway for the ORR based on the results presented.

15 ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 26

Figure 3. Water effect on oxygen electrochemistry in a presence of Li+: water as a promotor and catalyst. (a) CV of Au(100) in dry DME 0.3M TBAPF6 saturated with O2 and various concentrations of Li+; (b) CV in O2 saturated 0.1M Li triflate for Au(100) and Au(111) and (c) the effect of various amounts of water on Li-O2 electrochemistry on Au(100) (sweep rate = 100 mV s-1). (d) in situ AFM imaging of Au(111) in TEGDME/LiClO4 saturated with O2 at 3.5V and (e) held at 2.5V for 30 min.; (f) in situ Raman spectroscopy of a roughened gold electrode at 2.5V in “dry” (1ppm of H2O) and “wet” (40 ppm of H2O) electrolyte (DME, 0.1M LiClO4). The vertical lines are added to guide the eye. See also Supplementary Figure S4 and Supplementary Information for additional details on Raman bands assignment.

16 ACS Paragon Plus Environment

Page 17 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Figure 4. Water as catalyst and promoter in Li-O2 electrochemistry. (a) Schematics of LiO2H2O complex formation through dipole-dipole electrostatic forces, formation of “activated water” required for protonation of O2- and formation of Li-based deposits in ether-based electrolytes. For LiO2 and Li2O2 formation the proposed schematics involves four steps: (i) LiO2 formation (steps 1 and 2); (ii) formation of the LiO2---OH2 complex through dipole-dipole interaction in steps 2-3 (iii) interaction of the LiO2---OH2 complex with superoxide in steps 3 to 4; (iv) proton and electron transfer to the superoxide molecule to form hydrogen peroxide and finally in steps 4 and 5; and (v) formation of Li2O2 and regeneration of water (water as catalyst). The slabs are added to illustrate that the processes are taking place at an electrode surface acting simultaneously as proton donor. The direction of the arrows follow the flow of electrons.

17 ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 26

References: (1)

Tait, M. J.; Franks, F. Nature 1971, 230, 91–94.

(2)

Garrett, B. C. Science 2004, 303, 1146–1147.

(3)

Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Science 2007, 315, 497–501.

(4)

Marković, N. M.; Ross Jr., P. N. Surf. Sci. Rep. 2002, 45, 117–229.

(5)

Magnussen, O. M. Chem. Rev. 2002, 102, 679–726.

(6)

Lipkowski, J. Phys. Chem. Chem. Phys. 2010, 12, 13874–13887.

(7)

Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Marković, N. M. Nat. Chem. 2009, 1, 466–472.

(8)

Boda, D.; Fawcett, W. R.; Henderson, D.; Sokołowski, S. J. Chem. Phys. 2002, 116, 7170–7176.

(9)

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Science 2011, 334, 1256–1260.

(10)

Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K.-C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Angew. Chemie Int. Ed. 2012, 51, 12495–12498.

(11)

Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Nat Chem 2013, 5, 300–306.

(12)

Kinoshita, K. Electrochemical Oxygen Technology; John Wiley & Sons, 1992.

(13)

Henderson, M. A. Surf. Sci. Rep. 2002, 46, 1–308.

(14)

Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. J. Phys. Chem. C 2008, 112, 4248–4256.

(15)

Ohta, N.; Nomura, K.; Yagi, I. J. Phys. Chem. C 2012, 116, 14390–14400.

(16)

Shao, M. H.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 16563–16566.

(17)

Li, X.; Gewirth, A. A. J. Am. Chem. Soc. 2005, 127, 5252–5260.

(18)

Greeley, J.; Markovic, N. M. Energy Environ. Sci. 2012, 5, 9246–9256.

18 ACS Paragon Plus Environment

Page 19 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

(19)

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Angew. Chemie Int. Ed. 2006, 45, 2897–2901.

(20)

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493–497.

(21)

Adzić, R. R.; Marković, N. M.; Vešović, V. B. J. Electroanal. Chem. Interfacial Electrochem. 1984, 165, 105–120.

(22)

Adžić, R. R.; Strbac, S.; Anastasijević, N. Mater. Chem. Phys. 1989, 22, 349–375.

(23)

Zurilla, R. W.; Sen, R. K.; Yeager, E. J. Electrochem. Soc. 1978, 125, 1103–1109.

(24)

Sawyer, D. T.; Roberts, J. L. J. Electroanal. Chem. 1966, 12, 90–101.

(25)

Lu, Y.-C.; Gasteiger, H. A.; Shao-Horn, Y. J. Am. Chem. Soc. 2011, 133, 19048–19051.

(26)

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat Mater 2012, 11, 19–29.

(27)

Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721–11750.

(28)

Kumar, N.; Radin, M. D.; Wood, B. C.; Ogitsu, T.; Siegel, D. J. J. Phys. Chem. C 2015, 119, 9050–9060.

(29)

Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. J. Am. Chem. Soc. 2012, 134, 1093– 1103.

(30)

Schwenke, K. U.; Metzger, M.; Restle, T.; Piana, M.; Gasteiger, H. A. J. Electrochem. Soc. 2015, 162, A573–A584.

(31)

Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393–400.

(32)

Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178–9186.

(33)

Schwenke, K. U.; Meini, S.; Wu, X.; Gasteiger, H. A.; Piana, M. Phys. Chem. Chem. Phys. 2013, 15, 11830–11839.

(34)

Sawyer, D. T.; Chiericato, G.; Angelis, C. T.; Nanni, E. J.; Tsuchiya, T. Anal. Chem. 1982, 54, 1720–1724.

(35)

Koper, M. T. M. Nanoscale 2011, 3, 2054–2073.

(36)

Koper, M. T. M. In Fuel Cell Catalysis; A surface science approach; Wieckowski, a., Ed.; John Wiley & Sons, Inc., 2009; pp i – xiii. 19 ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(37)

Janek, R. P.; Fawcett, W. R.; Ulman, A. Langmuir 1998, 14, 3011–3018.

(38)

Quaino, P.; Luque, N. B.; Nazmutdinov, R.; Santos, E.; Schmickler, W. Angew. Chemie Int. Ed. 2012, 51, 12997–13000.

(39)

S̆trbac, S.; Adz̆ić, R. R. J. Electroanal. Chem. 1996, 403, 169–181.

(40)

Hatzenbuhler, D. A.; Andrews, L. J. Chem. Phys. 1972, 56, 3398–3403.

(41)

Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J.-M.; Bruce, P. G. Angew. Chemie Int. Ed. 2011, 50, 6351– 6355.

(42)

McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 997–1001.

(43)

Adžić, R. R.; Tripković, A. V; Marković, N. M. J. Electroanal. Chem. Interfacial Electrochem. 1980, 114, 37–51.

(44)

Adžić, R. In Encyclopedia of Electrochemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2007.

(45)

Das, U.; Lau, K. C.; Redfern, P. C.; Curtiss, L. A. J. Phys. Chem. Lett. 2014, 5, 813–819.

20 ACS Paragon Plus Environment

Page 20 of 26

Page 21 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

For Table of Contents Only

21 ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The effect of water on superoxo electrochemistry on Au(hkl) in ether-based electrolytes. (a) Cyclic voltammetry (CV) on Au(hkl) in dry DME, 0.3M TBAPF6 (>Au(100) > Pt(111) >Au (111) with Pt3Ni(111) being the most active catalyst for the ORR ever observed in aqueous environments; (c) schematic of a proposed OHad-H2O complex (“activated water”) formed via hydrogen bonding emphasizing that this complex might be a key descriptor for controlling the reaction pathway of the ORR in aqueous environments. (d) schematic representation of the effect of “activated water” on peroxide and hydroxyl formation on surfaces with a low coverage of OHad-H2O complexes; (e) schematic representation of further peroxide reduction on a surface covered with two active OHad centers that are required for the peroxide O-O bond cleavage and final production of three hydroxyl ions. Note that schematics are meant to illustrate the most probable reaction pathway for the ORR based on the results presented. 233x153mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Water effect on oxygen electrochemistry in a presence of Li+: water as a promotor and catalyst. (a) CV of Au(100) in dry DME 0.3M TBAPF6 saturated with O2 and various concentrations of Li+; (b) CV in O2 saturated 0.1M Li triflate for Au(100) and Au(111) and (c) the effect of various amounts of water on Li-O2 electrochemistry on Au(100) (sweep rate = 100 mV s-1). (d) in situ AFM imaging of Au(111) in TEGDME/LiClO4 saturated with O2 at 3.5V and (e) held at 2.5V for 30 min.; (f) in situ Raman spectroscopy of a roughened gold electrode at 2.5V in “dry” (1ppm of H2O) and “wet” (40 ppm of H2O) electrolyte (DME, 0.1M LiClO4). The vertical lines are added to guide the eye. See also Supplementary Figure S4 and Supplementary Information for additional details on Raman bands assignment. 249x120mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 24 of 26

Page 25 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Water as catalyst and promoter in Li-O2 electrochemistry. (a) Schematics of LiO2-H2O complex formation through dipole-dipole electrostatic forces, formation of “activated water” required for protonation of O2- and formation of Li-based deposits in ether-based electrolytes. For LiO2 and Li2O2 formation the proposed schematics involves four steps: (i) LiO2 formation (steps 1 and 2); (ii) formation of the LiO2---OH2 complex through dipole-dipole interaction in steps 2-3 (iii) interaction of the LiO2---OH2 complex with superoxide in steps 3 to 4; (iv) proton and electron transfer to the superoxide molecule to form hydrogen peroxide and finally in steps 4 and 5; and (v) formation of Li2O2 and regeneration of water (water as catalyst). The slabs are added to illustrate that the processes are taking place at an electrode surface acting simultaneously as proton donor. The direction of the arrows follow the flow of electrons. 212x141mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

246x124mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 26 of 26