14
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
Zeolite Frameworks W. M. MEIER Institut für Kristallographie and Petrographie der ΕΤΗ, Zürich, Switzerland D. H. OLSON Mobil Research and Development Corp., Princeton, N. J. 08540 A collection of stereopairs showing the presently known framework structures of zeolites is presented. Only wellestablished structures have been incorporated in this survey which includes crystal data, information on channel geometry, and possible fault planes. "\Tost zeolite structures are fairly complex and cannot be visualized readily. For this reason, stereoscopic drawings of 27 well-established zeolite frameworks have been prepared as a general aid (Figures 1-27). These skeletal framework drawings are based on the T-atoms (Si,Al) only and T - O - T bridges are represented by straight lines. In general, the viewing direction has been chosen in such a way that the main channels are clearly visible. The idealized cell contents, crystal system, space group, and unit cell dimensions have been summarized in the figure captions. In many cases, the listed space group represents a pseudosymmetry which does not account for Si,Al ordering. The unit cell has been indicated in all cases where this appeared feasible. The present atlas of zeolite frameworks includes only reasonably well-established structures which have been at least partially refined. Mere proposals have been excluded since past experience has shown that all too frequently these have been incorrect. As a rule, the references in the captions have been limited to the first correct description of the framework structure and to its subsequent refinement. Zeolites do not represent an easily definable group of crystalline aluminosilicates. There are obvious borderline cases like some sodalitetype species which have been included in this survey. On the other hand, nepheline hydrate, the scapolites, osumilite (12), and buddingtonite, an ammonium feldspar with zeolitic water (17), have not been considered here. 155 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
156
MOLECULAR SIEVE ZEOLITES
Figure 1.
Analcime (29, 5 5 ) , Na Al Si O 16
32
16
g6
· 16 H 0, 2
1
viewed along [100]
cubic, Ia3d, a = 13.73 A Isotypes: wairakite (14), leucite (62), pollucite (40), viseite (31), kehoite (32)
Figure 2.
Laumontite
( 6 ) , Ca Al Si O u
8
16
h8
· 16 H 0 , viewed along 2
[100]
monoclinic, Am, a = 7.57, b = 14.75, c = 13.10, y = 112.0° CH: [100] 10 4.0 X 5.6* Isotype: leonhardite ( 13 ) G e n e r a l accounts of z e o l i t e structures a n d classification schemes c a n b e f o u n d i n several recent articles (20, 35, 50) Structure
a n d tables
(54).
Types
Species w h i c h are b a s e d o n t o p o l o g i c a l l y e q u i v a l e n t f r a m e w o r k s r e p resent the same structure t y p e i r r e s p e c t i v e of c o m p o s i t i o n , d i s t r i b u t i o n of the f r a m e w o r k atoms, c e l l d i m e n s i o n s , a n d s y m m e t r y . M a r k e d differences w i t h respect to these p r o p e r t i e s f r e q u e n t l y c a n b e o b s e r v e d f o r i s o t y p i c species. A n u m b e r of z e o l i t i c isotypes h a v e b e e n l i s t e d i n the figure c a p tions together w i t h a p p r o p r i a t e references, u s u a l l y to s t r u c t u r a l w o r k .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
14.
MEIER AND OLSON
Figure
3.
Natrolite
Zeolite
Frameworks
(33, 42, 5 8 ) , Na Al Si O along [110] t6
16
u
80
• 16 H O 2
y
viewed
orthorhombic, Fdd2, a = 18.30, b = 18.63, c = 6.60 A CH: ± [001] H 2.6 X 3.9**
F?: (110). Isotype: scolecite (57)
Figure
4.
Thomsonite
( 5 7 ) , Na,Ca Al Si O [100] 8
20
20
80
· 24 H 0, 2
orthorhombic, Pnn2, a = 13.07, b = 13.08, c = C H : ± [001] 8 2.6 X 3.9** F F : (I00j, (ΟΙΟ;
viewed i3.I8 A
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
along
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
158
MOLECULAR SIEVE ZEOLITES 1
Figure
5.
( 5 6 ) , Ba Al.Si O [110]
Edingtonite
2
6
20
' 8 HO 2
f
viewed
along
orthorhombic, P2i2i2, a = 9.54, b = 9.65, c = 6.50 A CH: ± [001] 8 3.5 X 3.9**
FP: (110)
Figure 6.
Sodalite
(30, 43), Na Al Si O 6
6
6
u
• 2 NaCl, viewed along
[100]
cubic, P43n, a = 8.87 A FP:(111) Isotypes: sodalite hydrate or Zhdanov G (48, 49), TMA-sodalite (2), tugtupite ( 15 ) S y n t h e t i c zeolite N a P l
( o r L i n d e B ) is a p p a r e n t l y a n i s o t y p e of
g i s m o n d i n e ( F i g u r e 14) a c c o r d i n g to a recent s t u d y b y B a e r l o c h e r a n d M e i e r (4).
T h e c u b i c structure w h i c h w a s p r o p o s e d earlier has b e e n
r u l e d o u t i n t h i s w o r k . T h e s y m m e t r y of t h e N a P l f r a m e w o r k is n o n c u b i c ( d e s p i t e t h e fact that t h e u n i t c e l l is c o m p a t i b l e w i t h c u b i c s y m m e t r y ) , a n d t h e phase appears to consist of m i m e t i c t w i n s .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
14.
MEIER
Figure
7.
Zeolite
A N D OLSON
Cancrinite
Frameworks
(24, 4 2 ) , Na Al Si O along [001] 6
6
6
u
159
· CaCO
· 2 H 0,
s
2
viewed
hexagonal P 6 , a = 12.75, c = 5.14 A CH: [001] 1 2 6.2* FP: (001). Isotype: cancrinite hydrate ( 61 ) 3
Figure
8.
Gmelinite
( 1 9 ) , (Na ,Ca) Al Si 0 [001] 2
u
s
16
}t8
· 24 H O, s
viewed
along
hexagonal, P63/mmc, a = Hi.3, c = JO.O A CH: [001] 1 2 7.0* -L [001] 8 3.6 X 3.9** FP.fOOI)
Channel
Geometry
T h e figure captions i n c l u d e i n f o r m a t i o n o n t h e channels ( C H ) . A s h o r t h a n d n o t a t i o n has b e e n u s e d f o r the d e s c r i p t i o n of t h e channels i n the v a r i o u s f r a m e w o r k s .
E a c h system of e q u i v a l e n t channels has b e e n
c h a r a c t e r i z e d b y t h e c h a n n e l d i r e c t i o n , t h e n u m b e r of t e t r a h e d r a f o r m i n g the smallest rings of t h e channels, a n d t h e c r y s t a l l o g r a p h i c free diameters
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
160
Figure
MOLECULAR SIEVE ZEOLITES
9.
(16, 5 1 ) , Ca Al Si 0
Chabazite
6
12
2i
1
• 40 H 0, viewed along [001]
72
2
hexagonal, R3m, a = 13.17, c = 15.06 A CH: _L [001] 8 3.6 X 3.7***
FP:(001)
Figure
10.
EHonite
( 5 2 ) , (Na ,Ca, etc.) Al Si 0 along [001] 2
k
5
9
27
72
· 27 H 0, 2
viewed
hexagonal, P6 /mmc, a = 13.26, c = 15.12 A 3
CH: JL [001] 8 3.6 X 5.2*** FP:(00i;
of t h e channels.
T h e free d i a m e t e r values a r e b a s e d o n 1.35 A f o r t h e
o x y g e n r a d i u s , a n d b o t h m i n i m u m a n d m a x i m u m values are g i v e n f o r n o n c i r c u l a r apertures.
T h e n u m b e r of asterisks f o l l o w i n g these
figures
i n d i c a t e s w h e t h e r t h e c h a n n e l system is one-, t w o - , o r t h r e e - d i m e n s i o n a l . O n l y those apertures h a v e b e e n t a k e n i n t o a c c o u n t w h i c h are m o r e o p e n t h a n r e g u l a r s i x - m e m b e r e d r i n g s . I n m o s t cases, these smaller openings
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
14.
MEIER
Figure 11.
AND
OLSON
Zeolite
161
Frameworks
Offretite ( 8 ) , (Na ,Ca, 2
etc.) Al Si 0 [001] 2
h
u
· 14 H 0,
36
2
viewed
along
hexagonal, P6m2, a = 13.3, c — 7.6 A CH: [001] 1 2 6.4* ± [001] 8 3.6 X 5.2** FP:(001)
Figure 12.
Linde L ( 5 ) , K Na Al Si 0 6
3
9
27
72
• 21 H 0, 2
viewed along
[001]
hexagonal, P6/mmm, a = 18.4, c = 7.5 A CH: [001] 1 2 7.1* FP.(OOl)
f o r m s i m p l e w i n d o w s ( r a t h e r t h a n c h a n n e l s ) c o n n e c t i n g l a r g e r cavities. I n t e r c o n n e c t i n g c h a n n e l systems are separated b y a d o u b l e a r r o w ( ). A v e r t i c a l b a r ( | ) means t h a t there is no d i r e c t access f r o m one c h a n n e l system to the other. C r y s t a l l o g r a p h i c free diameters d e p e n d o n the state a n d the c o m p o s i t i o n of the zeolite.
T h e c h a n n e l d i m e n s i o n s of i s o t o y p i c species
differ a p p r e c i a b l y , p a r t i c u l a r l y i n the case of n o n r i g i d f r a m e w o r k s .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
can
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
162
MOLECULAR SIEVE ZEOLITES
Figure 13.
Phillipsite ( 5 3 ) , (K,Na) Al Si O [100] 10
10
22
6i
· 20 H 0, 2
1
viewed along
orthorhombic, B2mb, a = 9.96, b = 14.25, c = 14.25 A CH: [100] 8 4.2 X 4.4* [010] 8 2.8 X 4.8* [001] 8 3.3* FP: (010). Isotype: harmotome (47)
Figure 14.
Gismondine ( 1 8 ) , Ca Al Si 0 i
8
8
32
viewed along [010]
· 16 H 0, 2
monoclinic, P 2 i / a , a = 9.84, b = 10.02, c = 10.62 A, y = 92.4° CH: {[100] 8 3.1 X 4.4 +-* [010] 8 2.8 X 4.9}*** FP:(101) (Oil) Isotypes: TMA-gismondite ( 3 ), Barrer PI or Linde Β ( 4 ) t
Figure 15.
Yugawaralite (27, 2 8 ) , C a ^ A / j S ^ O ^ · 8 H 0 , viewed along [001] 2
monoclinic, Pc, a = 6.73, b = 13.95, c = 10.03 Α, β = 111.5° CH: [100] 8 3.1 X 3.5* < - » [001] 8 3.2 X 3.3*
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on November 21, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch014
14.
M E I E R
AND
Figure 16.
CH:
OLSON
Heulandite
Zeolite
163
Frameworks
(37, 3 8 ) , Ca Al Si 0 [001] ll
s
28
72
· 24 H O, z
viewed
monoclinic, C m , a = J7.73, b = 17.82, c = 7.43 A,B = 116.3° [100]
Figure 17.
8 4.0 X 5.5*
{[001] 1 0 4.4 X 7.2* and 8 4.1 X F P : (010)
Stilbite ( 2 1 ) , Na Ca Al Si O 2
i
10
26
72
4.7}*
• 28 H 0 , viewed along 2
monoclinic, C 2 / m , a = 13.64, b = 18.24, c = 11.27 Α, β = C H : [100] 1 0 4.1 X 6.2*