A
New
Method
for
the
Synthesis
of Tetraethyllead
T. H. PEARSON, S. M. BLITZER, D. R. CARLEY, T. W. McKAY R. L. RAY, L. L. SIMS, and J. R. ZIETZ
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
Ethyl Corp., Baton Rouge, La.
It was discovered that successful reactions could be obtained between a wide variety of organometallic compounds and lead sulfide, lead oxide, and the lead salts of inorganic or organic oxy- and thioacids. Even mixed compounds of lead oxide and the lead salts of the organic oxyacids undergo reaction to form tetraethyllead. In particular, organometallic compounds of elements in Groups ΙΑ, IIA, IIIA, and IIB as well as the complex organometallic compounds derived from the elements in these groups, such as lithium tetraethylaluminum, are effective in reactions with nonhalide lead compounds of these types. Tetraorganolead yields vary with reaction conditions, reactants, and solvents used. Temperature condi tions required to initiate reactions are mild and in some cases are as low as —24°C. Rates of reaction are moderate to rapid, depending on the reaction conditions. Solvents are desirable to improve either reaction control and/or contact between reactants when one or both are solids under normal conditions. Solvents which have been used successfully in these reactions include hydrocarbons, amines, ethers, es ters, and chlorinated hydrocarbons. It is the aim of this paper to cite a number of examples, so that the reader can appreciate the broad scope of the reac tion of organometallic compounds with nonhalide lead compounds.
In recent years Ethyl Corp.'s research chemists have discovered a number of interest ing new reactions in their exploration of new methods of synthesizing organolead com pounds and, in particular, tetraethyllead Another paper (15) describes several of these methods in which the ethylating agents are ethyl esters of inorganic or organic acids and the lead-containing reactants are alloys of lead or lead metal itself. This paper describes some other methods in which the ethylating agents are organometallic compounds and the lead containing reactants are lead sulfide, lead oxides, or lead salts of inorganic or organic oxy- and thioacids. Presented here is a brief account of some of the research work done in this field to date. Because of time limitations, many of the details are omitted and the exam299
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
300
ADVANCES IN CHEMISTRY SERIES
pies are r e s t r i c t e d t o the p r e p a r a t i o n of t e t r a e t h y l l e a d . I t i s i n t e n d e d t o p u b l i s h , a t some f u t u r e d a t e , a d d i t i o n a l p a p e r s w h i c h w i l l t r e a t i n greater d e t a i l e a c h o f t h e m a j o r phases o f t h e w o r k h e r e i n d e s c r i b e d .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
Historical T h e first successful s y n t h e s i s of t e t r a e t h y l l e a d i s g e n e r a l l y a s c r i b e d t o L o w i g (9) w h o , i n 1853, o b t a i n e d t h i s c o m p o u n d f r o m t h e r e a c t i o n o f e t h y l i o d i d e w i t h s o d i u m l e a d a l l o y s c o n t a i n i n g 16 t o 2 5 % s o d i u m . T h e present c o m m e r c i a l m e t h o d f o r t e t r a e t h y l l e a d m a n u f a c t u r e i s a m o d i f i c a t i o n of Lowig's d i s c o v e r y as d e s c r i b e d i n a p a t e n t issued t o K r a u s a n d C a l l i s ( 7 ) i n 1926. C l o s e l y f o l l o w i n g Lowig's w o r k was t h a t o f B u c k t o n (1) w h o , i n 1859, r e p o r t e d t h e synthesis o f t e t r a e t h y l l e a d b y r e a c t i o n o f d i e t h y l z i n c a n d l e a d c h l o r i d e . T h i s i s t h e first e x a m p l e o f t h e p r e p a r a t i o n o f t e t r a e t h y l l e a d b y r e a c t i o n of a n o r g a n o m e t a l l i c c o m p o u n d w i t h a l e a d s a l t . Since t h a t t i m e , a n u m b e r o f p u b l i c a t i o n s h a v e a p p e a r e d d e a l i n g w i t h t h e s y n t h e s i s o f t e t r a o r g a n o l e a d c o m p o u n d s b y reactions analogous t o that w h i c h B u c k t o n discovered. T h e s e a r e s u m m a r i z e d b y Jones a n d G i l m a n (6) a n d L e e p e r , S u m m e r s , a n d G i l m a n (8) a n d f o r t h a t reason are o m i t t e d here. How ever, w i t h one e x c e p t i o n , t h e l e a d salts used w e r e a l l h a l i d e s . T h e one e x c e p t i o n i s r e p o r t e d b y N a d a n d K o c h e s h k o v (11) o n t h e f o r m a t i o n of d i a r y l l e a d acetates b y reactions of d i a r y l m e r c u r y c o m p o u n d s w i t h l e a d acetate i n c h l o r o f o r m s o l u t i o n . T h e p r o d u c t s o f these reactions are o n l y p a r t i a l l y a r y l a t e d , h o w e v e r , a n d s t i l l r e t a i n s a l t l i k e properties. T h u s , t h e l i t e r a t u r e c o n t a i n s n o reference t o t h e f o r m a t i o n o f t e t r a o r g a n o lead compounds b y reaction of a n organometallic c o m p o u n d w i t h lead compounds o t h e r t h a n l e a d halides. A c o n s i d e r a b l e a r e a of i g n o r a n c e has e x i s t e d r e g a r d i n g the p o t e n t i a l r e a c t i v i t y of m a n y other lead compounds t o w a r d organometallic compounds i n t h e synthesis of tetraorganolead products. E t h y l C o r p . ' s c h e m i s t s e x p l o r e d t h e field o f l e a d c o m p o u n d s e x p e r i m e n t a l l y , so as t o i n c l u d e (1) l e a d sulfide, (2) t h e oxides of l e a d , (3) the l e a d salts o f i n o r g a n i c a n d o r g a n i c t h i o - a n d o x y a c i d s , a n d (4) t h e m i x e d c o m p o u n d s of l e a d oxide w i t h t h e l e a d salts of o r g a n i c o x y a c i d s .
Reactions of Organometallic
Compounds with Sulfide and Oxides of Lead
P r o b a b l y t h e m o s t s i g n i f i c a n t d i s c o v e r y discussed i n t h i s p a p e r i s t h a t l e a d s u l fide, l e a d oxide, a n d l e a d d i o x i d e react w i t h o r g a n o m e t a l l i c c o m p o u n d s t o f o r m t e t r a e t h y l l e a d . F o r t h e m o s t p a r t , t h e o r g a n o m e t a l l i c c o m p o u n d s a r e d e r i v e d f r o m ele ments i n G r o u p s I A , H A , I I I A , and I I B of the periodic table. C o n s i d e r i n g the i n e r t ness o f these l e a d c o m p o u n d s , i t was s o m e w h a t s u r p r i s i n g t o find t h a t t h e y p a r t i c i p a t e d i n these r e a c t i o n s . E v e n m o r e u n e x p e c t e d was t h e fact t h a t t h e p r i m a r y o r g a n o l e a d p r o d u c t o f these reactions was c o m p l e t e l y e t h y l a t e d .
Table I.
Mole Ratio EtM«/PbS 4.9
EtM° C H Li 2
Tetraethyllead Yields from Reactions with Lead Sulfide
6
C2H5L1 + C H N a C H MgBr (C H5)2Mg
1.1 3.4 1.0
(C H ) Zn NaZn(C H )3
4.0 3.0
(C H ) A1 LiAl(C H )4 NaAl(C H )4
3.1 1.0 3.3
2
2
5
6
2
2
6
2
6
2
2
6
3
6
2
2
6
Reaction Conditions
E t M Concn., Moles/L.
Time, hr.
Temp., °C.
Yield, % *
0.43 0.10 0.87
2.5 4.5 3.5
35 25 110
15 81 6
0.15 7.7
3.0 3.5
35 110
42 53
0.97 0.37 0.09 0.70
9.0 1.5 4.2 1.0
-24 110 120·= 110
30 65 38 66
a
Solvent Diethyl ether Toluene Diethyl ether Toluene Dimethyl ether Toluene Hexane Toluene
° E t M = organometallic compound. & Based on 50% » theoretical conversion of lead in sulfide to (C H )4Pb. (C H*)4Pb + 2Li S + Pb. « Reaction conducted under pressure. 2
2
5
Example: 4 C H L i + 2PbS ->
2
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
2
6
PEARSON ET AL—SYNTHESIS OF TETRAETHYLLEAD
301
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
S h o w n i n T a b l e I a r e some e x a m p l e s o f results o b t a i n e d i n r e a c t i o n s o f t y p i c a l o r g a n o m e t a l l i c c o m p o u n d s d e r i v e d f r o m elements i n G r o u p s Ι Α , Π Α , Π Ι Α , a n d I I B w i t h lead sulfide. B o t h t h e simple a n d complex organometallic compounds react w i t h l e a d sulfide t o f o r m t e t r a e t h y l l e a d . T h e h i g h e s t y i e l d c i t e d ( 8 1 % ) is f o r t h e r e a c t i o n o f a m i x t u r e o f e t h y l l i t h i u m a n d e t h y l s o d i u m [ p r e p a r e d a c c o r d i n g t o W i t t i g ' s m e t h o d f o r s o d i u m d i p h e n y l l i t h i u m (17)] w i t h l e a d sulfide i n d i e t h y l e t h e r u s i n g a n o r g a n o m e t a l l i c - l e a d sulfide m o l e r a t i o o f 1 t o 1. T h i s e x a m p l e i s i n s t r u c t i v e i n s h o w i n g t h e m i l d c o n d i t i o n s u n d e r w h i c h these reactions proceed. T h e 8 1 % y i e l d was o b t a i n e d i n 4.5 h o u r s a t 2 5 ° C . Possibly more s t r i k i n g p r o o f o f t h e ease w i t h w h i c h these r e a c t i o n s p r o c e e d i s t h e e x a m p l e o f z i n c t r i e t h y l s o d i u m w h i c h gave a 3 0 % y i e l d i n r e a c t i o n w i t h l e a d sulfide a t — 2 4 ° C . i n 9 hours. T h e other examples presented show the v a r i e t y of organometallic compounds w h i c h react w i t h l e a d sulfide t o f o r m t e t r a e t h y l l e a d . M o d e r a t e l y h i g h y i e l d s were o b t a i n e d for t h e conditions used w i t h sodium t e t r a e t h y l a l u m i n u m ( 6 6 % ) , t r i e t h y l a l u m i n u m ( 6 5 % ) , a n d d i e t h y l z i n c ( 5 3 % ) . L o w e r y i e l d s were o b t a i n e d w i t h t h e o t h e r o r g a n o metallic compounds under the reaction conditions cited. I n T a b l e I I are presented similar data f o r reactions of organometallic
Table II. Oxide of Lead PbO
Tetraethyllead Yields from Reactions with Oxides of Lead
6
C H MgBr (C H ) Mg
2.4 2.0
(C H ) Zn (C H ) A1 LiAl(C H )4 NaAl(C H ) (C H ) A1
0.5 0.7 1.8 0.5 1.3
2
6
2
6
2
2
6
2
2
6
3
2
Pb0
Mole Ratio EtM°/Oxide 3.0
EtM« C H Li 2
6
2
2
2
6
3
6
4
Reaction Conditions
E t M Concn., Mole/L.
Time, hr.
Temp., °C.
Yield, % »
0.19 0.28
3.0 3.0
125' 120
64 13
0.15 0.19 0.70 0.16 0.70 —
6.0 4.5 2.5 2.0 1.0 2.0
35 110 110 130* 110 105
18 47 63 64 3 19*
a
Solvent Diethyl ether Hexane Diethyl ether Toluene Hexane Toluene None
° E t M = organometallic compound. Based on 50% theoretical conversion of lead to (C He)4Pb. Conducted under pressure. Based on 100% theoretical conversion of lead in P b 0 to i C H ) P b . 2A1 0 . b
compounds
c
2
c
d
2
2
2
6
4
3Pb0 + 4(C H ) Al -> 3(C H ) Pb + 2
2
fi
3
2
6
4
3
w i t h l e a d oxide a n d a single r e a c t i o n o f t r i e t h y l a l u m i n u m w i t h l e a d d i o x i d e . With the exception of t h e reaction of d i e t h y l m a g n e s i u m a n d lead oxide, a l l t h e other reac t i o n s were c a r r i e d o u t a b o v e 1 0 0 ° C . i n t h e e x a m p l e s p r e s e n t e d . R e a s o n a b l y h i g h y i e l d s were o b t a i n e d w i t h l i t h i u m t e t r a e t h y l a l u m i n u m ( 6 4 % ) , e t h y l l i t h i u m ( 6 4 % ) , a n d t r i e t h y l a l u m i n u m ( 6 3 % ) . D i e t h y l z i n c gave a moderately h i g h y i e l d ( 4 7 % ) a n d smaller y i e l d s were o b t a i n e d w i t h t h e o t h e r o r g a n o m e t a l l i c c o m p o u n d s . T h e e x a m p l e of t h e r e a c t i o n of l e a d d i o x i d e w i t h t r i e t h y l a l u m i n u m s h o w n i n T a b l e I I w a s c a r r i e d o u t i n t h e absence of s o l v e n t . A y i e l d o f 1 9 % t e t r a e t h y l l e a d w a s o b t a i n e d i n 2 h o u r s a t a t e m p e r a t u r e of 1 0 5 ° C . O r g a n o m e t a l l i c c o m p o u n d s w h i c h a r e n o r m a l l y l i q u i d s , s u c h as t r i e t h y l a l u m i n u m o r d i e t h y l z i n c , m a y b e r e a c t e d i n t h e absence of s o l v e n t w i t h l e a d sulfide a n d t h e l e a d oxides. H o w e v e r , some care m u s t b e exercised u n d e r these c o n d i t i o n s t o a v o i d r a p i d heat g e n e r a t i o n a n d e v e n v i o l e n t r e a c t i o n . T h e use o f s o l v e n t s p e r m i t s b e t t e r r e a c t i o n c o n t r o l t h r o u g h i m p r o v e d heat r e m o v a l a n d a g i t a t i o n . W h e n t h e o r g a n o m e t a l l i c c o m p o u n d s a r e n o r m a l l y solids, s o l v e n t s a r e d e s i r a b l e f o r t h e reasons s t a t e d a b o v e a n d also t o s o l u b i l i z e t h e r e a c t a n t s , t o p e r m i t m o r e r a p i d r e a c t i o n t h r o u g h i m p r o v e d contact.
Reaction of Lead Salts of Inorganic Acids A n u m b e r o f r e a c t a n t c o m b i n a t i o n s o f o r g a n o m e t a l l i c c o m p o u n d s a n d l e a d salts of i n o r g a n i c o x y - a n d t h i o a c i d s were also f o u n d t o p r o d u c e t e t r a o r g a n o l e a d c o m p o u n d s .
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
302
F o r p u r p o s e s o f b r e v i t y , h o w e v e r , t h e r e a c t i o n s of o n l y t h r e e l e a d salts w i t h t r i e t h y l a l u m i n u m are presented t o illustrate t h e results obtained.
Table III.
Lead Salt PbS0 Pb(N0 )
Mole Ratio EtsAlVSalt 1.4 0.61
4
8
2
Pb(SCN)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
1 b
Tetraethyllead Yields from Reactions of Triethylaluminum with Lead Salts of Inorganic Acids
2
0.66
Solvent Toluene Ethylene glycol dimethyl ether Toluene
Et»Al« Concn., Mole/L. 0.7 0.9 0.5
Reaction Conditions Time.hr. 1 1 3
Temp., °C. 110 85 110
Yield,* % 54 50 39
EtsAl = triethylaluminum. Based on 50% theoretical conversion of lead to tetraethyllead.
A s s h o w n i n T a b l e I I I , l e a d s u l f a t e a n d n i t r a t e gave 54 a n d 5 0 % y i e l d s , r e s p e c t i v e l y , under t h e conditions tested. L e a d thiocyanate reacted t o give a 3 9 % y i e l d of t e t r a e t h y l l e a d . S i m i l a r results were o b t a i n e d w i t h o t h e r l e a d salts i n t h i s class, s u c h as l e a d borate and lead carbonate. F o r t h e e x a m p l e s s h o w n , toluene o r e t h y l e n e g l y c o l d i m e t h y l e t h e r s o l v e n t s were s a t i s f a c t o r y . R e a c t i o n t e m p e r a t u r e s a t a b o u t t h e b o i l i n g p o i n t of t h e s o l v e n t s w e r e adequate t o give the stated yields i n 1 t o 3 hours' reaction time. A r a t h e r s t r i k i n g c o l o r c h a n g e o c c u r s d u r i n g r e a c t i o n . T h e l e a d salts t e s t e d a r e w h i t e , b u t p r o m p t l y o n i n i t i a t i o n of t h e r e a c t i o n t h e s u r f a c e of t h e s a l t p a r t i c l e s t u r n s d a r k a n d t h e n b l a c k . T h i s is due t o t h e f o r m a t i o n of m e t a l l i c l e a d d u r i n g t h e r e a c t i o n w h i c h i s d e p o s i t e d o n t h e s u r f a c e of t h e salt p a r t i c l e s . I n m a n y cases, t h i s c h a n g e occurs almost instantaneously when the organometallic c o m p o u n d is brought into con t a c t w i t h t h e l e a d s a l t . T h i s o b s e r v a t i o n i l l u s t r a t e s t h e h i g h degree o f r e a c t i v i t y o f t h e o r g a n o m e t a l l i c c o m p o u n d s w i t h l e a d c o m p o u n d s of t h e t y p e discussed i n t h i s p a p e r .
Reactions with Lead Salts of Organic Acids A n u m b e r of l e a d salts of o r g a n i c a c i d s were t e s t e d w i t h v a r i o u s o r g a n o m e t a l l i c c o m p o u n d s , p a r t i c u l a r l y those of elements i n G r o u p s I A , I I A , I I I A , a n d I I B . I n a l l cases successful r e a c t i o n s w i t h t h e f o r m a t i o n of t e t r a o r g a n o l e a d c o m p o u n d s o c c u r r e d . R e a c t i o n s w i t h l e a d salts of t h i s t y p e are c h a r a c t e r i z e d b y r a p i d r e a c t i o n rates a n d h i g h y i e l d s . T h i s i s p a r t i c u l a r l y t r u e f o r those l e a d salts o r o r g a n i c acids w h i c h h a v e a moderate o r h i g h s o l u b i l i t y i n t h e solvents. C o m p l e t e l y homogeneous reactions are possible w i t h some l e a d salts a n d t h e o r g a n o m e t a l l i c c o m p o u n d s b y s e l e c t i o n o f t h e p r o p e r s o l v e n t s . U n d e r s u c h c o n d i t i o n s , m a x i m u m r e a c t i o n rates a r e p o s s i b l e . T h e p o t e n t i a l o f s u c h r e a c t i o n s w i l l b e m o r e e v i d e n t as specific e x a m p l e s are discussed. A n u m b e r of e x a m p l e s of r e a c t i o n s w i t h l e a d salts o f o r g a n i c a c i d s a r e p r e s e n t e d i n T a b l e s I V , V , a n d V I . I n T a b l e I V are s h o w n t w o e x a m p l e s w i t h l e a d f o r m a t e , t h e salt o f t h e s i m p l e s t o r g a n i c a c i d . F o r t h e e x a m p l e s s h o w n , d i e t h y l z i n c i n t o l u e n e r e a c t e d a l m o s t q u a n t i t a t i v e l y ( 9 5 % y i e l d ) b a s e d o n t h e a m o u n t of d i e t h y l z i n c u s e d , t o f o r m t e t r a e t h y l l e a d . T h e r e a c t i o n w a s c o n d u c t e d a t 1 1 1 ° C . f o r 1.5 h o u r s . T r i -
Table IV. EtM> (C H ) Zn (C H ) A1 2
6
2
2
6
3
a 6
Tetraethyllead Yields from Reactions with Lead Formate
Mole Ratio EtMVSalt 0.73 0.45
E t M Concn., Mole/L. 0.70
Reaction Conditions
a
Solvent Toluene Diethylene glycol dimethyl ether
0.70
Time, hr. 1.5 1.5
Temp., °C. Ill 100-110
E t M = organometallic compound. Based on 50% theoretical conversion of lead to tetraethyllead.
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Yield,* % 95 73
PEARSON ET AL.—SYNTHESIS OF TETRAETHYLLEAD Table V.
Mole Ratio EtM«/Salt 1.67 0.91
(C H ) Zn (C H,) A1
1.0 0.61
2
6
2
3
6
2
0 b
Reaction Conditions
E t M " Concn., Mole/L. 1.0
Time, hr. 1.7
0.34 0.70
2 1
0.70 0.73 0.70
0.5 1.5 3
Temp., °C. 60 60-100 111 room temp. 66 111
Yield," % 100 76 93 97 96 73
E t M = organometallic compound. Based on 50% theoretical conversion of lead to tetraethyllead.
Table VI.
Lead Lead Lead Lead
Solvent Heptane Ethylene glycol dimethyl ether Toluene Diethylene glycol dimethyl ether Tetrahydrofuran Toluene
0.61 0.50
NaAl(C H )4
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
Tetraethyllead Yields from Reactions with Lead Acetate
EtM« (CtHs)Na (CaHOîMg
2
303
Lead Salt tetraacetate stéarate oxalate naphthenate**
Lead linoresinate*
Tetraethyllead Yields from Reaction of Triethylaluminum with Other Lead Salts of Organic Acids Mole Ratio Et Al«/Salt 1.0 0.71 0.66 0.54 3
1.0
Et3Al Concn., Mole/L. 0.35 0.35 0.49
Reaction Conditions
a
Solvent Toluene Ethylene glycol dimethyl ether
Time, hr. 2.5 0.5 3.0
0.70 0.70
0.25 1.0
Temp., ° C . 0-10 111 111
Yield, % 65 81" 18
room temp. 111
91 94
6
E t A l = triethylaluminum. Based on 100% theoretical conversion of lead to tetraethyllead. All others based on 50% theoretical conversion of lead to tetraethyllead. Naphthenic acid is a mixture of cycloparaffinic acids. « Derived from tall oil which contains resin and fatty acids.
0
3
6 e
d
e t h y l a l u m i n u m i n diethylene glycol d i m e t h y l ether gave a 7 3 % y i e l d under essentially t h e same c o n d i t i o n s o f r e a c t i o n t i m e a n d t e m p e r a t u r e . I n T a b l e V are shown other examples of reactions of organometallic compounds w i t h l e a d acetate, t h e s a l t o f a n o t h e r s i m p l e o r g a n i c a c i d . O u t s t a n d i n g i s t h e q u a n t i t a t i v e y i e l d o b t a i n e d w i t h e t h y l s o d i u m i n h e p t a n e . I n t h i s p a r t i c u l a r r e a c t i o n , excess e t h y l s o d i u m w a s u s e d t o g i v e t h e o r e t i c a l ( 5 0 % ) c o n v e r s i o n o f t h e l e a d i n l e a d acetate to t e t r a e t h y l l e a d . N e a r q u a n t i t a t i v e yields were obtained i n reactions of t r i e t h y l a l u m i n u m ( 9 7 % ) a n d d i e t h y l z i n c ( 9 4 % ) , r e s p e c t i v e l y , w i t h l e a d acetate. W i t h t r i e t h y l a l u m i n u m , t h e l e a d acetate w a s i n excess a n d w i t h d i e t h y l z i n c t h e r e a c t a n t s were p r e s e n t i n e q u i m o l a r ( t h e o r e t i c a l ) q u a n t i t i e s . I n b o t h o f these cases t h e r e a c t i o n t i m e s w e r e short. Striking is the 9 7 % y i e l d obtained w i t h t r i e t h y l a l u m i n u m i n y hour a t room t e m p e r a t u r e . T h i s i l l u s t r a t e s t h e fast r e a c t i o n rates a n d h i g h y i e l d s o b t a i n a b l e i n these a c t i o n s u n d e r v e r y m i l d c o n d i t i o n s . T h e o t h e r e x a m p l e s ( d i e t h y l m a g n e s i u m and sodium t e t r a e t h y l a l u m i n u m ) gave poorer yields u n d e r the conditions cited. I n T a b l e V I a r e s h o w n e x a m p l e s o f r e a c t i o n s o f t r i e t h y l a l u m i n u m w i t h l e a d salts of m o r e c o m p l e x o r g a n i c a c i d s i n c l u d i n g o x a l i c , s t e a r i c , n a p h t h e n i c a c i d s , a n d a c i d s d e r i v e d f r o m t a l l o i l . I n a d d i t i o n , a n e x a m p l e o f a q u a d r i v a l e n t l e a d salt i s ^;iven t o c o m p l e t e t h i s g e n e r a l class o f l e a d salts o f o r g a n i c a c i d s . L e a d t e t r a a c e t a t e , u s i n g a n excess o f t r i e t h y l a l u m i n u m , g a v e a 6 5 % y i e l d of t e t r a e t h y l l e a d a t 0 ° t o 1 0 ° C . i n 2.5 h o u r s ' r e a c t i o n t i m e . T h i s also r e p r e s e n t s a 6 5 % c o n version o f lead i n this salt t o tetraethyllead, w h i c h indicates t h a t t h e potential c o n v e r s i o n o f l e a d i n t h i s q u a d r i v a l e n t l e a d salt i s 1 0 0 % . T h e l e a d salts o f a c i d s d e r i v e d f r o m t a l l o i l , n a p h t h e n i c , a n d s t e a r i c a c i d s g a v e h i g h y i e l d s u n d e r t h e c o n d i t i o n s tested ( 9 4 , 9 1 , a n d 8 1 % , r e s p e c t i v e l y ) . T h e 9 1 % y i e l d obtained w i t h lead naphthenate i n % hour a n d t h e 8 1 % yield obtained w i t h lead stéarate i n y h o u r a g a i n i l l u s t r a t e t h e r a p i d r e a c t i o n rates possible. R e a c t i o n s s u c h as these a r e h o m o g e n e o u s , because t h e o r g a n o m e t a l l i c c o m p o u n d s a s w e l l a s t h e l e a d salt a r e s o l u b l e . I n t h e case o f l e a d n a p h t h e n a t e , w h i c h i s c o m p l e t e l y s o l u b l e i n t h e solvent, t h e r a p i d reaction a n d h i g h y i e l d were obtained a t r o o m t e m p e r a t u r e . 2
2
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
304
Reactions with Mixed Compounds of Lead Oxide and Lead Salts of Organic Acids L e a d oxide forms m i x e d compounds w i t h lead salts of organic acids. Because l e a d o x i d e a n d t h e l e a d salts i n d e p e n d e n t l y r e a c t w i t h o r g a n o m e t a l l i c c o m p o u n d s , i t w a s o f i n t e r e s t t o d e t e r m i n e w h e t h e r t h e m i x e d c o m p o u n d s w o u l d also r e a c t t o f o r m tetraethyllead. I n a l l cases t e s t e d , these m a t e r i a l s r e a c t e d t o f o r m t e t r a e t h y l l e a d . S o m e e x a m p l e s are s h o w n i n T a b l e V I I . L e a d f o r m a t e - l e a d o x i d e ( 1 t o 1 m o l e r a t i o ) g a v e a 5 0 %
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
Table VII.
Lead Salt Formate Acetate Stéarate
Tetraethyllead Yields from Reactions with Triethylaluminum with M i x e d Compounds of Lead O x i d e a n d Lead Salts of Organic Acids Mole Ratio PbO/Salt 1 to 1
Mole Ratio EteAlVMixed Compound 1.3
1 to 1 2 toi 5 to 1 1 to 1
1.3 1.9 4.0 1.2
3 to 1 5 to 1
2.2 3.1
Solvent Ethylene glycol dimethyl ether Toluene Ethylene glycol dimethyl ether
Et3Al° Concn., Mole/L.
Reaction Conditions Time, hr.
Temp., °C.
Yield,* %
0.70 0.70 0.30 0.30
1.5 1 3 3
85 85 111 111
50 70 38 25
0.70 0.70 0.35
1 1.5 3
85 85 85
80 55 53
° EteAl = triethylaluminum. Based on 50% theoretical conversion of lead to tetraethyllead. b
y i e l d . T h r e e m i x e d c o m p o u n d s of l e a d oxide a n d l e a d acetate were t e s t e d i n w h i c h t h e o x i d e - s a l t m o l e r a t i o s were 1 t o 1, 2 t o 1, a n d 5 t o 1. T h e y i e l d s decreased p r o g r e s s i v e l y f r o m 7 0 % t o 2 5 % as t h e r a t i o i n c r e a s e d . T h e same t r e n d w a s o b s e r v e d f o r t h e l e a d o x i d e - l e a d stéarate series t h o u g h t h e y i e l d d r o p c o r r e s p o n d i n g t o t h e h i g h e s t l e a d o x i d e - c o n t a i n i n g m i x e d c o m p o u n d w a s less severe t h a n f o r t h e acetate series. T h e s e a n d r e l a t e d d a t a suggest t h a t t h e m i x e d salts t e n d t o r e a c t as a m i x t u r e of the t w o components. F u r t h e r w o r k is necessary t o c l a r i f y these r e l a t i o n s h i p s .
Experimental M o s t r e a c t i o n s discussed i n t h i s p u b l i c a t i o n were c a r r i e d o u t i n glassware r e a c t o r s fitted w i t h a g i t a t o r , condenser, t h e r m o m e t e r , a n d s t o p p e r e d o p e n i n g s f o r t h e i n t r o d u c t i o n of reagents. I n g e n e r a l , t h e a n h y d r o u s l e a d c o m p o u n d a n d s o l v e n t were i n t r o d u c e d i n t o t h e r e a c t i o n flask w h i c h h a d b e e n p u r g e d w i t h d r y n i t r o g e n . A f t e r t h e r e a c t o r c o n t e n t s h a d been b r o u g h t t o t h e d e s i r e d r e a c t i o n t e m p e r a t u r e , t h e o r g a n o m e t a l l i c c o m p o u n d was a d d e d t o t h i s a n h y d r o u s e n v i r o n m e n t . W h e n t h e s t a t e d r e a c t i o n period w a s ended, t h e mass w a s allowed t o cool a n d t h e residual organometallic c o m p o u n d destroyed w i t h i s o p r o p y l alcohol a n d water. T h e organic layer was t h e n analyzed for tetraethyllead. T h e v a r i o u s o r g a n o m e t a l l i c c o m p o u n d s u s e d i n t h i s w o r k were p r e p a r e d b y r e l i a b l e p r o c e d u r e s r e p o r t e d i n t h e l i t e r a t u r e . T h e G r i g n a r d reagents (12) were u s e d i n e t h y l e t h e r s o l u t i o n as p r e p a r e d . T h i s w a s also t r u e of t h e e t h y l l i t h i u m u s e d (3). Tri e t h y l a l u m i n u m a n d i t s d e r i v a t i v e s were p r e p a r e d ether-free b y r e p o r t e d p r o c e d u r e s (4) · D i e t h y l m a g n e s i u m was p r e p a r e d f r o m t h e G r i g n a r d reagent ( b r o m i d e ) b y t h e d i o x a n e p r e c i p i t a t i o n m e t h o d (H). D i e t h y l z i n c w a s s y n t h e s i z e d f r o m e t h y l i o d i d e a n d zinc m e t a l p o w d e r b y t h e u s u a l p r o c e d u r e (10). E t h y l s o d i u m w a s s y n t h e s i z e d f r o m d i e t h y l m e r c u r y a n d s o d i u m (13). R e a g e n t g r a d e l e a d c o m p o u n d s were u s e d i n a l l cases. T h e s e m a t e r i a l s w e r e v a c u u m dried o r dried b y azeotropic distillation. L e a d naphthenate was obtained f r o m A d v a n c e S o l v e n t s C o . a n d t h e l e a d s a l t of t a l l o i l f r o m t h e H a r s h a w C h e m i c a l C o . R e a g e n t g r a d e o r h i g h g r a d e c o m m e r c i a l s o l v e n t s were u s e d , d e p e n d i n g o n a v a i l a b i l i t y . T h e s e m a t e r i a l s were d r i e d o v e r s o d i u m w i r e a n d u s e d w i t h o u t f u r t h e r p u r i f i cation.
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
305
PEARSON ET AL—SYNTHESIS OF TETRAETHYLLEAD
Two different analytical methods were used to determine the tetraethyllead formed. The dithizone method (16) was used when low yields were obtained; for sub stantial yields, the iodometric (δ) method was employed. In many cases, the tetra ethyllead was isolated from the reaction mass by vacuum distillation and identified by its physical properties. Yields were calculated, for all reactions cited in this paper, on the basis of the valency of the lead compound used. It was assumed that the maximum possible conversion of lead in the divalent compound was 50% as given by the example: 4C H Li + 2PbO -* (C H ) Pb + Pb + 2Li 0
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch028
2
5
2
5
4
2
This is consistent with the known stoichiometry of the reaction with the divalent halides (2). In the case of lead dioxide and lead tetraacetate, the yield was based on the assumption that the maximum possible conversion of lead in these quadrivalent compounds was 100%. Literature Cited (1) Buckton, G., Ann. 109, 218 (1859). (2) Frankland, E., Lowrance, Α., J. Chem. Soc. 35, 245 (1879). (3) Gilman, H., Beel, J. Α., Branner, C. G., Bullock, M . W., Dunn, G. E., Miller, L. S., J. Am. Chem. Soc. 72, 1689 (1950). (4) Grosse, Α. V., Mavity, J. M., J. Org. Chem. 5, 106 (1940). (5) Hein, F., Klein, Α., Mesee, H . J., Z. anal. Chem. 115, 177-33 (1939). (6) Jones, R. G., Gilman, H., Chem. Revs. 54, 835 (1954). (7) Kraus, C. Α., Callis, C. C . (to Standard Oil Development Co.), U . S. Patent 1,612,131 (Dec. 28, 1926). (8) Leeper, R. W., Summers, L., Gilman, H., Chem. Revs. 54, 101 (1954). (9) Löwig, C., J. prakt. Chem. 60, 304 (1853). (10) Meyer, M . , Chem. News 131, 1 (1925). (11) Nad, M . M . , Kocheshkov, Κ. Α., J. Gen. Chem. (U.S.S.R.) 12, 409 (1943). (12) Org. Syntheses, Coll. Vol. 1, 306 (1941). (13) Schlenk, W , Holtz, J., Ber. deut. chem. Ges. 50, 262 (1917). (14) Schlenk, W., Schlenk, W., Jr., Ibid.,62, 920 (1929). (15) Shapiro, Hymin, ADVANCES IN C H E M . SER., No. 23, 290 (1958). (16) Snyder, L. J., Ind. Eng. Chem, Anal. Ed. 19, 684 (1947). (17) Wittig, G., Ludwig, R., Polster, R., Chem. Ber. 88, 294 (1955). RECEIVED for review May 10, 1957. Accepted June 1, 1957.
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.