Water Emulsions

Nov 19, 2012 - weight, and emulsions were formed using a vortex mixer (Fisher. Scientific Analogue Vortex Mixer, 120 V at 3000 rpm) for 30 s. Unless...
0 downloads 0 Views 970KB Size
Article pubs.acs.org/Macromolecules

PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-inWater Emulsions Wenwen Li,† Yao Yu,‡ Melissa Lamson,† Michael S. Silverstein,∥ Robert D. Tilton,‡,§ and Krzysztof Matyjaszewski*,† †

Department of Chemistry, ‡Department of Biomedical Engineering, and §Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, United States ∥ Department of Materials Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel ABSTRACT: A series of well-defined poly(ethylene oxide) (PEO)-based star copolymers with controlled number of arms, compactness, and compositions were prepared by atom transfer radical polymerization using a simple “arm-first” method. Tuning the composition of the arms allowed these star polymers to stabilize either oil-in-water or water-in-oil emulsions. Stable oil-in-water emulsions were obtained with star copolymers containing only hydrophilic PEO arms due to their better affinity to the aqueous phase. In contrast, the insertion of a fraction of hydrophobic poly(butyl acrylate) arms into the star structure significantly changed the surfactant behavior of the star copolymers, leading to the formation of stable water-in-oil emulsions. Additionally, in both cases, an extremely low surfactant concentration, 0.05 wt %, was used, the generated emulsion droplets are large, up to 1 mm, even with 0.5 wt % star polymer, due to the relatively less effective interface stabilization by star surfactants with a collapsed morphology. The droplet sizes in the diluted water-in-xylene emulsions were followed using an optical microscope. Similar to the xylene-in-water emulsions formed with PEO homoarm star polymers as stabilizers, a decrease in the size of the droplets, from ca. 100 to ca. 10 μm, could be clearly observed when the star polymer concentration was increased from 0.005 to 0.1 wt % (Figure 4) due to the increasing inventory of star polymers

Table 3. Xylene/Water Interfacial Tensions (mN/m) for 0.01 and 0.1 wt % Star Polymer Solutions at 21 °Ca 0.01 wt % 0.1 wt %

SD64

SL35

SL30

MSPBA50

MSPBA30

MSPBA10

15.5 12.8

10.8 10.1

4.0 2.1

3.8 2.1

26.7 4.4

16.1 3.4

Uncertainty is ±0.1 mN/m. The pure xylene/water interfacial tension is 36.6 mN/m. a

with the interfacial tension lowering behavior of other nanoparticulate brush systems.37 The most effective interfacial tension lowering PEO homoarm star polymer was SL30, which decreased the xylene/water interfacial tension from the clean interface value of 36.6 mN/m to just 2.1 mN/m at a concentration of 0.1 wt %. This was a substantially lower interfacial tension than the values achieved by the other two PEO homoarm star polymers, all three of which had similar

Figure 4. Micrographs at 40× magnification of diluted water in xylene emulsion formed by using PEO−PBA−poly(DVB) miktoarm star polymers (MSPBA50) as stabilizers, star polymer amount: (a) 0.005, (b) 0.01, (c) 0.1, and (d) 0.5 wt %. Scale bar 50 μm. 9424

dx.doi.org/10.1021/ma3016773 | Macromolecules 2012, 45, 9419−9426

Macromolecules

Article

(2) Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93−146. (3) di Lena, F.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959− 1021. (4) Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270− 2299. (5) Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614. (6) Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921−2990. (7) Matyjaszewski, K.; Tsarevsky, N. V. Nat. Chem. 2009, 1, 276− 288. (8) Matyjaszewski, K. Macromolecules 2012, 45, 4015−4039. (9) Matyjaszewski, K. Isr. J. Chem. 2012, 52, 206−220. (10) Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. Prog. Polym. Sci. 2008, 33, 448−477. (11) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Prog. Polym. Sci. 2008, 33, 759−785. (12) Lee, H. I.; Pietrasik, J.; Sheiko, S. S.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 24−44. (13) Blencowe, A.; Tan, J. F.; Goh, T. K.; Qiao, G. G. Polymer 2009, 50, 5−32. (14) Hadjichristidis, N. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 857−871. (15) Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. Rev. 2001, 101, 3747−3792. (16) Gao, H.; Matyjaszewski, K. Prog. Polym. Sci. 2009, 34, 317−350. (17) Ooya, T.; Lee, J.; Park, K. J. Controlled Release 2003, 93, 121− 127. (18) Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Bioconjugate Chem. 2005, 16, 397−405. (19) Gao, H. F.; Matyjaszewski, K. Macromolecules 2007, 40, 399− 401. (20) Gao, H.; Matyjaszewski, K. Macromolecules 2006, 39, 7216− 7223. (21) Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. J. Am. Chem. Soc. 2006, 128, 11360−11361. (22) Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc. 2007, 129, 11828− 11834. (23) Zhu, W. P.; Nese, A.; Matyjaszewski, K. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1942−1952. (24) Zhu, W. P.; Zhong, M. J.; Li, W. W.; Dong, H. C.; Matyjaszewski, K. Macromolecules 2011, 44, 1920−1926. (25) Min, K.; Matyjaszewski, K. Cent. Eur. J. Chem. 2009, 7, 657− 674. (26) Huynhbagia; Jerome, R.; Teyssie, P. Colloid Polym. Sci. 1979, 257, 1294−1296. (27) Huynhbagia; Jerome, R.; Teyssie, P. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 2391−2400. (28) Huynhbagia; Jerome, R.; Teyssie, P. J. Polym. Sci., Part A: Polym. Chem. 1980, 18, 3483−3498. (29) Huynhbagia; Jerome, R.; Teyssie, P. J. Appl. Polym. Sci. 1981, 26, 343−351. (30) Burguiere, C.; Pascual, S.; Bui, C.; Vairon, J. P.; Charleux, B.; Davis, K. A.; Matyjaszewski, K.; Betremieux, I. Macromolecules 2001, 34, 4439−4450. (31) Kukula, H.; Schlaad, H.; Tauer, K. Macromolecules 2002, 35, 2538−2544. (32) Jin, R. H. J. Mater. Chem. 2004, 14, 320−327. (33) Hadjiyannakou, S. C.; Triftaridou, A. I.; Patrickios, C. S. Polymer 2005, 46, 2433−2442. (34) Qiu, Q.; Liu, G. Y.; An, Z. S. Chem. Commun. 2011, 47, 12685− 12687. (35) Xia, J. H.; Matyjaszewski, K. Macromolecules 1999, 32, 2434− 2437. (36) Gao, H.; Matyjaszewski, K. Macromolecules 2006, 39, 3154− 3160. (37) Saigal, T.; Dong, H. C.; Matyjaszewski, K.; Tilton, R. D. Langmuir 2010, 26, 15200−15209. (38) Marszall, L. In Nonionic Surfactants: Physical Chemistry; Schick, M. J., Ed.; Marcel Dekker: New York, 1987; p 511.

HLB. SL30 stands out as the least compact of the PEO homoarm star polymers. The greater exposure of the hydrophobic PDVB core in this structure may be responsible for the superior interfacial tension lowering performance. Nevertheless, SD64 was the most efficient emulsifier of the three PEO homoarm stars. Interfacial tension lowering alone cannot predict emulsifying efficiency. All three PEO−PBA miktoarm star polymers decreased the xylene/water interfacial tension to low values, 2.1−3.4 mN/m, at a 0.1 wt % concentration. The main distinction between the three was the ability of MSPBA50 to also produce this level of interfacial tension lowering at the lower bulk concentration of 0.01 wt %. This was the least compact of the three PEO−PBA miktoarm star polymers. The correlation of more effective interfacial tension lowering with decreasing compactness mirrors the PEO homoarm results.



CONCLUSIONS PEO-based star polymers, either PEO−poly(DVB) or PEO− PBA−poly(DVB) miktoarm star polymers, were prepared and utilized as stabilizers for generation of emulsions with long-term stability (3−6 months) at extremely low polymer concentration,