A General Synthetic Route to Polycyclic Aromatic ... - ACS Publications

Mar 2, 2018 - Carbon nanotube net could extend battery lifetimes. As scientists try to boost the lifetime and capacity of lithium-ion batteries, they'...
0 downloads 9 Views 793KB Size
Subscriber access provided by Kaohsiung Medical University

Article

A General Synthetic Route to Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed Annulation Reaction Kazutaka Shoyama, Magnus Mahl, Sabine Seifert, and Frank Würthner J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00301 • Publication Date (Web): 02 Mar 2018 Downloaded from http://pubs.acs.org on March 2, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

A General Synthetic Route to Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed Annulation Reaction Kazutaka Shoyama,† Magnus Mahl,† Sabine Seifert,† and Frank Würthner*,†,‡ †

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany



Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany *

E-mail: [email protected]

ABSTRACT: Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed ring annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products and thus 1chloronaphthalene as solvent afforded the highest yield, which we attribute to a template effect due to structural resemblance to the coupling components. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowlshaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.

INTRODUCTION Bottom-up synthetic methods for polycyclic aromatic hydrocarbons (PAHs) have contributed to the development of chemistry and many fields of materials science.1,2 Not only pure hydrocarbon materials, but also heteroatom-doped π-scaffolds have been developed 3 over recent years in virtue of novel 1 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 25

synthetic methods.4,5,6,7 Among those, polycyclic aromatic dicarboximides (PADIs) are a particularly valued class of functional materials.8,9,10,11,12 They are used as n-type semiconductor materials in organic solar cells, light emitting diodes, and transistors, 13 , 14 , 15 , 16 and are employed as building blocks of supramolecular structures and liquid crystals as well.10 Surprisingly, most of the reported PADIs derive from rylene-based scaffolds or their oligomers.17,18,19 This is because the synthesis of PADIs has been conventionally achieved by imidization of the corresponding dicarboxylic acid anhydride. It is prerequisite in this conventional synthetic approach that the desired π-conjugated scaffold should be built prior to imidization reaction. Preparation of such dicarboxylic acid anhydrides often requires multistep synthesis and/or intensive search for an appropriate synthetic route.20,21,22,23 An alternative method that can potentially afford a wide range of PADIs is a convergent approach where a small and readily available PADI, such as a naphthalene dicarboximide, and a polycyclic aromatic hydrocarbon (PAH) are annulated to form a larger PADI. We envisioned that such synthetic approach would be enabled by palladium (Pd)-catalyzed C–C bond formation cascade reaction and afford PADIs with various π-conjugated scaffolds. In this context, we have communicated examples of this synthetic approach for the first time in 201624,25 using dibromonaphthalene dicarboximide and pyrene boronic esters as coupling components. Since then this method has been successfully applied to synthesize bowl-shaped PADIs26 and rylene-based PADIs,27 however, in most cases with unsatisfactory product yields. Very recently, we have shown that the Pd-catalyzed ring-annulation reaction proceeds via a Heck-type reaction mechanism when affording six-membered ring annulated products and thereby limiting substrate scope to aryl boronic esters with significant double bond character.28 These drawbacks motivated us to develop a more general synthetic route to PADIs, aiming at expanding the substrate scope and improving product yields. Here we report generalized reaction conditions for palladium-catalyzed annulation of dibromonaphthalene dicarboximides and PAH boronic acid (pinacol)esters by Suzuki–Miyaura crosscoupling and direct C–H arylation cascade. We systematically optimized reaction conditions and found 2 ACS Paragon Plus Environment

Page 3 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

that other than prerequisite ligand optimization the use of 1-chloronaphthalene as solvent greatly improved the yields of desired PADIs. This method could also be applied for the first time to heteroaromatic boronic esters such as benzothiophene and quinoline. We anticipate that the here reported optimized method would be most useful for developing novel PADIs with various πconjugated scaffolds and imide substituents that might be of interest for application in organic electronic devices and supramolecular assemblies.

RESULTS AND DISCUSSIONS Studies on optimization of Pd-catalyzed annulation reaction. We have optimized the Pdcatalyzed ring-annulation reaction for the synthesis of PADIs by using dibromonaphthalene dicarboximide 2 and naphthalene-1-boronic acid (pinacol)ester 1a as model coupling components, and systematic variation of reaction conditions (Table 1). After screening of key parameters, the reaction using [Pd2(dba)3]·CHCl3 as palladium(0) source, PCy3·HBF4 as phosphine ligand, Cs2CO3 as base, and 1-chloronaphthalene as solvent at 160 °C afforded ring-annulated product 3a in a high isolated yield of 88% (entry 11). In the screening of ligand, the best result was obtained with PCy3·HBF4 (entry 6). The concentration dependence was examined, which revealed that a lower concentration leads to a higher yield while higher concentration lowers the yield due to two-fold Suzuki-Miyaura cross-coupling reaction (entries 6–8). Additives that facilitate Heck-type reaction29 did not afford higher yields (entries 9, 10). Most remarkably, the use of 1-chloronaphthalene in place of o-dichlorobenzene as a solvent dramatically increased the yield (entries 4 and 11). Such a phenomenon was also observed for the annulation of 1-bromonaphthalene to fullerene.30 We assume that good solubility of aromatic substrates as well as reaction intermediates in 1-chloronaphthalene may contribute to a higher yield. 31 Interestingly, the catalysis remained active even at three times lower substrate concentration thereby lowering catalyst concentration as well (entry 12). This is an advantage when applying this reaction to 3 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 25

two- or multi-fold annulation, since in such cases lower concentrations are required to suppress undesired side reactions such as polymerization. Addition of water turned out to be ineffective to this reaction (entry 13). The optimized reaction conditions (entry 11) were then applied to explore the scope of this convergent method for the synthesis of a broad series of PADIs.

Table 1. Investigation of the key parameters for the optimization of palladium-catalyzed annulation reaction of dibromonaphthalene dicarboximide 2 and boronic ester 1.a

entry

ligand

additive

solvent

conc. (M)

yield (%)b

1

SPhos



o-DCB

0.03

350 °C. 1H NMR (400 MHz, CDCl3):  8.77 (d, J = 8.0 Hz, 1H), 8.74 (s, 1H), 8.70–8.65 (m, 3H), 8.58 (d, J = 8.2 Hz, 1H), 8.56 (d, J = 7.3 Hz, 1H), 8.48 (d, J = 8.2 Hz, 1H), 8.03 (dd, J = 7.8, 1.4 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.77–7.73 (m, 1H), 7.71–7.67 (m, 1 H), 7.49 (t, J = 7.8 Hz, 1H), 7.36 (d, J = 7.8 Hz, 2H), 2.80 (sep, J = 6.9 Hz, 2H), 1.20 (d, J = 6.9 Hz, 6 H), 1.20 (d, J = 6.9 Hz, 6 H). 13C NMR (100 MHz, CDCl3):  164.20, 164.17, 145.8, 137.8, 137.6, 132.4, 132.0, 131.9, 131.4, 131.22, 131.19, 130.6, 130.0, 129.6, 129.4, 128.8, 127.9, 127.6, 127.3, 126.80, 126.78, 125.9, 125.3, 124.2, 123.8, 123.0, 121.14, 121.12, 120.53, 120.46, 29.3, 24.2. TOF MS (MALDI+): 531.1 (M+). HRMS (ESI+) Calcd for C38H30NO2+ [M+H]+: 532.2271. Found: 532.2267.

17 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 25

N-(2,6-Diisopropylphenyl)naphtho[8,1,2-bcd]perylene-3,4-dicarboximide

(3c).25

Silica-gel

column chromatography (hexane/dichloromethane gradient = 1:2 to 0:1). Yield: 21.6 mg (97%), purple solid. Mp: > 350 °C. 1H NMR (400 MHz, CDCl3):  9.09 (s, 1H), 8.87 (d, J = 8.4 Hz, 1H), 8.73 (m, 3H), 8.58 (d, J = 8.2 Hz, 1H), 8.32 (t, J = 8.2 Hz, 2H), 8.26 (d, J = 7.4 Hz, 1H), 8.14 (m, 2H), 8.06 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.7 Hz, 2H), 2.82 (sep, J = 6.8Hz, 2H), 1.21 (d, J = 6.8 Hz, 12H).

13

C NMR (100 MHz, CDCl3):  164.2, 145.9, 138.1, 137.6, 132.8, 132.5, 131.8, 131.5,

131.3, 131.1, 130.9, 129.6, 128.7, 128.4, 128.0, 127.8, 127.7, 127.3, 127.1, 126.8, 126.4, 126.0, 125.2, 125.0, 124.3, 124.2, 122.4, 121.3, 120.8, 120.7, 120.5, 29.3, 24.2. TOF MS (MALDI+): 555.2 (M+). HRMS (ESI+) Calcd for C40H29NO2+ [M+]: 555.2198. Found: 555.2189. N-(2,6-Diisopropylphenyl)benzo[a]perylene-1,14-dicarboximide

(3d).

Silica-gel

column

chromatography (hexane/dichloromethane = 1:3). Yield: 10.6 mg (50%), purple solid. Mp: 344–345 °C. 1

H NMR (400 MHz, CDCl3):  8.92 (d, J = 8.8 Hz, 1H), 8.73 (d, J = 8.0 Hz, 1H), 8.72 (d, J = 8.1 Hz,

1H), 8.61 (d, J = 8.0 Hz, 1H), 8.56–8.50 (m, 3H), 8.15 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.71 (dd, J = 8.3, 7.4 Hz, 1H), 7.66 (dd, J = 8.8, 6.6 Hz, 1H), 7.59 (dd, J = 8.2, 6.6 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.36 (d, J = 7.7 Hz, 2H), 2.81 (sep, J = 6.8Hz, 2H), 1.21 (d, J = 6.8 Hz, 12H).

13

C NMR

(100 MHz, CDCl3):  164.2, 164.0, 145.7, 137.5, 137.1, 133.6, 131.5, 131.4, 131.1, 131.02, 130.97, 130.6, 130.4, 130.3, 129.5, 129.4, 129.3, 128.7, 128.3, 127.5, 127.0, 126.4, 126.3, 126.15, 126.09, 124.8, 124.0, 120.7, 120.4, 120.1, 29.1, 24.0. TOF MS (MALDI+): 531.2 (M+). HRMS (ESI+) Calcd for C38H29NNaO2+ [M+Na]+: 554.2100. Found: 554.2091. N-(2,6-Diisopropylphenyl)terrylene-3,4-dicarboximide (3e). For this compound, a modified purification procedure was used. After cooling to room temperature, hexane (1.2 mL) was added and the mixture was passed through a pad of silica-gel using hexane/dichloromethane mixture (3:1) as eluent to remove 1-chloronaphthalene and then dichloromethane/acetone mixture (9:1) to collect fractions containing the product. The crude product was further purified by silica-gel column chromatography 18 ACS Paragon Plus Environment

Page 19 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(dichloromethane/acetone gradient = 100:0 to 99:1). The residue was washed with acetone. Yield: 21.9 mg (90%), purple solid. Analytical data are in accordance with those reported in literature.27 N-(2,6-Diisopropylphenyl)phenaleno[1,2,3-bc]coronene-10,11-dicarboximide (3f). For this compound, a modified purification procedure was used. After cooling to room temperature, hexane (1.2 mL) was added and the mixture was passed through a pad of silica-gel using hexane/dichloromethane mixture (3:1) as eluent to remove 1-chloronaphthalene and then dichloromethane/acetone mixture (9:1) to collect fractions containing the product. The crude product was washed with methanol. Yield: 20.6 mg (79%), purple solid. Mp: > 350 °C. 1H NMR (600 MHz, 1,1,2,2-tetrachloroethane-d2, 393 K):  9.81 (s, 2H), 9.05–9.00 (m, 4H), 8.99–8.92 (m, 6H), 8.86 (d, J = 7.9 Hz, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H), 2.91 (sep, J = 6.8 Hz, 2H), 1.29 (d, J = 6.8 Hz, 12H).

13

C NMR could not be

recorded due to poor solubility. TOF MS (MALDI+): 653.1 (M+). HRMS (ESI+) Calcd for C48H31NNaO2+ [M+Na]+: 676.2247. Found: 676.2256. N-(2,6-Diisopropylphenyl)phenaleno[1,2,3-cd][1]benzothiophene-8,9-dicarboximide Reaction

temperature:

120

°C.

Reaction

time:

6

h.

Silica-gel

column

(3g).

chromatography

(hexane/dichloromethane = 1:1). Yield: 18.8 mg (97%), orange solid. Mp: > 350 °C. 1H NMR (400 MHz, CDCl3):  8.68 (d, J = 7.9 Hz, 1H), 8.65 (d, J = 7.8 Hz, 1H), 8.39 (d, J = 7.9 Hz, 1H), 8.23–8.17 (m, 3H), 7.93 (dd, J = 8.0, 0.5 Hz, 1H), 7.60 (dd, J = 7.7, 8.0 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 2.76 (sep, J = 6.9 Hz, 2H), 1.18 (d, J = 6.9 Hz, 12H). 13C NMR (100 MHz, CDCl3):  164.0 (2C), 145.6, 139.8, 137.3, 135.5, 134.8, 132.3, 132.0, 131.04, 131.01, 130.9, 129.4, 128.9, 127.6, 126.9, 125.0, 124.2, 124.0, 121.3, 120.8, 120.7, 120.1, 120.0. 29.1, 24.0. TOF MS (MALDI+): 487.1 (M+). HRMS (ESI+) Calcd for C32H25NNaO2S+ [M+Na]+: 510.1498. Found: 510.1498. N-(2,6-Diisopropylphenyl)phenaleno[1,2,3-de]quinoline-9,10-dicarboximide

(3h).

Silica-gel

column chromatography (dichloromethane/acetone gradient = 100:0 to 95:5). Yield: 10.4 mg (54%), orange solid. Mp: > 350 °C. 1H NMR (400 MHz, CDCl3):  9.07 (d, J = 4.8 Hz, 1H), 8.73 (d, J = 8.0 19 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 25

Hz, 1H), 8.72 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.49 (d, J = 7.6 Hz, 1H), 8.20–8.15 (m, 2H), 7.88 (dd, J = 8.4, 7.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 2H), 2.76 (sep, J = 6.9Hz, 2H), 1.18 (d, J = 6.9 Hz, 12H). 13C NMR (100 MHz, CDCl3):  163.7, 163.6, 151.5, 149.6, 145.6, 136.7, 136.2, 134.6, 132.3, 131.8, 131.7, 130.7, 130.3, 130.2, 129.6, 129.4, 127.0, 124.1, 123.5, 123.4, 123.3, 122.2, 121.7, 121.4, 115.6, 29.2, 24.0. TOF MS (MALDI–): 482.2 (M–). HRMS (ESI+) Calcd for C33H27N2O2+ [M+H]+: 483.2055. Found: 483.2067. N,N'-Bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) (3i). Silica-gel column chromatography (hexane/dichloromethane gradient = 1:3 to 0:1). Yield: 21.3 mg (75%), orange solid. Analytical data are in accordance with those reported in literature.44 N-(2,6-Diisopropylphenyl)phenaleno[1,2,3-bc]corannulene-8,9-dicarboximide (3j).26 Silica-gel column chromatography (hexane/dichloromethane gradient = 1:1 to 2:3). Yield: 14.6 mg (61%), red solid. Mp: > 350 °C. 1H NMR (400 MHz, CDCl3):  8.76 (d, J = 7.9 Hz, 2H), 8.62 (d, J = 7.9 Hz, 2H), 8.48 (s, 2H), 7.91 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 8.8 Hz, 2H), 7.81 (s, 2H), 7.49 (t, J = 7.8 Hz, 1H), 7.35 (distorted d, J = 7.8 Hz, 2H), 2.85–2.73 (m, 2H), 1.24–1.12 (m, 12H).

13

C NMR (100 MHz,

CDCl3):  163.9, 145.7, 137.9, 137.3, 137.0, 136.0, 132.6, 132.13, 132.12, 131.8, 130.8, 130.7, 129.5, 128.6, 128.1, 17.82, 127.79, 127.7, 124.0, 123.6, 122.0, 121.9, 29.1, 24.0. TOF MS (MALDI–): 603.2 (M–). HRMS (ESI+) Calcd for C44H29NNaO2+ [M+Na]+: 626.2091. Found:626.2097. N,N'-Bis(2,6-diisopropylphenyl)dibenzo[lm,yz]pyranthrene-3,4,12,13-bis(dicarboximide) (3k).25 Reaction temperature: 120 °C. Silica-gel column chromatography (dichloromethane/acetone = 99:1). Yield: 33.6 mg (92%), blue solid. Mp: > 350 °C. 1H NMR (600 MHz, CDCl3):  9.22 (s, 2H), 9.00 (d, J = 8.8 Hz, 2H), 8.89 (d, J = 8.2 Hz, 2H), 8.83 (d, J = 7.9Hz, 2H), 8.80 (d, J = 7.9 Hz, 2H), 8.72 (d, J = 8.3 Hz, 2H), 8.52 (d, J = 8.5 Hz, 2H), 7.51 (t, J = 7.9 Hz, 2H), 7.38 (d, J = 7.9 Hz, 4H), 2.81 (sep, J = 6.8 Hz, 4H), 1.21 (d, J = 6.8 Hz, 24H).

13

C NMR (150 MHz, CDCl3):  164.1, 164.0, 145.8, 137.2,

136.8, 132.6, 132.0, 131.1, 130.9, 129.7, 129.5, 129.0, 128.9, 127.7, 127.1, 126.3, 125.6, 125.5, 124.3, 20 ACS Paragon Plus Environment

Page 21 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

124.2, 123.8, 122.0, 121.7, 121.6, 29.9, 29.4, 24.2. TOF MS (MALDI+): 908.3 (M+). HRMS (ESI+) Calcd for C64H48N2NaO4+ [M+Na]+: 931.3506. Found: 931.3535. N,N'-Bis(2,6-diisopropylphenyl)terrylene-3,4,11,12-bis(dicarboximide) (3l). Synthesized according to the general procedure from diboronic ester 1l and 2. Silica-gel column chromatography (dichloromethane/acetone gradient = 1:0 to 99:1). Yield: 25.2 mg (75%), blue solid. Analytical data are in accordance with those reported in literature.27

ASSOCIATED CONTENT The Supporting Information is available free of charge via the Internet at http://pubs.acs.org. NMR and ESI spectra of new PADIs, UV/vis and FL spectra of 3i–l, electrochemical data for all reported PADIs. AUTHOR INFORMATION Corresponding Author [email protected] Notes The authors declare no competing financial interest. ACKNOWLEDGMENT We are grateful for financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant No. WU 317/20-1). We thank Anja Hofmann and Julius Albert for technical assistance in the preparation of boronic esters used in this study.

21 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 25

TOC

REFERENCES (1) Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718–747. (2) Tsefrikas, V. M.; Scott, L. T. Chem. Rev. 2006, 106, 4868–4884. (3) Stępień, M.; Gońka, E.; Żyła, M.; Sprutta, N. Chem. Rev. 2016, 117, 3479–3716. (4) Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem. Int. Ed. 2013, 52, 9900–9930. (5) Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144–11164. (6) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–238. (7) Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616–6643. (8) Weil, T.; Vosch, T.; Hofkens, J.; Peneva, K.; Müllen, K. Angew. Chem. Int. Ed. 2010, 49, 9068– 9093. (9) Chen, L.; Li, C.; Müllen, K. J. Mater. Chem. C 2014, 2, 1938–1956.

22 ACS Paragon Plus Environment

Page 23 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(10) Würthner, F.; Saha-Möller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2016, 116, 962–1052. (11) Ball, M.; Zhong, Y.; Wu, Y.; Schenck, C.; Ng, F.; Steigerwald, M.; Xiao, S.; Nuckolls, C. Acc. Chem. Res. 2015, 48, 267–276. (12) Jiang, W.; Li, Y.; Wang, Z. Acc. Chem. Res. 2014, 47, 3135–3147. (13) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268–284. (14) Würthner, F.; Stolte, M. Chem. Commun. 2011, 47, 5109–5115. (15) Nielsen, C. B.; Holliday, S.; Chen, H.-Y.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803–2812. (16) Cui, X.; Xiao, C.; Zhang, L.; Li, Y.; Wang, Z. Chem. Commun. 2016, 52, 13209–13212. (17) Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76, 2386–2407. (18) Yue, W.; Lv, A.; Gao, J.; Jiang, W.; Hao, L.; Li, C.; Li, Y.; Polander, L. E.; Barlow, S.; Hu, W.; Di Motta, S.; Negri, F.; Marder, S. R.; Wang, Z. J. Am. Chem. Soc. 2012, 134, 5770–5773. (19) Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2016, 138, 10184–10190. (20) Alibert-Fouet, S.; Seguy, I.; Bobo, J.-F.; Destruel, P.; Bock, H. Chem. Eur. J. 2007, 13, 1746–1753. (21) Pho, T. V.; Toma, F. M.; Chabinyc, M. L.; Wudl, F. Angew. Chem. Int. Ed. 2013, 52, 1446–1451. (22) Wu, Z.-H.; Huang, Z.-T.; Guo, R.-X.; Sun, C.-L.; Chen, L.-C.; Sun, B.; Shi, Z.-F.; Shao, X.; Li, H.; Zhang, H.-L. Angew. Chem. Int. Ed. 2017, 56, 13031–13035.

23 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 25

(23) Wu, D.; Ge, H.; Chen, Z.; Liang, J.; Huang, J.; Zhang, Y.; Chen, X.; Meng, X.; Liu, S. H.; Yin, J. Org. Biomol. Chem. 2014, 12, 8902–8910. (24) Seifert, S.; Shoyama, K.; Schmidt, D.; Würthner, F. Angew. Chem. Int. Ed. 2016, 55, 6390–6395. (25) Seifert, S.; Schmidt, D.; Würthner, F. Org. Chem. Front. 2016, 3, 1435–1442. (26) Shoyama, K.; Schmidt, D.; Mahl, M.; Würthner, F. Org. Lett. 2017, 19, 5328–5331. (27) Uersfeld, D.; Stappert, S.; Li, C.; Müllen, K. Adv. Synth. Catal. 2017, 359, 4184–4189. (28) Seifert, S.; Schmidt, D.; Shoyama, K.; Würthner, F. Angew. Chem. Int. Ed. 2017, 56, 7595–7600. (29) Jeffery, T. Tetrahedron Letters 1994, 35, 3051–3054. (30) Hashikawa, Y.; Murata, M.; Wakamiya, A.; Murata, Y. J. Am. Chem. Soc. 2017, 139, 16350– 16358. (31) Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. J. Phys. Chem. 1993, 97, 3379–3383. (32) Graser, F. Perylenetetracarboxylic acid diimide dye, Ger. Offen. DE 3049215 A1, July 15, 1982. (33) Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096. (34) You, C.-C.; Dobrawa, R.; Saha-Möller, C. R.; Würthner, F. In Supermolecular Dye Chemistry; Würthner, F., Ed.; Topics in Current Chemistry; Springer-Verlag: Berlin/Heidelberg, 2005, pp 39–82. (35) Cremer, J.; Mena-Osteritz, E.; Pschierer, N. G.; Müllen, K.; Bäuerle, P. Org. Biomol. Chem. 2005, 3, 985–995. (36) (a) Lee, S. K.; Zu, Y.; Herrmann, A.; Geerts, Y.; Müllen, K.; Bard, A. J. J. Am. Chem. Soc. 1999, 121, 3513–3520. (b) Holtrup, F. O.; Müller, G. R. J.; Quante, H.; De Feyter, S.; De Schryver, F. C.; Müllen, K. Chem. Eur. J. 1997, 3, 219–225. (37) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.

24 ACS Paragon Plus Environment

Page 25 of 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(38) Sun, Z.; Huang, K.-W.; Wu, J. Org. Lett. 2010, 12, 4690–4693. (39) Akay, S.; Yang, W.; Wang, J.; Lin, L.; Wang, B. Chem. Biol. & Drug Design 2007, 70, 279–289. (40) Sun, W.; Li, W.; Li, J.; Zhang, J.; Du, L.; Li, M. Tetrahedron 2012, 68, 5363–5367. (41) Da Ros, S.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Org. Chem. Front. 2015, 2, 626–633. (42) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M. J. Am. Chem. Soc. 2015, 137, 13308– 13318. (43) Zalesskiy, S. S.; Ananikov, V. P. Organometallics 2012, 31, 2302–2309. (44) Ramanan, C.; Smeigh, A. L.; Anthony, J. E.; Marks, T. J.; Wasielewski, M. R. J. Am. Chem. Soc. 2011, 134, 386–397.

25 ACS Paragon Plus Environment