Zearalenone and Related Compounds

ide in refluxing aqueous dimethyl sulfoxide (DMSO) and yields a ..... MYCOTOXINS. This proton is located trans to the C9 proton as shown by the coupli...
0 downloads 0 Views 3MB Size
10 Zearalenone and Related Compounds S. V. PATHRE and C. J. MIROCHA Department of Plant Pathology, University of Minnesota, St. Paul, Minn. 55101

Zearalenone [6-(10-hydroxy-6-oxo-trans-1-undecenyl)-β-resorcylic acid-μ-lactone] is a secondary metabolite of species of Fusarium and is notable because of its estrogenic and anabolic activity in animals. Mass spectral, NMR, fluores­ cence, and x-ray diffraction properties are summarized with emphasis on fragmentation patterns resulting from analyses by mass spectrometry. Use of mass spectrometry in struc­ ture elucidation is illustrated. Zearalenone is biosynthesized via the acetate-malonyl-CoA pathway and can be metabo­ lized to the two isomers of 8'-hydroxyzearalenone. Struc­ ture-activity relationships indicate that the most active derivative of the series is 7'-carboxyzearalane which is one­ -tenth as active as diethylstilbestrol and 100 times more active than the parent zearalenone. The naturally occurring macrolides related to zearalenone are radicicol, lasiodiplodin, and curvularin. The chemistry and total synthesis of this molecule are described and discussed.

Zearalenone is a secondary metabolite produced by Fusarium roseum, Fusarium tricinctum, Fusarium oxysporum, Fusarium culmorum, and Fusarium moniliforme. It is usually produced on maize and barley in storage, and when fed to animals, particularly swine, it causes hyperestrogenism. A thorough treatment of this subject can be found in reviews by Mirocha et al. (1) and Mirocha and Christensen (2). Hyperestrogenism was first noted in swine by Buxton in 1927 (3) and Legenhausen in 1928 in herds in Iowa (4). Although they did not know its cause, they described symptoms in young gilts of the swelling and eversion of the vagina until, in some cases, the cervix was visible. Legenhausen also described a swelling of the prepuce in males. McNutt was the first to associate this disease with the consumption of moldy maize and to reproduce the estrogenic syndrome (5). 178

10.

P A T H R E

A N D

M I R O C H A

and Related Compounds

Zearalenone

Stob et a l . ( 6 ) isolated an active principle from cultures of zeae (Fusarium

roseum,

179

GUbberella

G r a m i n e a r u m ) i n 1962 f o l l o w e d b y C h r i s t e n s e n

et a l . ( 7 ) i n 1965. T h i s m e t a b o l i t e h a d m a r k e d a n a b o l i c a n d u t e r o t r o p h i c a c t i v i t y w h e n a d m i n i s t e r e d t o m i c e , a p p e a r e d t o i n c i t e t h e estrogenic s y n d r o m e , a n d w a s c a l l e d F - 2 ( 7 ) . U r r y e t a l . (8) n a m e d t h e a c t i v e p r i n c i p l e zearalenone. Z e a r a l e n o n e acts as a h o r m o n e i n Fusarium

roseum w h e r e i t regulates

the p r o d u c t i o n o f t h e s e x u a l stage—Le., f o r m a t i o n o f p e r i t h e c i a ( 9 ) . I n the f u n g u s system i t acts i n c o n c e r t w i t h c y c l i c 3'-5'-adenosine p h o s p h a t e t o r e g u l a t e p e r i t h e c i a p r o d u c t i o n (10).

mono­

A l t h o u g h i t regulates

t h e s e x u a l stage i n o t h e r genera o f f u n g i as w e l l , i t has b e e n f o u n d o n l y w i t h i n t h e genus Fusanum

(11).

Z e a r a l e n o n e b e l o n g s t o a g r o u p o f n a t u r a l p r o d u c t s c a l l e d resorcylates. I n this p a p e r t h e c h e m i s t r y o f z e a r a l e n o n e , its d e r i v a t i v e s , a n d other r e l a t e d n a t u r a l p r o d u c t s

are r e v i e w e d to summarize the more

i n t e r e s t i n g a n d u n u s u a l features o f m a c r o c y c l i c resorcylates. A n a t t e m p t is m a d e t o treat those aspects o f z e a r a l e n o n e o f s p e c i a l interest t o t h e o r g a n i c c h e m i s t a n d t o t h e b i o l o g i s t as w e l l . T h e estrogenic m a c r o l i d e w a s d e s i g n a t e d z e a r a l e ­

Nomenclature.

none, a n enone d e r i v a t i v e o f r e s o r c y l i c a c i d l a c t o n e i s o l a t e d f r o m Gibberella

zeae (8). Z e a r a l a n e is a p a r e n t c o m p o u n d o f zearalenone. T h e

n u m b e r i n g system u s e d t h r o u g h o u t this p a p e r f o r t h e z e a r a l a n e system is s h o w n i n F i g u r e 1. T h e c h e m i c a l n a m e c o m m o n l y u s e d f o r z e a r a l a n e is 6 - ( 1 0 - h y d r o x y - l - u n d e c y l ) - ^ - r e s o r c y l i c z e a r a l e n o n e is n a m e d

a c i d - μ-lactone.

Accordingly,

6-(10-hydroxy-6-oxo-imfw-l-undecenyl)-^-resorcylic

a c i d μ-lactone.

Figure

1. Structure and number­ ing system for zearalane

Zearalenone Structural E l u c i d a t i o n . S t r u c t u r e 1 of z e a r a l e n o n e

(C18H22O5) w a s

e l u c i d a t e d i n 1966 b y U r r y e t a l . ( δ ) w h o f o u n d t h a t i t a b s o r b e d h y d r o g e n i n t h e presence o f p l a t i n u m t o g i v e a d i h y d r o p r o d u c t 2

(C18H24O5);

h o w e v e r , hydrogénation o v e r R a n e y n i c k e l a t 5 0 p s i g a v e a m i x t u r e o f t w o d i a s t e r e o m e r i c alcohols 3

(Ci8H2e05).

C h e m i c a l degradation of zearale-

180

M Y C O T O X I N S

2 4

Ci H 0 R = C H 8

2 4

5

R^=H

3

C18H26O5

3

none (Scheme I ) v i a B e c k m a n n rearrangement y i e l d e d a product i d e n t i ­ fied

as 2 ( 5 - c a r b o x y

pentyl)-4,6-dimethoxybenzoic

acid (5)

determined

o n t h e basis o f N M R d a t a . O z o n o l y s i s o f t h e d i m e t h y l ether o f z e a r a l e ­ n o n e gave 2 , 4 - d i m e t h o x y - 6 - f o r m y l b e n z o i c fluxed

acid.

Zearalenone, w h e n r e -

8 h r i n 1 0 % sodium bicarbonate solution, yields a n alcohol 6

(C17H24O4)

after a c i d i f i c a t i o n . T h e s e studies e s t a b l i s h e d t h e positions

of t h e olefin a n d ketone i n t h e a l i c y c l i c lactone r i n g . A l s o N M R s p e c t r a l d a t a (see

S p e c t r a l P r o p e r t i e s ) i n d i c a t e d t h e p r e s e n c e o f trans olefinic

protons ( / = 16 H z ) a n d a s e c o n d a r y m e t h y l g r o u p . T h u s t h e s t r u c t u r e of 1 is consistent w i t h t h e d a t a o b t a i n e d f r o m t h e studies l i s t e d a b o v e (see S c h e m e I ) . A b s o l u t e C o n f i g u r a t i o n . B e c a u s e o f a n a s y m m e t r i c center a t C I O ' , naturally

occurring

zearalenone

( [«] 546 — - 1 7 0 . 5 ° , c = 25

exhibits

optical

activity a n d purity

1 . 0 M M e O H ) . T h e absolute c o n f i g u r a t i o n o f

this n a t u r a l e n a n t i o m o r p h w a s d e t e r m i n e d b y K u o et a l . (12) m e t h o d b a s e d o n t h e k i n e t i c r e s o l u t i o n t e c h n i q u e (13) 15,16)

using a

of H o r e o u

(14,

t o d e t e r m i n e t h e configurations o f s e c o n d a r y alcohols. T h e y c o n ­

v e r t e d t h e n a t u r a l z e a r a l e n o n e to t h e d i h y d r o s e c o a c i d k e t a l 7, f o r m e d t h e m e t h y l ester 8, a n d t h e n a l l o w e d i t to react w i t h ( ± ) - a - p h e n y l b u t y r i c a n h y d r i d e i n p y r i d i n e . T h e excess o f a - p h e n y l b u t y r i c a c i d w a s r e c o v e r e d , a n d its r o t a t i o n w a s d e t e r m i n e d . T h e r e c o v e r e d a c i d e x h i b i t e d a n e g a t i v e r o t a t i o n ( c o r r e s p o n d s to R ( — ) α - p h e n y l b u t y r i c a c i d )

thereby

denoting

10.

an

P A T H R E

A N D

M I R O C H A

S-configuration

at the

Zearalenone

and

SCHEME

I

optically active

Related

Compounds

ΙΟ'-center of

181

zearalenone.

A l t e r n a t i v e l y t h e l a c t o n e 9 d e r i v e d f r o m t h e exhaustive o x i d a t i o n

of

z e a r a l e n o n e h a d a n i d e n t i c a l o p t i c a l r o t a t i o n to t h a t of t h e S ( — ) e n a n t i o m e r of 5 - h y d r o x y h e x a n o i c a c i d lactone.

Naturally Occurring Derivatives of Zearalenone M i r o c h a et a l . ( 1 ) r e p o r t e d the n a t u r a l o c c u r r e n c e of at least s e v e n d e r i v a t i v e s of z e a r a l e n o n e f r o m Fusarium CH 0

t

3

8

C H

3

roseum

growing i n culture on

.H

9

182

MYCOTOXINS

( 8'R,10'S ) -8'Hydroxyzearalerione Figure 2. (A) Packing of molecules in a crystal of 8'-dihydroxyzearalenone (F-5-3) based on x-ray crystallography analysis. Note the intermohcular association arising from water of hydration. (Courtesy of I. F. Taylor.) (B) Stereochemistry of 8 -dihydroxy zearalenone. f

10.

P A T H R E

A N D

M I R O C H A

Zearalenone

183

and Related Compounds

c o r n , a n d d e s i g n a t e d t h e m as F - 5 - 0 t h r o u g h F - 5 - 7 . T h e m e t a b o l i t e s w e r e partially characterized b y their u v absorption spectra a n d separation b y thin layer and g a s - l i q u i d chromatography.

T h e m o s t a b u n d a n t o f these

d e r i v a t i v e s w e r e d e s i g n a t e d as F - 5 - 3 ( m p 1 9 8 ° - 1 9 9 ° C ) a n d F - 5 - 4

(mp

1 6 8 ° - 1 6 9 ° C ) , b o t h of w h i c h h a v e a mass of 334 a n d t h e e m p i r i c a l f o r ­ mula C i H 3 0 . 8

2

6

T h e s t r u c t u r e w a s i n c o r r e c t l y r e p o r t e d as 3 ' - h y d r o x y -

z e a r a l e n o n e ( a l p h a a n d b e t a i s o m e r s ) b y M i r o c h a et a l . ( 1 ) . studies b y J a c k s o n et a l . (17)

Subsequent

r e v e a l e d t h a t the O H g r o u p of b o t h isomers

is i n the 8' p o s i t i o n . I n d e p e n d e n t l y , B o l l i g e r a n d T a m m (18) two

isomeric hydroxyzearalenones

which when

isolated

oxidized with

Jones

reagent ( C r 0 - H S 0 i n a c e t o n e ) y i e l d e d i d e n t i c a l diketones ( ία] 3

2

=

24

Ώ

4

—93.2° a n d —92.8° ) i n d i c a t i n g t h e e p i m e r i c n a t u r e of the h y d r o x y g r o u p . M a s s s p e c t r a l d a t a i n t e r p r e t a t i o n r e v e a l e d t h a t these i s o m e r i c h y d r o x y ­ zearalenones w e r e e p i m e r i c 8 ' - h y d r o x y z e a r a l e n o n e s . i n t o [ S ] - z e a r a l a n o n e , J a c k s o n et a l . (17)

B y converting them

also s h o w e d t h a t F - 5 - 3 a n d

F - 5 - 4 are e p i m e r i c . R e c e n t l y F - 5 - 3 has b e e n s h o w n (19)

to b e ( 8 ' R , 1 0 ' S ) -

hydroxyzearalenone, b y x-ray crystallography ( F i g u r e 2 ) . B o l l i g e r a n d T a m m (18)

also r e p o r t e d t h e o c c u r r e n c e of 5 - f o r m y l -

z e a r a l e n o n e 11 a n d 7 ' - d e h y d r o z e a r a l e n o n e (Table I).

roseum

Steele (20)

12 i n c u l t u r e s of

isolated a compound

Fusanum

from

Fusarium

roseum g r o w i n g o n a s o l i d m e d i u m of s h r e d d e d w h e a t w h i c h w a s i d e n t i ­ c a l w i t h 6 ' , 8 ' - d i h y d r o x y z e a r a l e n e 13, N a B H - r e d u c t i o n p r o d u c t of F - 5 - 3 . 4

H e also i s o l a t e d 7 - d e h y d r o z e a r a l e n o n e 12 w h e n t h e c h l o r o f o r m extract of /

the c u l t u r e s w a s p a r t i t i o n e d w i t h 2 N K C 0 . H o w e v e r 12 w a s n o t d e ­ 2

3

t e c t e d w h e n t h e base p a r t i t i o n w a s e h m i n a t e d .

Table I.

N a t u r a l l y O c c u r r i n g Derivatives of Zearalenone

HO'

R 10 11 12 13

8'-hydroxyzearalenone 5-formylzearalenone 7 -dehydrozearalenone 6',8'-dihydroxyzearalene ,

— — — —

H CHO H H

2

= 0 = 0 = 0 —OH

R

R

3

= H = H — H = H

2 2

2

— = — —

4

OH H H OH 2

184

MYCOTOXINS

Reactions of Zearalenone R i n g Stability. A l t h o u g h zearalenone is a l a c t o n e , i t is f a i r l y stable i n c o l d a l k a l i ; b u t p r o l o n g e d exposure e x t e n s i v e l y h y d r o l y z e s t h e l a c t o n e r i n g . T h e l a c t o n e f u n c t i o n o f 1 is easily h y d r o l y z e d w i t h s o d i u m h y d r o x ­ i d e i n refluxing aqueous d i m e t h y l sulfoxide

(DMSO)

r a c e m i z e d seco a c i d 14 i n a l m o s t q u a n t i t a t i v e y i e l d (21).

a n d yields

a

T h e racemiza-

t i o n o f t h e seco a c i d is a t t r i b u t e d to i n t e r n a l d i s p r o p o r t i o n a t i o n a r i s i n g f r o m t h e presence of t h e 6' k e t o n e ( 15 * ± 16 ) since t h e e t h y l e n e k e t a l 17 of z e a r a l e n o n e u n d e r g o e s t h e o p e n i n g o f t h e lactone w i t h o u t r a c e m i z a t i o n (21).

Peters a n d H u r d

(22)

u s e d this p r i n c i p l e i n o p e n i n g t h e

l a c t o n e r i n g of t h e n a t u r a l l y o c c u r r i n g ( S ) - z e a r a l e n o n e to p r e p a r e ( R ) zearalanone, a n d they have inverted the configuration at C 1 C v i a the p - t o l u e n e s u l f o n i c ester of t h e seco a c i d .

Aromatic Substitution.

W i n d h o l z a n d B r o w n (23)

examined sub­

s t i t u t i o n o f t h e c a r b o x y l a n d f o r m y l groups i n t o t h e a r o m a t i c p o r t i o n o f z e a r a l e n o n e . W h e n 1 is h e a t e d a t 175° w i t h a n h y d r o u s p o t a s s i u m c a r ­ b o n a t e at 8 0 0 p s i C 0

2

f o r 3 h r , i t is c a r b o x y l a t e d at t h e C 3 p o s i t i o n ;

h o w e v e r i f t h e r e a c t i o n t i m e is i n c r e a s e d to 5 h r , t h e c a r b o x y l a t i o n o c c u r s a t C - 5 (24).

T h e s e results are consistent w i t h t h e c o n c l u s i o n s ( 2 5 ) t h a t

s u c h c a r b o x y l a t i o n is r e v e r s i b l e a n d t h a t , k m e t i c a l l y , s u b s t i t u t i o n i n t h e

10.

P A T H R E

A N D

Zearalenone

M I R O C H A

OR

l a or

185

and Related Compounds C H

3

OH—DMSO

lb

RO' 0 ± 1 4

15

R =

H or C H

3

17

16

o r t h o p o s i t i o n is f a v o r e d , b u t , t h e r m o d y n a m i c a l l y , t h e p a r a p o s i t i o n is favored.

T h i s is l o g i c a l since the greater s e p a r a t i o n of the t w o n e g a t i v e

charges

(phenoxide

and

carboxylate)

gives

greater

thermodynamic

stability. Z e a r a l e n o n e is f o r m y l a t e d at the C 3 p o s i t i o n b y a l l o w i n g e t h y l f o r ­ m a t e to react w i t h a l u m i n u m c h l o r i d e ( F r i e d e l - C r a f t f o r m y l a t i o n ) a n d b y t h e R i e m e r - T i e m a n n a n d G a t t e r m a n n reactions (18).

(23)

(Reimer-

T i e m a n n r e a c t i o n is u s e d to f o r m y l a t e sensitive a r o m a t i c r i n g s ; f o r m y l a ­ t i o n o c c u r s i n c h l o r o f o r m i n t h e p r e s e n c e of a s t r o n g base s u c h as potas­ sium hydroxide

R e f . 26).

(see

f o r m y l a t e phenols (see

T h e G a t t e r m a n n r e a c t i o n is u s e d

Refs. 27 a n d 28).

to

I n these reactions f o r m y l a t i o n

y i e l d e d a m i x t u r e of 3 - f o r m y l a n d 5 - f o r m y l zearalenone. T h e G a t t e r m a n n r e a c t i o n gave 8 9 %

of the f o r m y l a t e d p r o d u c t i n w h i c h t h e 3 a n d 5

f o r m y l d e r i v a t i v e s w e r e i n the r a t i o of 2 : 1 , r e s p e c t i v e l y . N i t r a t i o n of d i m e t h y l ether z e a r a l e n o n e l b w i t h a 5 0 / 5 0 m i x t u r e of c o n c e n t r a t e d s u l f u r i c a c i d a n d n i t r i c a c i d gives a m i x t u r e of 3,5-dinitro a n d 5-nitro d e r i v a t i v e s ( 2 9 ) .

These nitro derivatives can be transformed

i n t o the c o r r e s p o n d i n g a m i n o d e r i v a t i v e s b y r e d u c t i o n w i t h i r o n p o w d e r i n a 5 0 % m e t h a n o l i c s o l u t i o n c o n t a i n i n g h y d r o c h l o r i c a c i d (0.25 e q u i v ) . J o h n s t o n et a l . (30)

r e p o r t e d the c o n v e r s i o n of 5 - a m i n o z e a r a l e n o n e 18 to

5-hydroxyzearalenone

20 b y o x i d i z i n g t h e a m i n o d e r i v a t i v e w i t h s i l v e r

o x i d e - a m m o n i u m h y d r o x i d e to a 4 - h y d r o x y q u i n o n e d e r i v a t i v e 19 w h i c h y i e l d e d 20 w h e n t r e a t e d w i t h a q u e o u s s o d i u m thiosulfate.

186

MYCOTOXINS

20 H a l o g e n - s u b s t i t u t e d d e r i v a t i v e s of z e a r a l e n o n e s u c h as m o n o - a n d diiodozearalenone a n d monobromozearalenone have been reported (31). H a l o m e r c u r i c - a n d arsonic a c i d - s u b s t i t u t e d d e r i v a t i v e s of

zearalenone

h a v e also b e e n p r e p a r e d a n d s h o w a n t i b a c t e r i a l a n d a n t i f u n g a l a c t i v i t y (32). Diels-Alder Adducts. prepared (Figure 3)

S e v e r a l a d d u c t s of z e a r a l e n o n e h a v e b e e n

to d e v e l o p n e w g r o w t h - p r o m o t i n g agents

(33).

M a l e i c a n h y d r i d e , s u l f u r d i o x i d e , p - b e n z o q u i n o n e , 1,4-naphthoquinone, nitroethylene,

and

acrolein

can

easily

form

the

5-2 -adduct

zearalenone.

Figure 3.

Diels-Alder

adduct of

zearalenone

/

with

10.

P A T H R E

A N D

M I R O C H A

Birch Reduction.

Zearalenone

and Related Compounds

B i r c h r e d u c t i o n of zearalenone

s t u d i e d b y W i n d h o l z a n d B r o w n (23).

derivatives

187 was

T h e ethylene k e t a l of the d i m e t h y l

ether of zearalenone 21, w h e n treated w i t h 4 e q u i v of s o d i u m i n l i q u i d a m m o n i a a n d tert-butyl

alcohol yielded two rather unstable products

a n d 23), w h i c h o n t r e a t m e n t w i t h C r 0

3

(22

i n p y r i d i n e a r o m a t i z e d t o the

d e o x y d e r i v a t i v e s 24 a n d 25, r e s p e c t i v e l y . T h e m e c h a n i s t i c i n t e r p r e t a t i o n of these reactions is s h o w n i n S c h e m e II ( 2 3 ) .

T h e deoxy product

26

w a s i s o m e r i z e d to 23 because of t r e a t m e n t w i t h a base d u r i n g i s o l a t i o n .

188

MYCOTOXINS

Scheme I I

26 Hydrogénation and Hydrogenolysis.

T h e c o n d i t i o n s u n d e r which

1 is h y d r o g e n a t e d to 2 a n d to the d i a s t e r e o m e r i c z e a r a l a n o l s 3 h a v e b e e n n o t e d i n o u r s t r u c t u r a l e l u c i d a t i o n of z e a r a l e n o n e . T h e c o m p l e t e s a t u r a ­ t i o n of the a r o m a t i c r i n g 27 ( c o n c o m i t a n t w i t h t h e r e d u c t i o n of t h e olefin a n d t h e 6'-keto g r o u p s )

occurs w h e n hydrogénation is c a r r i e d o u t i n

m e t h a n o l u n d e r d r a s t i c c o n d i t i o n s (34).

T h e perhydrozearalanol deriva­

t i v e has b e e n s h o w n to h a v e a n t i - i n f l a m m a t o r y a c t i v i t y ( 3 5 ) .

10.

P A T H R E

A N D

Zearalenone

M I R O C H A

R

189

and Related Compounds

— Η or C H

3

27 H y d r o g e n o l y s i s of t h e p h e n o l i c h y d r o x y l s i n zearalenone has b e e n r e p o r t e d b y J o h n s t o n et a l . ( 3 0 )

and Wehrmeister and Robertson

(36).

I t i n v o l v e s p r e p a r a t i o n of the l - p h e n y l - 5 - t e t r a z o l y l 28 or b e n z y x a z o l y l 29 ethers a n d the subsequent h y d r o g e n o l y s i s w i t h 5 %

P d - C w h i c h also

reduces the Γ-olefln. ΟβΗδ I

O x i d a t i o n . Z e a r a l e n o n e or its d i m e t h y l ether, w h i l e r e f l u x i n g i n 1 4 % n i t r i c a c i d , oxidizes extensively to y i e l d g l u t a r i c , s u c c i n i c , a n d o x a l i c acids. T h e n i t r a t e d a r o m a t i c f r a g m e n t c a n b e i s o l a t e d o n l y b y o x i d i z i n g the d i m e t h y l ether d e r i v a t i v e ( 8 , 3 7 ) .

T h e a d v a n t a g e of s u c h d e g r a d a t i o n

w a s t a k e n to d e t e r m i n e the d i s t r i b u t i o n of isolated from acetate

cultures of Fusarium

1 4

C i n zearalenone ( F i g u r e 4 )

roseum

inoculated w i t h

1 4

(37).

T h e a l l y l i c o x i d a t i o n of the ether of zearalenone reagent

[1- C]-

( C r 0 - p y r i d i n e complex) 3

30 w i t h Sarett

gives a 3-keto d e r i v a t i v e 31

(38).

T h e o x i d a t i o n appears to b e sensitive to the t y p e of s u b s t i t u e n t at the 6' p o s i t i o n . T h e y i e l d of t h e 3-keto d e r i v a t i v e o b t a i n e d f r o m the other 30 w a s less t h a n 1 5 % ; h o w e v e r the e t h y l e n e k e t a l 32 a n d t h e

epimeric

acetates 33 afforded the c o r r e s p o n d i n g 3-keto d e r i v a t i v e s i n m o r e t h a n 7 0 % y i e l d . A c c o r d i n g to Jensen et a l . ( 3 8 ) the c h a n g e i n h y b r i d i z a t i o n of C 6 ' (sp

2

-» sp ) 3

a l l o w s a f a v o r a b l e r i n g c o n f o r m a t i o n , a n d t h e presence

of o x y g e n a t t a c h e d to sp

3

C 6 ' assists the attack at 0 3 ' .

O s m i u m tetroxide reacts s m o o t h l y w i t h the d o u b l e

bond

of

d i b e n z y l ether of zearalenone 34 to p r o d u c e a m i x t u r e of e p i m e r i c

the Γ,2'-

190

MYCOTOXINS

17,9,13

•co

2

Figure 4.

Chemical degradation of C-labelled zearalenone. The filled circles mark the location of C atoms derived from 1- C-acetate. 14

(·)

14

14

31 d i o l 35 w h i c h i n t h e presence of a n a c i d rearranges to g i v e 36 p r o b a b l y v i a a c i d - c a t a l y z e d o p e n i n g s of t h e l a c t o n e 35 to f o r m 3 7 .

(38), The

2 ' , 1 0 ' - d i o l 37 t h e n undergoes a n i n t r a m o l e c u l a r k e t a l f o r m a t i o n w i t h t h e 6'-ketone.

10.

P A T H R E

A N D

OR

Ο

Zearalenone

M I R O C H A

I

Η

OR Os0

RO'

^

^Ιι

191

and Related Compounds Q

I

Η

4

Ί

RO" S

O

HO'

36

37

Modification of the Lactone R i n g . R e a c t i o n s i n v o l v i n g the a l i p h a t i c p o r t i o n of z e a r a l e n o n e h a v e b e e n e x a m i n e d extensively either to m o d i f y the estrogenic a c i v i t y ( 3 9 )

o r to s y n t h e s i z e n a t u r a l l y o c c u r r i n g d e r i v a ­

tives of z e a r a l e n o n e ; n a m e l y , 7 ' - d i h y d r o z e a r a l e n o n e 12 a n d 8 ' - h y d r o x y z e a r a l e n o n e 10

(40).

J e n s e n et a l . (38) ( a t 5' a n d 7')

r e p o r t e d t h a t t h e reactions of a c t i v a t e d methylenes

of z e a r a l e n o n e s h o w c o n s i d e r a b l e ' r e g i o s e l e c t i v i t y "

(see

R e f . 41 f o r the d e f i n i t i o n ) . F o r m y l a t i o n o f zearalenone ethers i n b e n z e n e u n d e r the c o n d i t i o n s of s o d i u m h y d r i d e a n d

terf-butyl

a l c o h o l gave p r e ­

d o m i n a n t l y t h e C 7 ' p r o d u c t 38 ( < 7 0 % ). T h i s p r e f e r e n c e for C 7 ' f o r ­ m y l a t i o n w a s also n o t i c e d i n t h e z e a r a l a n o n e d e r i v a t i v e s . R e a c t i o n of zearalenone-2-4-diacetate 39 w i t h i s o p r o p e n y l acetate i n the presence of p - t o l u e n e s u l f o n i c a c i d g a v e t h e e n o l acetate i n w h i c h the m a j o r p r o d u c t i s o l a t e d w a s 4 0 ( e n o l i z a t i o n i n C 5 ' d i r e c t i o n ) i n 6 1 % y i e l d . T h e other isomer

(enolization i n C 7 ' direction)

w a s i s o l a t e d i n ca.

4%

yield.

W h e t h e r s u c h s e l e c t i v i t y is k i n e t i c o r t h e r m o d y n a m i c has n o t y e t b e e n d e t e r m i n e d . O n e p o s t u l a t i o n is t h a t t h e a c i d - c a t a l y z e d e n o l i z a t i o n p r i o r to e n o l acetate f o r m a t i o n y i e l d s the i s o m e r m o s t f a v o r e d t h e r m o d y n a m i cally w h i l e base-catalyzed alkylation favors that product resulting from r e a c t i o n at t h e least s t e r i c a l l y h i n d e r e d p o s i t i o n . S o m e p r e h m i n a r y obser­ vations o n d e u t e r i u m e x c h a n g e e x p e r i m e n t s w i t h zearalenone i n s o d i u m

192

MYCOTOXINS

PTS =

p-toluenesulfonic

acid

m e t h o x i d e - m e t h a n o l i n d i c a t e d t h a t e x c h a n g e occurs r a p i d l y at t h e C 7 ' position

(42).

T h e selective i n t r o d u c t i o n of f o r m y l g r o u p at C 7 ' p o s i t i o n is u s e f u l since i t serves as a p o t e n t i a l p r e c u r s o r i n the synthesis of v a r i o u s z e a r a l e ­ none derivatives. J e n s e n et a l . (38)

Synthesis of i s o m e r i c z e a r a l e n o n e

was reported

i n w h i c h the h y d r o x y m e t h y l e n e d e r i v a t i v e 38a

by was

c o n v e r t e d i n t o z e a r a l a n - 7 - o n e ( S c h e m e I I I ) . Synthesis of l ' , 7 ' - z e a r a l d i e /

none (7'-dehydrozearalenone)

was attempted i n w h i c h 7'-formylzearale-

n o n e - 2 , 4 - d i m e t h y l ether 38b w a s u s e d as a n i n t e r m e d i a t e (40).

Bromina-

t i o n of this ether w a s e x p e c t e d to y i e l d the 7 - b r o m o d e r i v a t i v e 4 1 w h i c h /

c o u l d b e d e h y d r o h a l o g e n a t e d to the d i e n o n e . H o w e v e r the c r u d e b r o m i -

10.

P A T H R E

A N D

M I R O C H A

Zearalenone SCHEME

and Related Compounds

193

III

7'-Zearalanone n a t i o n p r o d u c t w a s a m i x t u r e of m o n o b r o m o 41 a n d d i b r o m o d e r i v a t i v e s 4 2 w h i c h o n t h i n l a y e r c h r o m a t o g r a p h y d e f o r m y l a t e d extensively w i t h o u t y i e l d i n g a satisfactory s e p a r a t i o n .

D e h y d r o b r o m i n a t i o n of this p r o d u c t

w i t h c o l l i d i n e g a v e l ' , 7 ' - z e a r a l d i e n o n e i n s m a l l y i e l d as d e t e c t e d b y c o m ­ b i n e d gas c h r o m a t o g r a p h y - m a s s s p e c t r o m e t r y ( G C - M S ) . T h e d o u b l e b o n d i n t h e m a c r o c y c l i c l a c t o n e is q u i t e resistant to bromination (40), epoxidation, and hydroboration (38).

T h i s is p r o b a b l y

a r e s u l t of t h e e l e c t r o n w i t h d r a w i n g effect of the o r t h o c a r b o x y l g r o u p w h i c h m a k e s the olefin e l e c t r o n d e f i c i e n t .

T r e a t i n g zearalenone

with

N - b r o m o s u c c i n i m i d e f a i l e d to p r o d u c e t h e a l l y l i c b r o m i d e ; i n s t e a d t h e

41 42

H Br

194

MYCOTOXINS

Table II.

Reaction Conditions for Forming Various Ethers of Zearalenone

R 0' 2

Ri

R

Conditions

2

H CH CH

C H H CH

3

3

3

Ref

excess of CH N i n ether ( C H ) S 0 in 10% N a O H excess of ( C H ) S 0 i n 1 0 % N a O H or C H I i n acetone i n the presence of K C 0 at reflux C H C H C 1 i n a n h y d r o u s M e O H i n the presence of K C 0 a t reflux {see Scheme I V ) C 6 H , C H C l i n acetone i n the presence of K C 0 at reflux for 5 d a y s 1) N a H i n D M F a t 0 ° ; 2) C H O C H C l i n D M F a t 0 ° / \ 2

3

3

2

4

3

2

4

8 8 8

3

2

—CH C H 2

6

H

5

6

3

5

2

—CH C H 2

6

—CH C H

5

2

6

5

r

2

3

—CH,OCH

3

3

3

H

^ \

ÇH 6

5

I

f V Ν—Ν

C H I 6

5

v V Ν—Ν Ν \

3

80

2

2

—CH OCH

18

2

2

38 38 30

l-phenyl-5-chlorotetrazole i n refluxing a n h y d r o u s acetone i n the presence ,

,

K

A

2-chlorobenzoxazole presence of 24 h r

i n acetone i n the for

K2CO3 a t reflux

86

b r o m i n a t e d zearalenone i s o l a t e d h a d b r o m i n e s u b s t i t u t e d o n the a r o m a t i c ring

(40). Ether Formation. B e c a u s e of its t w o p h e n o l i c h y d r o x y l s , z e a r a l e n o n e

forms a v a r i e t y of ethers; h o w e v e r these t w o h y d r o x y l s differ i n r e a c t i v i t y . T h e p h e n o l i c p r o t o n at the C 2 p o s i t i o n is h y d r o g e n b o n d e d to the p e r i c a r b o n y l of t h e l a c t o n e f u n c t i o n . T h e r e f o r e i t is m o r e a c i d i c , a n d r e a c ­ tions of this h y d r o x y l d e m a n d h i g h steric r e q u i r e m e n t s . T a b l e II shows the r e a c t i o n c o n d i t i o n s for p r e p a r i n g different ethers of z e a r a l e n o n e w i t h c o r r e s p o n d i n g references.

A l t h o u g h t h e C 2 O H p r o t o n is m o r e

acidic

10.

P A T H R E

A N D

Zearalenone

M I R O C H A

and Related Compounds

195

SCHEME IV HO

Ο

| ^ H

1. Q ) Ο L

2. l-phenyl-5-chlorotetrazoIe 3 . 5% P d / C

H*

2. C6H5CH2CI, K2CO3

3. H 4. l-phenyl-5-chlorotetrazole 5. 5% P d / C , H +

2

1. l-phenyl-5-chlorotetrazole 2. 5% P d / C

than the 4 0 H proton, methylation with diazomethane occurs at 4 0 H . This can be attributed to the strong intramolecular Η bonding w h i c h precludes the transfer of the bonded proton ( C 2 O H ) to diazomethane.

196

MYCOTOXINS

H o w e v e r , i n t h e presence of a l k a l i t h e C 2 p h e n o x i d e c a n b e s e l e c t i v e l y f o r m e d to effect t h e c o r r e s p o n d i n g

e t h e r i f i c a t i o n b y metathesis

when

steric r e q u i r e m e n t s are n o t h i g h . S u c h selective etherification has b e e n u s e d (SO) to m a k e the 2- or 4-deoxy d e r i v a t i v e of z e a r a l e n o n e as s h o w n i n S c h e m e I V . T h e k e y r e a c t i o n i n this s e q u e n c e is the selective m o n o t e t r a h y d r o p y r a n y l ether f o r m a t i o n at C 4 i n g o o d y i e l d . C i s - t r a n s I s o m e r i z a t i o n . T h e g e o m e t r i c a l i s o m e r i z a t i o n of z e a r a l e n e d e r i v a t i v e s is a c c o m p l i s h e d p h o t o c h e m i c a l l y .

This can be brought about

b y l i g h t of a w a v e l e n g t h t h a t is a b s o r b e d b y t h e olefinic system ( u s u a l l y uv light).

S i n c e energy

is a b s o r b e d ,

this process does n o t e s t a b l i s h

t h e r m a l e q u i l i b r i u m . H o w e v e r a steady state m a y b e r e a c h e d

which

g e n e r a l l y corresponds to a p r e d o m i n a n c e of the less stable isomer.

Thus

i r r a d i a t i o n of frans-zearalenone w i t h u v l i g h t l e d t o a m i x t u r e c o n t a i n i n g 8 8 % d s - z e a r a l e n o n e 43

(43).

Miscellaneous Reactions.

S e v e r a l reactions of 6' ketone h a v e

been

r e p o r t e d , s u c h as: G r i g n a r d reactions ( 4 4 ) , a d d i t i o n of h y d r o g e n c y a n i d e (45), Reformatsky reaction (46), chlorination w i t h phosphorus

penta-

c h l o r i d e ( 4 7 ) , t h i o k e t a l f o r m a t i o n ( 4 8 ) , a n d a d d i t i o n of a c e t y l e n e Related

Natural

(49).

Macrolides

C o m p o u n d s s i m i l a r i n m o l e c u l a r f o r m to z e a r a l e n o n e , b u t p e r h a p s not i n biological activity, have reportedly been synthesized b y fungi. Radicicol (Monorden).

T h i s c o m p o u n d , a n a n t i b i o t i c , w a s first i s o ­

l a t e d i n 1953 f r o m Monosporium

honor den

(50)

a n d was named monor­

d e n (51 ). T e n years later M c C a p r a et a l . (51 ) a n d M i r r i n g t o n et a l . ( 5 2 ) i n d e p e n d e n t l y p r o v e d t h a t the s t r u c t u r e of this c o m p o u n d w a s 4 4 . c o m p o u n d w a s c a l l e d r a d i c i c o l since i t w a s i s o l a t e d f r o m Nectri (52).

The

radicicola

I m p o r t a n t c h e m i c a l studies w e r e c a r r i e d o u t o n r a d i c i c o l b y M i r ­

r i n g t o n et a l . ( 5 3 ) w h o f o u n d t h a t r a d i c i c o l e x h i b i t e d m a r k e d i n s t a b i l i t y toward alkali.

W h e n i t w a s t r e a t e d w i t h aqueous

ethanolic potassium

h y d r o x i d e , the s o l u t i o n i n s t a n t a n e o u s l y t u r n e d b r i g h t r e d . T h e r e a c t i o n w a s r e v e r s e d o n l y i f the a l k a l i n e s o l u t i o n w a s q u i c k l y q u e n c h e d w i t h a n

10.

P A T H R E

A N D

Zearalenone

M I R O C H A

and Related Compounds

197

HO

OCH a c i d . H o w e v e r t h e t e t r a h y d r o d e r i v a t i v e 45 o b t a i n e d b y c a t a l y t i c h y d r o ­ génation of r a d i c i c o l d i d n o t s h o w s u c h d e c o m p o s i t i o n .

The

comparison

of the u v a n d N M R spectra of r a d i c i c o l w i t h those of t e t r a h y d r o r a d i c i c o l indicated

the

presence

of

an

isolated,

linear

conjugated

dienone

Ο ( — C — C H = C H — C H = C H — ) system. A l s o the i s o l a t i o n o f a d i p i c a c i d

198

MYCOTOXINS

46 from t h e c h r o m i c a c i d o x i d a t i o n p r o d u c t s of the t e t r a h y d r o d e r i v a t i v e c o n f i r m e d the presence of the d i e n o n e s y s t e m . A series of c h e m i c a l transformations ( 4 5 - » 4 8 ) s h o w e d t h e i n v o l v e ­ m e n t of a n o x i r a n e r i n g w h i c h w a s a s s i g n e d the trans c o n f i g u r a t i o n o n t h e basis of f o r m a t i o n of t h e trans olefin 4 9 f r o m 4 5 . It was mentioned earlier that r a d i c i c o l undergoes degradation under alkaline conditions.

S u c h d e g r a d a t i o n is i n i t i a t e d b y t h e f o r m a t i o n

of

t h e enolate a n i o n 50 a n d gives rise t o t w o i s o l a b l e p r o d u c t s : a p h t h a l i d e 51 a n d a n i s o c o u m a r i n d e r i v a t i v e 52. T e t r a h y d r o r a d i c i c o l u n d e r a l k a l i n e c o n d i t i o n s also y i e l d s a n i s o c o u m a r i n d e r i v a t i v e . Lasiodiplodin and De-O-methyllasiodiplodin. O-methyllasiodiplodin

are

produced

by

L a s i o d i p l o d i n a n d de-

Lasiodiplodium

theobromae. H

OCH; 51

+

10.

P A T U R E

A N D

M I R O C H A

Zearalenone

lasiodiplodin

and

R = C H

Related

3

de-O-methyllasiodiplodin

OH

R^=H

Ο

OH

curvularin Figure 5.

199

Compounds

0

—dehydrocurvularin Naturally occurring

macrolides

B a s e d o n the o x i d a t i o n a n d s p e c t r a l studies, A l d r i d g e et a l . (54) t h e s t r u c t u r e of these m a c r o l i d e s .

reported

O x i d a t i o n of l a s i o d i p l o d i n w i t h Jones

reagent gave the quinone i n d i c a t i n g a resorcylic a c i d derivative. F u r t h e r , t h e c o m p a r i s o n of t h e r e l a t e d s y n t h e t i c m a c r o l i d e 76 w i t h d e - O - m e t h y l ­ l a s i o d i p l o d i n c o n f i r m e d t h e s t r u c t u r e of L a s i o d i p l o d i n ( F i g u r e 5 ) . C u r v u l a r i n . M u s g r a v e i n 1956 (55) f r o m species of Curvnilaria.

isolated two related metabolites

T h e m e t a b o l i t e , C i H o 0 , w h i c h appears to 6

be a major metabolite, was n a m e d curvularin. C i H i 0 , w a s a n α,^-dehydrocurvularin ( 5 6 ) . 6

8

5

B i r c h et a l . (58) et a l . (58)

2

5

T h e minor metabolite, M u s g r a v e (55, 57)

p r o v i d e d t h e p r o o f for the s t r u c t u r e of c u r v u l a r i n .

and Birch

also d e m o n s t r a t e d t h a t c u r v u l a r i n is d e r i v e d f r o m the h e a d t o

t a i l c o n d e n s a t i o n of e i g h t acetate u n i t s . N a t u r a l l y O c c u r r i n g 3-4-Dehydroisocoumarins.

Since zearalenone

is a m e m b e r of a class of n a t u r a l p r o d u c t s c a l l e d t h e β-resorcylates, the naturally occurring dihydroisocoumarin derivatives, although not macro­ lides, are u s u a l l y c o n s i d e r e d to b e r e l a t e d to zearalenone.

T a b l e III lists

s o m e of these d i h y d r o i s o c o u m a r i n s a n d a p p r o p r i a t e references.

Synthetic Approaches to Macrolides (Zearalenone and Its Derivatives and Related Macrolides) T h e first t o t a l synthesis of n a t u r a l l y o c c u r r i n g zearalenone

together

200

MYCOTOXINS

Table III.

Naturally Occurring

Compound 3,4-Dihydro-6-methoxy,8-hydroxy-3-methylisocoumarin 3,4-Dihydro-6,8-dihydroxy-3-methylisocoumarin 3 , 4 - D i h y d r o - 6 , 8 - d i h y d r o x y - 3 - [β- ( 4 - m e t h o x y p h e n y l ) e t h y l ] i s o c o u m a r i n 3,4-Dihydro-6,8-dihydroxy-3,4,5-trimethylisocoumarin 3,4-Dihydro-6,8-dihydroxy-3,4,5-trimethylisocoumarin-7-carboxylic acid Reticulol Cladosporin

w i t h its o p t i c a l r e s o l u t i o n w a s a c c o m p l i s h e d b y a t e a m of M e r c k chemists (21).

T h e k e y feature i n v o l v e d i n t h e synthesis ( S c h e m e V ) w a s t h e W i t ­

t i n g c o n d e n s a t i o n of a n a p p r o p r i a t e l y s u b s t i t u t e d a r o m a t i c n u c l e u s 53 w i t h a n a l i p h a t i c c o m p o n e n t 54.

N o t e w o r t h y i n this synthesis are the

c r i t i c a l steps u s e d to construct the a l i p h a t i c m o i e t y 54 i n w h i c h t h e C 6 a n d C I O f u n c t i o n a l i t i e s are m u t u a l l y m a s k e d v i a i n t e r n a l k e t a l f o r m a t i o n .

Girotra and Wendler

(65,

66)

w e r e successful i n c o n d e n s i n g t h e

a l i p h a t i c i n t e r m e d i a t e 56 w i t h d i m e t h o x y h o m o p h t h a l i c a n h y d r i d e 57 to g i v e l a c t o n i c a c i d 58 w h i c h u n d e r g o e s d e c a r b o x y l a t i o n to y i e l d t h e seco a c i d 14. C y c l i z a t i o n of t h e seco a c i d u s i n g t r i f l u o r o a c e t i c a c i d a n h y d r i d e i n benzene a n d subsequent demethylation w i t h boron tribromide y i e l d e d ( db )-zearalenone. (21)

A n a p p r o a c h at synthesis s i m i l a r to t h a t of T a u b et a l .

w a s m a d e b y V l a t t a s et a l . ( 6 7 ) ; h o w e v e r t h e a r o m a t i c 59 a n d

a l i p h a t i c 60 portions w e r e c o n s t r u c t e d i n a different m a n n e r

(Scheme

V I ) . N o t e t h a t t h e specific c l e a v a g e o f t h e k e t a l at C I O o f t h e side c h a i n of t h e a c i d 61 i n a q u e o u s acetone c o n t a i n i n g p - t o l u e n e s u l f o n i c

acid

10.

P A T H R E

A N D

Zearalenone

M I R O C H A

and Related Compounds

201

6,8-Dihydroxyisocoumarin Derivatives

Ri

R%

R

Η Η Η Η Η Η Η

Η Η Η Η COOH OCHs Η

CH Η Η Η Η Η Η

Rs

s

3

Η Η Η CH CHs Η Η 3

Η Η Η CHs CHs Η Η

Ref

Re

59 60

CHs CH., CUT G CHsCH CHs CHs CHs

OCH3 61 64

-CH CH(CH ) CH 2

2

3

CH p r o c e e d e d i n 8 5 % y i e l d to g i v e t h e r e q u i r e d m o n o k e t a l 62.

3

However

the c o r r e s p o n d i n g ester of the a c i d w a s c l e a v e d to a m i x t u r e of m o n o k e t a l s and diketone. W e h r m e i s t e r a n d R o b e r t s o n ( 3 6 ) r e p o r t e d the synthesis of d i d e o x y z e a r a l a n e 65,

a simple macrocyclic

lactone h a v i n g t h e same s k e l e t a l

s t r u c t u r e as zearalenone. T h e y s y n t h e s i z e d the b a s i c skeleton 63 r e q u i r e d for m a k i n g the a p p r o p r i a t e h y d r o x y a c i d 64 b y c o n d e n s a t i o n

of

10-

u n d e c e n o i c a n h y d r i d e w i t h p h t h a l i c a n h y d r i d e i n the presence of s o d i u m acetate.

T h e h y d r o x y a c i d 64 w a s e x p e c t e d to l a c t o n i z e to the d e s i r e d

c o m p o u n d 65; h o w e v e r the c y c l i z a t i o n of the h y d r o x y a c i d 64 to d i d e o x y z e a r a l a n e , w h i c h lacks zearalenone's d o u b l e b o n d , ketone, a n d a r o ­ matic hydroxyls, was unexpectedly

difficult.

S i m i l a r difficulties

were

r e p o r t e d i n attempts to p r e p a r e d i - o - m e t h y l c u r v u l a r i n b y c y c l i z a t i o n of t h e h y d r o x y a c i d 66

57

(68, 6 9 ) .

S e v e r a l t e c h n i q u e s , i n c l u d i n g use

58

of

202

MYCOTOXINS

SCHEME OCH

V

3

J ^ C O O N a

ΓΓΐΓ

+

?

J

- [ D M S O ] — ± 1 4

(C H )aP^^^t5g;

C H a O - ^ ^ C H O 53

e

5

54

T h e W i t t i n g - C o u p l i n g w i t h s o d i u m s a l t of the a c i d 53 proceeded r a p i d l y i n good y i e l d .

[(CF CO) 0 3

1. BCI3

^ D L - lb

2

·(—)-zearalenone

2. R e s o l v e d 3. B B r 3

S y n t h e s i s of t h e a r o m a t i c nucleus

53:

Q

CH3O

C H Li(0-iBut) AlH T H F , 20° -

3

O

OCH

3

.COOH

Χ

3

CH3O

OCHT

OCH3

1

CHO

Η

53

S y n t h e s i s of t h e a l i p h a t i c c o m p o n e n t :

1. CH CO(CH ) COOH 3

2

H ^

3

B

H

4

^ ^ ^

^v^s^-MgBrJ EtîO, - 1 5 °

2. d i s t i l 1. l2. -13. 4. 5. OCHo

1. HC1, MeOH 2. 0 , MeOH, -60° 3

55

56

NaBH PTSC1, P y . NaBr |*54 (C H ) P NaH, DMSO 4

e

5

3

10.

P A T H B E

A N D M I R O C H A

Zearalenone

and Related

203

Compounds

SCHEME VI OCH

3

X . C O O E t JL

Jl

CH3O' ^

CHO

+

(CeHsUP'

59