Anal. Chem. 2007, 79, 4603-4612
Wood Cellulose Preparation Methods and Mass Spectrometric Analyses of δ13C, δ18O, and Nonexchangeable δ2H Values in Cellulose, Sugar, and Starch: An Interlaboratory Comparison Tatjana Boettger,*,† Marika Haupt,† Kay Kno 1 ller,† Stephan M. Weise,† John S. Waterhouse,‡ ‡ § Katja T. Rinne, Neil J. Loader, Eloni Sonninen,| Hogne Jungner,| Valerie Masson-Delmotte,⊥ Michel Stievenard,⊥ Marie-The´re`se Guillemin,⊥ Monique Pierre,⊥ Anna Pazdur,# Markus Leuenberger,@ Marc Filot,@ Matthias Saurer,¶ Christina E. Reynolds,¶ Gerd Helle,£ and Gerhard H. Schleser£
Department of Isotope Hydrology, UFZsHelmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany, Anglia Ruskin University, East Road, CB1 1PT, Cambridge, UK, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, UK, Dating Laboratory, University of Helsinki, POB 64, FIN-00014, Helsinki, Finland, Commissariat a l’Energie Atomique, CE SACLAY/LSCE Bat701, 91191, Gif-sur-Yvette, France, Institute of Physics, Department of Radioisotopes, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland, Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland, and Institute for Chemistry and Dynamics of the Geosphere, Forschungszentrum Ju¨lich GmbH, ICG-V, 52425 Juelich, Germany
Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: (0.2‰ for carbon and (0.3‰ for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39‰ in 13C relative to the purified r-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23‰ between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58‰, -0.89 to 0.42‰, and -1.30 to 1.16‰ for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from (2.7 to (4.9‰. The use of a onepoint calibration (IAEA-CH7) gave significant positive offsets in δ2H values up to 6‰. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the * To whom correspondence should be addressed. E-mail: tatjana.boettger@ ufz.de. Fax: +49 345 5585 449. † UFZsHelmholtz Centre for Environmental Research. ‡ Anglia Ruskin University. § University of Wales Swansea. | University of Helsinki. ⊥ Commissariat a l’Energie Atomique. # Silesian University of Technology. @ University of Bern. ¶ Paul Scherrer Institut. £ Forschungszentrum Ju ¨ lich GmbH. 10.1021/ac0700023 CCC: $37.00 Published on Web 05/16/2007
© 2007 American Chemical Society
common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation. Stable isotope ratios of light elements (C, O, H) in tree ring material (total wood, lignin, or cellulose) are becoming increasingly more important in climatic and environmental studies.1-8 Cellulose, one of the main components of wood, is traditionally used for tree ring isotope investigations, mainly because of the long-term stability of this biopolymer.9-13 The extraction of (1) Epstein, S.; Krischnamurthy, R. V. Phil. Trans. R. Soc. London 1990, A330, 427-439. (2) Leuenberger, M.; Borella, S.; Stocker, T.; Saurer, M.; Siegwolf, W.; Schweingruber, F.; Matyssek, R. Stable isotopes in tree rings as climate and stress indicators; Hochschulverlag AG an der ETH: Zu ¨ rich, 1998; pp 1-200. (3) Schleser, G. H.; Helle, G.; Lu ¨ cke, A.; Vos, H. Quat. Sci. Rev. 1999, 18, 927-943. (4) Leavitt, S. W. Chem. Geol. 2002, 192, 47-58. (5) Saurer, M. Isot. Environ. Health Stud. 2003, 39, 105-112. (6) Loader, N. J.; Robertson, I.; McCarroll, D. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2003, 196, 395-407. (7) McCarroll, D.; Loader, N. J. Quat. Sci. Rev. 2004, 23, 771-801. (8) Treydte, K. S.; Schleser, G. H.; Helle, G.; Frank, D. C.; Winiger, M.; Haug, G. H.; Esper, J. Nature 2006, 440 (7088), 1179-1182. (9) Epstein, S.; Yapp, C. J.; Hall, J. H. Earth Planet. Sci. Lett. 1976, 30, 241251. (10) Gray, J.; Song, S. E. Earth Planet. Sci. Lett. 1984, 70, 129-138. (11) Ramesh, R.; Bhattacharya, S. K.; Copalan, K. In Science and Archaeology Glasgow 1987; Slater, E. A., Tate, J. O., Eds.; BAR British Series 196; BAR: Oxford, UK, 1988; pp 591-609. (12) Leavit, S. W.; Danzer, S. R. Anal. Chem. 1993, 65, 87-89. (13) Boettger, T.; Hiller, A.; Kremenetski, C. Holocene 2003, 13 (3), 405-412.
Analytical Chemistry, Vol. 79, No. 12, June 15, 2007 4603
Table 1. Reference Materials Used sort Quercus petraea Pinus sylvestris Quercus spp Quercus sp P. sylvestris P. sylvestris sylvestris cellulose sugar starch
origin (A) Wood Standards Hambach Forest, Germany Harz Mountains, Germany Southern United Kingdom Rambouillet, Fontainebleau; France Northern Finland Kola Peninsula; Russia
one tree;