Adsorption and Electrokinetic Effects of Amino Acids on Rutile and

investigated by Rawls et al. (15). They found that phosphate ions ..... Anbar, M.; St. John, G. Α.; Elward, T. E. J. Dental Res. 1974, 53, 1240. 4. Q...
2 downloads 0 Views 820KB Size
19 Adsorption and Electrokinetic Effects of Amino Acids on Rutile and Hydroxyapatite 1

2

D. W. FUERSTENAU, S. CHANDER , J. LIN , and G. D. PARFITT

3

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720

The mechanism of interaction of amino acids at solid/ aqueous solution interfaces has been investigated through adsorption and electrokinetic measurements. Isotherms for the adsorption of glutamic acid, proline and lysine from aqueous solutions at the surface of rutile are quite different from those on hydroxyapatite. To delineate the role of the electrical double layer in adsorption behavior, electrophoretic mobilities were measured as a function of pH and amino acid concentrations. Mechanisms for interaction of these surfactants with rutile and hydroxyapatite are proposed, taking into consideration the structure of the amino acid ions, solution chemistry and the electrical aspects of adsorption. Interest in the nature of interactions between shortchain organic surfactants and large molecular weight macromolecules and ions with hydroxyapatite extends to several fields. In the area of caries prevention and control, surfactant adsorption plays an important role in the initial states of plaque formation (1-5) and in the adhesion of tooth restorative materials (6). Interaction of hydroxyapatite with polypeptides in human urine is important in human biology as hydroxyapatite has been found as a major or minor component in a majority of kidney stones (7). Hydroxyapatite is used in column chromatography as a material for separating proteins (8-9). The flotation separation of apatite from 1

Current address: Mineral Processing Section, Department of Mineral Engineering, The Pennsylvania State University, University Park, PA 16802 Current address: Research Laboratory, IBM, San Jose, CA 95113 Current address: Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, PA 15213 2

3

0097-6156/84/0253-0311506.00/0 © 1984 American Chemical Society

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

312

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

gangue m i n e r a l s a s a n i m p o r t a n t i n d u s t r i a l o p e r a t i o n i n w h i c h s u r f a c t a n t s are used to e f f e c t the s e p a r a t i o n (10). Dewatering o f t h e c o l l o i d a l p h o s p h a t i c s l i m e s t h a t a r e g e n e r a t e d i n l a r g e quant i t i e s i n the p r o c e s s i n g of phosphate r o c k i s a major i n d u s t r i a l p r o b l e m w h i c h has b e e n s t u d i e d b y a number o f r e s e a r c h e r s i n r e c e n t years (11). O n l y a few s y s t e m a t i c s t u d i e s have been c a r r i e d out o n the mechanism o f i n t e r a c t i o n o f o r g a n i c s u r f a c t a n t s and m a c r o m o l e c u l e s . M i s h r a e t a l . (12) s t u d i e d t h e e f f e c t o f s u l f o n a t e s ( d o d e c y l ) , c a r b o x y l i c a c i d s ( o l e i c and t r i d e c a n o i c ) , and amines ( d o d e c y l and d o d e c y l t r i m e t h y l ) on the e l e c t r o p h o r e t i c m o b i l i t y of hydroxyapatite. V o g e l e t a l . (13) s t u d i e d t h e r e l e a s e o f p h o s p h a t e and c a l c i u m i o n s d u r i n g the a d s o r p t i o n o f benzene p o l y c a r b o x y l i c a c i d s onto a p a t i t e . J u r i a a n s e et a l . ( 1 4 ) a l s o observed a s i m i l a r r e l e a s e o f c a l c i u m and p h o s p h a t e i o n s d u r i n g t h e a d s o r p t i o n o f p o l y p e p t i d e s o n d e n t a l enamel. A d s o r p t i o n of polyphosphonate on h y d r o x y a p a t i t e and t h e a s s o c i a t e d r e l e a s e o f p h o s p h a t e i o n s was i n v e s t i g a t e d b y R a w l s e t a l . ( 1 5 ) . They f o u n d t h a t p h o s p h a t e i o n s were r e l e a s e d i n t o s o l u t i o n i n amounts e x c e e d i n g t h e q u a n t i t y o f phosphonate adsorbed. The p r e s e n t i n v e s t i g a t i o n was u n d e r t a k e n t o s t u d y t h e mechan i s m o f a d s o r p t i o n o f s e l e c t e d amino a c i d s i n o r d e r t o u n d e r s t a n d t h e i r i n t e r f a c i a l b e h a v i o r a t t h e h y d r o x y a p a t i t e s u r f a c e . The p r e s e n c e o f two o r more f u n c t i o n a l g r o u p s i n amino a c i d s g i v e r i s e to s u r f a c e p r o p e r t i e s w h i c h a r e q u i t e d i f f e r e n t f r o m t h e i n t e r f a c i a l p r o p e r t i e s f o r the a d s o r p t i o n of simple s u r f a c t a n t s , t h a t i s , t h o s e c o n t a i n i n g o n l y one c h a r g e d g r o u p . The a d s o r p t i o n b e h a v i o r of h y d r o x y a p a t i t e i s f u r t h e r complicated because of i t s partial solubility. A c c o r d i n g l y , t h e i n t e r f a c i a l p r o p e r t i e s were a l s o d e t e r m i n e d f o r T1O2 and compared w i t h t h o s e o f h y d r o x y a p a t i t e . P r o p e r t i e s o f Amino A c i d s Amino a c i d s a r e c h a r a c t e r i z e d b y t h e p r e s e n c e o f a d j a c e n t carboxy l i c (-CO^H) and amino (-NH) f u n c t i o n a l g r o u p s . The e q u i l i b r i u m constant t o r p r o t o n a t i o n or d i s s o c i a t i o n of these groups i s a f u n c t i o n o f t h e i r p o s i t i o n i n t h e amino a c i d m o l e c u l e . Therefore, w i d e l y d i f f e r i n g a c i d - b a s e p r o p e r t i e s o f amino a c i d s o c c u r , d e p e n d i n g upon t h e number o f f u n c t i o n a l g r o u p s and t h e i r r e l a t i v e p o s i t i o n i n the molecule. The d i s s o c i a t i o n c o n s t a n t s f o r v a r i o u s amino a c i d s u s e d i n t h i s i n v e s t i g a t i o n a r e g i v e n i n T a b l e I . The f i r s t d i s s o c i a t i o n c o n s t a n t f o r t h e -CO2H g r o u p i s t h e more a c i d i c g r o u p w i t h a pK o f 1.8 t o 2.4. T h i s g r o u p i n amino a c i d s i s s u b s t a n t i a l l y more a c i d i c t h a n a c e t i c a c i d , w h i c h has a pK = 4 . 7 6 due t o t h e l a r g e i n d u c t i v e e f f e c t o f t h e a d j a c e n t -NH^ g r o u p . The pK f o r t h e p r o t o n a t i o n o f t h e amino g r o u p has a v a l u e o f 9.0 t o 10.0 w h i c h i s s l i g h t l y l o w e r t h a n t h a t f o r t h e c o n j u g a t e a c i d o f m e t h y l a m i n e w i t h a_ pK o f 10.4. T h u s , t h e amino a c i d s h a v e a p o s i t i v e l y c h a r g e d "NIL. g r o u p a c i d i c p H s (pH < 2) a p o s i t i v e -NH~ and a n e g a t i v e - C 0 ~ g r o u p a t n e u t r a l pH's (3 < pH < 9) a n d +

T

9

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Adsorption, Electrokinetic Effects of Amino Acids 313

FUERSTENAU ET AL.

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

Table I .

Stability

Amino A c i d

Glutamic acid

C o n s t a n t s o f Amino A c i d s

Formula

HOOC(CH ) CHCOOH 2

2

v\

ρκ

2.13

4.32

9.95

2.16

9.20

10.80

2

ρκ

3

NHLysine

Proline

H N(CH ) CHCOOH 2

2

4

H C 2ι

CH ι2

H C

CHCOOH

0

0

1.95

10.64

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

314

a negative -C0 g r o u p i n a l k a l i n e pH's (pH > 1 0 ) . In a d d i t i o n , one must c o n s i d e r d i s s o c i a t i o n o f o t h e r f u n c t i o n a l g r o u p s p r e s e n t as p a r t o f t h e amino a c i d . For example, g l u t a m i c a c i d c o n t a i n s a n o t h e r - C 0 w h i c h h a s a pK ( d i s s o c i a t i o n c o n s t a n t ) o f 4.32, and l y s i n e has a n o t h e r amine g r o u p w i t h t h e pK o f i t s c o n j u g a t e a c i d b e i n g 10.80. P r o l i n e , b e c a u s e o f i t s n i t r o g e n b e i n g p a r t o f t h e c y c l i c r i n g , has p K s o f 1.95 and 10.64. The c h a r g e o n v a r i o u s f u n c t i o n a l g r o u p s a s a f u n c t i o n o f pH i s s c h e m a t i c a l l y i l l u s t r a t e d in T a b l e I I . I t i s e v i d e n t t h a t a n amino a c i d z n o l e c u l e may h a v e s t r o n g l y c h a r g e d p o s i t i v e and n e g a t i v e s i t e s e v e n t h o u g h t h e m o l e ­ c u l e has a n o v e r a l l c h a r g e n e u t r a l i t y . The p r e s e n t s t u d y shows t h a t t h i s z w i t t e r i o n i c c h a r a c t e r o f amino a c i d s p l a y s a n i m p o r t a n t r o l e i n the a d s o r p t i o n process. 2

2

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

f

E x p e r i m e n t a l M e t h o d s and M a t e r i a l s S y n t h e t i c h y d r o x y a p a t i t e p r e p a r e d b y m i x i n g s t o i c h i o m e t r i c amounts o f aqueous s o l u t i o n s o f c a l c i u m n i t r a t e and ammonium p h o s p h a t e was used i n t h i s s t u d y . The pH o f t h e b o i l i n g s u s p e n s i o n was m a i n ­ t a i n e d a t a b o u t 10 b y f l o w i n g a m i x t u r e o f NH^ and N t h r o u g h o u t the p r e c i p i t a t i o n process. The p r e c i p i t a t e was r e p e a t e d l y washed u n t i l t h e c o n d u c t i v i t y o f t h e s u p e r n a t a n t l i q u i d was o b s e r v e d t o be c o n s t a n t . The washed s a m p l e was f r e e z e - d r i e d and a n a l y z e d . A n e l e m e n t a l a n a l y s i s o f t h e b a t c h p r e p a r a t i o n showed t h e Ca/P m o l a r t o b e r a t i o 1.64, w i t h t h e p r e d o m i n a n t i m p u r i t y b e i n g S i (0.12% S i 0 ) . The s a m p l e had a BET s u r f a c e a r e a o f 19.6 m / g and a d e n s i t y o f 2.96 g/cm . The x - r a y d i f f r a c t i o n p a t t e r n was s h a r p and c h a r a c t e r i s t i c o f s y n t h e t i c h y d r o x y a p a t i t e . "Analytical g r a d e " r e a g e n t s and C 0 - f r e e d o u b l e - d i s t i l l e d w a t e r were used throughout the i n v e s t i g a t i o n . The h y d r o x y a p a t i t e s u s p e n s i o n s f o r t h e a d s o r p t i o n s t u d i e s w e r e p r e p a r e d b y a d d i n g 0.25 g h y d r o x y a ­ p a t i t e t o 25 m l o f 1 0 ~ M KNO^ s o l u t i o n ( u n l e s s o t h e r w i s e i n d i ­ c a t e d ) and t h e r e q u i s i t e amount o f t h e amino a c i d . After equili­ b r a t i o n f o r one h o u r , t h e s o l i d s w e r e s e p a r a t e d i n a c e n t r i f u g e and t h e l i q u i d was a n a l y z e d f o r i t s e q u i l i b r i u m amino a c i d c o n ­ c e n t r a t i o n by t h e m i n h y d r i n m e t h o d . The s u s p e n s i o n was m a i n t a i n e d a t 37 ± 0.5°C t h r o u g h o u t t h e a d s o r p t i o n e q u i l i b r a t i o n p e r i o d . E l e c t r o p h o r e t i c m o b i l i t i e s were measured w i t h a Zeta-Meter e l e c t r o ­ phoresis apparatus. Lower c o n c e n t r a t i o n s o f KNO^ ( g e n e r a l l y 2 χ 10 M) w e r e u s e d i n t h e s e t e s t s t o a v o i d e x c e s s i v e com­ p r e s s i o n o f t h e e l e c t r i c a l d o u b l e l a y e r and t o m a i n t a i n t h e r m a l s t a b i l i t y of the suspension i n an e l e c t r i c a l f i e l d . 2

2

2

2

2

R e s u l t s and

Discussions

A d s o r p t i o n and E l e c t r o K i n e t i c B e h a v i o r o f R u t i l e . Isotherms f o r t h e a d s o r p t i o n o f l y s i n e , p r o l i n e and g l u t a m i c a c i d o n r u t i l e ( T i 0 ) a r e g i v e n i n F i g u r e 1. There i s no s i m p l e r e l a t i o n s h i p b e t w e e n t h e a d s o r p t i o n d e n s i t y and t h e e q u i l i b r i u m c o n c e n t r a t i o n . The a d s o r p t i o n does n o t obey t h e L a n g m i u r , F r e u n d l i c h o r S t e r n Grahame r e l a t i o n s h i p s . The l e v e l i n g - o f f o f t h e a d s o r p t i o n 2

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.13

α!

2.16

CZ3°!

Proline

+

Lysine

°d>

; cz>

EZ3-

+

4.32

!

pH

a:

- IZZh 9.95

0

9.20

10

0

12

ia

10.8

! C±|-Î CZ]

+

i n Amino A c i d s

! - LZZ3

S c h e m a t i c I l l u s t r a t i o n o f C h a r g e s on F u n c t i o n a l G r o u p s

Glutamic Acid

Table I I .

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

The rutile.

F i g u r e 1.

p r o l i n e on

isotherms

f o r a d s o r p t i o n of glutamic

acid, lysine

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

and

C/5

Η



η

C 70

C/3



S

δ

r

η m ?ο m

>

70

Ο

τι

m

-ο

m

C *3

Η

c η

Η ?ο

C/3

ON

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

19.

FUERSTENAU ET AL.

Adsorption, Electrokinetic Effects of Amino Acids 317

i s o t h e r m s a t h i g h c o n c e n t r a t i o n s shows a n a p p a r e n t d e c r e a s e i n t h e f r e e energy o f a d s o r p t i o n w i t h i n c r e a s e i n c o n c e n t r a t i o n . This d e c r e a s e i n o v e r a l l a d s o r p t i o n e n e r g y may be a t t r i b u t e d t o r e p u l s i o n between t h e adsorbed m o l e c u l e s . Figure 2 further i l l u s t r a t e s the e l e c t r o s t a t i c n a t u r e o f i n t e r a c t i o n s between t h e r u t i l e s u r f a c e and t h e amino a c i d s . A t pH's b e l o w t h e PZC o f r u t i l e (pH 6.7) t h e s o l i d i s p o s i t i v e l y c h a r g e d and i t i s n e g a t i v e l y c h a r g e d a t h i g h e r pH's. G l u t a m i c a c i d w h i c h h a s two n e g a t i v e c h a r g e s b e t w e e n pH 4.3 and 10.0 a d s o r b s m a i n l y a t t h e p o s i t i v e s u r f a c e . Adsorption t h r o u g h t h e amine g r o u p o n t h e n e g a t i v e s u r f a c e i s much w e a k e r , p e r h a p s b e c a u s e o f t h e r e p u l s i o n b e t w e e n t h e two n e g a t i v e l y c h a r g e d c a r b o x y l a t e g r o u p s and t h e n e g a t i v e s u r f a c e . L y s i n e a d s o r b s o n l y t h r o u g h e l e c t r o s t a t i c i n t e r a c t i o n s a l s o , and t h e r e i s no i n d i c a t i o n of a d s o r p t i o n through c a r b o x y l i c groups. P r o l i n e e x h i b i t s a v e r y complex b e h a v i o r , however. A l t h o u g h t h e u p t a k e o f p r o l i n e c a n be c o n s i d e r e d t o i n v o l v e s p e c i f i c a d s o r p t i o n , t h e r e s u l t s can be i n t e r p r e t e d by an e l e c t r o s t a t i c model i f r e o r i e n t a t i o n o f t h e s u r f a c t a n t molecules i s taken i n t o c o n s i d e r a t i o n . A s compared t o g l u t a m i c a c i d and l y s i n e , p r o l i n e m o l e c u l e s c o n t a i n o n l y two f u n c t i o n a l groups. A t a p o s i t i v e s u r f a c e t h e a d s o r p t i o n could occur t h r o u g h t h e c a r b o x y l a t e group, whereas a t a n e g a t i v e s u r f a c e t h e m o l e c u l e a d s o r b s t h r o u g h t h e amine g r o u p . Stronger r e p u l s i o n between t h e i d e n t i c a l l y c h a r g e d g r o u p s i n t h e a d s o r b i n g m o l e c u l e and the s u r f a c e i s perhaps t h e r e a s o n f o r t h e r e l a t i v e l y lower a d s o r p t i o n d e n s i t y o f p r o l i n e compared t o g l u t a m i c a c i d . The e l e c t r o p h o r e t i c b e h a v i o r o f T i C ^ i n g l u t a m i c a c i d , l y s i n e and p r o l i n e s o l u t i o n s a r e g i v e n i n F i g u r e s 3 , 4 and 5, r e s p e c t i v e l y . B e l o w t h e PZC o f T i 0 (pH < 6.7) a d s o r p t i o n o f g l u t a m i c a c i d makes t h e e l e c t r o p h o r e t i c m o b i l i t y more n e g a t i v e a s a n t i c i p a t e d . A t pH s g r e a t e r t h a n t h e PZC (pH > 6.7) a weak a d s o r p t i o n t h r o u g h amine g r o u p s makes t h e e l e c t r o p h o r e t i c m o b i l i t y e v e n more n e g a t i v e b e c a u s e f o r e a c h o f t h e g l u t a m i c a c i d m o l e c u l e a d s o r b e d , two c a r b o x y l a t e g r o u p s a r e a t t a c h e d t o t h e s u r f a c e . A t pH's n e a r 10 o r h i g h e r , t h e a d s o r p t i o n o f amine g r o u p s c e a s e s b e c a u s e t h e y h y d r o l y z e t o t h e n e u t r a l form. Therefore a l l e l e c t r o p h o r e t i c m o b i l i t y c u r v e s merge a t pH 1 0 . L y s i n e does n o t e x h i b i t any s i g n i f i c a n t i n f l u e n c e o n t h e e l e c t r o p h o r e t i c m o b i l i t y a t pH v a l u e s b e l o w t h e PZC o f T i O ^ . A t h i g h e r pH's, t h e e l e c t r o p h o r e t i c m o b i l i t y s l i g h t l y i n c r e a s e s b e c a u s e two amine g r o u p s a r e a d s o r b e d f o r e a c h a d s o r b e d m o l e c u l e . Proline makes t h e e l e c t r o p h o r e t i c m o b i l i t y s l i g h t l y more n e g a t i v e i n t h e i n t e r m e d i a t e pH r a n g e . A p p a r e n t l y , c a r b o x y l a t e i o n s i n t h e a d s o r b i n g molecules a r e o r i e n t e d i n an outword d i r e c t i o n such t h a t they make t h e e l e c t r o p h o r e t i c m o b i l i t y more n e g a t i v e e v e n t h o u g h t h e proline molecule i s o v e r a l l neutral. 2

f

A d s o r p t i o n and E l e c t r o k i n e t i c B e h a v i o r o f H y d r o x y a p a t i t e . The a d s o r p t i o n d e n s i t i e s o f g l u t a m i c a c i d and l y s i n e o n h y d r o x y a p a t i t e a r e shown i n F i g u r e s ^ 6 and 7. The change i n s l o p e o f t h e a d s o r p t i o n i s o t h e r m a t 1 0 ~ M g l u t a m i c a c i d i s c o n s i d e r e d t o b e due t o a

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/ PERFORMANCE RELATIONSHIPS IN SURFACTANTS

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

318

Figure 2. lysine

The e f f e c t of pH on the adsorption of glutamic a c i d ,

and p r o l i n e on r u t i l e .

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

FUERSTENAU ET AL.

Adsorption, Electrokinetic Effects of Amino Acids 319

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

19.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

F i g u r e 4. of

The

e f f e c t of l y s i n e on

the e l e c t r o p h o r e t i c

mobility

rutile.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

FUERSTENAU ET AL.

Adsorption, Electrokinetic Effects of Amino Acids 321

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

19.

F i g u r e 5. of

The e f f e c t o f p r o l i n e on t h e e l e c t r o p h o r e c t i c

mobility

rutile.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

STRUCTURE/ PERFORMANCE RELATIONSHIPS IN SURFACTANTS

F i g u r e 6.

The

isotherm

f o r a d s o r p t i o n of glutamic

a c i d on

hydroxyapatite.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

FUERSTENAU ET AL.

Adsorption, Electrokinetic Effects of Amino Acids 323

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

19.

Figure 7. The e f f e c t of pH on the a d s o r p t i o n of glutamic a c i d and l y s i n e on hydroxyapatite.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

324

change i n t h e a d s o r p t i o n mechanism. A t l o w c o n c e n t r a t i o n s , we propose t h a t the g l u t a m i c a c i d adsorbs whereas a t h i g h concent r a t i o n the system undergoes c h e m i c a l r e a c t i o n i n v o l v i n g the c a l c i u m i o n s a t t h e s u r f a c e . T h i s h y p o t h e s i s may e x p l a i n t h e comp l e x e l e c t r o k i n e t i c b e h a v i o r o f h y d r o x y a p a t i t e shown i n F i g u r e 8. At low c o n c e n t r a t i o n of g l u t a m i c a c i d , the e l e c t r o p h o r e t i c m o b i l i t y becomes more n e g a t i v e a s w o u l d b e e x p e c t e d i f g l u t a m i c a c i d adsorbs. At higher concentrations, a chemical r e a c t i o n occurs w i t h the s u r f a c e becoming p o s i t i v e l y charged, a p p a r e n t l y because of a h i g h c o n c e n t r a t i o n of coadsorbed calcium i o n s . Further s t u d i e s a r e r e q u i r e d t o c o m p l e t e l y understand t h i s h i g h l y complex system. The a d s o r p t i o n o f b o t h g l u t a m i c a c i d and l y s i n e i s a l m o s t a n order of magnitude s m a l l e r on h y d r o x y a p a t i t e than i t i s on TiO^ (compare F i g u r e s 2 and 7 ) . G l u t a m i c a c i d a d s o r b s e v e n a t pH 7, s u g g e s t i n g t h a t the a d s o r p t i o n can o c c u r i n d i f f e r e n t o r i e n t a t i o n s of the g l u t a m i c a c i d i o n . L y s i n e adsorbs o n l y a t a n e g a t i v e s u r f a c e t h r o u g h t h e amine g r o u p s and a d s o r p t i o n c e a s e s a t pH 10 b e c a u s e t h e amine g r o u p s h y d r o l y z e . The i n f l u e n c e o f l y s i n e o n the e l e c t r o p h o r e t i c m o b i l i t y of h y d r o x y a p a t i t e i s presented i n F i g u r e 9. The m o b i l i t y becomes p o s i t i v e b e c a u s e o f t h e p r e s e n c e o f two p o s i t i v e l y c h a r g e d amine g r o u p s f o r e a c h a d s o r b i n g i o n . Concluding

Discussion

The a d s o r p t i o n o f amino a c i d s o n r u t i l e and h y d r o x y a p a t i t e e x h i b i t s some c h a r a c t e r i s t i c s o f s p e c i f i c a d s o r p t i o n . The r e s u l t s c a n b e i n t e r p r e t e d i n terms o f e l e c t r o s t a t i c m o d e l s o f a d s o r p t i o n , however, i f r e o r i e n t a t i o n of adsorbed molecules i s taken i n t o consideration. The e l e c t r o k i n e t i c b e h a v i o r o f h y d r o x y a p a t i t e i n g l u t a m i c a c i d i s c o m p l i c a t e d because of a chemical r e a c t i o n , possibly involving calcium i o n s . The s t u d y shows t h a t i t i s necessary to take i n t o c o n s i d e r a t i o n the o r i e n t a t i o n of adsorbed molecules, p a r t i c u l a r l y f o r z w i t t e r i o n i c surfactants. Acknowledgments The a u t h o r s w i s h t o a c k n o w l e d g e t h e N a t i o n a l S c i e n c e F o u n d a t i o n and t h e N a t i o n a l I n s t i t u t e o f H e a l t h , G r a n t NIH ROI DE 03708-06 f o r the support of t h i s r e s e a r c h .

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Adsorption, Electrokinetic Effects of Amino Acids 325

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

FUERSTENAU ET AL.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

326

F i g u r e 9. The

e f f e c t of l y s i n e on the e l e c t r o p h o r e t i c m o b i l i t y o f

hydroxyapatite.

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

19.

FUERSTENAU ET AL.

Adsorption, Electrokinetic Effects of Amino Acids 327

Downloaded by FUDAN UNIV on April 15, 2017 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch019

Literature Cited 1. Hay, D. I. Arch. Oral Biol. 1967, 12, 937. 2. Francis, M. D. Calif. Tissue Res. 1969, 3, 151. 3. Anbar, M.; St. John, G. Α.; Elward, T. E. J. Dental Res. 1974, 53, 1240. 4. Quintana, R. P. in "Applied Chemistry at Protein Interface"; Baier, R. Ε., Ed.; ACS SYMPOSIUM SERIES No. 145, American Chemical Society: Washington, D. C., 1975; p. 290. 5. Bartels, T.; Schudhof, J . ; Arends, J. J. Dentistry 1979, 7, 221. 6. Farley, E. P.; Jones, R. L.; Anbar, M. J. Dental Res. 1977, 56, 943. 7. Malek, R. S.; Boyce, W. H. J. Urol. 1977, 117, 336. 8. Bernardi, G.; Kawasaki, T. Biochem. Biophys. Acta 1968, 160, 301. 9. Bernardi, G. in "Methods in Enzymology"; Hirs, Ch. W.; Timasheff, S. Ν., Eds.; Academic: New York, 1972; Vol. 27, p. 471. 10. Smith, P. R., Jr., in "Flotation, A. M. Gaudin Memorial Volume"; Fuerstenau, M. C., Ed.; AIME: New York, 1976; Vol. 2, p. 1265. 11. Nagraj, D. R.; McAllister, L.; Somasundaran, P. Int. J. Mineral Processing 1977, 4, 111. 12. Mishra, R. K.; Chander, S.; Fuerstenau, D. W. Colloids and Surfaces 1980, 1, 105. 13. Vogel, J. C.; Frank, R. M. J. Colloid Interface Sci. 1981, 83, 26. 14. Juriaanse, A. C.; Arends, J.; Tenbasch, J. J. J. Colloid Interface Sci. 1980, 76, 212. 15. Rawls, H. R.; Bartels, T.; Arends, J. J. Colloid Interface Sci. 1982, 87, 339. RECEIVED January 20, 1984

Rosen; Structure/Performance Relationships in Surfactants ACS Symposium Series; American Chemical Society: Washington, DC, 1984.