Zeolites in Sedimentary Deposits of the United ... - ACS Publications

Pennsylvanian Monongahela Formation of West Virginia (33), analcime is restricted to ..... Phosphorite in the Pungo River Formation of. (14, 101). Mio...
0 downloads 0 Views 2MB Size
22 Zeolites in Sedimentary Deposits of

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

the United States—A Review RICHARD A. SHEPPARD U. S. Geological Survey, Federal Center, Denver, Colo. 80225 Zeolites are among the most common authigenic silicate minerals in sedimentary deposits, occurring in rocks that are diverse in age, lithology, and depositional environment. Zeolites are particularly common in those sedimentary rocks that originally contained abundant silicic vitric material. Of the more than 30 naturally occurring zeolites, only 6 commonly occur in bedded deposits: analcime, chabazite, clinoptilolite, erionite, mordenite, and phillipsite. Most zeolites in sedimentary rocks formed during diagenesis by reaction of vitric material with interstitial water. The formation of zeolites is favored by a relatively high pH and high activities of alkali ions in the interstitial water. The zeolites, except analcime, formed directly from the silicic glass by a solution-precipitation mechanism. Most analcime formed during later diagenesis from alkalic, silicic zeolite precursors.

*~Teolites ^

are a m o n g the most c o m m o n a u t h i g e n i c silicate m i n e r a l s t h a t

o c c u r i n s e d i m e n t a r y rocks. T h e y h a v e f o r m e d i n rocks t h a t are d i -

verse i n l i t h o l o g y , age, a n d d e p o s i t i o n a l e n v i r o n m e n t , as s u m m a r i z e d b y H a y (48).

A u t h i g e n i c zeolites are e s p e c i a l l y c o m m o n i n those C e n o z o i c

s e d i m e n t a r y rocks that o r i g i n a l l y c o n t a i n e d s i l i c i c v i t r i c m a t e r i a l . N e a r l y m o n o m i n e r a l i c beds of zeolite are k n o w n f r o m m a n y areas of the U n i t e d States, b u t most z e o l i t i c s e d i m e n t a r y rocks consist of 2 or m o r e zeolites as w e l l as c l a y m i n e r a l s , s i l i c a m i n e r a l s , feldspars, a n d searlesite of a u t h i g e n i c o r i g i n . Z e o l i t i c rocks also c o m m o n l y c o n t a i n r e l i c t v i t r i c m a t e r i a l a n d p y r o g e n i c or d e t r i t a l grains. Zeolites h a v e b e e n r e c o g n i z e d i n s e d i m e n t a r y deposits since 1891, w h e n M u r r a y a n d R e n a r d ( 8 9 ) d e s c r i b e d p h i l l i p s i t e i n deep-sea deposits. H o w e v e r , p r i o r to the e a r l y 1950's, most z e o l i t e occurrences

were re-

p o r t e d f r o m f r a c t u r e - a n d vesicle-fillings i n igneous rocks, p a r t i c u l a r l y 279 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

280

MOLECULAR SIEVE ZEOLITES

Table I.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Locality No., Figure 1

O c c u r r e n c e s of

Locality

1

N e a r Vaughn, Cascade County, Mont.

2

N e a r T w i n Creek, Bear L a k e County, Idaho Near Gros Ventre River, Teton County, Wyo. Near Dubois, Fremont County, Wyo. Near Lander, Fremont County, Wyo. N e a r Thermopolis, H o t Springs C o u n t y , W y o . Near Hyattville, B i g Horn County, Wyo. S o u t h F o r k of t h e P o w d e r R i v e r , Natrona County, Wyo. N e a r Casper, N a t r o n a County, Wyo. Near Lysite Mountain, Hot Springs C o u n t y , W y o . Beaver R i m , Fremont County, Wyo. N e a r G r e e n R i v e r , Sweetwater County, Wyo. Near Ludlow, Harding C o u n t y , S. D . Cathedral Bluffs, R i o Blanco County, Colo. N e a r Piceance C r e e k , R i o Blanco County, Colo. A n v i l Points, Garfield County, Colo. A l o n g Piceance C r e e k , a b o u t 20 m i l e s west of M e e k e r , R i o Blanco County, Colo. Lone Tree M e s a , Montrose County, Colo. Near Slick Rock, San M i g u e l County, Colo. Near Vernal, Uintah County, Utah

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20

1

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

Analcime i n Sedimentary

Rocks

Occurrence

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

281

Deposits

References

S i l t s t o n e a n d sandstone i n t h e T a f t H i l l M e m b e r of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age a n d tuff i n the B o o t l e g g e r M e m b e r of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age T u f f i n t h e T w i n C r e e k L i m e s t o n e of J u r a s s i c age

(146)

O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age O c h e r oolitic beds i n the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age P u r p l e a n d ocher u n i t s of the P o p o A g i e M e m b e r of the C h u g w a t e r F o r m a t i o n of T r i a s s i c age B e n t o n i t e i n t h e M o w r y Shale of C r e t a c e o u s age

(66)

(57, 66)

B e n t o n i t e i n the M o w r y F o r m a t i o n of C r e t a c e o u s

(128)

age B e n t o n i t e i n the M o w r y F o r m a t i o n of C r e t a c e o u s age T u f f i n the T e p e e T r a i l F o r m a t i o n of E o c e n e age T u f f i n t h e W a g o n B e d F o r m a t i o n of E o c e n e age T u f f i n t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age L i g n i t e i n the u p p e r m e m b e r of the T o n g u e R i v e r F o r m a t i o n of Paleocene age T u f f i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age O i l shale i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age O i l shale i n t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n t h e P a r a c h u t e C r e e k M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age Tuffaceous mudstone i n the B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age Tuffaceous m u d s t o n e i n the B r u s h y B a s i n M e m b e r of t h e M o r r i s o n F o r m a t i o n of J u r a s s i c age Ocher oolitic beds i n the C h i n l e F o r m a t i o n of T r i a s s i c age

W)

(57, 66)

(57) (128)

(128)

(W) (7) (10, 61)

(104) (9) (131, 132) (50) (m

(68) (US)

(67)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

282

MOLECULAR SIEVE ZEOLITES

1

T a b l e I. Locality No., Figure 1 21 22

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

23 24 25 26 27 28 29 30 31 32 33

34 35

Locality White River Canyon, Uintah County, Utah N e a r T w o Water Creek, Uintah County, Utah N e a r Duchesne, Duchesne County, U t a h Near Currant, Nye County, Nev. N e v a d a Test Site, N y e County, Nev. Teels M a r s h , M i n e r a l County, Nev. Near Silver Peak, Esmeralda County, Nev. Deep Springs L a k e , Inyo County, Calif. Saline V a l l e y , I n y o County, Calif. Owens L a k e , I n y o C o u n t y , Calif. Lake Tecopa, Inyo County, Calif. Searles L a k e , S a n B e r n a r d i n o County, Calif. M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif. Near Delano, K e r n County, Calif. Near Wikieup, Mohave County, Ariz.

36

Maggie Canyon, Mohave County, Ariz.

37

N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz.

38

Near Eloy, Pinal County, Ariz.

39

W i l l c o x P l a y a , Cochise County, Ariz.

40

Along San Simon Creek, Cochise a n d G r a h a m Counties, A r i z .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

283

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence

References

T u f f i n the G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n the P a r a c h u t e C r e e k M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age D o l o m i t i c o i l shale of the G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f i n H o r s e C a m p F o r m a t i o n of M i o c e n e a n d Pliocene age T u f f a n d l a p i l l i tuff of T e r t i a r y age

(58, 59,

60)

T u f f i n lacustrine deposit of Q u a t e r n a r y age

(16, 47,

48)

T u f f i n the E s m e r a l d a F o r m a t i o n of M i o c e n e a n d Pliocene age S a l i n e crusts of H o l o c e n e age

(82,

M u d of H o l o c e n e age T u f f a n d tuffaceous sediments of Pleistocene age T u f f i n l a c u s t r i n e r o c k s of Pleistocene age

(9) (13) (80) (86)

100)

(62) (44) (47,

48)

(120)

T u f f a n d m u d s t o n e of Q u a t e r n a r y age

(49

T u f f a n d m u d s t o n e of late T e r t i a r y a n d Q u a t e r n a r y age

(2, 27, 90, 118, 129)

}

P o n d series soil

(4)

T u f f i n u n n a m e d lacustrine f o r m a t i o n of P l i o c e n e age

002, 116)

S a n d s t o n e of the C h a p i n W a s h F o r m a t i o n of Pliocene (?) age

(73)

T u f f i n the V e r d e F o r m a t i o n of Pliocene(?) or Pleistocene age

(117)

S i l t y c l a y stone of l a t e T e r t i a r y age

(6)

M u d s t o n e of Pleistocene age

(92)

T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age

(96,

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

130)

103,

107)

284

MOLECULAR SIEVE ZEOLITES

1

Table

I.

Locality No., Figure 1

Locality

41

Near Nutrioso, Apache County, Ariz. Near Red Wash, San Juan C o u n t y , Ν. M . A b o u t 2.5 m i l e s southeast of Senorito, S a n d o v a l County, Ν. M . Wichita Mountains, K i o w a County, Okla. Near Terlingua, Brewster County, Tex. Near Yardley, Bucks County, Pa. Near Frenchtown, Hunterdon County, N . J . N e a r Pursglove, Monongalia County, W . V a .

42

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

43

44 45 46 47 48

b a s a l t i c rocks.

O f the m o r e t h a n 350 p u b l i s h e d reports t h a t

zeolites i n s e d i m e n t a r y rocks t h r o u g h o u t p u b l i s h e d i n the 1960s.

describe

the w o r l d , a b o u t 7 5 %

were

T h e factors chiefly responsible for this recent

surge of reports a r e : ( 1 ) t h e w i d e s p r e a d use of x - r a y p o w d e r d i f f r a c t i o n techniques i n the s t u d y of

fine-grained

s e d i m e n t a r y rocks, ( 2 )

the ex­

p l o r a t i o n for zeolite deposits s u i t a b l e for c o m m e r c i a l use, a n d ( 3 ) r e v i e w papers b y C o o m b s a n d others (18) w h i c h emphasized

the w i d e s p r e a d

a n d Deffeyes (22),

the

b o t h of

a n d relatively c o m m o n occurrences

of zeolites i n s e d i m e n t a r y rocks. This report summarizes those zeolites

the c h e m i s t r y a n d p h y s i c a l properties

from sedimentary

deposits of the c o n t e r m i n o u s

of

United

States a n d b r i e f l y describes t h e i r o c c u r r e n c e a n d o r i g i n . E x c l u d e d f r o m this d i s c u s s i o n are those zeolites i n s e d i m e n t a r y rocks t h a t r e s u l t e d f r o m low-grade metamorphism Description

(17)

and Occurrence

or h y d r o t h e r m a l a c t i v i t y (29, of Authigenic

136).

Zeolites

O f the m o r e t h a n 30 n a t u r a l zeolites, o n l y 6 c o m m o n l y o c c u r i n s e d i ­ m e n t a r y deposits.

T h e s e are a n a l c i m e , c h a b a z i t e , c l i n o p t i l o l i t e , erionite,

mordenite, and phillipsite. have

T h e zeolites are v e r y

similar optical a n d physical properties;

finely

therefore,

crystalline a n d x-ray

d i f f r a c t i o n techniques g e n e r a l l y are u s e d for t h e i r i d e n t i f i c a t i o n .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

powder

22.

SHEPPARD

Zeolites in Sedimentary

285

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence

References

S a n d s t o n e i n u n n a m e d f o r m a t i o n of T e r t i a r y age

(155)

Tuffaceous m u d s t o n e of the B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age Siliceous tuff i n t h e B r u s h y B a s i n M e m b e r of the M o r r i s o n F o r m a t i o n of J u r a s s i c age

(68)

A r k o s e i n t h e T e p e e C r e e k F o r m a t i o n of P e r m i a n age B l a c k t a r r y shale of late M e s o z o i c or e a r l y T e r t i a r y age A r g i l l i t e i n the L o c k a t o n g F o r m a t i o n of T r i a s s i c age A r g i l l i t e i n t h e L o c k a t o n g F o r m a t i o n of T r i a s s i c age C o n c r e t i o n i n t h e P i t t s b u r g h c o a l b e d of t h e M o n o n g a h e l a F o r m a t i o n of P e n n s y l v a n i a n age

(109)

(δ, 77, 78) (79) (14®, 143, 145) (141 > 14®, 143, 145) (33)

Analcime. A n a l c i m e is one of the m o r e a b u n d a n t zeolites o c c u r r i n g i n s e d i m e n t a r y rocks. A n a l c i m e has a n i d e a l f o r m u l a of N a A l S i 0 2

6

· H 0,

b u t the a n a l c i m e of s e d i m e n t a r y rocks is g e n e r a l l y m o r e siliceous.

2

Most

a n a l c i m e i n s e d i m e n t a r y rocks is u n s u i t a b l e for c h e m i c a l analysis because of a b u n d a n t i n c l u s i o n s of c l a y m i n e r a l s , f e l d s p a r , or o p a l . T h e c o m p o s i ­ t i o n of these a n a l c i m e s c a n , h o w e v e r , b e i n f e r r e d f r o m t h e i r i n d e x of r e f r a c t i o n or c e l l d i m e n s i o n , u t i l i z i n g the d a t a of S a h a (105, 106)

for

s y n t h e t i c a n a l c i m e s . B o t h the i n d e x of r e f r a c t i o n a n d the a c e l l d i m e n s i o n decrease w i t h i n c r e a s i n g S i / A l r a t i o . C o o m b s a n d W h e t t e n ( 19 ) s t u d i e d analcimes f r o m v a r ^ s s e d i m e n t a r y r o c k u n i t s t h r o u g h o u t the w o r l d a n d d e t e r m i n e d a r a n g e i n S i / A l r a t i o of a b o u t 2.0-2.8. have

shown

a similar range i n composition

for

Subsequent studies

analcimes i n c e r t a i n

l a c u s t r i n e f o r m a t i o n s of the w e s t e r n U n i t e d States. F o r e x a m p l e , a n a l c i m e i n tuffs of the M i o c e n e B a r s t o w F o r m a t i o n of southeastern shows a r a n g e i n S i / A l r a t i o of a b o u t 2.2-2.8 (123),

California

a n d a n a l c i m e i n tuffs

of the E o c e n e G r e e n R i v e r F o r m a t i o n of s o u t h w e s t e r n W y o m i n g shows a r a n g e of a b o u t 2.0-2.9 (61).

T h e m e a g e r c h e m i c a l d a t a suggest t h a t

a n a l c i m e f r o m s e d i m e n t a r y rocks contains o n l y m i n o r amounts of cations other t h a n s o d i u m . Since the d i s c o v e r y of a n a l c i m e i n the G r e e n R i v e r F o r m a t i o n and

i n l a c u s t r i n e tuffs near W i k i e u p , A r i z .

(102),

(8)

a n a l c i m e has b e e n

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

286

MOLECULAR SIEVE ZEOLITES

1

r e p o r t e d i n s e d i m e n t a r y rocks t h a t are diverse i n age, l i t h o l o g y , a n d s e d i m e n t a r y e n v i r o n m e n t ( T a b l e I , F i g u r e 1 ) . A n a l c i m e occurs i n rocks that r a n g e i n age f r o m P e n n s y l v a n i a n to H o l o c e n e , b u t i t is e s p e c i a l l y c o m m o n r e l a t i v e to other zeolites i n rocks of M e s o z o i c age, p a r t i c u l a r l y those o l d e r t h a n C r e t a c e o u s . S a l i n e lacustrine deposits, regardless of age, v e r y c o m m o n l y c o n t a i n a n a l c i m e . E x c e p t for occurrences i n the T r i a s s i c L o c k a t o n g F o r m a t i o n of N e w Jersey a n d P e n n s y l v a n i a (145)

a n d the

P e n n s y l v a n i a n M o n o n g a h e l a F o r m a t i o n of W e s t V i r g i n i a (33),

analcime

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

is r e s t r i c t e d to s e d i m e n t a r y r o c k s of the w e s t e r n U n i t e d States. A n a l c i m e , u n l i k e other zeolites i n s e d i m e n t a r y rocks, does o c c u r i n rocks t h a t l a c k e v i d e n c e of v o l c a n i c m a t e r i a l . A n a l c i m e is a p p a r e n t l y a c o m m o n

con-

stituent of saline, a l k a l i n e soils s u c h as those of s o u t h e r n C a l i f o r n i a

(4).

C h a b a z i t e . C h a b a z i t e has a n i d e a l f o r m u l a of C a A l S i 8 0 2 4 " 1 2 H 0 , 2

4

2

b u t n a t u r a l chabazites s h o w c o n s i d e r a b l e v a r i a t i o n i n c a t i o n content a n d Si/Al + Fe

3 +

ratio ( F i g u r e 2 ) .

I d e a l c h a b a z i t e has a S i / A l + F e

3 +

ratio

of 2, b u t c h a b a z i t e f r o m s e d i m e n t a r y rocks has a S i / A l + F e

3 +

a b o u t 3.2-3.8. C h a b a z i t e a n d h e r s c h e l i t e ( a s o d i c v a r i e t y of

chabazite)

f r o m mafic v o l c a n i c rocks g e n e r a l l y h a v e a S i / A l + F e

3 +

r a t i o of

r a t i o n e a r 2.

T h e s e d i m e n t a r y chabazites g e n e r a l l y h a v e alkalis i n excess of a l k a l i n e earths a n d s o d i u m g r e a t l y i n excess of p o t a s s i u m . R e g i s a n d S a n d however,

have described

a calcic sedimentary chabazite from

(96), south-

eastern A r i z o n a . A l t h o u g h s o m e w o r k e r s h a v e t e r m e d these s o d i c a n d siliceous

sedimentary

chabazites

"herschelite,"

the

name

herschelite

s h o u l d p r o b a b l y b e r e s t r i c t e d to s o d i c chabazites t h a t h a v e a S i / A l +

Fe

3 +

r a t i o near 2. W h a t distinguishes the s e d i m e n t a r y chabazites f r o m c h a b a -

Figure 1. Map showing the occurrences of analcime in sedimentary in the United States. Data for localities are given in Table I.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

rocks

22.

SHEPPARD

Zeolites in Sedimentary

287

Deposits

0.75h

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

0.50h

0.25h

Figure

2. Plot showing tional variation of

the composi­ chabazite

Φ Chabazite (and herschelite) from mafic igneous rocks Ο Chabazite from tuff in the lacustrine Barstow Formation. zite a n d herschelite of igneous rocks is n o t the c a t i o n content b u t the h i g h Si/Al + Fe

3 +

ratio ( 4 0 ) .

Indices of r e f r a c t i o n a n d c e l l d i m e n s i o n s of c h a b a z i t e f r o m s e d i ­ m e n t a r y rocks are l o w e r t h a n those f o r c h a b a z i t e f r o m n o n s e d i m e n t a r y rocks.

Sedimentary chabazite commonly

shows

a range i n the mean

i n d e x of r e f r a c t i o n of a b o u t 1.46-1.47, whereas c h a b a z i t e a n d h e r s c h e l i t e f r o m igneous rocks s h o w a r a n g e o f a b o u t 1.47—1.49. A siliceous c h a b a ­ zite f r o m a l a c u s t r i n e tuff i n t h e B a r s t o w F o r m a t i o n o f C a l i f o r n i a

(40)

has r e l a t i v e l y s m a l l c e l l d i m e n s i o n s that g i v e a c e l l v o l u m e a b o u t 2 - 3 % smaller than t y p i c a l aluminous chabazite.

Thus, the l o w indices of r e ­

f r a c t i o n a n d s m a l l c e l l d i m e n s i o n s of s e d i m e n t a r y c h a b a z i t e seem to correlate w i t h its h i g h s i l i c o n content. C h a b a z i t e w a s u n k n o w n f r o m s e d i m e n t a r y deposits p r i o r to its d i s ­ c o v e r y b y H a y (47)

i n tuffs a n d tuffaceous

clays at O l d u v a i G o r g e ,

T a n z a n i a . Since t h e n , a u t h i g e n i c c h a b a z i t e has b e e n r e c o g n i z e d i n s i l i c i c tuffs f r o m A r i z o n a , C a l i f o r n i a , N e v a d a , a n d W y o m i n g ( T a b l e I I , F i g u r e 3).

M o s t of t h e occurrences a r e i n l a c u s t r i n e rocks of late C e n o z o i c age.

T h e r e are n o r e p o r t e d occurrences

of c h a b a z i t e i n rocks

older than

E o c e n e i n t h e U n i t e d States. M o n o m i n e r a l i c b e d s of c h a b a z i t e a r e r a r e , b u t extensive a n d n e a r l y p u r e b e d s h a v e b e e n r e p o r t e d f r o m l a c u s t r i n e

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

288

MOLECULAR SIEVE ZEOLITES—I

Table II. Locality No., Figure 3

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

2 3 4

Occurrences of Chabazite, Erionite,

Locality

Zeolites

N e a r Bearbones M o u n t a i n , L a n e C o u n t y , Ore.

Mordenite

V i c i n i t y of S t e i n ' s P i l l a r , Crook C o u n t y , Ore. Near Durkee, Baker County, Ore. Near Rome, Malheur County, Ore.

Mordenite Erionite

W e s t face of H a r t M o u n t a i n , L a k e C o u n t y , Ore.

Erionite, mordenite, phillipsite Mordenite, phillipsite

6

Near Harney Lake, Harney C o u n t y , Ore.

Erionite, phillipsite

7

Beaver R i m , Fremont County, Wyo.

8

Near Split Rock, Natrona County, Wyo. N e a r Green R i v e r , Sweetwater County, Wyo.

Chabazite, erionite, phillipsite Phillipsite

9

10

11 12 13 14

15 16 17

Mordenite

Near M u d Buttes, Butte C o u n t y , S. D .

Phillipsite

Sheep M o u n t a i n T a b l e , S h a n n o n C o u n t y , S. D . N e a r Creede, M i n e r a l County, Colo.

Erionite

Pine Valley, Eureka County, Nev. W e s t flank of the Shoshone Range, Lander County, Nev. Reese R i v e r , L a n d e r C o u n t y , Nev. Jersey V a l l e y , P e r s h i n g County, Nev. Near Lovelock, Pershing County, Nev.

Erionite, phillipsite Erionite

Mordenite

Erionite Erionite, phillipsite Mordenite

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

Deposits

Mordenite, and Phillipsite i n Sedimentary

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence T u f f a n d l a p i l l i tuff i n the L i t t l e B u t t e V o l c a n i c Series of Oligocène a n d M i o c e n e age T u f f i n the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f of T e r t i a r y age T u f f a n d tuffaceous sandstone i n a n u n n a m e d lacustrine f o r m a t i o n of Pliocene age T u f f a n d tuffaceous s e d i m e n t a r j ' r o c k s of late Oligocène or e a r l y M i o c e n e age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s i n the D a n f o r t h F o r m a t i o n of Pliocene age T u f f i n the W a g o n B e d F o r m a t i o n of E o c e n e age T u f f i n the M o o n s t o n e F o r m a t i o n of Pliocene age T u f f i n the T i p t o n Shale M e m b e r of the G r e e n R i v e r F o r m a t i o n of E o c e n e age B e n t o n i t e i n the G a m m o n F e r r u g i n o u s M e m b e r of t h e P i e r r e Shale of C r e t a c e o u s age T u f f i n the A r i k a r e e F o r m a t i o n of M i o c e n e age T u f f i n the W i n d y G u l c h M e m b e r of the B a c h e l o r M o u n t a i n R h y o l i t e of Oligocène age Tuff i n the H a y R a n c h F o r m a t i o n of Pliocene a n d Pleistocene age T u f f i n u n n a m e d lacustrine f o r m a t i o n of Pliocene age T u f f i n u n n a m e d lacustrine f o r m a t i o n of Pliocene age Tuff i n unnamed lacustrine f o r m a t i o n of Pliocene age Tuff i n unnamed lacustrine f o r m a t i o n of late T e r t i a r y age

Rocks

References (85,

91)

(150) (24,

135)

(26, 121,

95, 137)

(148)

(14$)

(7,

144)

(74) (38)

(112)

(22) (94)

(22,

97)

(23)

(23) (23) (108)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

289

290

MOLECULAR SIEVE ZEOLITES—I

Table II. Locality No., Figure 3

Zeolites

Near Copper Valley, Churchill County, Nev. N e a r Eastgate, Churchill County, Nev. Teels M a r s h , M i n e r a l County, Nev. N e a r Silver Peak, Esmeralda County, Nev. N e v a d a Test Site, N y e County, Nev.

Mordenite

23

Owens L a k e , I n y o C o u n t y , Calif.

Erionite, phillipsite

24

Lake Tecopa, Inyo County, Calif.

Chabazite, erionite, phillipsite

25

Searles L a k e , S a n B e r n a r d i n o County, Calif.

Phillipsite

26

M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif.

Chabazite, erionite, mordenite. phillipsite

27

Near Nipomo, San Luis Obispo C o u n t y , Calif.

Mordenite

28

U n i o n Pass, M o h a v e C o u n t y , Ariz.

Mordenite

29

Near Wikieup, Mohave County, Ariz.

Chabazite, erionite, phillipsite

30

N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz.

Erionite, phillipsite

31

N e a r M o r e n c i , Greenlee County, Ariz.

Mordenite

32

N e a r Bear Springs, G r a h a m County, Ariz.

Chabazite, erionite, phillipsite

33

Along San Simon Creek, Cochise and G r a h a m Counties, A r i z .

Chabazite, erionite

18 19 20 Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Locality

21 22

Erionite Phillipsite Mordenite, phillipsite Chabazite, mordenite

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence T u f f i n u n n a m e d lacustrine f o r m a t i o n of late T e r t i a r y age T u f f i n u n n a m e d lacustrine f o r m a t i o n of late T e r t i a r y age T u f f i n lacustrine deposit of Q u a r t e r n a r y age T u f f i n the E s m e r a l d a F o r m a t i o n of M i o c e n e a n d Pliocene age T u f f a n d l a p i l l i tuff of T e r t i a r y age

References (117) (122) (16,

47, 48)

(82, 83, 100) (58, 59, 60)

T u f f a n d tuffaceous sediments of Pleistocene age

(47, 48)

T u f f a n d tuffaceous r o c k s of Pleistocene age

(120)

T u f f of Q u a t e r n a r y age

(49,

T u f f a n d tuffaceous r o c k s of late T e r t i a r y a n d Q u a t e r n a r y age

123)

130)

(40,118,

T u f f i n the O b i s p o F o r m a t i o n of M i o c e n e age

(42,

T u f f a n d l a p i l l i tuff i n the G o l d e n D o o r V o l c a n i c s of T e r t i a r y age

(39)

Tuff i n unnamed lacustrine f o r m a t i o n of Pliocene age

(116)

T u f f i n the Yerde F o r m a t i o n of P l i o c e n e (?) or Pleistocene age

(117)

T u f f a n d l a p i l l i tuff i n u n n a m e d f o r m a t i o n of T e r t i a r y age

(116)

T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age

(117)

T u f f i n u n n a m e d lacustrine f o r m a t i o n of late C e n o z o i c age

(96,

138)

107)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

291

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

292

MOLECULAR SIEVE ZEOLITES

1

Figure 3. Map showing occurrences of chabazite, erionite, mordenite, and phillipsite in sedimentary rocks in the United States. Data for localities are given in Table II. tuffs a l o n g the S a n S i m o n C r e e k i n southeastern A r i z o n a ( 9 6 ) W i k i e u p i n northwestern A r i z o n a Clinoptilolite. tural group.

a n d near

(116).

C l i n o p t i l o l i t e is a m e m b e r of the h e u l a n d i t e

struc­

A l t h o u g h there is s t i l l some d i s a g r e e m e n t o n the d i s t i n c t i o n

b e t w e e n these c l o s e l y r e l a t e d zeolites, m o s t w o r k e r s agree that c l i n o p t i l o ­ l i t e is the S i - r i c h ( 56, 88 ) a n d a l k a l i - r i c h ( 76 ) m e m b e r . T h e c o m p o s i t i o n s of c l i n o p t i l o l i t e a n d h e u l a n d i t e f r o m v a r i o u s r o c k types are i n F i g u r e 4. E x c e p t for s l i g h t o v e r l a p i n t h e S i / A l + F e Na + Κ + Ca + M g

ratios, plots

of

the

3 +

represented

and N a +

c o m p o s i t i o n s cluster

K/

into

g r o u p s . H e u l a n d i t e c h a r a c t e r i s t i c a l l y has a N a + K / N a + Κ + C a + r a t i o less t h a n 0.5 a n d a S i / A l + F e

3 +

r a t i o near 3.

2

Mg

M o s t clinoptilolites

h a v e a N a + K / N a + Κ + C a + M g r a t i o greater t h a n 0.6 a n d r a n g e i n Si/Al + Fe

3 +

r a t i o f r o m a b o u t 4.0 to 5.0.

m e n t a r y rocks

show a range i n S i / A l +

T h e clinoptilolites from Fe

3 +

r a t i o of

sedi­

a b o u t 4.1-5.6.

S o d i u m is the p r e d o m i n a n t c a t i o n i n m o s t c l i n o p t i l o l i t e s ; h o w e v e r , potassic c l i n o p t i l o l i t e s are k n o w n f r o m C a h f o r n i a (124)

a n d J a p a n (81).

The few

c l i n o p t i l o l i t e s that h a v e a N a + K / N a + K + C a + M g r a t i o less t h a n 0.6

are c a l c i c

Italy

specimens f r o m

volcanic

rocks

i n B u l g a r i a (71)

and

(1). I n d i c e s of r e f r a c t i o n a n d t h e r m a l treatment h a v e b e e n u s e d to d i s ­

tinguish clinoptilolite from heulandite.

M a s o n a n d S a n d (76)

suggested

t h a t c l i n o p t i l o l i t e c a n b e i d e n t i f i e d b y a β i n d e x of r e f r a c t i o n of 1.485

or

l o w e r a n d that h e u l a n d i t e c a n b e i d e n t i f i e d b y a β i n d e x of 1.488

or

higher.

H e u l a n d i t e is t h e r m a l l y u n s t a b l e a b o v e a b o u t 2 5 0 ° C , w h e r e a s

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

c l i n o p t i l o l i t e is stable to 7 5 0 ° C or h i g h e r (88, members

of

293

Deposits

the h e u l a n d i t e s t r u c t u r a l g r o u p

115). from

However,

some

sedimentary

rocks

d i s p l a y anomalous o p t i c a l p r o p e r t i e s a n d t h e r m a l b e h a v i o r a n d c a n n o t b e classified c o n v e n i e n t l y as c l i n o p t i l o l i t e or h e u l a n d i t e

(46,114).

T h e o r i g i n a l d e s c r i p t i o n of c h n o p t i l o l i t e is of m a t e r i a l f r o m a m y g ­ dales i n a b a s a l t i c r o c k f r o m W y o m i n g rences

of

clinoptilolite have

been

(93,

reported

110).

Subsequent

chiefly f r o m

occur­

sedimentary

rocks, e s p e c i a l l y those o r i g i n a l l y r i c h i n s i l i c i c v i t r i c m a t e r i a l . C l i n o p t i l o ­ Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

lite is the zeolite most often r e p o r t e d f r o m s e d i m e n t a r y rocks i n recent years, a n d i t occurs i n m a n y r o c k types f r o m l a c u s t r i n e , marine environments

(Table III, Figure 5).

fluviatile,

and

A l t h o u g h c l i n o p t i l o l i t e is

most a b u n d a n t i n rocks of C e n o z o i c age, i t has b e e n r e p o r t e d f r o m rocks as o l d as C r e t a c e o u s i n M o n t a n a , S o u t h D a k o t a , a n d W y o m i n g . rences

of c h n o p t i l o l i t e are e s p e c i a l l y c o m m o n

Occur­

i n the w e s t e r n U n i t e d

States. C l i n o p t i l o l i t e is also a c o m m o n a n d , l o c a l l y , a b u n d a n t constituent i n the T e r t i a r y s e d i m e n t a r y rocks of the C o a s t a l P l a i n f r o m southeastern T e x a s to N o r t h C a r o l i n a a n d n o r t h w a r d to w e s t e r n K e n t u c k y ( F i g u r e 5 ) . E r i o n i t e . E r i o n i t e is g e n e r a l l y a l k a l i c a n d has a S i / A l +

Fe

3 +

r a t i o of

a b o u t 2.9-3.7. M o s t a n a l y z e d specimens s h o w a r e l a t i v e l y h i g h content of p o t a s s i u m , a l t h o u g h erionites w i t h s o d i u m i n excess of p o t a s s i u m are r e p o r t e d (122).

T h e o n l y c a l c i c e r i o n i t e r e p o r t e d is a s p e c i m e n

Si/AI + F e

Figure

4.

+ 3

Plot showing the compositional of clinoptilolite and heulandite

variation

Ο Clinoptilolite from sedimentary rocks A Clinoptilolite from volcanic rocks # Heulandite from igneous rocks

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

from

294

MOLECULAR SIEVE ZEOLITES—I

Table III. Locality No., Figure 5

Locality

1

N e a r V a u g h n , Cascade County, Mont.

2

Near Livingston, Park County, Mont. N e a r Preston, F r a n k l i n County, Idaho Near Renton, K i n g County, Wash. N e a r Bearbones M o u n t a i n , L a n e C o u n t y , Ore. N e a r Stein's P i l l a r , Crook C o u n t y , Ore. N e a r Deep Creek, Wheeler C o u n t y , Ore. N e a r the P a i n t e d H i l l s , Wheeler C o u n t y , Ore. Sucker Creek, M a l h e u r C o u n t y , Ore. N e a r Sheaville, M a l h e u r C o u n t y , Ore. Near Rome, Malheur C o u n t y , Ore. E a s t face of Steens M o u n t a i n , H a r n e y C o u n t y , Ore. Near Harney Lake, Harney C o u n t y , Ore. W e s t face of H a r t M o u n t a i n , L a k e C o u n t y , Ore.

a

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrences of

3 4 5 6 7 8 9 10 11 12 13 14 15

N e a r Pedro, Weston County, Wyo.

16

Near Lysite Mountain, Hot Springs C o u n t y , W y o .

yja

Snake R i v e r C a n y o n , L i n c o l n County, Wyo.

18

Beaver R i m , Fremont Wyo.

19

N e a r Cameron Spring on Beaver R i m , Fremont County, Wyo.

20

Near Split Rock, N a t r o n a County, Wyo.

County,

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

295

Deposits

Clinoptilolite in Sedimentary Rocks

References

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence T u f f a n d tuffaceous siltstone a n d sandstone i n the T a f t H i l l , V a u g h n , a n d B o o t l e g g e r M e m b e r s of the B l a c k l e a f F o r m a t i o n of C r e t a c e o u s age Tuffaceous m u d s t o n e , siltstone, a n d sandstone i n the L i v i n g s t o n G r o u p of C r e t a c e o u s age T u f f i n the S a l t L a k e G r o u p of late T e r t i a r y age

(15,

34,

(99,

127)

S a n d s t o n e a n d conglomerate i n u n n a m e d m a r i n e f o r m a t i o n of Oligocène age T u f f a n d l a p i l l i tuff i n the L i t t l e B u t t e V o l c a n i c Series of Oligocène a n d M i o c e n e age T u f f i n the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f i n the lower p a r t of the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f a n d claystone i n the lower p a r t of the J o h n D a y F o r m a t i o n of Oligocène a n d M i o c e n e age T u f f a n d tuffaceous sandstone i n the S u c k e r C r e e k F o r m a t i o n of M i o c e n e age T u f f p r o b a b l y e q u i v a l e n t to p a r t of the S u c k e r C r e e k F o r m a t i o n of M i o c e n e age T u f f a n d tuffaceous sandstone i n u n n a m e d lacustrine f o r m a t i o n of P l i o c e n e age T u f f i n the P i k e C r e e k F o r m a t i o n of Oligocène (?) a n d M i o c e n e age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s i n the D a n f o r t h F o r m a t i o n of Pliocene age T u f f a n d tuffaceous s e d i m e n t a r y r o c k s of late Oligocène or e a r l y M i o c e n e age

(87)

(22)

(85, (150) (31,

(72) (125) (95, 121, 137) (147) (148) (149) (11)

T u f f i n the T e p e e T r a i l F o r m a t i o n of E o c e n e age

(74)

Shale i n the A s p e n F o r m a t i o n of C r e t a c e o u s age

(51)

T u f f i n the W a g o n B e d F o r m a t i o n of E o c e n e age

(7,

Tuffaceous sandstone i n the W h i t e R i v e r F o r m a t i o n of Oligocène age

(144)

age

32,

154) (45, 46)

B e n t o n i t e i n the P i e r r e Shale of C r e t a c e o u s age

T u f f i n the M o o n s t o n e F o r m a t i o n of P l i o c e n e

91)

144)

(74)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

296

MOLECULAR SIEVE ZEOLITES—I

Table Locality No., Figure δ 21 22

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

23 24 25 26 27 28

Locality N e a r Green R i v e r , Sweetwater County, Wyo. N e a r T w i n B u t t e s , Sweetwater County, Wyo. N e a r Chamberlain, Buffalo C o u n t y , S. D . Sheep M o u n t a i n T a b l e , S h a n n o n C o u n t y , S. D . N e a r Vermillion Cliffs, Moffat County, Colo. N e a r Creede, M i n e r a l County, Colo. Near M o u n t a i n Green, Morgan County, Utah N o r t h e r n p a r t of the Markagunt Plateau, Iron County, U t a h

29

Near Elko, Elko County, Nev.

30

Near Carlin, Eureka County, Nev.

31

W e s t flank of t h e Shoshone Range, Lander County, Nev.

32

Reese R i v e r , L a n d e r County, Nev.

33

Jersey V a l l e y , P e r s h i n g County, Nev.

34

Near Lovelock, Pershing County, Nev.

35

Near Eastgate, Churchill County, Nev.

36

Teels M a r s h , M i n e r a l County, Nev.

37

N e a r Silver Peak, Esmeralda County, Nev.

38

N e a r Goldfield, Esmeralda County, Nev.

39

N e v a d a Test Site, N y e County, Nev.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

III.

22.

SHEPPARD

Zeolites in Sedimentary

297

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence

References

T u f f i n t h e T i p t o n Shale M e m b e r of t h e G r e e n R i v e r F o r m a t i o n of E o c e n e age T u f f a n d tuffaceous sandstone i n the B r i d g e r F o r m a t i o n of E o c e n e age B e n t o n i t e i n the S h a r o n S p r i n g s M e m b e r of the P i e r r e Shale of Cretaceous age T u f f i n t h e A r i k a r e e F o r m a t i o n of M i o c e n e age

(38)

T u f f i n the B r i d g e r F o r m a t i o n of E o c e n e age

(39)

T u f f i n t h e W i n d y G u l c h M e m b e r of t h e B a c h e l o r M o u n t a i n R h y o l i t e of Oligocène age T u f f i n t h e S a l t L a k e G r o u p of T e r t i a r y age

(94)

(117) (112) (111)

(117)

Tuffaceous sandstone of Oligocène a n d M i o c e n e (?) age

(8)

O i l shale i n u n n a m e d f o r m a t i o n of Oligocène age

(22)

T u f f i n t h e Safford C a n y o n F o r m a t i o n of 01igocene(?) or M i o c e n e ( ? ) age a n d t h e C a r l i n F o r m a t i o n of P l i o c e n e age

(22,

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age

(23)

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age

(23)

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age

(23)

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late T e r t i a r y age

(117)

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late T e r t i a r y age

(117)

T u f f i n l a c u s t r i n e deposit of Q u a t e r n a r y age

(16, 47, 48)

T u f f i n t h e E s m e r a l d a F o r m a t i o n of M i o c e n e a n d P l i o c e n e age

(82, 83, 100)

Tuffaceous sandstone i n t h e Siebert F o r m a t i o n of M i o c e n e (?) age

(84)

T u f f a n d l a p i l l i tuff of T e r t i a r y age

(20, 36, 59, 60)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

97)

58,

298

MOLECULAR SIEVE ZEOLITES

Table Locality No., Figure δ 40 41

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

42 43 44

45 46 47* 48 49 50 51 52 53

Locality Near Bullfrog Hills, N y e County, Nev. Death Valley, Inyo County, Calif. Lake Tecopa, Inyo County, Calif. Owens L a k e , Inyo County, Calif. M o j a v e D e s e r t , eastern K e r n County and San Bernardino County, Calif. N e a r Branciforte Creek, Santa Cruz County, Calif. N e a r Nipomo, San L u i s Obispo County, Calif. Near Oakview, Ventura County, Calif. N e a r San Pedro, Los Angeles County, Calif. Near Wikieup, Mohave County, Ariz. Near Dome, Y u m a County, Ariz. N e a r Horseshoe R e s e r v o i r , Maricopa County, Ariz. Near Nutrioso, Apache County, Ariz. N e a r M o r e n c i , Greenlee County, Ariz.

54

A l o n g San Simon Creek, Cochise and G r a h a m Counties, A r i z .

55

Near Bayard, Grant County, Ν. M .

56

Near Coy City, Karnes County, Tex.

57

Near Tilden, M c M u l l e n County, Tex.

58

Near M e r i d i a n , Lauderdale County, Miss.

59

Near Nettleboro, Clarke County, Ala.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

1

III.

22.

SHEPPARD

Zeolites in Sedimentary

299

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence

References

T u f f of T e r t i a r y age

(20)

T u f f i n the F u r n a c e C r e e k F o r m a t i o n of P l i o c e n e age T u f f i n l a c u s t r i n e r o c k s of Pleistocene age

(75) (120)

T u f f a n d tuffaceous sediments of Pleistocene age

(47,

T u f f a n d tuffaceous rocks i n n u m e r o u s f o r m a t i o n s of l a t e T e r t i a r y a n d Q u a t e r n a r y age

(2, 70, 118, 119, 123) (37)

Tuffaceous sandstone i n t h e S a n t a M a r g a r i t a F o r m a t i o n of M i o c e n e age T u f f i n the O b i s p o F o r m a t i o n of M i o c e n e age

48)

(11,

B e n t o n i t e i n the M o d e l o F o r m a t i o n of M i o c e n e age D o l o m i t i c sandstone i n the M o n t e r e y F o r m a t i o n of M i o c e n e age T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of P l i o c e n e age B e n t o n i t e of T e r t i a r y ( ? ) age

(69)

T u f f i n the V e r d e F o r m a t i o n of Pliocene(?) or Pleistocene age T u f f a n d sandstone i n u n n a m e d f o r m a t i o n of T e r t i a r y age T u f f a n d l a p i l l i tuff i n u n n a m e d f o r m a t i o n of T e r t i a r y age

(117)

T u f f i n u n n a m e d l a c u s t r i n e f o r m a t i o n of late C e n o z o i c age

138)

(134) (116) (11)

(155) (116) (96,

T u f f i n the S u g a r l u m p T u f f of Oligocène age

(65)

T u f f a n d tuffaceous sandstone i n the J a c k s o n G r o u p of E o c e n e age

(151,

T u f f i n the J a c k s o n G r o u p of E o c e n e age

(25)

T u f f a c e o u s sandstone i n the M e r i d i a n S a n d of E o c e n e age

(153)

Tuffaceous sandstone i n t h e M e r i d i a n S a n d of E o c e n e age

(153)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

107)

152)

300

MOLECULAR SIEVE ZEOLITES

1

Table III. Locality No., Figure 5 60

Near McKenzie, Butler County, A l a . Near Paducah, McCracken County, K y .

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

61

62

a

63

a

64 65 66

Locality

Near Jackson, M a d i s o n County, Tenn. Near Caryville, Washington County, Fla. N e a r Coosawhatchie, Jasper C o u n t y , S. C . C e n t r a l S. C . Near Ε ward, Beaufort County, N . C.

Figure 5. Map showing the occurrences of clinoptilolite in sedimentary rocks in the United States. Data for hcalities are given in Table III.

basalt near M a z e , J a p a n (43). F e r r i c i r o n seems to substitute for a l u m i ­ n u m i n some s e d i m e n t a r y erionites, as w e l l as i n other zeolites f r o m s e d i m e n t a r y rocks. A n analysis of erionite f r o m l a c u s t r i n e tuff near R o m e , O r e g o n (26), suggests that f e r r i c i r o n c a n substitute for as m u c h as 1 5 % of the a l u m i n u m .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

SHEPPARD

Zeolites in Sedimentary

301

Deposits

Continued

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

Occurrence

References

T u f f a n d tuffaceous c l a y stone i n the T a l l a h a t t a F o r m a t i o n of E o c e n e age C l a y s t o n e i n the C l a y t o n (?) F o r m a t i o n of Paleocene age a n d c l a y i n the P o r t e r s C r e e k C l a y of Paleocene age Fossiliferous r o c k of Paleocene age

(98) (30,

(139)

Suwanee L i m e s t o n e of Oligocène age

(139)

C l a y i n the H a w t h o r n F o r m a t i o n of M i o c e n e age a n d the Santee L i m e s t o n e of E o c e n e age M u d s t o n e i n the B l a c k M i n g o F o r m a t i o n of Paleocene a n d E o c e n e age P h o s p h o r i t e i n the P u n g o R i v e r F o r m a t i o n of M i o c e n e age

(55)

a

133)

(54) (14,

101)

Zeolite was identified as heulandite.

A decrease i n the i n d i c e s of r e f r a c t i o n a n d c e l l d i m e n s i o n s of e r i o n i t e c a n be c o r r e l a t e d w i t h a n increase i n the S i / A l + F e

3 +

r a t i o (122).

In-

dices of r e f r a c t i o n s h o w a r a n g e of a b o u t 1.46-1.48, b u t most erionites f r o m s e d i m e n t a r y deposits h a v e i n d i c e s i n the l o w e r p a r t of the range. E r i o n i t e shows a b o u t a 1 % decrease i n c e l l v o l u m e f r o m the most a l u m i nous a n a l y z e d s p e c i m e n to the most siliceous s p e c i m e n . E r i o n i t e was c o n s i d e r e d a n e x t r e m e l y rare m i n e r a l p r i o r to the w o r k of Deffeyes

(22, 23)

a n d Régnier (97),

w h o s h o w e d i t to be a c o m m o n

a u t h i g e n i c zeolite i n the a l t e r e d s i l i c i c tuffs of l a c u s t r i n e deposits

in

n o r t h - c e n t r a l N e v a d a . Since t h e n , erionite has b e e n r e c o g n i z e d i n s i l i c i c b e d d e d tuffs f r o m m a n y w e s t e r n states ( T a b l e I I , F i g u r e 3 ) .

Erionite,

l i k e c h a b a z i t e , has not b e e n r e p o r t e d f r o m s e d i m e n t a r y rocks o l d e r t h a n Eocene.

M o s t occurrences

deposits.

of erionite are i n u p p e r C e n o z o i c l a c u s t r i n e

E x t e n s i v e a n d r e l a t i v e l y p u r e b e d s of erionite o c c u r i n s o u t h -

eastern O r e g o n , southeastern C a l i f o r n i a , a n d n o r t h - c e n t r a l N e v a d a . Mordenite. M o r d e n i t e has b e e n c o n f u s e d w i t h c l i n o p t i l o l i t e or h e u l a n d i t e i n s e d i m e n t a r y rocks because of the s i m i l a r i t y i n c h e m i s t r y a n d i n d i c e s of r e f r a c t i o n (18,

126).

X - r a y diffractometer t e c h n i q u e s , f o r t u -

nately, are a d e q u a t e for p o s i t i v e i d e n t i f i c a t i o n .

Mordenites from

s e d i m e n t a r y rocks s h o w a r a n g e i n S i / A l -f- F e

r a t i o of about 4.3-5.3

3 +

non-

a n d g e n e r a l l y s h o w a n excess of alkalis over a l k a l i n e earths. S o d i u m is g e n e r a l l y g r e a t l y i n excess of p o t a s s i u m .

T h e relatively low potassium

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

302

MOLECULAR SIEVE ZEOLITES

1

content is a b o u t the o n l y c h e m i c a l p a r a m e t e r that distinguishes m o r d e n i t e from clinoptilolite. T h e only reported analyzed mordenite from a sedim e n t a r y r o c k is f r o m a s i l i c i c tuff i n the B a r s t o w F o r m a t i o n of C a l i f o r n i a (123).

T h i s m o r d e n i t e is t y p i c a l l y s o d i c a n d has a S i / A l - j - F e

3 +

ratio

of about 4.7. Indices

of

r e f r a c t i o n for

a b o u t 1.47 to 1.49

(21).

range

from

T h e m o r d e n i t e s f r o m s e d i m e n t a r y rocks

nonsedimentary

mordenites

com-

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

m o n l y h a v e i n d i c e s i n the l o w e r p a r t of this range. M o r d e n i t e was r e c o g n i z e d o n l y r e c e n t l y as a r o c k - f o r m i n g c o n s t i t u ent of s e d i m e n t a r y deposits i n the U n i t e d States. I n 1964, m o r d e n i t e was r e p o r t e d f r o m tuffaceous

rocks of C a l i f o r n i a (118)

and Nevada

(83).

S i n c e t h e n , occurrences of m o r d e n i t e h a v e b e e n r e c o r d e d f r o m C e n o z o i c tuffs i n m a n y of the w e s t e r n states

(Table

II, Figure 3).

Although

m o r d e n i t e occurs i n l a c u s t r i n e rocks, most occurrences are i n rocks f r o m other d e p o s i t i o n a l e n v i r o n m e n t s .

C l i n o p t i l o l i t e a n d o p a l are

commonly

associated w i t h m o r d e n i t e i n the s e d i m e n t a r y deposits. P h i l l i p s i t e . P h i l l i p s i t e shows a w i d e v a r i a t i o n i n S i / A l +

Fe

3 +

ratio

a n d c a t i o n content, a l t h o u g h i t is consistently h i g h i n p o t a s s i u m content. T h e compositions of p h i l l i p s i t e f r o m v a r i o u s r o c k types are r e p r e s e n t e d i n F i g u r e 6.

O n the basis of S i / A l + F e

3 +

r a t i o , the p h i l l i p s i t e s c a n

be

classed i n t o 3 groups that s h o w some o v e r l a p . T h e least siliceous g r o u p is f r o m n o n s e d i m e n t a r y rocks a n d is c h a r a c t e r i z e d b y a S i / A l + ratio of 1.3-2.4. percentage

Fe

3 +

P h i l l i p s i t e s of this g r o u p g e n e r a l l y c o n t a i n a h i g h e r

of a l k a l i n e earths t h a n those of the other 2 g r o u p s ;

some

specimens h a v e a l k a l i n e earths ( c h i e f l y c a l c i u m ) i n excess of alkalis. A n i n t e r m e d i a t e g r o u p has a S i / A l -f- F e mens are i n the range of 2.4-2.8.

3 +

r a t i o of 1.9-2.8, b u t most s p e c i -

T h e s e p h i l l i p s i t e s are f r o m deep-sea

sediments a n d are c h a r a c t e r i s t i c a l l y r i c h i n alkalis. g r o u p has a S i / A l - f F e Si/Al +

Fe

3 +

3 +

r a t i o greater t h a n 3.0.

saline l a c u s t r i n e deposits.

T h e most

siliceous

r a t i o of 2.6-3.4, b u t most specimens h a v e a T h e s e p h i l l i p s i t e s are f r o m tuffs i n

L i k e the m a r i n e p h i l l i p s i t e s , these l a c u s t r i n e

p h i l l i p s i t e s are r i c h i n a l k a l i s ; h o w e v e r , the 2 groups differ i n the p r e dominant alkali. of

M a r i n e p h i l l i p s i t e s g e n e r a l l y h a v e p o t a s s i u m i n excess

s o d i u m , whereas

potassium.

H a y (47)

lacustrine phillipsites have

s o d i u m i n excess

of

has suggested that f e r r i c i r o n m a y substitute for

a b o u t 5 % of the a l u m i n u m i n p h i l l i p s i t e f r o m l a c u s t r i n e deposits. Indices of r e f r a c t i o n for p h i l l i p s i t e range f r o m a b o u t 1.44 to 1.51 a n d seem to v a r y i n v e r s e l y w i t h the S i / A l + F e relatively

aluminous

nonsedimentary

3 +

ratio (47).

p h i l l i p s i t e s are

Indices of the 1.48—1.51

(21);

i n d i c e s of the i n t e r m e d i a t e m a r i n e p h i l l i p s i t e s are 1.48-1.49; a n d i n d i c e s of

the siliceous l a c u s t r i n e p h i l l i p s i t e s are

1.44-1.48.

Phillipsite

from

l a c u s t r i n e s e d i m e n t a r y rocks is c o m m o n l y z o n e d a n d shows a difference

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

Zeolites in Sedimentary

SHEPPARD

1.0

1

303

Deposits

^

i o V

**• ο

°

0.75

+

0.50

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

+

0.25

_L 3

_L 2 Si/AI + F e

Figure

+3

6. Plot showing the composi­ tional variation of phillipsite

Ο Phillipsite from saline lacustrine deposits + Phillipsite from deep-sea deposits # Phillipsite from mafic igneous rocks i n i n d e x of r e f r a c t i o n of as m u c h as 0.02 b e t w e e n the i n t e r i o r a n d m a r g i n a l parts of crystals. P h i l l i p s i t e w a s f o u n d l o n g ago i n deposits o n t h e sea

floor

(89).

S i n c e t h e d i s c o v e r y b y Deffeyes ( 2 2 ) of p h i l l i p s i t e i n l a c u s t r i n e tuffs of N e v a d a , this zeolite has b e e n r e p o r t e d c o m m o n l y as a r o c k - f o r m i n g c o n ­ stituent i n tuffaceous

rocks of the w e s t e r n U n i t e d States

(Table II,

F i g u r e 3 ). P h i l l i p s i t e occurs i n s e d i m e n t a r y rocks t h a t r a n g e i n age f r o m C r e t a c e o u s to H o l o c e n e , b u t i t is e s p e c i a l l y c o m m o n i n l a c u s t r i n e deposits of late C e n o z o i c age, p a r t i c u l a r l y those deposits of s a l i n e , a l k a l i n e lakes. E x t e n s i v e a n d r e l a t i v e l y p u r e b e d s of p h i l l i p s i t e are r e p o r t e d f r o m s o u t h ­ eastern O r e g o n , southeastern C a l i f o r n i a , a n d N e v a d a . Genesis of Zeolites M o s t zeolites i n s e d i m e n t a r y rocks f o r m e d d u r i n g diagenesis b y t h e r e a c t i o n of a l u m i n o s i l i c a t e m a t e r i a l s w i t h t h e p o r e w a t e r .

Silicic vol­

c a n i c glass is t h e a l u m i n o s i l i c a t e m a t e r i a l t h a t m o s t c o m m o n l y as

a

precursor

for

the

zeolites,

although

materials

such

served as

clay

m i n e r a l s , p l a g i o c l a s e , l e u c i t e , a n d n e p h e l i n e also h a v e r e a c t e d l o c a l l y to f o r m zeolites (48).

S o l u t i o n of s i l i c i c glass b y t h e p o r e w a t e r p r o v i d e d

the constituents necessary f o r the f o r m a t i o n of the zeolites.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Deffeyes

304 (22)

MOLECULAR SIEVE ZEOLITES

e m p h a s i z e d that zeolites f o r m e d

d u r i n g diagenesis—not

by

1

de-

v i t r i f i c a t i o n of the glass i n the s o l i d state b u t b y s o l u t i o n of the glass a n d subsequent p r e c i p i t a t i o n of zeolites f r o m the s o l u t i o n . E x c e p t for a n a l c i m e , a l l the zeolites i n s e d i m e n t a r y deposits that h a v e n o t b e e n d e e p l y b u r i e d or e x p o s e d to h y d r o t h e r m a l solutions seem to h a v e f o r m e d d i r e c t l y f r o m v i t r i c m a t r i a l . T h e genesis of a n a l c i m e m a y i n v o l v e a n i n t e r m e d i a t e step, as d e s c r i b e d i n the f o l l o w i n g discussion. E x p e r i m e n t a l w o r k b y others indicates that the a c t i v i t y r a t i o of Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

a l k a l i ions to h y d r o g e n ions a n d the a c t i v i t y of s i l i c a are the m a j o r c h e m i c a l p a r a m e t e r s of the p o r e w a t e r that c o n t r o l w h e t h e r c l a y m i n e r a l s , zeolites, or feldspars w i l l f o r m at c o n d i t i o n s that a p p r o x i m a t e temperatures a n d pressures ( 3 5 , 52, 53).

surface

T h e f o r m a t i o n of zeolites a n d

feldspars is f a v o r e d o v e r c l a y m i n e r a l s b y r e l a t i v e l y h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y ratios a n d b y r e l a t i v e l y h i g h s i l i c a activities. T h e h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o necessary for the f o r m a t i o n of zeolites i n a s i l i c i c v i t r i c tuff or tuffaceous s e d i m e n t c a n b e s i m p l y c h a r a c t e r i s t i c of the o r i g i n a l w a t e r t r a p p e d d u r i n g s e d i m e n t a t i o n i n a saline, a l k a l i n e l a k e . B r i n e of s o d i u m c a r b o n a t e - b i c a r b o n a t e

compo-

s i t i o n seems to h a v e b e e n p a r t i c u l a r l y effective i n the a l t e r a t i o n of s i l i c i c glass to zeolites.

T h e s e b r i n e s c o m m o n l y h a v e a p H of 9 - 1 0

( 63,

64),

w h i c h p r o b a b l y accounts f o r the r e l a t i v e l y h i g h s o l u b i l i t y of t h e glass as w e l l as the r e l a t i v e l y fast rate of s o l u t i o n of the glass (47). of v i t r i c tuffs i n T e e l s M a r s h , N e v . , H a y (48)

F r o m a study

c o n c l u d e d t h a t zeolites i n

t h e u p p e r m o s t tuff f o r m e d i n less t h a n 1000 years. Studies of tuffs d e p o s i t e d i n r e l a t i v e l y y o u n g saline lakes

where

w a t e r analyses are a v a i l a b l e h a v e s h o w n a strong c o r r e l a t i o n b e t w e e n s a l i n i t y a n d the a u t h i g e n i c silicate m i n e r a l o g y

(47,

48).

Tuffaceous

sediments d e p o s i t e d i n fresh lakes c o n t a i n u n a l t e r e d glass or glass altered to c l a y m i n e r a l s , chiefly m o n t m o r i l l o n i t e .

Those

tuffaceous

sediments

d e p o s i t e d i n saline lakes are a l t e r e d a n d n o w c o n t a i n zeolites, p o t a s s i u m f e l d s p a r , a n d searlesite.

The

o c c u r r e n c e of

authigenic feldspar

and

searlesite correlates w i t h waters of the h i g h e s t salinities. O l d e r l a c u s t r i n e deposits that c o n t a i n i n t e r b e d d e d saline m i n e r a l s also s h o w a c o r r e l a t i o n b e t w e e n the i n f e r r e d s a l i n i t y of the d e p o s i t i o n a l e n v i r o n m e n t a n d the a u t h i g e n i c m i n e r a l o g y of tuffaceous sediments. the Pleistocene deposits of L a k e T e c o p a , C a l i f . (120),

In

glass is u n a l t e r e d

i n tuff d e p o s i t e d i n fresh w a t e r near the l a k e shore a n d i n l e t s ; h o w e v e r , the tuffs consist chiefly of p h i l l i p s i t e , c l i n o p t i l o l i t e , a n d e r i o n i t e w h e r e deposited

i n moderately

saline w a t e r a n d of p o t a s s i u m f e l d s p a r

and

searlesite w h e r e d e p o s i t e d i n the h i g h l y saline w a t e r of the c e n t r a l p a r t of the b a s i n . I n d i v i d u a l tuffs s h o w a l a t e r a l g r a d a t i o n i n a b a s i n w a r d d i r e c t i o n of u n a l t e r e d glass to zeolites a n d t h e n to p o t a s s i u m f e l d s p a r w i t h searlesite.

A similar correlation between

salinity a n d authigenic

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

Zeolites in Sedimentary

SHEPPARD

Deposits

305

silicate m i n e r a l o g y has b e e n d e m o n s t r a t e d for M i o c e n e B a r s t o w F o r m a t i o n of

California

Wyoming

(123)

a n d the E o c e n e

G r e e n R i v e r F o r m a t i o n of

(38,48).

P o r e w a t e r i n tuffs a n d tuffaceous sediments of d e p o s i t i o n a l e n v i r o n ments other t h a n saline, a l k a l i n e lakes c a n a t t a i n a h i g h a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o after b u r i a l t h r o u g h s o l u t i o n a n d h y d r o l y s i s of the v i t r i c m a t e r i a l b y subsurface w a t e r . H a y (46) a n d h y d r o l y s i s of r h y o l i t i c a n d d a c i t i c glass b y

proposed solution

subsurface

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

account for the f o r m a t i o n of c l i n o p t i l o l i t e i n tuff a n d tuffaceous

water

to

claystone

i n the l o w e r p a r t of the J o h n D a y F o r m a t i o n i n c e n t r a l O r e g o n .

The

u p p e r p a r t of the f o r m a t i o n contains u n a l t e r e d glass or m o n t m o r i l l o n i t e . T h e subsurface w a t e r , w h i c h o r i g i n a t e d f r o m m e t e o r i c w a t e r , i n c r e a s e d i n p H a n d c o n c e n t r a t i o n of alkalis as i t m o v e d d o w n w a r d t h r o u g h the formation.

Thus, clinoptilolite formed

at the d e p t h i n the f o r m a t i o n

w h e r e the a l k a l i i o n to h y d r o g e n i o n a c t i v i t y r a t i o was highest. I n z e o l i t i c rocks of the J o h n D a y F o r m a t i o n a n d i n s i m i l a r zeolite deposits, m o n t m o r i l l o n i t e p r o b a b l y c r y s t a l l i z e d before the zeolite. T h e e a r l y a l t e r a t i o n of glass to m o n t m o r i l l o n i t e w o u l d p r o b a b l y increase the p H a n d c o n c e n t r a t i o n of alkalis i n the p o r e w a t e r , t h e r e b y p r o v i d i n g a c h e m i c a l e n v i r o n m e n t m o r e f a v o r a b l e for the f o r m a t i o n of zeolites.

H a y (48)

suggested

that this e a r l y a l t e r a t i o n of glass to m o n t m o r i l l o n i t e is a n i m p o r t a n t factor for the subsequent c r y s t a l l i z a t i o n of zeolites i n tuffs d e p o s i t e d i n m a r i n e a n d fresh-water e n v i r o n m e n t s . Z e o l i t e deposits that f o r m e d b y the a b o v e m e c h a n i s m

commonly

s h o w a v e r t i c a l z o n a t i o n of a u t h i g e n i c silicate m i n e r a l s s i m i l a r to that i n the J o h n D a y F o r m a t i o n .

T e r t i a r y tuffs at the N e v a d a T e s t Site i n

s o u t h e r n N e v a d a w e r e a l t e r e d after b u r i a l b y subsurface w a t e r ( 5 9 ) , b u t the a u t h i g e n i c m i n e r a l z o n a t i o n is m o r e c o m p l e x t h a n that i n the J o h n D a y F o r m a t i o n . T h e u p p e r z o n e consists of u n a l t e r e d glass w i t h l o c a l concentrations

of

chabazite

or c l a y m i n e r a l s .

Z e o l i t i c tuff

continues

d o w n w a r d for as m u c h as 6000 feet. A zone r i c h i n c l i n o p t i l o l i t e u n d e r lies the z o n e of u n a l t e r e d glass a n d is s u c c e e d e d d o w n w a r d b y zones r i c h i n m o r d e n i t e a n d a n a l c i m e , respectively. E v e r since the d i s c o v e r y of a n a l c i m e i n tuffaceous rocks, most w o r k ers h a v e a s s u m e d that the a n a l c i m e f o r m e d d i r e c t l y f r o m v i t r i c m a t e r i a l . T h e presence of v i t r o c l a s t i c texture a n d p y r o g e n i c crystals i n some a n a l c i m i c tuffs seemed

sufficient e v i d e n c e ;

h o w e v e r , these c r i t e r i a d o

necessarily p r o v e that the glass a l t e r e d d i r e c t l y to a n a l c i m e .

Hay

not (48)

a n d S h e p p a r d a n d G u d e ( 123 ) c o n c l u d e d f r o m a s t u d y of tuffs i n s a l i n e l a k e deposits that a n a l c i m e c o m m o n l y f o r m e d f r o m a l k a l i c , s i l i c i c zeolite precursors. F o r m a t i o n of a n a l c i m e f r o m c l i n o p t i l o l i t e a n d p h i l l i p s i t e w a s documented

i n tuffs of the M i o c e n e B a r s t o w F o r m a t i o n . R e l i c t fresh

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

306

MOLE CUL AR SIEVE ZEOLITES

1

glass has n o t b e e n c o n f i r m e d i n a n a l c i m i c tuffs f r o m a n y a r e a ; t h u s , there is d o u b t t h a t a n a l c i m e ever has f o r m e d d i r e c t l y f r o m glass. T h e a l k a l i c , s i l i c i c zeolites that o c c u r i n tuffaceous s e d i m e n t a r y rocks w o u l d seem t o b e p a r t i c u l a r l y susceptible to alteration i n the

diagenetic

e n v i r o n m e n t because of t h e i r o p e n structure. C h e m i c a l factors that f a v o r the r e a c t i o n o f e a r l y - f o r m e d a l k a l i c , s i l i c i c zeolites t o a n a l c i m e are a h i g h Na /H +

+

ratio, relatively l o w activity of H 0 , relatively l o w activity of 2

a n d h i g h p H . Studies o f z e o l i t i c tuffs i n saline-lake deposits s u c h

SiOo,

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

as the E o c e n e G r e e n R i v e r F o r m a t i o n (38, 48) a n d the M i o c e n e B a r s t o w F o r m a t i o n (123) suggest t h a t a m o d e r a t e l y to h i g h l y saline p o r e w a t e r facilitates t h e conversion later diagenesis.

o f a l k a l i c , s i l i c i c zeolites to a n a l c i m e

during

A r e l a t i v e l y h i g h s a l i n i t y w o u l d r e d u c e the a c t i v i t y of

H o O a n d favor the f o r m a t i o n of a m i n e r a l less h y d r o u s t h a n c l i n o p t i l o l i t e or p h i l l i p s i t e ( 4 8 , 1 2 3 ) . A n a l c i m e i n some nontuffaceous saline-lake deposits p r o b a b l y f o r m e d b y d i r e c t p r e c i p i t a t i o n f r o m the l a k e w a t e r . T h e a n a l c i m e i n the T r i a s s i c L o c k a t o n g F o r m a t i o n either p r e c i p i t a t e d d i r e c t l y o r f o r m e d a t a n e a r l y stage of diagenesis f r o m a c o l l o i d a l p r e c u r s o r o r a l u m i n o s i l i c a t e m i n e r a l 145). A t L a k e N a t r o n , K e n y a , a n a l c i m e i n Q u a t e r n a r y

(141,

ceous clays w a s p r e c i p i t a t e d f r o m a s o d i u m carbonate

brine

nontuffa(48). A

s o d i u m a l u m i n o s i l i c a t e g e l was r e c e n t l y f o u n d at L a k e M a g a d i , K e n y a A n a l c i m e c o u l d f o r m d u r i n g diagenesis b y c r y s t a l l i z a t i o n o f s u c h

(28).

a gel. A n a l c i m e i n other nontuff aceous lacustrine rocks a p p a r e n t l y f o r m e d d u r i n g diagenesis b y r e a c t i o n of plagioclase, m o n t m o r i l l o n i t e , o r k a o l i n i t e w i t h the p o r e w a t e r (49, 92). Acknowledgment G r a t e f u l a p p r e c i a t i o n is expressed

to those colleagues i n t h e U . S .

G e o l o g i c a l S u r v e y w h o p r o v i d e d u n p u b l i s h e d d a t a . Β. M . M a d s e n a n d J . D . V i n e c r i t i c a l l y r e a d the m a n u s c r i p t a n d m a d e h e l p f u l

suggestions.

Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9)

Alietti, Andrea, Petrog. Acta 1967, 13, 119-138. Ames, L. L., Jr., Sand, L. B., Goldich, S. S., Econ. Geol. 1958, 53, 22-37. Anderson, J. J., Geol. Soc. Am. Spec. Papers 1969, 121, 586. Baldar, Ν. Α., Whittig, L. D., Soil Sci. Soc. Am. Proc. 1968, 32, No. 2, 235-238. Bellis, W. H., Mankin, C. J., "Clays and Clay Minerals—Proc. Clay Min­ erals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 191, Pergamon, New York, 1967. Blackmon, P. D., Oral communication, 1966. Boles, J. R., M.S. thesis, University of Wyoming, Laramie, Wyo., 1968. Bradley, W. H., Science 1928, 67, 73-74. Bradley, W. H., U.S. Geol. Surv. Profess. Papers 1929, 158-A, 1-7.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

22.

(10) (11) (12) (13) (14) (15)

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53)

SHEPPARD

Zeolites

in

Sedimentary

Deposits

307

Bradley, W. H., U.S. Geol. Surv. Profess. Papers 1964, 496-A, 86 pp. Bramlette, M. N., Posnjak, Eugen, Am. Mineralogist 1933, 18, 167-171. Brobst, D. Α., Oral communication, 1969. Cashion, W. B., U.S. Geol. Surv. Profess. Papers 1967, 548, 48 pp. Cathcart, J. B., Proc. Forum Geol. Ind. Minerals, 4th, Austin, Tex., 1968, L. F. Brown, Jr., Ed., p. 23-34. Cobban, W. Α., Billings Geol. Soc. Guidebook Ann. Field Conf., 6th, 1955, p. 107-119. Cook, Η. E., Hay, R. L., Geol. Soc. Am. Spec. Papers 1965, 82, 31-32. Coombs, D. S., Trans. Roy. Soc. New Zealand 1954, 82, Pt. 1, 65-109. Coombs, D. S., Ellis, A. J., Fyfe, W. S., Taylor, A. M., Geochim. Cosmochim. Acta 1959, 17, 53-107. Coombs, D. S., Whetten, J. T., Geol. Soc. Am. Bull. 1967, 78, 269-282. Cornwall, H. R., "Petrologic Studies A Volume in Honor of A. F. Buddington," A. E. J. Engel, H. L. James, and B. F. Leonard, Eds., p. 357-371, Geological Society of America, New York, 1962. Deer, W. Α., Howie, R. Α., Zussman, J., "Rock-Forming Minerals," Vol. 4, Wiley, New York, 1963. Deffeyes, K. S., J. Sediment. Petrol. 1959, 29, 602-609. Deffeyes, K. S., Am. Mineralogist 1959, 44, 501-509. Eakle, A. S., Am. J. Sci.1898, 6, 66-68. Eargle, D. H., U.S. Geol. Surv. Bull. 1251-D, 1968, 25pp. Eberly, P. E., Jr., Am. Mineralogist 1964, 49, p. 30-40. Erd, R. C., Morgan, Vincent, Clark, J. R., U.S. Geol. Surv. Profess. Papers 1961, 424-C, C294-C297. Eugster, H. P., Jones, B. F., Science 1968, 161, 160-163. Fenner, C. N., J. Geol. 1936, 44, 225-315. Finch, W. I., U.S. Geol. Surv. Geol. Quad. Map GQ-557, 1966. Fisher, R. V., Ore Bin 1962, 24, 197-203. Fisher, R. V., Ore Bin 1963, 25, 185-197. Foster, W. D., Feicht, F. L., Am. Mineralogist 1946, 31, 357-364. Fox, R. D., Montana Bur. Mines Geol. Bull. 1966, 52, 64 pp. Garrels, R. M., Christ, C. L., "Solutions, Minerals, and Equilibria," Harper and Row, New York, 450 pp., 1965. Gibbons, A. B., Hinrichs, Ε. N., Botinelly, Theodore, U.S. Geol. Surv. Profess. Papers 1960, 400-B, B473-B475. Gilbert, C. M., McAndrews, M. G., J. Sediment. Petrol. 1948, 18, 91-99. Goodwin, J. H., Surdam, R. C., Science 1967, 157, 307-308. Gude, A. J., III, Oral communication, 1966. Gude, A. J., III, Sheppard, R. Α., Am. Mineralogist 1966, 51, 909-915. Gulbrandsen, R. Α., Cressman, E. R., J. Geol. 1960, 68, 458-464. Hall, C. Α., Turner, D. L., Surdam, R. C., Geol. Soc. Am. Bull. 1966, 77, 443-445. Harada, Kazuo, Iwamoto, Shigeki, Kihara, Kuniaki, Am. Mineralogist 1967, 52, 1785-1794. Hardie, L. Α., Geochim. Cosmochim. Acta 1968, 32, 1279-1301. Hay, R. L., "Petrologic Studies—A Volume in Honor of A. F. Buddington," A. E. J. Engel, H. L. James, B. F. Leonard, Eds., p. 191-216, Geological Society of America, New York, 1962. Hay, R. L., Calif. Univ. Pubs. Geol. Sci.1963, 42, No. 5, 199-262. Hay, R. L., Am. Mineralogist 1964, 49, 1366-1387. Hay, R. L., Geol. Soc. Am. Spec. Papers 1966, 85, 130 pp. Hay, R. L., Moiola, R. J., Sedimentology 1963, 2, No. 4, 312-332. Heady, Η. H., Am. Mineralogist 1952, 37, 804-811. Heinrich, E. W., Am. Mineralogist 1963, 48, 1172-1174. Hemley, J. J., Am. J. Sci. 1959, 257, 241-270. Hemley, J. J., Geol. Soc. Am. Spec. Papers 1962, 68, 196.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

308

MOLECULAR SIEVE ZEOLITES—I

(54) Heron, S. D., Jr., S. C. Develop. Board Div. Geology Geol. Notes, 1969, 13, No. 1, 27-41. (55) Heron, S. D., Jr., Johnson, H. S., Jr., Southeastern Geol. 1966, 7, No. 2, 51-63. (56) Hey, M . H., Bannister, F. Α., Mineral. Mag. 1934, 23, 556-559. (57) High, L. R., Jr., Picard, M . D., J. Sediment. Petrol. 1965, 35, 49-70. (58) Hoover, D. L., Geol. Soc. Am. Spec. Papers 1966, 87, 286-287. (59) Hoover, D. L., Geol. Soc. Am. Mem. 1968, 110, 275-284. (60) Hoover, D. L., Shepard, A. O., Am. Mineralogist 1965, 50, 287. (61) Iijima, Azuma, Hay, R. L., Am. Mineralogist 1968, 53, 184-200. (62) Jones, B. F., U.S. Geol. Surv. Profess. Papers 1965, 502-A, 56 pp. [1966]. (63) Jones, B. F., "Geology, Geochemistry, Mining," J. L. Rau, Ed., p. 181200, Northern Ohio Geological Society, Cleveland, 1966. (64) Jones, B. F., Rettig, S. L., Eugster, H. P., Science 1967, 158, 1310-1314. (65) Jones, W. R., Hernon, R. M., Moore, S. L., U.S. Geol. Surv. Profess. Papers 1967, 555, 144 pp. (66) Keller, W. D., J. Sediment. Petrol. 1952, 22, 70-82. (67) Keller, W. D., J. Sediment. Petrol. 1953, 23, 10-12. (68) Keller, W. D., U.S. Geol. Surv. Bull. 1150, 1962, 90 pp. (69) Kerr, P. F., Econ. Geol. 1931, 26, 153-168. (70) Kerr, P. F., Cameron, E. N., Am. Mineralogist 1936, 21, 230-237. (71) Kirov, G. N., Sofia Univ. Annuaire, Fac. Geologie et Geographie 1965, 60, 193-200. (72) Kittleman, L. R., Green, A. R., Hagood, A. R., Johnson, A. M., McMurray, J. M., Russell, R. G., Weeden, D. Α., Oregon Univ. Mus. Nat. Hist. Bull. 1965, 1, 45 pp. (73) Lasky, S. G., Webber, B. N., U.S. Geol. Surv. Bull. 961, 1949, 86 pp. (74) Love, J. D., Written communication, 1964. (75) McAllister, J. F., Written communication, 1965. (76) Mason, B. H., Sand, L. B., Am. Mineralogist 1960, 45, 341-350. (77) Merritt, C. Α., Okla. Geol. Surv. Bull. 1958, 76, 70 pp. (78) Merritt, C. Α., Ham, W. E., Am. Assoc. Petrol. Geologists Bull. 1941, 25, 287-299. (79) Milton, Charles, Wash. Acad. Sci. J. 1936, 26, No. 9, 386. (80) Milton, Charles, Chao, E. C-T., Fahey, J. J., Mrose, M..E., Rept. Intern. Geol. Congr. 21st 1960, Pt. 21, 171-184. (81) Minato, Hideo, Takano, Yukio, Nendo Kagaku 1964, 4, 12-22. (82) Moiola, R. J., Geol. Soc. Am. Spec. Papers 1964, 76, 116-117. (83) Moiola, R. J., Am. Mineralogist 1964, 49, 1472-1474. (84) Moiola, R. J., Written communication, 1964. (85) Moore, J. G., Peck, D. L., J. Geol. 1962, 70, 182-193. (86) Moores, Ε. M., J. Geol. 1968, 76, 88-98. (87) Mullineaux, D. R., Oral communication, 1969. (88) Mumpton, F. Α., Am. Mineralogist 1960, 45, 351-369. (89) Murray, John, Renard, A. F., "Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76," Edinburgh, Neill and Co., 520 pp., 1891. (90) Neal, J. T., Langer, A. M., Kerr, P. F., Geol. Soc. Am. Bull. 1968, 79, 69-90. (91) Peck, D. L., Griggs, A. B., Schlicker, H. G., Wells, F. G., Dole, H. M., U.S. Geol. Surv. Profess. Papers 1964, 449, 56 pp. (92) Pipkin, B. W., Am. Assoc. Petrol. Geologists Bull. 1967, 51, 478. (93) Pirsson, L. V., Am. J. Sci. 1890, 40, 232-237. (94) Ratte, J. C., Steven, Τ. Α., U.S. Geol. Surv. Profess. Papers 1967, 524-H, 58 pp. (95) Regis, A. J., Sand, L. B., Am. Mineralogist 1966, 51, 270.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

22.

SHEPPARD

Zeolites

in

Sedimentary

Deposits

309

(96) Regis, A. J., Sand, L. B., "Clays and Clay Minerals—Proc. Clay Min­ erals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 193, Pergamon, New York, 1967. (97) Regnier, J. P. M., Geol. Soc. Am. Bull.1960,71, 1189-1210. (98) Reynolds, W. R., "Facies Changes in the Alabama Tertiary—Alabama Geol. Soc. Guidebook, 4th Ann. Field Trip," C. W. Copeland, Ed., p. 26-37, Alabama Geological Society, 1966. (99) Roberts, A. E., U.S. Geol. Surv. Profess. Papers 1963, 475-B, B86-B92. (100) Robinson, P. T., J. Sediment. Petrol. 1966, 36, 1007-1015. (101) Rooney, T. P., Kerr, P. F., Science 1964, 144, 1453. (102) Ross, C. S., Am. Mineralogist 1928, 13, 195-197. (103) Ross, C. S., Am. Mineralogist 1941, 26, 627-629. (104) Rozendal, Roger, Proc. S. D. Acad. Sci., 1956, 1957, 35, 39-41. (105) Saha, Prasenjit, Am. Mineralogist 1959, 44, 300-313. (106) Saha, Prasenjit, Am. Mineralogist 1961, 46, 859-884. (107) Sand, L. B., Regis, A. J., Geol. Soc. Am. Spec. Papers 1966, 87, 145-146. (108) Sand, L. B., Regis, A. J., Geol. Soc. Am. Spec. Papers 1968, 101, 189. (109) Santos, E. S., Oral communication, 1969. (110) Schaller, W. T., Am. Mineralogist 1932, 17, 128-134. (111) Schultz, L. G , U.S. Geol. Surv. Open-File Kept. 1961, 60 pp. (112) Schultz, L. G , "Clays and Clay Minerals—Proc. Natl. Conf. Clays and Clay Minerals, 11th, Ottawa, 1962, W. F. Bradley, Ed., p. 169-177, Macmillan, New York, 1963. (113) Shawe, D. R., U.S. Geol. Surv. Profess. Papers 1968, 576-B, 34 pp. (114) Shepard, A. O., U.S. Geol. Surv. Profess. Papers 1961, 424-C, C320C323. (115) Shepard, A. O., Starkey, H. C., U.S. Geol. Surv. Profess. Papers 1964, 475-D, D89-D92. (116) Sheppard, R. Α., "Mineral and Water Resources of Arizona," p. 464-467, U.S. 90th Congr., 2d sess., Comm. on Interior and Insular Affairs, Comm. Print, 1969. (117) Sheppard, R. Α., Unpublished data. (118) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess Papers 1964, 501-C,C114-C116. (119) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1965, 525-D, D44-D47. (120) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1968, 597, 38 pp. (121) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1969, 650-D, D69-D74. (122) Sheppard, R. Α., Gude, A. J., III, Am. Mineralogist 1969, 54, 875-886. (123) Sheppard, R. Α., Gude, A. J., III, U.S. Geol. Surv. Profess. Papers 1969, 634, 35 pp. (124) Sheppard, R. Α., Gude, A. J., III, Munson, E. L., Am. Mineralogist 1965, 50, 244-249. (125) Sheppard, R. Α., Walker, G. W., "Mineral and Water Resources of Oregon," p. 268-271, U.S. 90th Congr., 2d sess., Comm. on Interior and Insular Affairs, Comm. Print, 1969. (126) Shumenko, S.I.,Dokl. Akad. Nauk SSSR 1962, 144, 1347-1350. (127) Sims, J. D., Geol. Soc. Am. Spec. Papers 1969, 121, 636-637. (128) Slaughter, Maynard, Earley, J. W., Geol. Soc. Am. Spec. Papers 1965, 83, 116 pp. (129) Smith, G. I., Almond, Hy, Sawyer, D. L., Jr., Am. Mineralogist 1958, 43, 1068-1078. (130) Smith, G. I., Haines, D. V., U.S. Geol. Surv. Bull. 1181-P, 1964, 58 pp. (131) Smith, J. W., Am. Assoc. Petrol. Geologists Bull. 1963, 47, 804-813. (132) Smith, J. W., Milton, Charles, Econ. Geol. 1966, 61, 1029-1042.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch022

310

MOLECULAR SIEVE ZEOLITES-1

(133) Sohn, I. G., Herrick, S. M., Lambert, T. W., U.S. Geol. Surv. Profess. Papers 1961, 424-B B227—B228 (134) Spotts, J. H., Silverman, S. R., Am. Mineralogist 1966, 51, 1144-1155. (135) Staples, L. W., Gard, J. Α., Mineral. Mag. 1959, 32, 261-281. (136) Steiner, Alfred, Econ. Geol. 1953, 48, 1-13. (137) Studer, H. P., "Clays and Clay Minerals—Proc. Clay Minerals Conf., 15th, Pittsburgh, Pa., 1966," S. W. Bailey, Ed., p. 187, Pergamon, New York, 1967. (138) Surdam, R. C., Hall, C. Α., Geol. Soc. Am. Spec. Papers 1968, 101, 338. (139) Switzer, G. S., Boucot, A. J., J. Paleontol. 1955, 29, No. 3, p. 525-533. (140) Tourtelot, Η. Α., U.S. Geol. Surv. Oil Gas Inv. Prelim. Chart 22, 1946. (141) Van Houten, F. B., J. Geol. 1960, 68, 666-669. (142) Van Houten, F. B., Am. J. Sci. 1962, 260, 561-576. (143) Van Houten, F. B., Kan. Geol. Surv. Bull. 169, 1964, 2, 497-531. (144) Van Houten, F. B., U.S. Geol. Surv. Bull. 1164, 1964, 99 pp. (145) Van Houten, F. B., Am. J. Sci. 1965, 263, 825-863. (146) Van Loenen, R. E., Written communication, 1968. (147) Walker, G. W., Repenning, C. Α., U.S. Geol. Surv. Misc. Geol. Inv. Map 1-446, 1965. (148) Walker, G. W., Swanson, D. Α., U.S. Geol. Surv. Bull. 1260-M, 1968, 16 pp. (149) Walker, G. W., Swanson, D. Α., U.S. Geol. Surv. Bull. 1260-L, 1968, 17 pp. (150) Waters, A. C., Ore Bin 1966, 28, 137-144. (151) Weeks, A. D., Eargle, D. H., "Clays and Clay Minerals—Proc. Natl. Conf. Clays and Clay Minerals, 10th, 1961, Ada Swineford, Ed., p. 23-41, Macmillan, New York, 1963. (152) Weeks, A. D., Levin, Betsy, Bowen, R. J., Geol. Soc. Am. Bull. 1958, 69, 1659. (153) Wermund, E. G , Moiola, R. J., J. Sediment. Petrol. 1966, 36, 248-253. (154) Wilcox, R. E., Fisher, R. V., U.S. Geol. Surv. Geol. Quad. Map GQ-541, 1966. (155) Wrucke, C. T., U.S. Geol. Surv. Bull. 1121-H, 1961, 26 pp. February 4, 1970. Publication authorized by the Director, U. S. Geological Survey.

RECEIVED

Discussion L . B. Sand ( W o r c e s t e r P o l y t e c h n i c Institute, W o r c e s t e r , M a s s . 01609) : P l e a s e define a u t h i g e n i c as u s e d r e l e v a n t to the o r i g i n o f zeolites i n these deposits. R. A . Sheppard: A u t h i g e n i c refers to those m i n e r a l s that c r y s t a l l i z e d i n s e d i m e n t a r y rocks after d e p o s i t i o n of t h e o r i g i n a l d e t r i t a l grains. G e n ­ e r a l l y , t h e zeolites c r y s t a l l i z e d after b u r i a l of t h e e n c l o s i n g rock. T h e d e p t h o f b u r i a l p r o b a b l y r a n g e d f r o m m i l l i m e t e r s to several t h o u s a n d feet.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.