A Secondary Reagent-Assisted Synthesis of A Novel NiII

A Secondary Reagent-Assisted Synthesis of A Novel NiII...
0 downloads 0 Views 1MB Size
A Secondary Reagent-Assisted Synthesis of A Novel NiII-MoIV Chiral Coordination Polymer Wen Zhang,†,‡ Zhi-Qiang Wang,§ Osamu Sato,*,‡ and Ren-Gen Xiong† Ordered Matter Science Research Center, Southeast UniVersity, Nanjing 211189, China, Institute for Materials Chemistry and Engineering, Kyushu UniVersity, Kasuga, 816-8580, Fukuoka, Japan, and College of Chemistry and Chemical Engineering, Southeast UniVersity, Nanjing 211189, China

CRYSTAL GROWTH & DESIGN 2009 VOL. 9, NO. 5 2050–2053

ReceiVed January 19, 2009; ReVised Manuscript ReceiVed March 30, 2009

ABSTRACT: With the aid of a secondary reagent [CuII(tren)](ClO4)2, a novel chiral one-dimensional coordination polymer,

[NiII(tren)]3[MoIV(CN)8](ClO4)2 · 5H2O (1) (tren ) tris(2-aminoethyl)amine), was inadvertently but reproducibly synthesized, which crystallizes in a chiral space group P212121 and shows a complex triple-stranded helical structure. The rapid development of crystal engineering has offered chemists a powerful tool to rationally synthesize compounds with desired structures and physical-chemical properties.1 In the field of coordination and supramolecular chemistry, the synthesis of chiral materials from achiral building blocks is attracting great attention due to its significance in studying the genesis of chirality in biological systems and potential applications in chiral separation and catalysis.2 One principle for constructing such kinds of chiral materials is to build left- or right-handed helical structures by selecting flexible ligands, linear or cis-coordinated metal centers and specific molecular building blocks, in which the key synthetic strategy relies on the understanding of ligand effects and crystal packing.3,4 However, how homochiral packing of helices transfers in crystal and in particular how the spontaneous resolution of enantiomers occurs have not been well understood. It requires gathering more evidence in this area for explaining the transfer of chirality from molecule to bulk sample. Hence, the search for new building blocks and structural motifs with potential chiralities for coordination polymers is of paramount importance for the controlled assembly of chiral solid-state structures. It is well-known that octacyanometalates, that is, [M(CN)8]4-/3- (M ) Mo, W), are useful building blocks in the field of multifunctional metal-organic frameworks (MOFs) with unusual magnetic, electrical, optical, and porous properties, which are the basis for the development of novel devices.5 Because of the presence of up to eight CN groups on the octacyanometalate as bridging ligands, they offer far more possibilities than hexacyanometalates to construct MOFs with diverse topologies.6-9 Furthermore, the octacyanometalate can take any of three idealized basic geometries: square antiprism (SA, D4d), dodecahedron (DH, D2d), or bicapped trigonal prism (BTP, C2V). These three basic conformations can interconvert with negligible energy barriers, which means the spatial configuration of octacyanometalate is labile and very sensitive to the crystallographic environment, that is, counterions and solvent molecules. Theses features promise the structural diversity of octacyanometalate-containing coordination compounds and hence the wide range of their physical-chemical properties. However, there are still few reports on homochiral coordination polymers built from octacyanometalates with achiral components, mainly because fine control and tuning of the final structures is far from being readily controlled in octacyanometalate-containing complexes. Herein we report the synthesis of a novel NiII-MoIV coordination polymer, [NiII(tren)]3[MoIV(CN)8](ClO4)2 · 5H2O (1) (tren ) tris(2aminoethyl)amine), by applying a substitution reaction-assisted synthetic approach. With the aid of a secondary reagent, a novel * Corresponding author. E-mail: [email protected]. † Ordered Matter Science Research Center, Southeast University. ‡ Kyushu University. § College of Chemistry and Chemical Engineering, Southeast University.

one-dimensional (1D) structure of the NiII-MoIV compound is developed from the reaction solution, showing a complex triplestranded helical structure. Evaporation of the aqueous solution containing a 3:3:1 molar ratio of [Ni(tren)](ClO4)2, [Cu(tren)](ClO4)2, and K4[Mo(CN)8] · 2H2O afforded 1 as brown crystals with a high yield.10 The single crystals are stable at room temperature and insoluble in common solvents. Accompanying the brown crystals 1, there are blue precipitates and crystallines, which are highly soluble in water and are characteristic of [Cu(tren)]-containing species. Thus, 1 can be easily purified by being simply washed with water to get rid of these byproducts. It is notable that the presence of [Cu(tren)](ClO4)2 is indispensable for the formation of 1, which could not be obtained by simply mixing the aqueous solutions of [Ni(tren)](ClO4)2 and K4[Mo(CN)8] · 2H2O directly. Without the addition of [Cu(tren)](ClO4)2, only gray precipitate immediately appeared from the reaction mixture. As a control study, a diffusion method was also used in order to control the appearance of the precipitate. However, there was only precipitate formed between the [Ni(tren)](ClO4)2 and the K4[Mo(CN)8] · 2H2O solution layers in test tube. At the same time, the mass amount of [Cu(tren)](ClO4)2 is also a determining factor dominating the final formation of 1. It was found that, if the molar ratio of [Cu(tren)](ClO4)2 and K4[Mo(CN)8] · 2H2O was less than 3, the appearance of the precipitate of a Ni-Mo species was unavoidable, though the development of the precipitate became strikingly slow with an increase in the amount of [Cu(tren)](ClO4)2. These experimental results prove the key role of the secondary reagent [Cu(tren)](ClO4)2 in the formation of 1. Without adding Ni component, a novel neutral complex, [Cu(tren)]2[Mo(CN)8] · 5.5H2O (2, Figure S1, Supporting Information), was easily obtained once the Mo/Cu molar ratio is between 1 and 3. 2 strongly supports the existence of serial MoIV-CuII intermediates during the formation of 1, together with a similar heptanuclear complex.6e Thus, the solution chemistry of the formation of 1 from a multicomponent system may be roughly elucidated as follows. Firstly, the copper(II) ion center in [Cu(tren)] species adopts trigonal bipyramidal geometry as seen in 2. Four of the five coordination sites are occupied by the tren ligand. So there is only one additional coordination site available. This feature prohibits the [Cu(tren)]-[Mo(CN)8] intermediate species from developing multidimensional structures except for polynuclear complexes. Obviously, the role of [Cu(tren)] is to protect the CN groups of [MoIV(CN)8]. Secondly, the higher solubility of the serial [Cu(tren)]-[Mo(CN)8] intermediate species than that of the [Ni(tren)]-[Mo(CN)8] species in the aqueous solution favors the formation of 1. Thirdly, the association and dissociation constants of the coordination bonds Cu-CN and Ni-CN seem moderate, which enables a desirable equilibrium shift in the complicated

10.1021/cg900062y CCC: $40.75  2009 American Chemical Society Published on Web 04/08/2009

Communications

Crystal Growth & Design, Vol. 9, No. 5, 2009 2051

Figure 2. The chain structure of 1 propagating along the a axis. Hydrogen atoms, noncoordinating H2O and ClO4- anions are omitted for clarity. Figure 1. View of the asymmetric unit of the chain of 1. Hydrogen atoms, noncoordinating H2O and ClO4- anions are omitted for clarity.

multicomponent system in aqueous solution. Although it is the most common and simplest approach to cultivate single crystals, a solution method is extremely difficult to analyze and use with guaranteed results. In most cases, crystal growth of coordination polymers from aqueous solution is still an “art-of-accident”. Herein, 1 can be taken as a good example of a secondary reagent-assisted synthesis of MOFs.11 The formation and structure of the final products can be well controlled and tuned through delicate design and combination of multicomponent systems. Utilizing these fundamentals, one can obtain crystals with far more complicated topologies, as is seen to happen frequently in biosystems via this kind of self-assembly.12 The infrared spectrum of 1 exhibits broad or intense stretching absorptions at 3355, 2121, and 1100 cm-1, which arise from vibrations of OH, CN, and ClO4 groups, respectively. Although there are two types of CN groups, that is, bridging and terminal, whose vibrations appear at around 2120 and 2100 cm-1, respectively, only the former type is observed, revealing the predominant existence of the bridging CN, which is consistent with the crystal structure analysis below (six out of eight CN groups as bridging ones). The UV-vis absorption spectrum of 1 recorded in the solid state shows characteristic bands at 920 and 550 nm (Figure S2, Supporting Information), which are attributable to 3A2 g f 3T2 g and 3A2 g f3T1 g(3F) transitions, respectively, and are indicative of octahedral Ni(II) compounds. The shoulder band at ca. 800 nm is traditionally assigned as the spin-forbidden transition 3A2 g f 1Eg, usually observed for Ni(II) complexes.13 The crystal structure of 1 was determined at 173 K. 1 crystallizes in the orthorhombic space group P212121.14 The asymmetric unit contains one octacyanomalybdate(IV), three [NiII(tren)], two perchlorates, and five water molecules (Figure 1). The geometry of the MoIV center is a slightly distorted SA. All three NiII centers adopt slightly distorted octahedral geometries with slight differences of conformation. The tren acting as a capping ligand occupies four neighboring apical positions of the coordination octahedron. The bond lengths of Ni-N are between 2.037(6) and 2.147(7) Å and there is no difference between Ni-N(cyanide) and Ni-N(amine). The Ni-N≡C bridging angles are bent with values of 156.9(6)° for Ni1, 148.5(6)° for Ni2, and 171.3(6)° for Ni3. The octacyanomalybdate(IV) center affords six CN groups to connect six [NiII(tren)] ions and the left two terminal CN groups take cispositions, forming a wavy-like chain structure (Figure 2). The intrachain neighboring Ni · · · Mo distances are in the range 5.103 to 5.295 Å, while the neighboring Ni · · · Ni distances within the asymmetric tetramer unit are 5.851, 6.496, and 6.864 Å for Ni1, Ni2, and Ni3. The shortest intrachain and interchain Mo · · · Mo distances are 7.378 and 13.756 Å, respectively. The complex chains are parallel to each other along the a axis (Figure 3). The diameters of their cross-section in the bc plane are ca. 1.5 and 1.3 nm, respectively. So they can be regarded as nanorods. It is interesting that the surface of the nanorod is not smooth but rough. At the same time, owing to the different

Figure 3. Packing diagram of 1 in the crystallographic bc plane, where the green tetrahedron denotes ClO4- anion and the green dashed lines denote hydrogen bonds. Hydrogen atoms are omitted for clarity.

properties of the alkyl group of the capping tren ligand and terminal CN group, hydrophobic and hydrophilic areas on the surface are formed. Water molecules are found to fill the hydrophilic pits on the chains. Perchlorate ions have relatively large volumes, so they only occupy the voids between neighboring chains, together with additional water molecules. Hydrogen-bond interactions are widely found among the oxygen atoms from solvent water molecules, perchlorate ions, and the nitrogen atoms from CN groups and amines. These short-distance intermolecular interactions are in the range 2.684-3.084 Å (Table S1, Supporting Information), which connect the chains into a complex three-dimensional network. One significant feature of the structure of 1 is the helicity. Although all the components appearing in the system are achiral, 1 crystallizes in the chiral space group P212121. A direct vision of the topology of the chain structure is illustrated in Figure 4. The Ni1 single-stranded helix (yellow line) is right-handed while the Ni2 and Ni3 single-stranded helices (red and orange lines, respectively) are both left-handed. The three single-stranded helices intersect at Mo1, twisting into a complex triple-stranded chain. So the net handedness of the chain is left-handed. The chains in the single crystal adopt the same chirality. In order to verify the total handedness of the bulk sample, a vibrational circular dichroism (VCD) measurement was performed, confirming the bulk sample of 1 is a racemic mixture (Figure S4, Supporting Information).15 It should be mentioned that the [MoIV(CN)8] and [NiII(tren)] units in the asymmetric unit show softness and lability in their configurations, which is thought to be essential for the structural origin of the chirality at the supramolecular level in 1 as well as the subtle interplay among ancillary ligands, solvents, counterions, and additional additives. Efforts to explore the breadth and scope of this phenomenon deserve further investigation.

2052

Crystal Growth & Design, Vol. 9, No. 5, 2009

Communications

Figure 4. Schematic illustration of two neighboring chains in 1 propagating along the a axis. The green rod is the crystallographic 21 screw axis.

The magnetic properties of the 1D chain compound 1 have been experimentally studied on the crystalline sample.16 It was found that the χMT values were almost constant in the measured temperature range of 5-300 K with an average value of 3.36 cm3 K mol-1 (Figure S5, Supporting Information), corresponding to the sum of three paramagnetic NiII ions which are well isolated by diamagnetic MoIV ions and capping ligands. This value is consistent with the reported isolated NiII complexes in an octahedral ligand field with a ground-state term 3A2 (t2g6eg2) possessing two unpaired electrons. The χM-T curve of 1 can be well fitted with the Curie-Weiss law (χM ) C/(T-θ)), affording C ) 3.37 cm3 K mol-1 and θ ) -0.13 K (Figure S6, Supporting Information), revealing a very weak antiferromagntic interaction among the spin carriers. The field-dependent magnetization is 5.97 Nβ at 2 K and 5 T, very close to the ideal saturated value of three NiII ions (6 Nβ). In summary, we have synthesized and characterized a novel chiral 1D NiII-MoIV coordination polymer, which crystallizes in the chiral space group P212121 showing a complex triple-stranded helical structure. The use of a secondary reagent is a key step to promote the formation of 1, which provides an efficient synthetic route in the construction of novel MOFs with topologically intriguing supramolecules.

(5) (6)

(7)

Acknowledgment. This work was supported by a Grant-inAid for Science Research on Priority Areas (Synergy of Elements) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the National Natural Science Foundation of China. Supporting Information Available: Crystallographic information file (CIF) for 1, UV spectrum in the solid state, PXRD and VCD spectra, magnetic measurements and additional crystallographic data. This information is available free of charge via the Internet at http:// pubs.acs.org.

(8)

References (1) (a) Fe´rey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. (b) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334. (c) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972. (d) Moulton, B.; Zaworotko, M. J. Chem. ReV. 2001, 101, 1629. (e) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (f) Sato, O.; Tao, J.; Zhang, Y. Z. Angew. Chem., Int. Ed. 2007, 46, 2152. (2) (a) Watson, J. D.; Crick, F. C. H. Nature 1953, 171, 737. (b) Lehn, J. M. Supramolecular Chemistry; VCH, Weinheim, 1995. (3) (a) Pe´rez-Garcı´a, L.; Amabilino, D. B. Chem. Soc. ReV. 2002, 31, 342. (b) Piguet, C.; Borkovec, M.; Hamacek, J.; Zeckert, K. Coord. Chem. ReV. 2005, 249, 705. (4) (a) Biradha, K.; Seward, C.; Zaworotko, M. J. Angew. Chem., Int. Ed. 1999, 38, 492. (b) Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279. (c) Tabellion, F. M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Angew. Chem., Int. Ed. 2001, 40, 1529. (d) Kondo, M.; Miyazawa, M.; Irie, Y.; Shinagawa, R.; Horiba, T.; Nakamura, A.; Naito, T.; Maeda, K.; Utsuno, S.; Uchida, F. Chem. Commun.

(9)

2002, 2156. (e) Bu, X. H.; Liu, H.; Du, M.; Zhang, L.; Guo, Y. M.; Shionoya, M.; Ribas, J. Inorg. Chem. 2002, 41, 1855. (f) Siemeling, U.; Scheppelmann, I.; Neumann, B.; Stammler, A.; Stammler, H.-G.; Frelek, J. Chem. Commun. 2003, 2236. (g) Han, L.; Hong, M. C.; Wang, R. H.; Luo, J. H.; Lin, Z. Z.; Yuan, D. Q. Chem. Commun. 2003, 2580. (h) Gao, E. Q.; Yue, Y. F.; Bai, S. Q.; He, Z.; Yan, C. H. J. Am. Chem. Soc. 2004, 126, 1419. (i) Li, J. R.; Bu, X. H.; Zhang, R. H. Eur. J. Inorg. Chem. 2004, 1701. (j) Luan, X. J.; Wang, Y. Y.; Li, D. S.; Liu, P.; Hu, H. M.; Shi, Q. Z.; Peng, S. M. Angew. Chem., Int. Ed. 2005, 44, 3864. (k) Huang, X. C.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Chem. Commun. 2005, 2232. (l) Tian, G.; Zhu, G. S.; Yang, X. Y.; Fang, Q. R.; Xue, M.; Sun, J. Y.; Wei, Y.; Qiu, S. L. Chem. Commun. 2005, 1396. (m) Jiang, L.; Lu, T. B.; Feng, X. L. Inorg. Chem. 2005, 44, 7056. (n) Yi, L.; Yang, X.; Lu, T. B.; Cheng, P. Cryst. Growth Des. 2005, 5, 1215. (o) Chen, X. Y.; Shi, W.; Xia, J.; Cheng, P.; Zhao, B.; Song, H. B.; Wang, H. G.; Yan, S. P.; Liao, D. Z.; Jiang, Z. H. Inorg. Chem. 2005, 44, 4263. (p) Zhang, Y.-Z.; Wang, Z.-M.; Gao, S. Inorg. Chem. 2006, 45, 10404. Przychodzen´, P.; Korzeniak, T.; Podgajny, R.; Sieklucka, B. Coord. Chem. ReV. 2006, 250, 2234. (a) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.; Ohkoshi, S.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952. (b) Larionova, J.; Gross, M.; Pilkington, M.; Andres, H.; Stoeckli-Evans, H.; Gu¨del, H. U.; Decurtins, S. Angew. Chem., Int. Ed. 2000, 39, 1605. (c) Sieklucka, B.; Szklarzewicz, J.; Kemp, T. J.; Errington, W. Inorg. Chem. 2000, 39, 5156. (d) Podgajny, R.; Desplanches, C.; Sieklucka, B.; Sessoli, R.; Villar, V.; Paulsen, C.; Wernsdorfer, W.; Dromze´e, Y.; Verdaguer, M. Inorg. Chem. 2002, 41, 1323. (e) Herrera, J. M.; Marvaud, V.; Verdaguer, M.; Marrot, J.; Kalisz, M.; Mathonie`re, C. Angew. Chem., Int. Ed. 2004, 43, 5468. (f) Song, Y.; Zhang, P.; Ren, X.-M.; Shen, X.-F.; Li, Y.-Z.; You, X.-Z. J. Am. Chem. Soc. 2005, 127, 3708. (g) Mathonie`re, C.; Podgajny, R.; Guionneau, P.; Labrugere, C.; Sieklucka, B. Chem. Mater. 2005, 17, 442. (h) Withers, J. R.; Ruschmann, C.; Bojang, P.; Parkin, S.; Holmes, S. M. Inorg. Chem. 2005, 44, 352. (i) Withers, J. R.; Ruschmann, C.; Bojang, P.; Parkin, S.; Holmes, S. M. Inorg. Chem. 2005, 44, 352. (j) Zhao, H.; Shatruk, M.; Prosvirin, A. V.; Dunbar, K. R. Chem.sEur. J. 2007, 13, 6573. (k) Venkatakrishnan, T. S.; Imaz, I.; Sutter, J.-P. Inorg. Chim. Acta 2008, 361, 3710. (a) Rombaut, G.; Golhen, S.; Ouahab, L.; Mathonie`rea, C.; Kahn, O. J. Chem. Soc., Dalton Trans. 2000, 3609. (b) Li, D.; Gao, S.; Zheng, L.; Tang, W. J. Chem. Soc., Dalton Trans. 2002, 2805. (c) Li, D.-F.; Zheng, L.-M.; Zhang, Y.-Z.; Huang, J.; Gao, S.; Tang, W.-X. Inorg. Chem. 2003, 42, 6123. (d) Przychodzen´, P.; Lewin´ski, K.; Balanda, M.; Pelka, R.; Rams, M.; Wasiutynski, T.; Guyard-Duhayon, C.; Sieklucka, B. Inorg. Chem. 2004, 43, 2967. (e) You, Y. S.; Kim, D.; Do, Y.; Oh, S. J.; Hong, C. Inorg. Chem. 2004, 43, 6899. (f) Withers, J. R.; Ruschman, C.; Parkin, S.; Holmes, S. M. Polyhedron 2005, 24, 1845. (g) Przychodzen´, P.; Pelka, R.; Lewin´ski, K.; Supel, J.; Rams, M.; Tomala, K.; Sieklucka, B. Inorg. Chem. 2007, 46, 8924. (h) Prins, F.; Pasca, E.; de Jongh, L. J.; Kooijman, H.; Spek, A. L.; Tanase, S. Angew. Chem., Int. Ed. 2007, 46, 6081. (i) Lim, J. H.; You, Y. S.; Yoo, H. S.; Yoon, J. H.; Kim, J. I.; Koh, E. K.; Hong, C. S. Inorg. Chem. 2007, 46, 10578. (a) Sra, A. K.; Andruh, M.; Kahn, O.; Golhen, S.; Ouahab, L.; Yakhmi, J. V. Angew. Chem., Int. Ed. 1999, 38, 2606. (b) Arimoto, Y.; Ohkoshi, S.; Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hashimoto, K. Chem. Lett. 2002, 832. (c) Podgajny, R.; Korzeniak, T.; Balanda, M.; Wasiutynski, T.; Errington, W.; Kemp, T. J.; Alcockc, N. W.; Sieklucka, B. Chem. Commun. 2002, 1138. (d) Chang, F.; Sun, H.-L.; Kou, H.-Z.; Gao, S. Inorg. Chem. Commun. 2002, 5, 660. (e) Ohkoshi, S.; Arimoto, Y.; Seino, H.; Mizobe, T.; Hashimoto, K. Chem. Commun. 2003, 2772. (f) Arimoto, Y.; Ohkoshi, S.; Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hashimoto, K. J. Am. Chem. Soc. 2003, 125, 9240. (g) Kania, R.; Lewin´ski, K.; Sieklucka, B. Dalton Trans. 2003, 1033. (h) Kou, H.Z.; Ni, Z.-H.; Zhou, B. C.; Wang, R.-J. Inorg. Chem. Commun. 2004, 7, 1150. (i) Korzeniak, T.; Stadnicka, K.; Rams, M.; Sieklucka, B. Inorg. Chem. 2004, 43, 4811. (j) You, Y. S.; Yoon, J. H.; Lim, J. H.; Kim, H. C.; Hong, C. S. Inorg. Chem. 2005, 44, 7063. (k) Withers, J. R.; Li, D.; Triplet, J.; Ruschman, C.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. Inorg. Chem. 2006, 45, 4307. (l) Nowicka, B.; Rams, M.; Stadnicka, K.; Sieklucka, B. Inorg. Chem. 2007, 46, 8123. (m) Higashikawa, H.; Okuda, K.; Kishine, J.; Masuhara, N.; Inoue, K. Chem. Lett. 2007, 36, 1022. (n) Podgajny, R.; Nitek, W.; Rams, M.; Sieklucka, B. Cryst. Growth Des. 2008, 8, 3817. (o) Chelebaeva, E.; Larionova, J.; Guari, Y.; Sa´ Ferreira, R. A.; Carlos, L. D.; Paz, F. A. A.; Trifonov, A.; Gue´rin, C. Inorg. Chem. 2008, 47, 775. (a) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Verdaguer, M.; Ohkoshi, S.; Hashimoto, K. Inorg. Chem. 2000, 39, 5095. (b) Song,

Communications Y.; Ohkoshi, S.; Arimoto, Y.; Seino, H.; Mizobe, Y.; Hashimoto, K. Inorg. Chem. 2003, 42, 1848. (c) Herrera, J. M.; Bleuzen, A.; Julve, M.; Lloret, F.; Verdaguer, M. Inorg. Chem. 2003, 42, 7052. (d) Kashiwagi, T.; Ohkoshi, S.; Seino, H.; Mizobe, Y.; Hashimoto, K. J. Am. Chem. Soc. 2004, 126, 5024. (e) Hozumi, T.; Hashimoto, K.; Ohkoshi, S. J. Am. Chem. Soc. 2005, 127, 3864. (f) Ohkoshi, S.; Tokoro, H.; Hozumi, T.; Zhang, Y.; Hashimoto, K.; Mathonie`re, C.; Bord, I.; Rombaut, G.; Verelst, M.; Moulin, C. C.; Villain, F. J. Am. Chem. Soc. 2006, 128, 270. (g) Ohkoshi, S.; Ikeda, S.; Hozumi, T.; Kashiwagi, T.; Hashimoto, K. J. Am. Chem. Soc. 2006, 128, 5320. (h) Wang, Z.-X.; Shen, X.-F.; Wang, J.; Zhang, P.; Li, Y.-Z.; Nfor, E. N.; Song, Y.; Ohkoshi, S.; Hashimoto, K.; You, X.-Z. Angew. Chem., Int. Ed. 2006, 45, 3287. (i) Hozumi, T.; Nuida, T.; Hashimoto, K.; Ohkoshi, S. Cryst. Growth Des. 2006, 6, 2457. (j) Ohkoshi, S.; Tsunobuchi, Y.; Takahashi, H.; Hozumi, T.; Shiro, M.; Hashimoto, K. J. Am. Chem. Soc. 2007, 129, 3084. (k) Pinkowicz, D.; Podgajny, R.; Bałanda, M.; Makarewicz, M.; Gaweł, B.; Łasocha, W.; Sieklucka, B. Inorg. Chem. 2008, 47, 9745. (10) 1: Evaporation of a 40 mL aqueous solution containing tris(2aminoethyl)amine (44 mg, 0.30 mmol), Ni(ClO4)2 · 6H2O (54 mg, 0.15 mmol), Cu(ClO4)2 · 6H2O (54 mg, 0.15 mmol), and K4[Mo(CN)8] · 2H2O (25 mg, 0.05 mmol) at room temperature for 2 weeks yields 1 as brown block crystals (yield 58%). IR (cm-1): 3355 br, 2897 s, 2121 vs, 1602 s, 1476 s, 1320 m, 1100 vs, 978 m, 883 m. C26H64Cl2MoN20Ni3O13 (1207.84): C, 25.85; H, 5.34; N, 23.19. Found: C, 26.08; H, 5.28; N, 23.41. (11) Wu, S.-T.; Wu, Y.-R.; Kang, Q.-Q.; Zhang, H.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. Angew. Chem., Int. Ed. 2007, 46, 8475.

Crystal Growth & Design, Vol. 9, No. 5, 2009 2053 (12) Schmittel, M.; Mahata, K. Angew. Chem., Int. Ed. 2008, 47, 5284. (13) Gonza´lez, E.; Rodrigue-Witchel, A.; Reber, C. Coord. Chem. ReV. 2007, 251, 351. (14) Crystal data for 1: C26H64Cl2MoN20Ni3O13, T ) 173(2) K, Fw ) 1207.94, orthorhombic P212121, a ) 14.116(3) Å, b ) 15.011(3) Å, c ) 23.121(5) Å, V ) 4899(2) Å3, Z ) 4, Dc ) 1.638 g cm-3, µ ) 1.569 mm-1, R1 (I > 2σ) ) 0.0633, wR2 (all data) ) 0.1383, GOF ) 1.006, Flack parameter ) 0.02(2). The intensity data were collected on a Rigaku CCD diffractometer with Mo KR ) radiation (λ ) 0.71073 Å) at 173 K. (15) Tian, G.; Zhu, G. S.; Yang, X. Y.; Fang, Q. R.; Xue, M.; Sun, J. Y.; Wei, Y.; Qiu, S. L. Chem. Commun. 2005, 1396. (16) (a) Kahn, O. Molecular Magnetism; Wiley-VCH Publishers, Inc.: NewYork, NY, 1993. (b) Ferlay, S.; Mallah, T.; Ouahe´s, R.; Veillet, P.; Verdaguer, M. Nature (London) 1995, 378, 701. (c) Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 271, 49. (d) Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704. (e) Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593. (f) Sato, O.; Einaga, Y.; Fujishima, A.; Hashimoto, K. Inorg. Chem. 1999, 38, 4405. (g) Ni, Z. H.; Kou, H. Z.; Zhang, L. F.; Ge, C. H.; Cui, A. L.; Wang, R. J.; Li, Y. D.; Sato, O. Angew. Chem., Int. Ed. 2005, 44, 7742. (h) Li, D.; Cle´rac, R.; Roubeau, O.; Harte´, E.; Mathonie´re, C.; Le Bris, R.; Holmes, S. M. J. Am. Chem. Soc. 2008, 130, 252.

CG900062Y