22 Zeolites in Sedimentary Deposits of
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
the United States—A Review RICHARD A. SHEPPARD U. S. Geological Survey, Federal Center, Denver, Colo. 80225 Zeolites are among the most common authigenic silicate minerals in sedimentary deposits, occurring in rocks that are diverse in age, lithology, and depositional environment. Zeolites are particularly common in those sedimentary rocks that originally contained abundant silicic vitric material. Of the more than 30 naturally occurring zeolites, only 6 commonly occur in bedded deposits: analcime, chabazite, clinoptilolite, erionite, mordenite, and phillipsite. Most zeolites in sedimentary rocks formed during diagenesis by reaction of vitric material with interstitial water. The formation of zeolites is favored by a relatively high pH and high activities of alkali ions in the interstitial water. The zeolites, except analcime, formed directly from the silicic glass by a solution-precipitation mechanism. Most analcime formed during later diagenesis from alkalic, silicic zeolite precursors.
*~Teolites ^
are a m o n g the most c o m m o n a u t h i g e n i c silicate m i n e r a l s t h a t
o c c u r i n s e d i m e n t a r y rocks. T h e y h a v e f o r m e d i n rocks t h a t are d i -
verse i n l i t h o l o g y , age, a n d d e p o s i t i o n a l e n v i r o n m e n t , as s u m m a r i z e d b y H a y (48).
A u t h i g e n i c zeolites are e s p e c i a l l y c o m m o n i n those C e n o z o i c
s e d i m e n t a r y rocks that o r i g i n a l l y c o n t a i n e d s i l i c i c v i t r i c m a t e r i a l . N e a r l y m o n o m i n e r a l i c beds of zeolite are k n o w n f r o m m a n y areas of the U n i t e d States, b u t most z e o l i t i c s e d i m e n t a r y rocks consist of 2 or m o r e zeolites as w e l l as c l a y m i n e r a l s , s i l i c a m i n e r a l s , feldspars, a n d searlesite of a u t h i g e n i c o r i g i n . Z e o l i t i c rocks also c o m m o n l y c o n t a i n r e l i c t v i t r i c m a t e r i a l a n d p y r o g e n i c or d e t r i t a l grains. Zeolites h a v e b e e n r e c o g n i z e d i n s e d i m e n t a r y deposits since 1891, w h e n M u r r a y a n d R e n a r d ( 8 9 ) d e s c r i b e d p h i l l i p s i t e i n deep-sea deposits. H o w e v e r , p r i o r to the e a r l y 1950's, most z e o l i t e occurrences
were re-
p o r t e d f r o m f r a c t u r e - a n d vesicle-fillings i n igneous rocks, p a r t i c u l a r l y 279 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
280
MOLECULAR SIEVE ZEOLITES
Table I.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Locality No., Figure 1
O c c u r r e n c e s of
Locality
1
N e a r Vaughn, Cascade County, Mont.
2
N e a r T w i n Creek, Bear L a k e County, Idaho Near Gros Ventre River, Teton County, Wyo. Near Dubois, Fremont County, Wyo. Near Lander, Fremont County, Wyo. N e a r Thermopolis, H o t Springs C o u n t y , W y o . Near Hyattville, B i g Horn County, Wyo. S o u t h F o r k of t h e P o w d e r R i v e r , Natrona County, Wyo. N e a r Casper, N a t r o n a County, Wyo. Near Lysite Mountain, Hot Springs C o u n t y , W y o . Beaver R i m , Fremont County, Wyo. N e a r G r e e n R i v e r , Sweetwater County, Wyo. Near Ludlow, Harding C o u n t y , S. D . Cathedral Bluffs, R i o Blanco County, Colo. N e a r Piceance C r e e k , R i o Blanco County, Colo. A n v i l Points, Garfield County, Colo. A l o n g Piceance C r e e k , a b o u t 20 m i l e s west of M e e k e r , R i o Blanco County, Colo. Lone Tree M e s a , Montrose County, Colo. Near Slick Rock, San M i g u e l County, Colo. Near Vernal, Uintah County, Utah
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20
1
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
Analcime i n Sedimentary
Rocks
Occurrence
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
281
Deposits
References
S i l t s t o n e a n d sandstone i n t h e T a f t H i l l M e m b e r of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age a n d tuff i n the B o o t l e g g e r M e m b e r of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age T u f f i n t h e T w i n C r e e k L i m e s t o n e of J u r a s s i c age
(146)
O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age P u r p l e a n d ocher u n i t s of the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age B e n t o n i t e i n t h e M o w r y Shale of C r e t a c e o u s age
(66)
(57, 66)
B e n t o n i t e i n the M o w r y F o r m a t i o n of C r e t a c e o u s
(128)
age B e n t o n i t e i n the M o w r y F o r m a t i o n of C r e t a c e o u s age T u f f i n the T e p e e T r a i l F o r m a t i o n of E o c e n e age T u f f i n t h e W a g o n B e d F o r m a t i o n of E o c e n e age T u f f i n t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age L i g n i t e i n the u p p e r m e m b e r of the T o n g u e R i v e r F o r m a t i o n of Paleocene age T u f f i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age O i l shale i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age O i l shale i n t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n t h e P a r a c h u t e C r e e k M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age Tuffaceous mudstone i n the B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age Tuffaceous m u d s t o n e i n the B r u s h y B a s i n M e m b e r of t h e M o r r i s o n F o r m a t i o n of J u r a s s i c age Ocher oolitic beds i n the C h i n l e F o r m a t i o n of T r i a s s i c age
W)
(57, 66)
(57) (128)
(128)
(W) (7) (10, 61)
(104) (9) (131, 132) (50) (m
(68) (US)
(67)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
282
MOLECULAR SIEVE ZEOLITES
1
T a b l e I. Locality No., Figure 1 21 22
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
23 24 25 26 27 28 29 30 31 32 33
34 35
Locality White River Canyon, Uintah County, Utah N e a r T w o Water Creek, Uintah County, Utah N e a r Duchesne, Duchesne County, U t a h Near Currant, Nye County, Nev. N e v a d a Test Site, N y e County, Nev. Teels M a r s h , M i n e r a l County, Nev. Near Silver Peak, Esmeralda County, Nev. Deep Springs L a k e , Inyo County, Calif. Saline V a l l e y , I n y o County, Calif. Owens L a k e , I n y o C o u n t y , Calif. Lake Tecopa, Inyo County, Calif. Searles L a k e , S a n B e r n a r d i n o County, Calif. M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif. Near Delano, K e r n County, Calif. Near Wikieup, Mohave County, Ariz.
36
Maggie Canyon, Mohave County, Ariz.
37
N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz.
38
Near Eloy, Pinal County, Ariz.
39
W i l l c o x P l a y a , Cochise County, Ariz.
40
Along San Simon Creek, Cochise a n d G r a h a m Counties, A r i z .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
283
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence
References
T u f f i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n the P a r a c h u t e C r e e k M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age D o l o m i t i c o i l shale of the G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n H o r s e C a m p F o r m a t i o n of M i o c e n e a n d Pliocene age T u f f a n d l a p i l l i tuff of T e r t i a r y age
(58, 59,
60)
T u f f i n lacustrine deposit of Q u a t e r n a r y age
(16, 47,
48)
T u f f i n the E s m e r a l d a F o r m a t i o n of M i o c e n e a n d Pliocene age S a l i n e crusts of H o l o c e n e age
(82,
M u d of H o l o c e n e age T u f f a n d tuffaceous sediments of Pleistocene age T u f f i n l a c u s t r i n e r o c k s of Pleistocene age
(9) (13) (80) (86)
100)
(62) (44) (47,
48)
(120)
T u f f a n d m u d s t o n e of Q u a t e r n a r y age
(49
T u f f a n d m u d s t o n e of late T e r t i a r y a n d Q u a t e r n a r y age
(2, 27, 90, 118, 129)
}
P o n d series soil
(4)
T u f f i n u n n a m e d lacustrine f o r m a t i o n of P l i o c e n e age
002, 116)
S a n d s t o n e of the C h a p i n W a s h F o r m a t i o n of Pliocene (?) age
(73)
T u f f i n the V e r d e F o r m a t i o n of Pliocene(?) or Pleistocene age
(117)
S i l t y c l a y stone of l a t e T e r t i a r y age
(6)
M u d s t o n e of Pleistocene age
(92)
T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age
(96,
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
130)
103,
107)
284
MOLECULAR SIEVE ZEOLITES
1
Table
I.
Locality No., Figure 1
Locality
41
Near Nutrioso, Apache County, Ariz. Near Red Wash, San Juan C o u n t y , Ν. M . A b o u t 2.5 m i l e s southeast of Senorito, S a n d o v a l County, Ν. M . Wichita Mountains, K i o w a County, Okla. Near Terlingua, Brewster County, Tex. Near Yardley, Bucks County, Pa. Near Frenchtown, Hunterdon County, N . J . N e a r Pursglove, Monongalia County, W . V a .
42
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
43
44 45 46 47 48
b a s a l t i c rocks.
O f the m o r e t h a n 350 p u b l i s h e d reports t h a t
zeolites i n s e d i m e n t a r y rocks t h r o u g h o u t p u b l i s h e d i n the 1960s.
describe
the w o r l d , a b o u t 7 5 %
were
T h e factors chiefly responsible for this recent
surge of reports a r e : ( 1 ) t h e w i d e s p r e a d use of x - r a y p o w d e r d i f f r a c t i o n techniques i n the s t u d y of
fine-grained
s e d i m e n t a r y rocks, ( 2 )
the ex
p l o r a t i o n for zeolite deposits s u i t a b l e for c o m m e r c i a l use, a n d ( 3 ) r e v i e w papers b y C o o m b s a n d others (18) w h i c h emphasized
the w i d e s p r e a d
a n d Deffeyes (22),
the
b o t h of
a n d relatively c o m m o n occurrences
of zeolites i n s e d i m e n t a r y rocks. This report summarizes those zeolites
the c h e m i s t r y a n d p h y s i c a l properties
from sedimentary
deposits of the c o n t e r m i n o u s
of
United
States a n d b r i e f l y describes t h e i r o c c u r r e n c e a n d o r i g i n . E x c l u d e d f r o m this d i s c u s s i o n are those zeolites i n s e d i m e n t a r y rocks t h a t r e s u l t e d f r o m low-grade metamorphism Description
(17)
and Occurrence
or h y d r o t h e r m a l a c t i v i t y (29, of Authigenic
136).
Zeolites
O f the m o r e t h a n 30 n a t u r a l zeolites, o n l y 6 c o m m o n l y o c c u r i n s e d i m e n t a r y deposits.
T h e s e are a n a l c i m e , c h a b a z i t e , c l i n o p t i l o l i t e , erionite,
mordenite, and phillipsite. have
T h e zeolites are v e r y
similar optical a n d physical properties;
finely
therefore,
crystalline a n d x-ray
d i f f r a c t i o n techniques g e n e r a l l y are u s e d for t h e i r i d e n t i f i c a t i o n .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
powder
22.
SHEPPARD
Zeolites in Sedimentary
285
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence
References
S a n d s t o n e i n u n n a m e d f o r m a t i o n of T e r t i a r y age
(155)
Tuffaceous m u d s t o n e of the B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age Siliceous tuff i n t h e B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age
(68)
A r k o s e i n t h e T e p e e C r e e k F o r m a t i o n of P e r m i a n age B l a c k t a r r y shale of late M e s o z o i c or e a r l y T e r t i a r y age A r g i l l i t e i n the L o c k a t o n g F o r m a t i o n of T r i a s s i c age A r g i l l i t e i n t h e L o c k a t o n g F o r m a t i o n of T r i a s s i c age C o n c r e t i o n i n t h e P i t t s b u r g h c o a l b e d of t h e M o n o n g a h e l a F o r m a t i o n of P e n n s y l v a n i a n age
(109)
(δ, 77, 78) (79) (14®, 143, 145) (141 > 14®, 143, 145) (33)
Analcime. A n a l c i m e is one of the m o r e a b u n d a n t zeolites o c c u r r i n g i n s e d i m e n t a r y rocks. A n a l c i m e has a n i d e a l f o r m u l a of N a A l S i 0 2
6
· H 0,
b u t the a n a l c i m e of s e d i m e n t a r y rocks is g e n e r a l l y m o r e siliceous.
2
Most
a n a l c i m e i n s e d i m e n t a r y rocks is u n s u i t a b l e for c h e m i c a l analysis because of a b u n d a n t i n c l u s i o n s of c l a y m i n e r a l s , f e l d s p a r , or o p a l . T h e c o m p o s i t i o n of these a n a l c i m e s c a n , h o w e v e r , b e i n f e r r e d f r o m t h e i r i n d e x of r e f r a c t i o n or c e l l d i m e n s i o n , u t i l i z i n g the d a t a of S a h a (105, 106)
for
s y n t h e t i c a n a l c i m e s . B o t h the i n d e x of r e f r a c t i o n a n d the a c e l l d i m e n s i o n decrease w i t h i n c r e a s i n g S i / A l r a t i o . C o o m b s a n d W h e t t e n ( 19 ) s t u d i e d analcimes f r o m v a r ^ s s e d i m e n t a r y r o c k u n i t s t h r o u g h o u t the w o r l d a n d d e t e r m i n e d a r a n g e i n S i / A l r a t i o of a b o u t 2.0-2.8. have
shown
a similar range i n composition
for
Subsequent studies
analcimes i n c e r t a i n
l a c u s t r i n e f o r m a t i o n s of the w e s t e r n U n i t e d States. F o r e x a m p l e , a n a l c i m e i n tuffs of the M i o c e n e B a r s t o w F o r m a t i o n of southeastern shows a r a n g e i n S i / A l r a t i o of a b o u t 2.2-2.8 (123),
California
a n d a n a l c i m e i n tuffs
of the E o c e n e G r e e n R i v e r F o r m a t i o n of s o u t h w e s t e r n W y o m i n g shows a r a n g e of a b o u t 2.0-2.9 (61).
T h e m e a g e r c h e m i c a l d a t a suggest t h a t
a n a l c i m e f r o m s e d i m e n t a r y rocks contains o n l y m i n o r amounts of cations other t h a n s o d i u m . Since the d i s c o v e r y of a n a l c i m e i n the G r e e n R i v e r F o r m a t i o n and
i n l a c u s t r i n e tuffs near W i k i e u p , A r i z .
(102),
(8)
a n a l c i m e has b e e n
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
286
MOLECULAR SIEVE ZEOLITES
1
r e p o r t e d i n s e d i m e n t a r y rocks t h a t are diverse i n age, l i t h o l o g y , a n d s e d i m e n t a r y e n v i r o n m e n t ( T a b l e I , F i g u r e 1 ) . A n a l c i m e occurs i n rocks that r a n g e i n age f r o m P e n n s y l v a n i a n to H o l o c e n e , b u t i t is e s p e c i a l l y c o m m o n r e l a t i v e to other zeolites i n rocks of M e s o z o i c age, p a r t i c u l a r l y those o l d e r t h a n C r e t a c e o u s . S a l i n e lacustrine deposits, regardless of age, v e r y c o m m o n l y c o n t a i n a n a l c i m e . E x c e p t for occurrences i n the T r i a s s i c L o c k a t o n g F o r m a t i o n of N e w Jersey a n d P e n n s y l v a n i a (145)
a n d the
P e n n s y l v a n i a n M o n o n g a h e l a F o r m a t i o n of W e s t V i r g i n i a (33),
analcime
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
is r e s t r i c t e d to s e d i m e n t a r y r o c k s of the w e s t e r n U n i t e d States. A n a l c i m e , u n l i k e other zeolites i n s e d i m e n t a r y rocks, does o c c u r i n rocks t h a t l a c k e v i d e n c e of v o l c a n i c m a t e r i a l . A n a l c i m e is a p p a r e n t l y a c o m m o n
con-
stituent of saline, a l k a l i n e soils s u c h as those of s o u t h e r n C a l i f o r n i a
(4).
C h a b a z i t e . C h a b a z i t e has a n i d e a l f o r m u l a of C a A l S i 8 0 2 4 " 1 2 H 0 , 2
4
2
b u t n a t u r a l chabazites s h o w c o n s i d e r a b l e v a r i a t i o n i n c a t i o n content a n d Si/Al + Fe
3 +
ratio ( F i g u r e 2 ) .
I d e a l c h a b a z i t e has a S i / A l + F e
3 +
ratio
of 2, b u t c h a b a z i t e f r o m s e d i m e n t a r y rocks has a S i / A l + F e
3 +
a b o u t 3.2-3.8. C h a b a z i t e a n d h e r s c h e l i t e ( a s o d i c v a r i e t y of
chabazite)
f r o m mafic v o l c a n i c rocks g e n e r a l l y h a v e a S i / A l + F e
3 +
r a t i o of
r a t i o n e a r 2.
T h e s e d i m e n t a r y chabazites g e n e r a l l y h a v e alkalis i n excess of a l k a l i n e earths a n d s o d i u m g r e a t l y i n excess of p o t a s s i u m . R e g i s a n d S a n d however,
have described
a calcic sedimentary chabazite from
(96), south-
eastern A r i z o n a . A l t h o u g h s o m e w o r k e r s h a v e t e r m e d these s o d i c a n d siliceous
sedimentary
chabazites
"herschelite,"
the
name
herschelite
s h o u l d p r o b a b l y b e r e s t r i c t e d to s o d i c chabazites t h a t h a v e a S i / A l +
Fe
3 +
r a t i o near 2. W h a t distinguishes the s e d i m e n t a r y chabazites f r o m c h a b a -
Figure 1. Map showing the occurrences of analcime in sedimentary in the United States. Data for localities are given in Table I.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
rocks
22.
SHEPPARD
Zeolites in Sedimentary
287
Deposits
0.75h
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
0.50h
0.25h
Figure
2. Plot showing tional variation of
the composi chabazite
Φ Chabazite (and herschelite) from mafic igneous rocks Ο Chabazite from tuff in the lacustrine Barstow Formation. zite a n d herschelite of igneous rocks is n o t the c a t i o n content b u t the h i g h Si/Al + Fe
3 +
ratio ( 4 0 ) .
Indices of r e f r a c t i o n a n d c e l l d i m e n s i o n s of c h a b a z i t e f r o m s e d i m e n t a r y rocks are l o w e r t h a n those f o r c h a b a z i t e f r o m n o n s e d i m e n t a r y rocks.
Sedimentary chabazite commonly
shows
a range i n the mean
i n d e x of r e f r a c t i o n of a b o u t 1.46-1.47, whereas c h a b a z i t e a n d h e r s c h e l i t e f r o m igneous rocks s h o w a r a n g e o f a b o u t 1.47—1.49. A siliceous c h a b a zite f r o m a l a c u s t r i n e tuff i n t h e B a r s t o w F o r m a t i o n o f C a l i f o r n i a
(40)
has r e l a t i v e l y s m a l l c e l l d i m e n s i o n s that g i v e a c e l l v o l u m e a b o u t 2 - 3 % smaller than t y p i c a l aluminous chabazite.
Thus, the l o w indices of r e
f r a c t i o n a n d s m a l l c e l l d i m e n s i o n s of s e d i m e n t a r y c h a b a z i t e seem to correlate w i t h its h i g h s i l i c o n content. C h a b a z i t e w a s u n k n o w n f r o m s e d i m e n t a r y deposits p r i o r to its d i s c o v e r y b y H a y (47)
i n tuffs a n d tuffaceous
clays at O l d u v a i G o r g e ,
T a n z a n i a . Since t h e n , a u t h i g e n i c c h a b a z i t e has b e e n r e c o g n i z e d i n s i l i c i c tuffs f r o m A r i z o n a , C a l i f o r n i a , N e v a d a , a n d W y o m i n g ( T a b l e I I , F i g u r e 3).
M o s t of t h e occurrences a r e i n l a c u s t r i n e rocks of late C e n o z o i c age.
T h e r e are n o r e p o r t e d occurrences
of c h a b a z i t e i n rocks
older than
E o c e n e i n t h e U n i t e d States. M o n o m i n e r a l i c b e d s of c h a b a z i t e a r e r a r e , b u t extensive a n d n e a r l y p u r e b e d s h a v e b e e n r e p o r t e d f r o m l a c u s t r i n e
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
288
MOLECULAR SIEVE ZEOLITES—I
Table II. Locality No., Figure 3
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
2 3 4
Occurrences of Chabazite, Erionite,
Locality
Zeolites
N e a r Bearbones M o u n t a i n , L a n e C o u n t y , Ore.
Mordenite
V i c i n i t y of S t e i n ' s P i l l a r , Crook C o u n t y , Ore. Near Durkee, Baker County, Ore. Near Rome, Malheur County, Ore.
Mordenite Erionite
W e s t face of H a r t M o u n t a i n , L a k e C o u n t y , Ore.
Erionite, mordenite, phillipsite Mordenite, phillipsite
6
Near Harney Lake, Harney C o u n t y , Ore.
Erionite, phillipsite
7
Beaver R i m , Fremont County, Wyo.
8
Near Split Rock, Natrona County, Wyo. N e a r Green R i v e r , Sweetwater County, Wyo.
Chabazite, erionite, phillipsite Phillipsite
9
10
11 12 13 14
15 16 17
Mordenite
Near M u d Buttes, Butte C o u n t y , S. D .
Phillipsite
Sheep M o u n t a i n T a b l e , S h a n n o n C o u n t y , S. D . N e a r Creede, M i n e r a l County, Colo.
Erionite
Pine Valley, Eureka County, Nev. W e s t flank of the Shoshone Range, Lander County, Nev. Reese R i v e r , L a n d e r C o u n t y , Nev. Jersey V a l l e y , P e r s h i n g County, Nev. Near Lovelock, Pershing County, Nev.
Erionite, phillipsite Erionite
Mordenite
Erionite Erionite, phillipsite Mordenite
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
Deposits
Mordenite, and Phillipsite i n Sedimentary
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence T u f f a n d l a p i l l i tuff i n the L i t t l e B u t t e V o l c a n i c Series of Oligocène a n d M i o c e n e age T u f f i n the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f of T e r t i a r y age T u f f a n d tuffaceous sandstone i n a n u n n a m e d lacustrine f o r m a t i o n of Pliocene age T u f f a n d tuffaceous s e d i m e n t a r j ' r o c k s of late Oligocène or e a r l y M i o c e n e age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s i n the D a n f o r t h F o r m a t i o n of Pliocene age T u f f i n the W a g o n B e d F o r m a t i o n of E o c e n e age T u f f i n the M o o n s t o n e F o r m a t i o n of Pliocene age T u f f i n the T i p t o n Shale M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age B e n t o n i t e i n the G a m m o n F e r r u g i n o u s M e m b e r of t h e P i e r r e Shale of C r e t a c e o u s age T u f f i n the A r i k a r e e F o r m a t i o n of M i o c e n e age T u f f i n the W i n d y G u l c h M e m b e r of the B a c h e l o r M o u n t a i n R h y o l i t e of Oligocène age Tuff i n the H a y R a n c h F o r m a t i o n of Pliocene a n d Pleistocene age T u f f i n u n n a m e d lacustrine f o r m a t i o n of Pliocene age T u f f i n u n n a m e d lacustrine f o r m a t i o n of Pliocene age Tuff i n unnamed lacustrine f o r m a t i o n of Pliocene age Tuff i n unnamed lacustrine f o r m a t i o n of late T e r t i a r y age
Rocks
References (85,
91)
(150) (24,
135)
(26, 121,
95, 137)
(148)
(14$)
(7,
144)
(74) (38)
(112)
(22) (94)
(22,
97)
(23)
(23) (23) (108)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
289
290
MOLECULAR SIEVE ZEOLITES—I
Table II. Locality No., Figure 3
Zeolites
Near Copper Valley, Churchill County, Nev. N e a r Eastgate, Churchill County, Nev. Teels M a r s h , M i n e r a l County, Nev. N e a r Silver Peak, Esmeralda County, Nev. N e v a d a Test Site, N y e County, Nev.
Mordenite
23
Owens L a k e , I n y o C o u n t y , Calif.
Erionite, phillipsite
24
Lake Tecopa, Inyo County, Calif.
Chabazite, erionite, phillipsite
25
Searles L a k e , S a n B e r n a r d i n o County, Calif.
Phillipsite
26
M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif.
Chabazite, erionite, mordenite. phillipsite
27
Near Nipomo, San Luis Obispo C o u n t y , Calif.
Mordenite
28
U n i o n Pass, M o h a v e C o u n t y , Ariz.
Mordenite
29
Near Wikieup, Mohave County, Ariz.
Chabazite, erionite, phillipsite
30
N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz.
Erionite, phillipsite
31
N e a r M o r e n c i , Greenlee County, Ariz.
Mordenite
32
N e a r Bear Springs, G r a h a m County, Ariz.
Chabazite, erionite, phillipsite
33
Along San Simon Creek, Cochise and G r a h a m Counties, A r i z .
Chabazite, erionite
18 19 20 Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Locality
21 22
Erionite Phillipsite Mordenite, phillipsite Chabazite, mordenite
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence T u f f i n u n n a m e d lacustrine f o r m a t i o n of late T e r t i a r y age T u f f i n u n n a m e d lacustrine f o r m a t i o n of late T e r t i a r y age T u f f i n lacustrine deposit of Q u a r t e r n a r y age T u f f i n the E s m e r a l d a F o r m a t i o n of M i o c e n e a n d Pliocene age T u f f a n d l a p i l l i tuff of T e r t i a r y age
References (117) (122) (16,
47, 48)
(82, 83, 100) (58, 59, 60)
T u f f a n d tuffaceous sediments of Pleistocene age
(47, 48)
T u f f a n d tuffaceous r o c k s of Pleistocene age
(120)
T u f f of Q u a t e r n a r y age
(49,
T u f f a n d tuffaceous r o c k s of late T e r t i a r y a n d Q u a t e r n a r y age
123)
130)
(40,118,
T u f f i n the O b i s p o F o r m a t i o n of M i o c e n e age
(42,
T u f f a n d l a p i l l i tuff i n the G o l d e n D o o r V o l c a n i c s of T e r t i a r y age
(39)
Tuff i n unnamed lacustrine f o r m a t i o n of Pliocene age
(116)
T u f f i n the Yerde F o r m a t i o n of P l i o c e n e (?) or Pleistocene age
(117)
T u f f a n d l a p i l l i tuff i n u n n a m e d f o r m a t i o n of T e r t i a r y age
(116)
T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age
(117)
T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age
(96,
138)
107)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
291
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
292
MOLECULAR SIEVE ZEOLITES
1
Figure 3. Map showing occurrences of chabazite, erionite, mordenite, and phillipsite in sedimentary rocks in the United States. Data for localities are given in Table II. tuffs a l o n g the S a n S i m o n C r e e k i n southeastern A r i z o n a ( 9 6 ) W i k i e u p i n northwestern A r i z o n a Clinoptilolite. tural group.
a n d near
(116).
C l i n o p t i l o l i t e is a m e m b e r of the h e u l a n d i t e
struc
A l t h o u g h there is s t i l l some d i s a g r e e m e n t o n the d i s t i n c t i o n
b e t w e e n these c l o s e l y r e l a t e d zeolites, m o s t w o r k e r s agree that c l i n o p t i l o l i t e is the S i - r i c h ( 56, 88 ) a n d a l k a l i - r i c h ( 76 ) m e m b e r . T h e c o m p o s i t i o n s of c l i n o p t i l o l i t e a n d h e u l a n d i t e f r o m v a r i o u s r o c k types are i n F i g u r e 4. E x c e p t for s l i g h t o v e r l a p i n t h e S i / A l + F e Na + Κ + Ca + M g
ratios, plots
of
the
3 +
represented
and N a +
c o m p o s i t i o n s cluster
K/
into
g r o u p s . H e u l a n d i t e c h a r a c t e r i s t i c a l l y has a N a + K / N a + Κ + C a + r a t i o less t h a n 0.5 a n d a S i / A l + F e
3 +
r a t i o near 3.
2
Mg
M o s t clinoptilolites
h a v e a N a + K / N a + Κ + C a + M g r a t i o greater t h a n 0.6 a n d r a n g e i n Si/Al + Fe
3 +
r a t i o f r o m a b o u t 4.0 to 5.0.
m e n t a r y rocks
show a range i n S i / A l +
T h e clinoptilolites from Fe
3 +
r a t i o of
sedi
a b o u t 4.1-5.6.
S o d i u m is the p r e d o m i n a n t c a t i o n i n m o s t c l i n o p t i l o l i t e s ; h o w e v e r , potassic c l i n o p t i l o l i t e s are k n o w n f r o m C a h f o r n i a (124)
a n d J a p a n (81).
The few
c l i n o p t i l o l i t e s that h a v e a N a + K / N a + K + C a + M g r a t i o less t h a n 0.6
are c a l c i c
Italy
specimens f r o m
volcanic
rocks
i n B u l g a r i a (71)
and
(1). I n d i c e s of r e f r a c t i o n a n d t h e r m a l treatment h a v e b e e n u s e d to d i s
tinguish clinoptilolite from heulandite.
M a s o n a n d S a n d (76)
suggested
t h a t c l i n o p t i l o l i t e c a n b e i d e n t i f i e d b y a β i n d e x of r e f r a c t i o n of 1.485
or
l o w e r a n d that h e u l a n d i t e c a n b e i d e n t i f i e d b y a β i n d e x of 1.488
or
higher.
H e u l a n d i t e is t h e r m a l l y u n s t a b l e a b o v e a b o u t 2 5 0 ° C , w h e r e a s
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
c l i n o p t i l o l i t e is stable to 7 5 0 ° C or h i g h e r (88, members
of
293
Deposits
the h e u l a n d i t e s t r u c t u r a l g r o u p
115). from
However,
some
sedimentary
rocks
d i s p l a y anomalous o p t i c a l p r o p e r t i e s a n d t h e r m a l b e h a v i o r a n d c a n n o t b e classified c o n v e n i e n t l y as c l i n o p t i l o l i t e or h e u l a n d i t e
(46,114).
T h e o r i g i n a l d e s c r i p t i o n of c h n o p t i l o l i t e is of m a t e r i a l f r o m a m y g dales i n a b a s a l t i c r o c k f r o m W y o m i n g rences
of
clinoptilolite have
been
(93,
reported
110).
Subsequent
chiefly f r o m
occur
sedimentary
rocks, e s p e c i a l l y those o r i g i n a l l y r i c h i n s i l i c i c v i t r i c m a t e r i a l . C l i n o p t i l o Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
lite is the zeolite most often r e p o r t e d f r o m s e d i m e n t a r y rocks i n recent years, a n d i t occurs i n m a n y r o c k types f r o m l a c u s t r i n e , marine environments
(Table III, Figure 5).
fluviatile,
and
A l t h o u g h c l i n o p t i l o l i t e is
most a b u n d a n t i n rocks of C e n o z o i c age, i t has b e e n r e p o r t e d f r o m rocks as o l d as C r e t a c e o u s i n M o n t a n a , S o u t h D a k o t a , a n d W y o m i n g . rences
of c h n o p t i l o l i t e are e s p e c i a l l y c o m m o n
Occur
i n the w e s t e r n U n i t e d
States. C l i n o p t i l o l i t e is also a c o m m o n a n d , l o c a l l y , a b u n d a n t constituent i n the T e r t i a r y s e d i m e n t a r y rocks of the C o a s t a l P l a i n f r o m southeastern T e x a s to N o r t h C a r o l i n a a n d n o r t h w a r d to w e s t e r n K e n t u c k y ( F i g u r e 5 ) . E r i o n i t e . E r i o n i t e is g e n e r a l l y a l k a l i c a n d has a S i / A l +
Fe
3 +
r a t i o of
a b o u t 2.9-3.7. M o s t a n a l y z e d specimens s h o w a r e l a t i v e l y h i g h content of p o t a s s i u m , a l t h o u g h erionites w i t h s o d i u m i n excess of p o t a s s i u m are r e p o r t e d (122).
T h e o n l y c a l c i c e r i o n i t e r e p o r t e d is a s p e c i m e n
Si/AI + F e
Figure
4.
+ 3
Plot showing the compositional of clinoptilolite and heulandite
variation
Ο Clinoptilolite from sedimentary rocks A Clinoptilolite from volcanic rocks # Heulandite from igneous rocks
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
from
294
MOLECULAR SIEVE ZEOLITES—I
Table III. Locality No., Figure 5
Locality
1
N e a r V a u g h n , Cascade County, Mont.
2
Near Livingston, Park County, Mont. N e a r Preston, F r a n k l i n County, Idaho Near Renton, K i n g County, Wash. N e a r Bearbones M o u n t a i n , L a n e C o u n t y , Ore. N e a r Stein's P i l l a r , Crook C o u n t y , Ore. N e a r Deep Creek, Wheeler C o u n t y , Ore. N e a r the P a i n t e d H i l l s , Wheeler C o u n t y , Ore. Sucker Creek, M a l h e u r C o u n t y , Ore. N e a r Sheaville, M a l h e u r C o u n t y , Ore. Near Rome, Malheur C o u n t y , Ore. E a s t face of Steens M o u n t a i n , H a r n e y C o u n t y , Ore. Near Harney Lake, Harney C o u n t y , Ore. W e s t face of H a r t M o u n t a i n , L a k e C o u n t y , Ore.
a
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrences of
3 4 5 6 7 8 9 10 11 12 13 14 15
N e a r Pedro, Weston County, Wyo.
16
Near Lysite Mountain, Hot Springs C o u n t y , W y o .
yja
Snake R i v e r C a n y o n , L i n c o l n County, Wyo.
18
Beaver R i m , Fremont Wyo.
19
N e a r Cameron Spring on Beaver R i m , Fremont County, Wyo.
20
Near Split Rock, N a t r o n a County, Wyo.
County,
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
295
Deposits
Clinoptilolite in Sedimentary Rocks
References
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence T u f f a n d tuffaceous siltstone a n d sandstone i n the T a f t H i l l , V a u g h n , a n d B o o t l e g g e r M e m b e r s of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age Tuffaceous m u d s t o n e , siltstone, a n d sandstone i n the L i v i n g s t o n G r o u p of C r e t a c e o u s age T u f f i n the S a l t L a k e G r o u p of late T e r t i a r y age
(15,
34,
(99,
127)
S a n d s t o n e a n d conglomerate i n u n n a m e d m a r i n e f o r m a t i o n of Oligocène age T u f f a n d l a p i l l i tuff i n the L i t t l e B u t t e V o l c a n i c Series of Oligocène a n d M i o c e n e age T u f f i n the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f i n the lower p a r t of the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f a n d claystone i n the lower p a r t of the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f a n d tuffaceous sandstone i n the S u c k e r C r e e k F o r m a t i o n of M i o c e n e age T u f f p r o b a b l y e q u i v a l e n t to p a r t of the S u c k e r C r e e k F o r m a t i o n of M i o c e n e age T u f f a n d tuffaceous sandstone i n u n n a m e d lacustrine f o r m a t i o n of P l i o c e n e age T u f f i n the P i k e C r e e k F o r m a t i o n of Oligocène (?) a n d M i o c e n e age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s i n the D a n f o r t h F o r m a t i o n of Pliocene age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s of late Oligocène or e a r l y M i o c e n e age
(87)
(22)
(85, (150) (31,
(72) (125) (95, 121, 137) (147) (148) (149) (11)
T u f f i n the T e p e e T r a i l F o r m a t i o n of E o c e n e age
(74)
Shale i n the A s p e n F o r m a t i o n of C r e t a c e o u s age
(51)
T u f f i n the W a g o n B e d F o r m a t i o n of E o c e n e age
(7,
Tuffaceous sandstone i n the W h i t e R i v e r F o r m a t i o n of Oligocène age
(144)
age
32,
154) (45, 46)
B e n t o n i t e i n the P i e r r e Shale of C r e t a c e o u s age
T u f f i n the M o o n s t o n e F o r m a t i o n of P l i o c e n e
91)
144)
(74)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
296
MOLECULAR SIEVE ZEOLITES—I
Table Locality No., Figure δ 21 22
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
23 24 25 26 27 28
Locality N e a r Green R i v e r , Sweetwater County, Wyo. N e a r T w i n B u t t e s , Sweetwater County, Wyo. N e a r Chamberlain, Buffalo C o u n t y , S. D . Sheep M o u n t a i n T a b l e , S h a n n o n C o u n t y , S. D . N e a r Vermillion Cliffs, Moffat County, Colo. N e a r Creede, M i n e r a l County, Colo. Near M o u n t a i n Green, Morgan County, Utah N o r t h e r n p a r t of the Markagunt Plateau, Iron County, U t a h
29
Near Elko, Elko County, Nev.
30
Near Carlin, Eureka County, Nev.
31
W e s t flank of t h e Shoshone Range, Lander County, Nev.
32
Reese R i v e r , L a n d e r County, Nev.
33
Jersey V a l l e y , P e r s h i n g County, Nev.
34
Near Lovelock, Pershing County, Nev.
35
Near Eastgate, Churchill County, Nev.
36
Teels M a r s h , M i n e r a l County, Nev.
37
N e a r Silver Peak, Esmeralda County, Nev.
38
N e a r Goldfield, Esmeralda County, Nev.
39
N e v a d a Test Site, N y e County, Nev.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
III.
22.
SHEPPARD
Zeolites in Sedimentary
297
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence
References
T u f f i n t h e T i p t o n Shale M e m b e r of t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f a n d tuffaceous sandstone i n the B r i d g e r F o r m a t i o n of E o c e n e age B e n t o n i t e i n the S h a r o n S p r i n g s M e m b e r of the P i e r r e Shale of Cretaceous age T u f f i n t h e A r i k a r e e F o r m a t i o n of M i o c e n e age
(38)
T u f f i n the B r i d g e r F o r m a t i o n of E o c e n e age
(39)
T u f f i n t h e W i n d y G u l c h M e m b e r of t h e B a c h e l o r M o u n t a i n R h y o l i t e of Oligocène age T u f f i n t h e S a l t L a k e G r o u p of T e r t i a r y age
(94)
(117) (112) (111)
(117)
Tuffaceous sandstone of Oligocène a n d M i o c e n e (?) age
(8)
O i l shale i n u n n a m e d f o r m a t i o n of Oligocène age
(22)
T u f f i n t h e Safford C a n y o n F o r m a t i o n of 01igocene(?) or M i o c e n e ( ? ) age a n d t h e C a r l i n F o r m a t i o n of P l i o c e n e age
(22,
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age
(23)
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age
(23)
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age
(23)
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late T e r t i a r y age
(117)
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late T e r t i a r y age
(117)
T u f f i n l a c u s t r i n e deposit of Q u a t e r n a r y age
(16, 47, 48)
T u f f i n t h e E s m e r a l d a F o r m a t i o n of M i o c e n e a n d P l i o c e n e age
(82, 83, 100)
Tuffaceous sandstone i n t h e Siebert F o r m a t i o n of M i o c e n e (?) age
(84)
T u f f a n d l a p i l l i tuff of T e r t i a r y age
(20, 36, 59, 60)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
97)
58,
298
MOLECULAR SIEVE ZEOLITES
Table Locality No., Figure δ 40 41
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
42 43 44
45 46 47* 48 49 50 51 52 53
Locality Near Bullfrog Hills, N y e County, Nev. Death Valley, Inyo County, Calif. Lake Tecopa, Inyo County, Calif. Owens L a k e , Inyo County, Calif. M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif. N e a r Branciforte Creek, Santa Cruz County, Calif. N e a r Nipomo, San L u i s Obispo County, Calif. Near Oakview, Ventura County, Calif. N e a r San Pedro, Los Angeles County, Calif. Near Wikieup, Mohave County, Ariz. Near Dome, Y u m a County, Ariz. N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz. Near Nutrioso, Apache County, Ariz. N e a r M o r e n c i , Greenlee County, Ariz.
54
A l o n g San Simon Creek, Cochise and G r a h a m Counties, A r i z .
55
Near Bayard, Grant County, Ν. M .
56
Near Coy City, Karnes County, Tex.
57
Near Tilden, M c M u l l e n County, Tex.
58
Near M e r i d i a n , Lauderdale County, Miss.
59
Near Nettleboro, Clarke County, Ala.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1
III.
22.
SHEPPARD
Zeolites in Sedimentary
299
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence
References
T u f f of T e r t i a r y age
(20)
T u f f i n the F u r n a c e C r e e k F o r m a t i o n of P l i o c e n e age T u f f i n l a c u s t r i n e r o c k s of Pleistocene age
(75) (120)
T u f f a n d tuffaceous sediments of Pleistocene age
(47,
T u f f a n d tuffaceous rocks i n n u m e r o u s f o r m a t i o n s of l a t e T e r t i a r y a n d Q u a t e r n a r y age
(2, 70, 118, 119, 123) (37)
Tuffaceous sandstone i n t h e S a n t a M a r g a r i t a F o r m a t i o n of M i o c e n e age T u f f i n the O b i s p o F o r m a t i o n of M i o c e n e age
48)
(11,
B e n t o n i t e i n the M o d e l o F o r m a t i o n of M i o c e n e age D o l o m i t i c sandstone i n the M o n t e r e y F o r m a t i o n of M i o c e n e age T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age B e n t o n i t e of T e r t i a r y ( ? ) age
(69)
T u f f i n the V e r d e F o r m a t i o n of Pliocene(?) or Pleistocene age T u f f a n d sandstone i n u n n a m e d f o r m a t i o n of T e r t i a r y age T u f f a n d l a p i l l i tuff i n u n n a m e d f o r m a t i o n of T e r t i a r y age
(117)
T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late C e n o z o i c age
138)
(134) (116) (11)
(155) (116) (96,
T u f f i n the S u g a r l u m p T u f f of Oligocène age
(65)
T u f f a n d tuffaceous sandstone i n the J a c k s o n G r o u p of E o c e n e age
(151,
T u f f i n the J a c k s o n G r o u p of E o c e n e age
(25)
T u f f a c e o u s sandstone i n the M e r i d i a n S a n d of E o c e n e age
(153)
Tuffaceous sandstone i n t h e M e r i d i a n S a n d of E o c e n e age
(153)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
107)
152)
300
MOLECULAR SIEVE ZEOLITES
1
Table III. Locality No., Figure 5 60
Near McKenzie, Butler County, A l a . Near Paducah, McCracken County, K y .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
61
62
a
63
a
64 65 66
Locality
Near Jackson, M a d i s o n County, Tenn. Near Caryville, Washington County, Fla. N e a r Coosawhatchie, Jasper C o u n t y , S. C . C e n t r a l S. C . Near Ε ward, Beaufort County, N . C.
Figure 5. Map showing the occurrences of clinoptilolite in sedimentary rocks in the United States. Data for hcalities are given in Table III.
basalt near M a z e , J a p a n (43). F e r r i c i r o n seems to substitute for a l u m i n u m i n some s e d i m e n t a r y erionites, as w e l l as i n other zeolites f r o m s e d i m e n t a r y rocks. A n analysis of erionite f r o m l a c u s t r i n e tuff near R o m e , O r e g o n (26), suggests that f e r r i c i r o n c a n substitute for as m u c h as 1 5 % of the a l u m i n u m .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
SHEPPARD
Zeolites in Sedimentary
301
Deposits
Continued
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
Occurrence
References
T u f f a n d tuffaceous c l a y stone i n the T a l l a h a t t a F o r m a t i o n of E o c e n e age C l a y s t o n e i n the C l a y t o n (?) F o r m a t i o n of Paleocene age a n d c l a y i n the P o r t e r s C r e e k C l a y of Paleocene age Fossiliferous r o c k of Paleocene age
(98) (30,
(139)
Suwanee L i m e s t o n e of Oligocène age
(139)
C l a y i n the H a w t h o r n F o r m a t i o n of M i o c e n e age a n d the Santee L i m e s t o n e of E o c e n e age M u d s t o n e i n the B l a c k M i n g o F o r m a t i o n of Paleocene a n d E o c e n e age P h o s p h o r i t e i n the P u n g o R i v e r F o r m a t i o n of M i o c e n e age
(55)
a
133)
(54) (14,
101)
Zeolite was identified as heulandite.
A decrease i n the i n d i c e s of r e f r a c t i o n a n d c e l l d i m e n s i o n s of e r i o n i t e c a n be c o r r e l a t e d w i t h a n increase i n the S i / A l + F e
3 +
r a t i o (122).
In-
dices of r e f r a c t i o n s h o w a r a n g e of a b o u t 1.46-1.48, b u t most erionites f r o m s e d i m e n t a r y deposits h a v e i n d i c e s i n the l o w e r p a r t of the range. E r i o n i t e shows a b o u t a 1 % decrease i n c e l l v o l u m e f r o m the most a l u m i nous a n a l y z e d s p e c i m e n to the most siliceous s p e c i m e n . E r i o n i t e was c o n s i d e r e d a n e x t r e m e l y rare m i n e r a l p r i o r to the w o r k of Deffeyes
(22, 23)
a n d Régnier (97),
w h o s h o w e d i t to be a c o m m o n
a u t h i g e n i c zeolite i n the a l t e r e d s i l i c i c tuffs of l a c u s t r i n e deposits
in
n o r t h - c e n t r a l N e v a d a . Since t h e n , erionite has b e e n r e c o g n i z e d i n s i l i c i c b e d d e d tuffs f r o m m a n y w e s t e r n states ( T a b l e I I , F i g u r e 3 ) .
Erionite,
l i k e c h a b a z i t e , has not b e e n r e p o r t e d f r o m s e d i m e n t a r y rocks o l d e r t h a n Eocene.
M o s t occurrences
deposits.
of erionite are i n u p p e r C e n o z o i c l a c u s t r i n e
E x t e n s i v e a n d r e l a t i v e l y p u r e b e d s of erionite o c c u r i n s o u t h -
eastern O r e g o n , southeastern C a l i f o r n i a , a n d n o r t h - c e n t r a l N e v a d a . Mordenite. M o r d e n i t e has b e e n c o n f u s e d w i t h c l i n o p t i l o l i t e or h e u l a n d i t e i n s e d i m e n t a r y rocks because of the s i m i l a r i t y i n c h e m i s t r y a n d i n d i c e s of r e f r a c t i o n (18,
126).
X - r a y diffractometer t e c h n i q u e s , f o r t u -
nately, are a d e q u a t e for p o s i t i v e i d e n t i f i c a t i o n .
Mordenites from
s e d i m e n t a r y rocks s h o w a r a n g e i n S i / A l -f- F e
r a t i o of about 4.3-5.3
3 +
non-
a n d g e n e r a l l y s h o w a n excess of alkalis over a l k a l i n e earths. S o d i u m is g e n e r a l l y g r e a t l y i n excess of p o t a s s i u m .
T h e relatively low potassium
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
302
MOLECULAR SIEVE ZEOLITES
1
content is a b o u t the o n l y c h e m i c a l p a r a m e t e r that distinguishes m o r d e n i t e from clinoptilolite. T h e only reported analyzed mordenite from a sedim e n t a r y r o c k is f r o m a s i l i c i c tuff i n the B a r s t o w F o r m a t i o n of C a l i f o r n i a (123).
T h i s m o r d e n i t e is t y p i c a l l y s o d i c a n d has a S i / A l - j - F e
3 +
ratio
of about 4.7. Indices
of
r e f r a c t i o n for
a b o u t 1.47 to 1.49
(21).
range
from
T h e m o r d e n i t e s f r o m s e d i m e n t a r y rocks
nonsedimentary
mordenites
com-
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
m o n l y h a v e i n d i c e s i n the l o w e r p a r t of this range. M o r d e n i t e was r e c o g n i z e d o n l y r e c e n t l y as a r o c k - f o r m i n g c o n s t i t u ent of s e d i m e n t a r y deposits i n the U n i t e d States. I n 1964, m o r d e n i t e was r e p o r t e d f r o m tuffaceous
rocks of C a l i f o r n i a (118)
and Nevada
(83).
S i n c e t h e n , occurrences of m o r d e n i t e h a v e b e e n r e c o r d e d f r o m C e n o z o i c tuffs i n m a n y of the w e s t e r n states
(Table
II, Figure 3).
Although
m o r d e n i t e occurs i n l a c u s t r i n e rocks, most occurrences are i n rocks f r o m other d e p o s i t i o n a l e n v i r o n m e n t s .
C l i n o p t i l o l i t e a n d o p a l are
commonly
associated w i t h m o r d e n i t e i n the s e d i m e n t a r y deposits. P h i l l i p s i t e . P h i l l i p s i t e shows a w i d e v a r i a t i o n i n S i / A l +
Fe
3 +
ratio
a n d c a t i o n content, a l t h o u g h i t is consistently h i g h i n p o t a s s i u m content. T h e compositions of p h i l l i p s i t e f r o m v a r i o u s r o c k types are r e p r e s e n t e d i n F i g u r e 6.
O n the basis of S i / A l + F e
3 +
r a t i o , the p h i l l i p s i t e s c a n
be
classed i n t o 3 groups that s h o w some o v e r l a p . T h e least siliceous g r o u p is f r o m n o n s e d i m e n t a r y rocks a n d is c h a r a c t e r i z e d b y a S i / A l + ratio of 1.3-2.4. percentage
Fe
3 +
P h i l l i p s i t e s of this g r o u p g e n e r a l l y c o n t a i n a h i g h e r
of a l k a l i n e earths t h a n those of the other 2 g r o u p s ;
some
specimens h a v e a l k a l i n e earths ( c h i e f l y c a l c i u m ) i n excess of alkalis. A n i n t e r m e d i a t e g r o u p has a S i / A l -f- F e mens are i n the range of 2.4-2.8.
3 +
r a t i o of 1.9-2.8, b u t most s p e c i -
T h e s e p h i l l i p s i t e s are f r o m deep-sea
sediments a n d are c h a r a c t e r i s t i c a l l y r i c h i n alkalis. g r o u p has a S i / A l - f F e Si/Al +
Fe
3 +
3 +
r a t i o greater t h a n 3.0.
saline l a c u s t r i n e deposits.
T h e most
siliceous
r a t i o of 2.6-3.4, b u t most specimens h a v e a T h e s e p h i l l i p s i t e s are f r o m tuffs i n
L i k e the m a r i n e p h i l l i p s i t e s , these l a c u s t r i n e
p h i l l i p s i t e s are r i c h i n a l k a l i s ; h o w e v e r , the 2 groups differ i n the p r e dominant alkali. of
M a r i n e p h i l l i p s i t e s g e n e r a l l y h a v e p o t a s s i u m i n excess
s o d i u m , whereas
potassium.
H a y (47)
lacustrine phillipsites have
s o d i u m i n excess
of
has suggested that f e r r i c i r o n m a y substitute for
a b o u t 5 % of the a l u m i n u m i n p h i l l i p s i t e f r o m l a c u s t r i n e deposits. Indices of r e f r a c t i o n for p h i l l i p s i t e range f r o m a b o u t 1.44 to 1.51 a n d seem to v a r y i n v e r s e l y w i t h the S i / A l + F e relatively
aluminous
nonsedimentary
3 +
ratio (47).
p h i l l i p s i t e s are
Indices of the 1.48—1.51
(21);
i n d i c e s of the i n t e r m e d i a t e m a r i n e p h i l l i p s i t e s are 1.48-1.49; a n d i n d i c e s of
the siliceous l a c u s t r i n e p h i l l i p s i t e s are
1.44-1.48.
Phillipsite
from
l a c u s t r i n e s e d i m e n t a r y rocks is c o m m o n l y z o n e d a n d shows a difference
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
Zeolites in Sedimentary
SHEPPARD
1.0
1
303
Deposits
^
i o V
**• ο
°
0.75
+
0.50
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
+
0.25
_L 3
_L 2 Si/AI + F e
Figure
+3
6. Plot showing the composi tional variation of phillipsite
Ο Phillipsite from saline lacustrine deposits + Phillipsite from deep-sea deposits # Phillipsite from mafic igneous rocks i n i n d e x of r e f r a c t i o n of as m u c h as 0.02 b e t w e e n the i n t e r i o r a n d m a r g i n a l parts of crystals. P h i l l i p s i t e w a s f o u n d l o n g ago i n deposits o n t h e sea
floor
(89).
S i n c e t h e d i s c o v e r y b y Deffeyes ( 2 2 ) of p h i l l i p s i t e i n l a c u s t r i n e tuffs of N e v a d a , this zeolite has b e e n r e p o r t e d c o m m o n l y as a r o c k - f o r m i n g c o n stituent i n tuffaceous
rocks of the w e s t e r n U n i t e d States
(Table II,
F i g u r e 3 ). P h i l l i p s i t e occurs i n s e d i m e n t a r y rocks t h a t r a n g e i n age f r o m C r e t a c e o u s to H o l o c e n e , b u t i t is e s p e c i a l l y c o m m o n i n l a c u s t r i n e deposits of late C e n o z o i c age, p a r t i c u l a r l y those deposits of s a l i n e , a l k a l i n e lakes. E x t e n s i v e a n d r e l a t i v e l y p u r e b e d s of p h i l l i p s i t e are r e p o r t e d f r o m s o u t h eastern O r e g o n , southeastern C a l i f o r n i a , a n d N e v a d a . Genesis of Zeolites M o s t zeolites i n s e d i m e n t a r y rocks f o r m e d d u r i n g diagenesis b y t h e r e a c t i o n of a l u m i n o s i l i c a t e m a t e r i a l s w i t h t h e p o r e w a t e r .
Silicic vol
c a n i c glass is t h e a l u m i n o s i l i c a t e m a t e r i a l t h a t m o s t c o m m o n l y as
a
precursor
for
the
zeolites,
although
materials
such
served as
clay
m i n e r a l s , p l a g i o c l a s e , l e u c i t e , a n d n e p h e l i n e also h a v e r e a c t e d l o c a l l y to f o r m zeolites (48).
S o l u t i o n of s i l i c i c glass b y t h e p o r e w a t e r p r o v i d e d
the constituents necessary f o r the f o r m a t i o n of the zeolites.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Deffeyes
304 (22)
MOLECULAR SIEVE ZEOLITES
e m p h a s i z e d that zeolites f o r m e d
d u r i n g diagenesis—not
by
1
de-
v i t r i f i c a t i o n of the glass i n the s o l i d state b u t b y s o l u t i o n of the glass a n d subsequent p r e c i p i t a t i o n of zeolites f r o m the s o l u t i o n . E x c e p t for a n a l c i m e , a l l the zeolites i n s e d i m e n t a r y deposits that h a v e n o t b e e n d e e p l y b u r i e d or e x p o s e d to h y d r o t h e r m a l solutions seem to h a v e f o r m e d d i r e c t l y f r o m v i t r i c m a t r i a l . T h e genesis of a n a l c i m e m a y i n v o l v e a n i n t e r m e d i a t e step, as d e s c r i b e d i n the f o l l o w i n g discussion. E x p e r i m e n t a l w o r k b y others indicates that the a c t i v i t y r a t i o of Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
a l k a l i ions to h y d r o g e n ions a n d the a c t i v i t y of s i l i c a are the m a j o r c h e m i c a l p a r a m e t e r s of the p o r e w a t e r that c o n t r o l w h e t h e r c l a y m i n e r a l s , zeolites, or feldspars w i l l f o r m at c o n d i t i o n s that a p p r o x i m a t e temperatures a n d pressures ( 3 5 , 52, 53).
surface
T h e f o r m a t i o n of zeolites a n d
feldspars is f a v o r e d o v e r c l a y m i n e r a l s b y r e l a t i v e l y h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y ratios a n d b y r e l a t i v e l y h i g h s i l i c a activities. T h e h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o necessary for the f o r m a t i o n of zeolites i n a s i l i c i c v i t r i c tuff or tuffaceous s e d i m e n t c a n b e s i m p l y c h a r a c t e r i s t i c of the o r i g i n a l w a t e r t r a p p e d d u r i n g s e d i m e n t a t i o n i n a saline, a l k a l i n e l a k e . B r i n e of s o d i u m c a r b o n a t e - b i c a r b o n a t e
compo-
s i t i o n seems to h a v e b e e n p a r t i c u l a r l y effective i n the a l t e r a t i o n of s i l i c i c glass to zeolites.
T h e s e b r i n e s c o m m o n l y h a v e a p H of 9 - 1 0
( 63,
64),
w h i c h p r o b a b l y accounts f o r the r e l a t i v e l y h i g h s o l u b i l i t y of t h e glass as w e l l as the r e l a t i v e l y fast rate of s o l u t i o n of the glass (47). of v i t r i c tuffs i n T e e l s M a r s h , N e v . , H a y (48)
F r o m a study
c o n c l u d e d t h a t zeolites i n
t h e u p p e r m o s t tuff f o r m e d i n less t h a n 1000 years. Studies of tuffs d e p o s i t e d i n r e l a t i v e l y y o u n g saline lakes
where
w a t e r analyses are a v a i l a b l e h a v e s h o w n a strong c o r r e l a t i o n b e t w e e n s a l i n i t y a n d the a u t h i g e n i c silicate m i n e r a l o g y
(47,
48).
Tuffaceous
sediments d e p o s i t e d i n fresh lakes c o n t a i n u n a l t e r e d glass or glass altered to c l a y m i n e r a l s , chiefly m o n t m o r i l l o n i t e .
Those
tuffaceous
sediments
d e p o s i t e d i n saline lakes are a l t e r e d a n d n o w c o n t a i n zeolites, p o t a s s i u m f e l d s p a r , a n d searlesite.
The
o c c u r r e n c e of
authigenic feldspar
and
searlesite correlates w i t h waters of the h i g h e s t salinities. O l d e r l a c u s t r i n e deposits that c o n t a i n i n t e r b e d d e d saline m i n e r a l s also s h o w a c o r r e l a t i o n b e t w e e n the i n f e r r e d s a l i n i t y of the d e p o s i t i o n a l e n v i r o n m e n t a n d the a u t h i g e n i c m i n e r a l o g y of tuffaceous sediments. the Pleistocene deposits of L a k e T e c o p a , C a l i f . (120),
In
glass is u n a l t e r e d
i n tuff d e p o s i t e d i n fresh w a t e r near the l a k e shore a n d i n l e t s ; h o w e v e r , the tuffs consist chiefly of p h i l l i p s i t e , c l i n o p t i l o l i t e , a n d e r i o n i t e w h e r e deposited
i n moderately
saline w a t e r a n d of p o t a s s i u m f e l d s p a r
and
searlesite w h e r e d e p o s i t e d i n the h i g h l y saline w a t e r of the c e n t r a l p a r t of the b a s i n . I n d i v i d u a l tuffs s h o w a l a t e r a l g r a d a t i o n i n a b a s i n w a r d d i r e c t i o n of u n a l t e r e d glass to zeolites a n d t h e n to p o t a s s i u m f e l d s p a r w i t h searlesite.
A similar correlation between
salinity a n d authigenic
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
Zeolites in Sedimentary
SHEPPARD
Deposits
305
silicate m i n e r a l o g y has b e e n d e m o n s t r a t e d for M i o c e n e B a r s t o w F o r m a t i o n of
California
Wyoming
(123)
a n d the E o c e n e
G r e e n R i v e r F o r m a t i o n of
(38,48).
P o r e w a t e r i n tuffs a n d tuffaceous sediments of d e p o s i t i o n a l e n v i r o n ments other t h a n saline, a l k a l i n e lakes c a n a t t a i n a h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o after b u r i a l t h r o u g h s o l u t i o n a n d h y d r o l y s i s of the v i t r i c m a t e r i a l b y subsurface w a t e r . H a y (46) a n d h y d r o l y s i s of r h y o l i t i c a n d d a c i t i c glass b y
proposed solution
subsurface
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
account for the f o r m a t i o n of c l i n o p t i l o l i t e i n tuff a n d tuffaceous
water
to
claystone
i n the l o w e r p a r t of the J o h n D a y F o r m a t i o n i n c e n t r a l O r e g o n .
The
u p p e r p a r t of the f o r m a t i o n contains u n a l t e r e d glass or m o n t m o r i l l o n i t e . T h e subsurface w a t e r , w h i c h o r i g i n a t e d f r o m m e t e o r i c w a t e r , i n c r e a s e d i n p H a n d c o n c e n t r a t i o n of alkalis as i t m o v e d d o w n w a r d t h r o u g h the formation.
Thus, clinoptilolite formed
at the d e p t h i n the f o r m a t i o n
w h e r e the a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o was highest. I n z e o l i t i c rocks of the J o h n D a y F o r m a t i o n a n d i n s i m i l a r zeolite deposits, m o n t m o r i l l o n i t e p r o b a b l y c r y s t a l l i z e d before the zeolite. T h e e a r l y a l t e r a t i o n of glass to m o n t m o r i l l o n i t e w o u l d p r o b a b l y increase the p H a n d c o n c e n t r a t i o n of alkalis i n the p o r e w a t e r , t h e r e b y p r o v i d i n g a c h e m i c a l e n v i r o n m e n t m o r e f a v o r a b l e for the f o r m a t i o n of zeolites.
H a y (48)
suggested
that this e a r l y a l t e r a t i o n of glass to m o n t m o r i l l o n i t e is a n i m p o r t a n t factor for the subsequent c r y s t a l l i z a t i o n of zeolites i n tuffs d e p o s i t e d i n m a r i n e a n d fresh-water e n v i r o n m e n t s . Z e o l i t e deposits that f o r m e d b y the a b o v e m e c h a n i s m
commonly
s h o w a v e r t i c a l z o n a t i o n of a u t h i g e n i c silicate m i n e r a l s s i m i l a r to that i n the J o h n D a y F o r m a t i o n .
T e r t i a r y tuffs at the N e v a d a T e s t Site i n
s o u t h e r n N e v a d a w e r e a l t e r e d after b u r i a l b y subsurface w a t e r ( 5 9 ) , b u t the a u t h i g e n i c m i n e r a l z o n a t i o n is m o r e c o m p l e x t h a n that i n the J o h n D a y F o r m a t i o n . T h e u p p e r z o n e consists of u n a l t e r e d glass w i t h l o c a l concentrations
of
chabazite
or c l a y m i n e r a l s .
Z e o l i t i c tuff
continues
d o w n w a r d for as m u c h as 6000 feet. A zone r i c h i n c l i n o p t i l o l i t e u n d e r lies the z o n e of u n a l t e r e d glass a n d is s u c c e e d e d d o w n w a r d b y zones r i c h i n m o r d e n i t e a n d a n a l c i m e , respectively. E v e r since the d i s c o v e r y of a n a l c i m e i n tuffaceous rocks, most w o r k ers h a v e a s s u m e d that the a n a l c i m e f o r m e d d i r e c t l y f r o m v i t r i c m a t e r i a l . T h e presence of v i t r o c l a s t i c texture a n d p y r o g e n i c crystals i n some a n a l c i m i c tuffs seemed
sufficient e v i d e n c e ;
h o w e v e r , these c r i t e r i a d o
necessarily p r o v e that the glass a l t e r e d d i r e c t l y to a n a l c i m e .
Hay
not (48)
a n d S h e p p a r d a n d G u d e ( 123 ) c o n c l u d e d f r o m a s t u d y of tuffs i n s a l i n e l a k e deposits that a n a l c i m e c o m m o n l y f o r m e d f r o m a l k a l i c , s i l i c i c zeolite precursors. F o r m a t i o n of a n a l c i m e f r o m c l i n o p t i l o l i t e a n d p h i l l i p s i t e w a s documented
i n tuffs of the M i o c e n e B a r s t o w F o r m a t i o n . R e l i c t fresh
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
306
MOLE CUL AR SIEVE ZEOLITES
1
glass has n o t b e e n c o n f i r m e d i n a n a l c i m i c tuffs f r o m a n y a r e a ; t h u s , there is d o u b t t h a t a n a l c i m e ever has f o r m e d d i r e c t l y f r o m glass. T h e a l k a l i c , s i l i c i c zeolites that o c c u r i n tuffaceous s e d i m e n t a r y rocks w o u l d seem t o b e p a r t i c u l a r l y susceptible to alteration i n the
diagenetic
e n v i r o n m e n t because of t h e i r o p e n structure. C h e m i c a l factors that f a v o r the r e a c t i o n o f e a r l y - f o r m e d a l k a l i c , s i l i c i c zeolites t o a n a l c i m e are a h i g h Na /H +
+
ratio, relatively l o w activity of H 0 , relatively l o w activity of 2
a n d h i g h p H . Studies o f z e o l i t i c tuffs i n saline-lake deposits s u c h
SiOo,
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
as the E o c e n e G r e e n R i v e r F o r m a t i o n (38, 48) a n d the M i o c e n e B a r s t o w F o r m a t i o n (123) suggest t h a t a m o d e r a t e l y to h i g h l y saline p o r e w a t e r facilitates t h e conversion later diagenesis.
o f a l k a l i c , s i l i c i c zeolites to a n a l c i m e
during
A r e l a t i v e l y h i g h s a l i n i t y w o u l d r e d u c e the a c t i v i t y of
H o O a n d favor the f o r m a t i o n of a m i n e r a l less h y d r o u s t h a n c l i n o p t i l o l i t e or p h i l l i p s i t e ( 4 8 , 1 2 3 ) . A n a l c i m e i n some nontuffaceous saline-lake deposits p r o b a b l y f o r m e d b y d i r e c t p r e c i p i t a t i o n f r o m the l a k e w a t e r . T h e a n a l c i m e i n the T r i a s s i c L o c k a t o n g F o r m a t i o n either p r e c i p i t a t e d d i r e c t l y o r f o r m e d a t a n e a r l y stage of diagenesis f r o m a c o l l o i d a l p r e c u r s o r o r a l u m i n o s i l i c a t e m i n e r a l 145). A t L a k e N a t r o n , K e n y a , a n a l c i m e i n Q u a t e r n a r y
(141,
ceous clays w a s p r e c i p i t a t e d f r o m a s o d i u m carbonate
brine
nontuffa(48). A
s o d i u m a l u m i n o s i l i c a t e g e l was r e c e n t l y f o u n d at L a k e M a g a d i , K e n y a A n a l c i m e c o u l d f o r m d u r i n g diagenesis b y c r y s t a l l i z a t i o n o f s u c h
(28).
a gel. A n a l c i m e i n other nontuff aceous lacustrine rocks a p p a r e n t l y f o r m e d d u r i n g diagenesis b y r e a c t i o n of plagioclase, m o n t m o r i l l o n i t e , o r k a o l i n i t e w i t h the p o r e w a t e r (49, 92). Acknowledgment G r a t e f u l a p p r e c i a t i o n is expressed
to those colleagues i n t h e U . S .
G e o l o g i c a l S u r v e y w h o p r o v i d e d u n p u b l i s h e d d a t a . Β. M . M a d s e n a n d J . D . V i n e c r i t i c a l l y r e a d the m a n u s c r i p t a n d m a d e h e l p f u l
suggestions.
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9)
Alietti, Andrea, Petrog. Acta 1967, 13, 119-138. Ames, L. L., Jr., Sand, L. B., Goldich, S. S., Econ. Geol. 1958, 53, 22-37. Anderson, J. J., Geol. Soc. Am. Spec. Papers 1969, 121, 586. Baldar, Ν. Α., Whittig, L. D., Soil Sci. Soc. Am. Proc. 1968, 32, No. 2, 235-238. Bellis, W. H., Mankin, C. J., "Clays and Clay Minerals—Proc. Clay Min erals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 191, Pergamon, New York, 1967. Blackmon, P. D., Oral communication, 1966. Boles, J. R., M.S. thesis, University of Wyoming, Laramie, Wyo., 1968. Bradley, W. H., Science 1928, 67, 73-74. Bradley, W. H., U.S. Geol. Surv. Profess. Papers 1929, 158-A, 1-7.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22.
(10) (11) (12) (13) (14) (15)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
(16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53)
SHEPPARD
Zeolites
in
Sedimentary
Deposits
307
Bradley, W. H., U.S. Geol. Surv. Profess. Papers 1964, 496-A, 86 pp. Bramlette, M. N., Posnjak, Eugen, Am. Mineralogist 1933, 18, 167-171. Brobst, D. Α., Oral communication, 1969. Cashion, W. B., U.S. Geol. Surv. Profess. Papers 1967, 548, 48 pp. Cathcart, J. B., Proc. Forum Geol. Ind. Minerals, 4th, Austin, Tex., 1968, L. F. Brown, Jr., Ed., p. 23-34. Cobban, W. Α., Billings Geol. Soc. Guidebook Ann. Field Conf., 6th, 1955, p. 107-119. Cook, Η. E., Hay, R. L., Geol. Soc. Am. Spec. Papers 1965, 82, 31-32. Coombs, D. S., Trans. Roy. Soc. New Zealand 1954, 82, Pt. 1, 65-109. Coombs, D. S., Ellis, A. J., Fyfe, W. S., Taylor, A. M., Geochim. Cosmochim. Acta 1959, 17, 53-107. Coombs, D. S., Whetten, J. T., Geol. Soc. Am. Bull. 1967, 78, 269-282. Cornwall, H. R., "Petrologic Studies A Volume in Honor of A. F. Buddington," A. E. J. Engel, H. L. James, and B. F. Leonard, Eds., p. 357-371, Geological Society of America, New York, 1962. Deer, W. Α., Howie, R. Α., Zussman, J., "Rock-Forming Minerals," Vol. 4, Wiley, New York, 1963. Deffeyes, K. S., J. Sediment. Petrol. 1959, 29, 602-609. Deffeyes, K. S., Am. Mineralogist 1959, 44, 501-509. Eakle, A. S., Am. J. Sci.1898, 6, 66-68. Eargle, D. H., U.S. Geol. Surv. Bull. 1251-D, 1968, 25pp. Eberly, P. E., Jr., Am. Mineralogist 1964, 49, p. 30-40. Erd, R. C., Morgan, Vincent, Clark, J. R., U.S. Geol. Surv. Profess. Papers 1961, 424-C, C294-C297. Eugster, H. P., Jones, B. F., Science 1968, 161, 160-163. Fenner, C. N., J. Geol. 1936, 44, 225-315. Finch, W. I., U.S. Geol. Surv. Geol. Quad. Map GQ-557, 1966. Fisher, R. V., Ore Bin 1962, 24, 197-203. Fisher, R. V., Ore Bin 1963, 25, 185-197. Foster, W. D., Feicht, F. L., Am. Mineralogist 1946, 31, 357-364. Fox, R. D., Montana Bur. Mines Geol. Bull. 1966, 52, 64 pp. Garrels, R. M., Christ, C. L., "Solutions, Minerals, and Equilibria," Harper and Row, New York, 450 pp., 1965. Gibbons, A. B., Hinrichs, Ε. N., Botinelly, Theodore, U.S. Geol. Surv. Profess. Papers 1960, 400-B, B473-B475. Gilbert, C. M., McAndrews, M. G., J. Sediment. Petrol. 1948, 18, 91-99. Goodwin, J. H., Surdam, R. C., Science 1967, 157, 307-308. Gude, A. J., III, Oral communication, 1966. Gude, A. J., III, Sheppard, R. Α., Am. Mineralogist 1966, 51, 909-915. Gulbrandsen, R. Α., Cressman, E. R., J. Geol. 1960, 68, 458-464. Hall, C. Α., Turner, D. L., Surdam, R. C., Geol. Soc. Am. Bull. 1966, 77, 443-445. Harada, Kazuo, Iwamoto, Shigeki, Kihara, Kuniaki, Am. Mineralogist 1967, 52, 1785-1794. Hardie, L. Α., Geochim. Cosmochim. Acta 1968, 32, 1279-1301. Hay, R. L., "Petrologic Studies—A Volume in Honor of A. F. Buddington," A. E. J. Engel, H. L. James, B. F. Leonard, Eds., p. 191-216, Geological Society of America, New York, 1962. Hay, R. L., Calif. Univ. Pubs. Geol. Sci.1963, 42, No. 5, 199-262. Hay, R. L., Am. Mineralogist 1964, 49, 1366-1387. Hay, R. L., Geol. Soc. Am. Spec. Papers 1966, 85, 130 pp. Hay, R. L., Moiola, R. J., Sedimentology 1963, 2, No. 4, 312-332. Heady, Η. H., Am. Mineralogist 1952, 37, 804-811. Heinrich, E. W., Am. Mineralogist 1963, 48, 1172-1174. Hemley, J. J., Am. J. Sci. 1959, 257, 241-270. Hemley, J. J., Geol. Soc. Am. Spec. Papers 1962, 68, 196.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
308
MOLECULAR SIEVE ZEOLITES—I
(54) Heron, S. D., Jr., S. C. Develop. Board Div. Geology Geol. Notes, 1969, 13, No. 1, 27-41. (55) Heron, S. D., Jr., Johnson, H. S., Jr., Southeastern Geol. 1966, 7, No. 2, 51-63. (56) Hey, M . H., Bannister, F. Α., Mineral. Mag. 1934, 23, 556-559. (57) High, L. R., Jr., Picard, M . D., J. Sediment. Petrol. 1965, 35, 49-70. (58) Hoover, D. L., Geol. Soc. Am. Spec. Papers 1966, 87, 286-287. (59) Hoover, D. L., Geol. Soc. Am. Mem. 1968, 110, 275-284. (60) Hoover, D. L., Shepard, A. O., Am. Mineralogist 1965, 50, 287. (61) Iijima, Azuma, Hay, R. L., Am. Mineralogist 1968, 53, 184-200. (62) Jones, B. F., U.S. Geol. Surv. Profess. Papers 1965, 502-A, 56 pp. [1966]. (63) Jones, B. F., "Geology, Geochemistry, Mining," J. L. Rau, Ed., p. 181200, Northern Ohio Geological Society, Cleveland, 1966. (64) Jones, B. F., Rettig, S. L., Eugster, H. P., Science 1967, 158, 1310-1314. (65) Jones, W. R., Hernon, R. M., Moore, S. L., U.S. Geol. Surv. Profess. Papers 1967, 555, 144 pp. (66) Keller, W. D., J. Sediment. Petrol. 1952, 22, 70-82. (67) Keller, W. D., J. Sediment. Petrol. 1953, 23, 10-12. (68) Keller, W. D., U.S. Geol. Surv. Bull. 1150, 1962, 90 pp. (69) Kerr, P. F., Econ. Geol. 1931, 26, 153-168. (70) Kerr, P. F., Cameron, E. N., Am. Mineralogist 1936, 21, 230-237. (71) Kirov, G. N., Sofia Univ. Annuaire, Fac. Geologie et Geographie 1965, 60, 193-200. (72) Kittleman, L. R., Green, A. R., Hagood, A. R., Johnson, A. M., McMurray, J. M., Russell, R. G., Weeden, D. Α., Oregon Univ. Mus. Nat. Hist. Bull. 1965, 1, 45 pp. (73) Lasky, S. G., Webber, B. N., U.S. Geol. Surv. Bull. 961, 1949, 86 pp. (74) Love, J. D., Written communication, 1964. (75) McAllister, J. F., Written communication, 1965. (76) Mason, B. H., Sand, L. B., Am. Mineralogist 1960, 45, 341-350. (77) Merritt, C. Α., Okla. Geol. Surv. Bull. 1958, 76, 70 pp. (78) Merritt, C. Α., Ham, W. E., Am. Assoc. Petrol. Geologists Bull. 1941, 25, 287-299. (79) Milton, Charles, Wash. Acad. Sci. J. 1936, 26, No. 9, 386. (80) Milton, Charles, Chao, E. C-T., Fahey, J. J., Mrose, M..E., Rept. Intern. Geol. Congr. 21st 1960, Pt. 21, 171-184. (81) Minato, Hideo, Takano, Yukio, Nendo Kagaku 1964, 4, 12-22. (82) Moiola, R. J., Geol. Soc. Am. Spec. Papers 1964, 76, 116-117. (83) Moiola, R. J., Am. Mineralogist 1964, 49, 1472-1474. (84) Moiola, R. J., Written communication, 1964. (85) Moore, J. G., Peck, D. L., J. Geol. 1962, 70, 182-193. (86) Moores, Ε. M., J. Geol. 1968, 76, 88-98. (87) Mullineaux, D. R., Oral communication, 1969. (88) Mumpton, F. Α., Am. Mineralogist 1960, 45, 351-369. (89) Murray, John, Renard, A. F., "Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76," Edinburgh, Neill and Co., 520 pp., 1891. (90) Neal, J. T., Langer, A. M., Kerr, P. F., Geol. Soc. Am. Bull. 1968, 79, 69-90. (91) Peck, D. L., Griggs, A. B., Schlicker, H. G., Wells, F. G., Dole, H. M., U.S. Geol. Surv. Profess. Papers 1964, 449, 56 pp. (92) Pipkin, B. W., Am. Assoc. Petrol. Geologists Bull. 1967, 51, 478. (93) Pirsson, L. V., Am. J. Sci. 1890, 40, 232-237. (94) Ratte, J. C., Steven, Τ. Α., U.S. Geol. Surv. Profess. Papers 1967, 524-H, 58 pp. (95) Regis, A. J., Sand, L. B., Am. Mineralogist 1966, 51, 270.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
22.
SHEPPARD
Zeolites
in
Sedimentary
Deposits
309
(96) Regis, A. J., Sand, L. B., "Clays and Clay Minerals—Proc. Clay Min erals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 193, Pergamon, New York, 1967. (97) Regnier, J. P. M., Geol. Soc. Am. Bull.1960,71, 1189-1210. (98) Reynolds, W. R., "Facies Changes in the Alabama Tertiary—Alabama Geol. Soc. Guidebook, 4th Ann. Field Trip," C. W. Copeland, Ed., p. 26-37, Alabama Geological Society, 1966. (99) Roberts, A. E., U.S. Geol. Surv. Profess. Papers 1963, 475-B, B86-B92. (100) Robinson, P. T., J. Sediment. Petrol. 1966, 36, 1007-1015. (101) Rooney, T. P., Kerr, P. F., Science 1964, 144, 1453. (102) Ross, C. S., Am. Mineralogist 1928, 13, 195-197. (103) Ross, C. S., Am. Mineralogist 1941, 26, 627-629. (104) Rozendal, Roger, Proc. S. D. Acad. Sci., 1956, 1957, 35, 39-41. (105) Saha, Prasenjit, Am. Mineralogist 1959, 44, 300-313. (106) Saha, Prasenjit, Am. Mineralogist 1961, 46, 859-884. (107) Sand, L. B., Regis, A. J., Geol. Soc. Am. Spec. Papers 1966, 87, 145-146. (108) Sand, L. B., Regis, A. J., Geol. Soc. Am. Spec. Papers 1968, 101, 189. (109) Santos, E. S., Oral communication, 1969. (110) Schaller, W. T., Am. Mineralogist 1932, 17, 128-134. (111) Schultz, L. G , U.S. Geol. Surv. Open-File Kept. 1961, 60 pp. (112) Schultz, L. G , "Clays and Clay Minerals—Proc. Natl. Conf. Clays and Clay Minerals, 11th, Ottawa, 1962, W. F. Bradley, Ed., p. 169-177, Macmillan, New York, 1963. (113) Shawe, D. R., U.S. Geol. Surv. Profess. Papers 1968, 576-B, 34 pp. (114) Shepard, A. O., U.S. Geol. Surv. Profess. Papers 1961, 424-C, C320C323. (115) Shepard, A. O., Starkey, H. C., U.S. Geol. Surv. Profess. Papers 1964, 475-D, D89-D92. (116) Sheppard, R. Α., "Mineral and Water Resources of Arizona," p. 464-467, U.S. 90th Congr., 2d sess., Comm. on Interior and Insular Affairs, Comm. Print, 1969. (117) Sheppard, R. Α., Unpublished data. (118) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess Papers 1964, 501-C,C114-C116. (119) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1965, 525-D, D44-D47. (120) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1968, 597, 38 pp. (121) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1969, 650-D, D69-D74. (122) Sheppard, R. Α., Gude, A. J., III, Am. Mineralogist 1969, 54, 875-886. (123) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1969, 634, 35 pp. (124) Sheppard, R. Α., Gude, A. J., III, Munson, E. L., Am. Mineralogist 1965, 50, 244-249. (125) Sheppard, R. Α., Walker, G. W., "Mineral and Water Resources of Oregon," p. 268-271, U.S. 90th Congr., 2d sess., Comm. on Interior and Insular Affairs, Comm. Print, 1969. (126) Shumenko, S.I.,Dokl. Akad. Nauk SSSR 1962, 144, 1347-1350. (127) Sims, J. D., Geol. Soc. Am. Spec. Papers 1969, 121, 636-637. (128) Slaughter, Maynard, Earley, J. W., Geol. Soc. Am. Spec. Papers 1965, 83, 116 pp. (129) Smith, G. I., Almond, Hy, Sawyer, D. L., Jr., Am. Mineralogist 1958, 43, 1068-1078. (130) Smith, G. I., Haines, D. V., U.S. Geol. Surv. Bull. 1181-P, 1964, 58 pp. (131) Smith, J. W., Am. Assoc. Petrol. Geologists Bull. 1963, 47, 804-813. (132) Smith, J. W., Milton, Charles, Econ. Geol. 1966, 61, 1029-1042.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022
310
MOLECULAR SIEVE ZEOLITES-1
(133) Sohn, I. G., Herrick, S. M., Lambert, T. W., U.S. Geol. Surv. Profess. Papers 1961, 424-B B227—B228 (134) Spotts, J. H., Silverman, S. R., Am. Mineralogist 1966, 51, 1144-1155. (135) Staples, L. W., Gard, J. Α., Mineral. Mag. 1959, 32, 261-281. (136) Steiner, Alfred, Econ. Geol. 1953, 48, 1-13. (137) Studer, H. P., "Clays and Clay Minerals—Proc. Clay Minerals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 187, Pergamon, New York, 1967. (138) Surdam, R. C., Hall, C. Α., Geol. Soc. Am. Spec. Papers 1968, 101, 338. (139) Switzer, G. S., Boucot, A. J., J. Paleontol. 1955, 29, No. 3, p. 525-533. (140) Tourtelot, Η. Α., U.S. Geol. Surv. Oil Gas Inv. Prelim. Chart 22, 1946. (141) Van Houten, F. B., J. Geol. 1960, 68, 666-669. (142) Van Houten, F. B., Am. J. Sci. 1962, 260, 561-576. (143) Van Houten, F. B., Kan. Geol. Surv. Bull. 169, 1964, 2, 497-531. (144) Van Houten, F. B., U.S. Geol. Surv. Bull. 1164, 1964, 99 pp. (145) Van Houten, F. B., Am. J. Sci. 1965, 263, 825-863. (146) Van Loenen, R. E., Written communication, 1968. (147) Walker, G. W., Repenning, C. Α., U.S. Geol. Surv. Misc. Geol. Inv. Map 1-446, 1965. (148) Walker, G. W., Swanson, D. Α., U.S. Geol. Surv. Bull. 1260-M, 1968, 16 pp. (149) Walker, G. W., Swanson, D. Α., U.S. Geol. Surv. Bull. 1260-L, 1968, 17 pp. (150) Waters, A. C., Ore Bin 1966, 28, 137-144. (151) Weeks, A. D., Eargle, D. H., "Clays and Clay Minerals—Proc. Natl. Conf. Clays and Clay Minerals, 10th, 1961, Ada Swineford, Ed., p. 23-41, Macmillan, New York, 1963. (152) Weeks, A. D., Levin, Betsy, Bowen, R. J., Geol. Soc. Am. Bull. 1958, 69, 1659. (153) Wermund, E. G , Moiola, R. J., J. Sediment. Petrol. 1966, 36, 248-253. (154) Wilcox, R. E., Fisher, R. V., U.S. Geol. Surv. Geol. Quad. Map GQ-541, 1966. (155) Wrucke, C. T., U.S. Geol. Surv. Bull. 1121-H, 1961, 26 pp. February 4, 1970. Publication authorized by the Director, U. S. Geological Survey.
RECEIVED
Discussion L . B. Sand ( W o r c e s t e r P o l y t e c h n i c Institute, W o r c e s t e r , M a s s . 01609) : P l e a s e define a u t h i g e n i c as u s e d r e l e v a n t to the o r i g i n o f zeolites i n these deposits. R. A . Sheppard: A u t h i g e n i c refers to those m i n e r a l s that c r y s t a l l i z e d i n s e d i m e n t a r y rocks after d e p o s i t i o n of t h e o r i g i n a l d e t r i t a l grains. G e n e r a l l y , t h e zeolites c r y s t a l l i z e d after b u r i a l of t h e e n c l o s i n g rock. T h e d e p t h o f b u r i a l p r o b a b l y r a n g e d f r o m m i l l i m e t e r s to several t h o u s a n d feet.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.