6
Air Particulate Control Strategy Development A New Approach Using Chemical Mass Balance Methods JOHN E. CORE—Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
PATRICK L. HANRAHAN—Oregon Department of Environmental Quality, P.O. Box 1760, Portland, OR 97207 JOHN A. COOPER—Oregon Graduate Center, 1900 N.W. Walker Road, Beaverton, OR 97006
Recent advances in source apportionment receptor models have, for the f i r s t time, led to the development of regional particulate control strategies. Source impacts assigned using a Chemical Mass Balance (CMB) model, have been used with dispersion modeling to identify emission inventory deficiencies and improve modeling assumptions. The Chemical Mass Balance model is a method of assigning source impacts given detailed information on the chemical "fingerprint" of both the ambient particulate and source emissions within the airshed. Quantitative estimates of source contribution were identified with relative uncertainties ranging from ±5% to 30%. Dispersion model source impact estimates, following comparison to the CMB results, were significantly improved after emission inventory deficiencies were corrected. Final modeling results then provided r e a l i s t i c source impact estimates which could be confidently used for strategy development. Presented as an overview of the State of Oregon's unique approach to particulate control strategy development, this review was prepared to provide those responsible for airshed management with new information on source impact assessment methods. (This material is available in the form of an audio-visual program suitable for presentation before public, regulatory or private interest groups).
0097-6156/81/0167-0107$05.00/0 © 1981 American Chemical Society
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
108
ATMOSPHERIC
AEROSOL
P o r t l a n d , E u g e n e , and M e d f o r d , O r e g o n a r e t h r e e c i t i e s w h i c h s h a r e a n a i r p o l l u t i o n p r o b l e m common t o many o t h e r communities a c r o s s t h e c o u n t r y - suspended particulate air quality violations. Paced w i t h l i m i t e d a i r s h e d c a p a c i t y , e x p a n d i n g e m i s s i o n growth and C l e a n A i r A c t r e q u i r e m e n t s t o a t t a i n p a r t i c u l a t e a i r q u a l i t y s t a n d a r d s , t h e Oregon D e p a r t m e n t o f E n v i r o n m e n t a l Q u a l i t y , i n 1975, b e g a n a f i v e y e a r program o f d a t a c o l l e c t i o n d e s i g n e d t o understand each community's problem. The purpose o f t h e s e programs has been t o p r o v i d e t h e b e s t t e c h n i c a l i n f o r m a t i o n p o s s i b l e upon w h i c h c o n t r o l s t r a t e g i e s c a n be b u i l t . R e s u l t s f r o m t h i s work h a v e p l a y e d a key r o l e i n i d e n t i f y i n g c o n t r i b u t i n g s o u r c e s , improvi n g m o d e l i n g r e s u l t s and i n a d o p t i n g c o n t r o l p r o g r a m s t h a t t h e D e p a r t m e n t and t h e community c a n i m p l e m e n t w i t h c o n f i d e n c e . T h i s i s a b r i e f review o f t h e Department's approach t o c o n t r o l s t r a t e g y development. I t i s unique because i t combines t h e a d v a n t a g e s o f two d i f f e r e n t s o u r c e a p p o r t i o n m e n t m o d e l s to a r r i v e a t t h e source impact i n f o r m a t i o n used i n s t r a t e g y development: a C h e m i c a l M a s s B a l a n c e (CMB) M o d e l t o e s t i m a t e s o u r c e impacts u s i n g measured ambient p a r t i c u l a t e c o m p o s i t i o n d a t a , and t r a d i t i o n a l d i s p e r s i o n m o d e l e s t i m a t e s o f i m p a c t s . A l t h o u g h d i s p e r s i o n m o d e l i n g and C h e m i c a l Mass B a l a n c e m e t h o d s have been used i n s e v e r a l source apportionment s t u d i e s , t h e work r e p o r t e d h e r e r e p r e s e n t s t h e f i r s t attempt t o b r i n g t h e b e s t f e a t u r e s o f these t e c h n i q u e s t o g e t h e r w i t h i n t h e framework o f a s i n g l e s t u d y ( 1 , 2 ) . The p r i m a r y f o c u s h e r e i s on work c o m p l e t e d i n t h e P o r t l a n d A i r Q u a l i t y Maintenance a r e a i n Northwest Oregon, a l t h o u g h t h e improvements t o t h e m e t e o r o l o g i c a l d a t a , emiss i o n i n v e n t o r i e s and d i s p e r s i o n m o d e l h a v e b e e n c o m p l e t e d i n a l l three c i t i e s . D a t a B a s e Improvement P r o g r a m s I n 1970, new e f f o r t s were u n d e r w a y t o s o l v e P o r t l a n d ' s suspended p a r t i c u l a t e problem. E a r l y e f f o r t s r e l i e d on a v a i l a b l e e m i s s i o n f a c t o r s and i n d u s t r i a l s o u r c e t e s t i n g , as a b a s i s f o r t h e e m i s s i o n i n v e n t o r y . T h e i n v e n t o r y was t h e n u s e d , w i t h a p r o p o r t i o n a l r o l l b a c k m o d e l , a s a b a s i s f o r t h e new strategy. New i n d u s t r i a l c o n t r o l s were i n s t a l l e d w h i c h r e s u l t e d i n a 60,000 t o n s p e r y e a r r e g i o n - w i d e r e d u c t i o n i n i n d u s t r i a l emissions. A l t h o u g h p r o g r e s s toward c l e a n e r a i r was made, a i r q u a l i t y s t a n d a r d v i o l a t i o n s c a u s e d b y t h e n unknown s o u r c e s c o n t i n u e d and m o d e l i n g e f f o r t s f a i l e d t o a c c o u n t f o r o v e r o n e - h a l f o f t h e p a r t i c u l a t e mass. A new a p p r o a c h t o i d e n t i f y i n g c o n t r i b u t i n g s o u r c e s was b a d l y n e e d e d i f a new r o u n d o f e m i s s i o n c o n t r o l r e g u l a t i o n s were t o b e s u c c e s s f u l . Following t e c h n i c a l review of the a l t e r n a t i v e s , a comprehensive p l a n i n c o r p o r a t i n g a Chemical Mass B a l a n c e ( 3 , 4 ) r e c e p t o r m o d e l was a d o p t e d . This
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
CORE E T A L .
technique by
Air
Particulate
distinguishes
statistically
Control
source
matching
Strategy
109
contributions
the r e s u l t s
from
from
one
extensive
another chemical
a n a l y s i s o f ambient p a r t i c u l a t e to t h o s e o b t a i n e d from s o u r c e s i n the a i r s h e d . I n P o r t l a n d , c e r t a i n s o u r c e s were e a s i l y i d e n t i f i e d u s i n g " t r a c e r " elements u n i q u e l y a s s o c i a t e d w i t h one s o u r c e . A u t o m o t i v e e x h a u s t , f o r example, i s by f a r t h e l a r g e s t source of lead. O t h e r e m i s s i o n s , such as r e - e n t r a i n e d r o a d d u s t , must be i d e n t i f i e d u s i n g a number o f e l e m e n t s , none o f w h i c h a r e u n i q u e t o any one s o u r c e . The o v e r a l l p r o g r a m d e s i g n c o n s i s t e d o f a f i v e - s t e p l e a d i n g to S t a t e Implementation P l a n r e v i s i o n s :
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
1.
Identification
of
source
contributions
i n the
process ambient
a i r u s i n g the C h e m i c a l Mass B a l a n c e . T h i s w o r k was c o m p l e t e d p a r t o f t h e P o r t l a n d A e r o s o l C h a r a c t e r i z a t i o n S t u d y , PACS. 2. D i s p e r s i o n model e s t i m a t e s o f s o u r c e u s i n g s o u r c e e m i s s i o n and m e t e o r o l o g i c a l d a t a p e r i o d o f PACS s a m p l i n g ;
as
contributions f o r t h e one y e a r
3. C o m p a r i s o n o f t h e PACS-CMB s o u r c e i m p a c t the d i s p e r s i o n model-predicted source impacts;
estimates
to
4. C o m p l e t i o n o f e m i s s i o n i n v e n t o r y and m o d e l i n g assumpimprovements t o match d i s p e r s i o n model s o u r c e impacts t o
tion CMB
results;
The
5. D i s p e r s i o n modeling of c o n t r o l s t r a t e g y a l t e r n a t i v e s . f i r s t s t e p i n t h e p l a n was one o f s o u r c e i d e n t i f i c a t i o n
and
based
on a i r s a m p l e s . A f t e r a y e a r o f s t a f f d e s i g n , f u n d r a i s i n g and r e v i e w o f t h e m e t e o r o l o g i c a l , e m i s s i o n i n v e n t o r y and m o d e l i n g a d e q u a c y , t h e P o r t l a n d A e r o s o l C h a r a c t e r i z a t i o n Study (PACS), Step 1 o f the p l a n , began. P a r t i c i p a t i o n by l o c a l g o v e r n m e n t , b u s i n e s s
i n t e r e s t s and i n d u s t r y was a c t i v e l y s o u g h t t h r o u g h o u t t h e PACS d e s i g n , s a m p l i n g and d a t a a n a l y s i s p h a s e s i n t h e hope t h a t a l l s e c t o r s o f t h e community c o u l d g a i n c o n f i d e n c e i n t h e s t u d y results. A p u b l i c a d v i s o r y c o m m i t t e e was f o r m e d t o h e l p g u i d e the p r o j e c t The
and
reveiw
early
PACS s t u d y was
drafts.
a three year
effort
designed
to iden-
t i f y major a e r o s o l source types w i t h i n the P o r t l a n d A i r Q u a l i t y M a i n t e n a n c e A r e a and q u a n t a t i v e l y d e t e r m i n e t h e i r c o n t r i b u t i o n to p a r t i c u l a t e l e v e l s . The PACS r e p r e s e n t s t h e f i r s t m a j o r s t u d y d e s i g n e d from the b e g i n n i n g to p r o v i d e a l l of the d a t a r e q u i r e d by t h e CMB method. F i n e and c o a r s e p a r t i c u l a t e s a m p l e s f r o m 37 s o u r c e s , r e p r e s e n t i n g 95% o f P o r t l a n d e m i s s i o n i n v e n t o r y w e r e c h e m i c a l l y c h a r a c t e r i z e d f o r 27 c h e m i c a l s p e c i e s . The same s p e c i e s were m e a s u r e d on
over
2000 i n d i v i d u a l
fine
and
coarse
ambient p a r t i c u l a t e samples o v e r a one-year p e r i o d . Six sampling l o c a t i o n s r e p r e s e n t i n g background a i r q u a l i t y ; r e s i d e n t i a l , c o m m e r c i a l and i n d u s t r i a l l a n d u s e a r e a w e r e i n c l u d e d i n t h e s t u d y , r e s u l t i n g i n o v e r 1700 CMB c a l c u l a t i o n s . The s o u r c e c o n t r i b u t i o n e s t i m a t e s d e r i v e d f r o m t h e CMB work were s t r a t i f i e d b y m e t e o r o l o g i c a l r e g i m e , s e a s o n o f t h e y e a r , sampl i n g s i t e and p a r t i c l e s i z e f r a c t i o n .
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
110
ATMOSPHERIC
AEROSOL
P o r t l a n d A e r o s o l C h a r a c t e r i z a t i o n Study Results Sources of P o r t l a n d ' s t o t a l suspended p a r t i c u l a t e mass (Figure 1) were s u c c e s s f u l l y i d e n t i f i e d by Chemical Mass Balance methods (5). The key r e s u l t s of the study were as follows: * S o i l and road dust was found to be the l a r g e s t s i n g l e source, accounting f o r 55% of the p a r t i c u l a t e . Although s e v e r a l minor sources of r u r a l dust were included i n the area's inventory, the study i d e n t i f i e d a 19,400 ton per year d e f i c i e n c y i n the paved road dust emission inventory. ^Vegetative burning was found to account f o r as much as 40% of the t o t a l p a r t i c u l a t e mass on c o l d winter days, or n e a r l y 9% annually. T h i s l e d to the i d e n t i f i c a t i o n of a source of 6500 tons/year of p r e v i o u s l y uninventoried emissions and prompted major e f f o r t s to reduce impacts from r e s i d e n t i a l wood burning. ^ I n d u s t r i a l emissions c o l l e c t i v e l y accounted f o r only 5% o f the p a r t i c u l a t e mass, a r e s u l t that was not s u r p r i s i n g given that these sources were w e l l cont r o l l e d before f i e l d sampling began. Some i n d u s t r i a l source impacts, however, may not have been i d e n t i f i a b l e because of emissions that chemic a l l y resembled g e o l o g i c sources. ^Secondary p a r t i c u l a t e s were found to account f o r about 8% and automotive exhaust about 10% of the annual average mass. In a l l , about 92% of the t o t a l suspended p a r t i c u l a t e mass was assigned to s p e c i f i c sources or chemical c l a s s e s with the remaining 8% l i k e l y made up of water, ammonium s a l t s and other u n i d e n t i f i e d s p e c i e s . Figure 2 shows the composition and source c o n t r i b u t i o n s to the f i n e p a r t i c u l a t e f r a c t i o n l e s s than 2.5um. F i g u r e r e f e r e n c e s to v o l a t i l i z a b l e and n o n - v o l a t i l i z a b l e carbon are o p e r a t i o n a l d e f i n i t i o n s (6) f o r organic carbon ( v o l a t i l e i n an oxygen-free atmosphere at temperature l e s s than 850°C) and elemental carbon. These c l a s s i f i c a t i o n d i f f e r from v e g e t a t i v e burning i n that they i n c l u d e only carbon whereas burning emissions are about 60-70% carbon. Fine p a r t i c l e sources were a l s o i d e n t i f i e d and used d u r i n g e v a l u a t i o n s of c o n t r o l s t r a t e g y a l t e r n a t i v e s . D i s p e r s i o n Model Estimates of Source Impacts Step 2 r e q u i r e d i d e n t i f i c a t i o n of source impacts by a i r s h e d modeling. Wind speed, d i r e c t i o n , mixing height, and emission data bases designed to represent c o n d i t i o n s on PACS sampling days were used to insure that the CMB impact estimates could be d i r e c t l y compared to model p r e d i c t i o n s f o r each sampline s i t e . The P o r t l a n d a i r s h e d d i s p e r s i o n model GRID (7) i s a cons e r v a t i o n of mass, a d v e c t i o n - d i f f u s i o n code designed to perform
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
CORE ET A L .
Figure 1.
Figure 2.
Air
Particulate
Control
Strategy
11
Sources of total particulate: annual average of the downtown Portland sampling site
Sources of fine particulate: annual average of the downtown Portland sampling site
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
112
ATMOSPHERIC
AEROSOL
w e l l i n the rough t e r r a i n that c h a r a c t e r i z e s the P o r t l a n d a r e a . R e q u i r e d i n p u t s f o r e a c h o f t h e 5000, 2km g r i d c e l l s i n c l u d e t o p o g r a p h y and w i n d f l o w f i e l d s by h o u r f o r e a c h o f e i g h t m e t e o r o l o g i c a l regimes i n t o which the annual weather p a t t e r n s were c l a s s i f i e d . S p a t i a l l y and s e a s o n a l l y r e s o l v e d p o i n t and a r e a s o u r c e e m i s s i o n s and s t a c k p a r a m e t e r s were a l s o d e v e l o p e d . T h r e e s o u r c e c l a s s e s w e r e s e l e c t e d f o r c o m p a r i s o n o f CMB and m o d e l r e s u l t s . Two were o f an a r e a s o u r c e n a t u r e ( r o a d d u s t and a u t o m o t i v e e x h a u s t ) and one p o i n t s o u r c e c a t e g o r y ( r e s i d u a l o i l combustion). T h e s e s o u r c e s were s e l e c t e d f o r comparison f o r the f o l l o w i n g reasons: * D u s t f r o m p a v e d and u n p a v e d r o a d s i s t h e most predominant source i n P o r t l a n d . Accurate emissions d a t a i s c r i t i c a l t o the model's a b i l i t y to account f o r a l l o f t h e m e a s u r e d mass, as w e l l as t o t h e development of a s u c c e s s f u l s t r a t e g y . Although the CMB m o d e l c a n n o t d i s t i n g u i s h b e t w e e n d u s t e m i s s i o n s f r o m p a v e d and u n p a v e d r o a d s , i t c a n t y p i c a l l y a s s i g n t o t a l d u s t i m p a c t s t o w i t h i n a 5-6% u n c e r t a i n t y . ^ L e a d e d a u t o m o t i v e t a i l p i p e e x h a u s t was selected b e c a u s e i t c a n be a c c u r a t e l y e s t i m a t e d by CMB and i s t h e t h i r d most a b u n d a n t c o n t r i b u t o r t o t h e a n n u a l p a r t i c u l a t e mass, a f t e r r o a d d u s t and v e g e t a t i v e burning. ^ R e s i d u a l o i l combustion impact s e r v e d as a t e s t of the model's a b i l i t y to p r e d i c t p o i n t source e m i s s i o n s . S i n c e v a n a d i u m and n i c k e l e m i s s i o n s i n P o r t l a n d a r e almost t o t a l l y a s s o c i a t e d w i t h r e s i d u a l o i l use, the CMB method was a b l e t o a s s i g n i m p a c t s w i t h a h i g h d e g r e e o f c o n f i d e n c e b y u s i n g t h e s e two e l e m e n t s a s chemical tracers. Model p r e d i c t i o n s f o r t h e s e s o u r c e s were p r e p a r e d f o r each of e i g h t m e t e o r o l o g i c a l regimes, a p p r o p r i a t e l y weighted and c o m b i n e d t o p r o v i d e a n n u a l i m p a c t e s t i m a t e s f o r e a c h g r i d and e a c h PACS m o n i t o r i n g s i t e . C o m p a r i s o n o f CMB a n d D i s p e r s i o n M o d e l I m p a c t E s t i m a t e s S t e p 3 was a c o m p a r i s o n o f t h e CMB a n d GRID m o d e l i m p a c t estimates. CMB-estimated source c o n t r i b u t i o n s t o the backg r o u n d a e r o s o l i m m e d i a t e l y u p w i n d o f t h e s t u d y a r e a were s u b t r a c t e d from those o b t a i n e d from the urban s i t e d a t a to p r o v i d e a " l o c a l CMB" v a l u e a g a i n s t w h i c h t h e GRID d i s p e r s i o n m o d e l c o u l d be compared. Data c o l l e c t e d d u r i n g the Northw i n d Regime was u s e d d u r i n g t h i s work s i n c e c o m p u t e r s i m u l a t i o n c o s t s were o n l y o n e - e i g h t h o f t h a t r e q u i r e d f o r an annual s i m u l a t i o n . I n i t i a l source apportionment estimates f r o m t h e s e two m o d e l s were a s f o l l o w s : ^Automotive exhaust comparisons (shown i n F i g u r e 3) a t t h r e e s i t e s w e r e w e l l w i t h i n t h e CMB e s t i m a t e d u n c e r t a i n t y . One o f t h e s i t e s , h o w e v e r , a p p e a r e d t o be u n d e r p r e d i c t e d . Although
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
CORE E T A L .
a
Air
closer
near
Control
examination
Site
impact
Particulate
5 was
Strategy
of the
needed,
1
emission
the
initial
inventory CMB-model
c o m p a r i s o n s were e n c o u r a g i n g .
This
initial
comparison
indicated
t h a t t h e P o r t l a n d GRID
dispersion
model was
able to
exhaust
impacts
and
area
simulate
source
cell
automotive
emissions
reasonably
well. *Road d u s t
comparisons
shown i n F i g u r e 4 w e r e
poor
w i t h major u n d e r p r e d i c t i o n s a t a l l l o c a t i o n s by GRID m o d e l . it
could r e a l i s t i c a l l y
^Residual
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
a
More work was
severe
impact
o i l impact test
3
5)
further Overall, sources
improvements
and
Emission
TSP
Inventory
CMB-dispersion
mass
model
been compared
source Step the
emission
tions
predictions
then,
used
impacts t o CMB
source
t o be
d a t a b a s e were results
both
the
suggested.
for a l l
and
data. identified
o n l y t o measured to
exhaust
which and
tripled
improving
model's
tail
The
and
heavily
traveled
r e s u l t s w e r e as calculation
incorrectly helped
follows:
e r r o r s were near
Site
assigned
O i l impact
the
to a
grid
nearly
from
boundary
neighboring
found
5 a
was
grid.
This
the model u n d e r p r e d i c t i o n s .
o v e r p r e d i c t i o n s were t r a c e d t o
errors:
*The e m i s s i o n s stant
by
when e m i s s i o n s
near
t o e x p l a i n some o f
Residual three
caused
road
into
m e t e o r o l o g i c a l assump-
pipe emissions
e r r o r was
inade-
strategy's success.
i n c r e a s e d t h e model p r e d i c t e d impact
10%.
were i n c o r r e c t l y
throughout
modification accomodate each
The
emission
the
particulate model
the
data
had
i n v e n t o r y and
to the
inventory, modeling
i n the modeling.
pre-
CMB-derived
i n v o l v e d n e a r l y s i x months o f r e s e a r c h
Auto
over-
estimates,
have been apparent
emission
however, c r i t i c a l
impact
4,
inher-
point
comparisons
m o d e l c o m p a r i s o n s had
C o r r e c t i o n of the
CMB
one-quarter
Improvements
t h a t would not
q u a c i e s was,
provided
the d i s p e r s i o n model
underestimating
the measured
predictions
initial relative
poor w i t h
than
to p r e d i c t
to the
base d e f i c i e n c i e s mass.
impacts.
modeling
b a s i s of the model
model v e r i f i c a t i o n
consistently
estimates
(less
showed GRID e s t i m a t e d
annual
M o d e l and The
Since
at a l l s i t e s
were r e l a t i v e l y
dictions
small
it'sability
plume t r a n s p o r t . (Figure
dust by
the
before
o f GRID's c a p a c i t y s i n c e t h e
the p h y s i c a l
limits
predicted
predict
estimates
e s t i m a t e s were
yg/m ) and ently
o b v i o u s l y needed
of
the year.
assumed
t o be
the d i s p e r s i o n model code
specific
monthly
con-
Corrections included to
operating schedules
m e t e o r o l o g i c a l regime.
*Topographical reviewed.
data within c r i t i c a l
Since
cells
were
the d i s p e r s i o n model can
only
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
for
ATMOSPHERIC AEROSOL
114
1:1 S L O P E LINE
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
/ A
4.0 /
Local CMB Impact (ng/m ) 2.0
Site 5
3 0
/
®
Site 3 ®
Site4
/
/
3
Site 2 j s ^ '
/
1.0 .0 0.
1.0
Figure 3. Motor vehicle tailpipe emissions: CMB vs. Model (annual simulation)
2.0
3.0
4.0 5.0
Model Predictions (ng/m ) 3
1:1 S L O P E LINE
Site 4
/
®
Local CMB Impact (^g/m )
a
/
2 0 2 0
|
S
®SHe3
j/
3
1 5
Site 5
/ / 10
Figure 4. Road dust impacts—north wind regime (initial predictions)
15
20
Model Predictions 3
(ng/m )
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
25
30
/
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
6.
CORE
E T A L .
Air Particulate
Control
115
Strategy
a c c e p t a s i n g l e v a l u e p e r c e l l as t h e ground e l e v a t i o n , e r r o r s caused by t o p o g r a p h i c a l v a r i a t i o n s w i t h i n a c e l l were i n t r o d u c e d . The model c o n s i s t s o f f i v e c e l l s i n t h e v e r t i c a l d i r e c t i o n t o accomodate v e r t i c a l d i f f e r e n c e s i n w i n d s p e e d and d i r e c t i o n . B e c a u s e t h e downwind plume i m p a c t i s a s s i g n e d t o one of t h e f i v e v e r t i c a l c e l l s , r e l a t i v e l y minor changes i n plume h e i g h t c a n r e s u l t i n m a j o r c h a n g e s i n p r e d i c t e d c o n c e n t r a t i o n s a t t h e r e c e p t o r i f t h e change moves t h e plume i n t o t h e g r o u n d l e v e l c e l l . To c o r r e c t t h e e r r o r s , s t a c k h e i g h t s i n each c e l l had t o be a d j u s t e d t o r e f l e c t d i f f e r e n c e s between t h e t r u e s t a c k and r e c e p t o r h e i g h t s . * L a r g e i m p a c t s f r o m one o f t h e a i r s h e d ' s m a j o r s o u r c e s was t r a c e d t o a n u n r e a l i s t i c o p e r a t i n g schedule. F o l l o w i n g c o r r e c t i o n s , r e s i d u a l o i l impacts agreed q u i t e w e l l w i t h CMB e s t i m a t e s . Road d u s t u n d e r p r e d i c t i o n s , b a s e d o n t h e i n i t i a l EPA g e n e r a l i z e d p a v e d r o a d d u s t f a c t o r , were t h e most s e r i o u s problem. S i n c e t h e r e a r e v e r y few unpaved r o a d s w i t h i n t h e AQMA, a t t e n t i o n t u r n e d t o upward adjustment o f t h e paved road dust e m i s s i o n f a c t o r . A m o d i f i e d e m i s s i o n f a c t o r ( E F ) was d e v e l o p e d based on a n assumed c o n s i s t e n t r e l a t i o n s h i p b e t w e e n p a r t i c u l a t e t a i l p i p e and r o a d d u s t i m p a c t : EF
CMB tailpipe
emissions
EF
_
tailpipe
impact
CMB paved road
dust
road
dust
impact
F u r t h e r s e a s o n a l a d j u s t m e n t s i n t h e new f a c t o r were made t o a c c o u n t f o r r a i n f a l l . F i n a l l y , d a t a f r o m s t u d i e s i n S e a t t l e , W a s h i n g t o n (8) s u g g e s t e d a 10 t o 20 f o l d i n c r e a s e i n s t r e e t d u s t e m i s s i o n s i n heavy i n d u s t r i a l a r e a s a s compared t o c o m m e r c i a l , land use a r e a s . A d j u s t m e n t s w e r e made t o e a c h g r i d ' s e m i s s i o n s b a s e d o n i n f o r m a t i o n f r o m l a n d u s e maps a n d d e t a i l e d d a t a o n unpaved roads. The f i n a l r o a d d u s t i n v e n t o r y was i n c r e a s e d b y 19,400 t o n s p e r y e a r , a 600% i n c r e a s e i n r o a d d u s t e m i s s i o n s . Even s o , t h e o v e r a l l AQMA e m i s s i o n f a c t o r o f 3.2 grams p e r v e h i c l e m i l e i s l e s s t h a n t h e 5.6 grams p e r v e h i c l e m i l e c u r r e n t l y recommended by EPA. M o d e l e d s t r e e t d u s t i m p a c t s now a g r e e d w i t h CMB r e s u l t s shown i n F i g u r e 6. As a r e s u l t o f t h e s e adjustments, t h e u p d a t e d e m i s s i o n i n v e n t o r y was i n c r e a s e d s u b s t a n t i a l l y (see F i g u r e 7). Road d u s t i s now e s t i m a t e d t o b e o v e r o n e - h a l f of the t o t a l emissions. A s a r e s u l t o f t h e PACS p r o g r a m , e m i s s i o n s f r o m r e s i d e n t i a l wood s p a c e h e a t i n g w e r e a d d e d a s an i m p o r t a n t new s o u r c e c a t e g o r y . This l a t t e r category i s proj e c t e d t o be t h e f a s t e s t growing e m i s s i o n source i n t h e near future.
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
ATMOSPHERIC AEROSOL
116
0.5
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
0.4 Residual Oil 0-3 Local
cmb
02 3
(ng/m ) ® Site 2
0.1
Site 4 ®
0.1 0.2 0.3
®
Site 5
0.4 0.5
0.6 0.7 0.8 0.9
Model Predictions (ng/m ) 3
Figure 5.
Residual oil impacts—north wind regime (initial predictions)
/
30
/§> Site 4
25 20
/
® Site 3
Local
cmb 15 3
(ng/m ) 10 5 0 Figure 6. Road dust impacts—north wind regime (corrected inventory)
5
10 15 20 25 30 Model Prediction (ng/m ) 3
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
CORE
E T
Air Particulate Control
A L .
Strategy
111
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
F i n a l GRID d i s p e r s i o n m o d e l r e s u l t s w e r e s i g n i f i c a n t l y i m p r o v e d and s y s t e m a t i c u n d e r p r e d i c t i o n s e l i m i n a t e d . Meas u r e d and m o d e l - p r e d i c t e d b a c k g r o u n d v a l u e s a g r e e d more c l o s e l y t h a n b e f o r e and t h e community c o u l d h a v e g r e a t e r c o n f i d e n c e i n the d i s p e r s i o n model's a b i l i t y t o e v a l u a t e t h e e f f e c t i v e n e s s of a l t e r n a t i v e c o n t r o l strategy. Figure 8 i l l u s t r a t e s the improvements i n model v e r i f i c a t i o n f o l l o w i n g e m i s s i o n i n v e n t o r y and m o d e l i n g a s s u m p t i o n improvements. Control Strategy Effectiveness U s i n g t h e v a l i d a t e d d i s p e r s i o n model as t h e k e y t o o l i n t h e s t r a t e g y d e v e l o p m e n t , e f f o r t s t u r n e d t o S t e p 5, C o n t r o l S t r a t e g y Development. T a b l e I p r e s e n t s p r e d i c t i o n s o f 1987 p a r t i c u l a t e a i r q u a l i t y b a s e d on f u t u r e y e a r e m i s s i o n d a t a b a s e s , and i n c o r p o r a t e s a l l o f t h e i d e n t i f i e d i n v e n t o r y c o r r e c t i o n s , and e m i s s i o n g r o w t h p r o j e c t i o n s . f
The 1977 t o 8 7 g r o w t h i n c r e m e n t was c a l c u l a t e d f r o m t h e m o d e l i n g and a d d e d t o t h e m e a s u r e d p a r t i c u l a t e v a l u e s t o a r r i v e a t a 1987 d e s i g n v a l u e upon w h i c h a n n u a l s t a n d a r d a t t a i n m e n t c o u l d be judged. Twenty-four hour attainment s t a t u s was s i m i l a r i l y d e t e r m i n e d , b u t was b a s e d on a w o r s t c a s e m e t e o r o l o g i c a l r e g i m e and e m i s s i o n s t y p i c a l o f t h o s e o c c u r r i n g on v i o l a t i o n d a y s . R e s u l t s r e q u i r e d a 2 t o 24 yg/m annual a v e r a g e r e d u c t i o n a t v a r i o u s s i t e s t o a c h i e v e t h e 60 yg/m s e c o n d a r y TSP s t a n d a r d and a 19 t o 104 yg/m i m p r o v e m e n t i n 2 4 - h o u r p a r t i c u l a t e a i r q u a l i t y t o a c h i e v e t h e 150 yg/m secondary standard. 3
3
3
3
M o d e l p r e d i c t i o n s o f numerous p o i n t and a r e a s o u r c e s t r a t e g i e s were c o m p l e t e d , a n e c o n o m i c a n a l y s i s o f t h e a l t e r n a t i v e s was d e v e l o p e d , and t h e r e s u l t s p l a c e d b e f o r e a p u b l i c a d v i s o r y committee. The c o s t - e f f e c t i v e n e s s a n d f i n e p a r t i c l e b e n e f i t s i d e n t i f i e d f o r each s t r a t e g y have p r o v i d e d t h e p u b l i c w i t h a sound b a s i s f o r t h e i r recommendations. B a s e d on a n e a r l y s t a f f a n a l y s i s , t h e most c o s t e f f e c t i v e a l t e r n a t i v e s included: *Reductions i n v e h i c l e t r a f f i c i n v i o l a t i o n a r e a s a t a n e t annual c o s t s a v i n g s o f about $100,000 p e r yg/m . Associated benefits i n c l u d e energy s a v i n g s , fewer r o a d and auto m a i n t e n a n c e c o s t s and i m p o r t a n t c a r b o n monox i d e and h y d r o c a r b o n e m i s s i o n b e n e f i t s . ^Cleanup of winter road sanding dust a t a c o s t o f $1700 t o $8300 p e r yg/m . ^Construction site trackout control i n p a r t i c u l a t e standard v i o l a t i o n areas e s t i m a t e d t o c o s t a b o u t $52,000 p e r yg/m . Less cost e f f e c t i v e controls include: 3
3
3
^ F u r t h e r c o n t r o l s on l o c a l p o i n t s o u r c e s a t $2.6 m i l l i o n p e r yg/m . * A d o p t i o n o f a 0.5% s u l f u r c o n t e n t l i m i t f o r r e s i d u a l o i l a t $4.2 m i l l i o n p e r yg/m . 3
3
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
ATMOSPHERIC AEROSOL
118
OPEN BURNING \ 4 6 1 T/Yr.
OIL AND GAS SPACE \
_ OTHER AREA SOURCES 913 T/Yr.
OTHER AREA S O U R C E S 913 T/Yr.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
OIL A N D G A S S P A C E HEATING 493 T/Yr.
Before CMB Adjustment 14,563 Tons/Yr. Figure 7 .
Af terCMB Adjustment 38,827 Tons/Yr.
Portland AQMA
emission inventory—7977
100
100 /
1:1 S L O P E
80
80
£ g- E 60 O
total particulate
«H w
6 0
® ®
/ /
w
40
40
20 0
R=73 Slope = .79 Intercept =35
1 20
40
60
Model Predicted (ng/m ) 3
Figure 8.
20
R = .52 Slope = .65 Intercept = 46
80 100
20
40
60
80 100
Model Predicted (ng/m ) 3
Portland AQMA annual model predictions before (left,) and after (right) emission inventory improvements
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
^ P r e d i c t e d p a r t i c u l a t e concentrations on 2nd highest day.
120
104
254
223
3.
5.2
37.0
6.9
4.2
82
19
169
8.2
1.0
106
161
69
2.
219
Wood Burning
Auto Exhaust
Road Dust Impact
197
Reduction Needed To Meet Secondary Standard i n 1987
1.
Site
Design Values* 1977 1987
3
Table I Particulate Control Alternatives Model P r e d i c t e d Source Impacts f o r 1987 (yg/m , 24 Hour Worst Case Meteorology)
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
7.4
6.2
7.1
A l l Point Sources
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
120
ATMOSPHERIC
AEROSOL
A l t h o u g h the c o n t r o l of f u g a t i v e e m i s s i o n s appears t o be t h e most c o s t e f f e c t i v e a p p r o a c h t o p a r t i c u l a t e s t a n d a r d a t t a i n m e n t , few b e n e f i t s i n r e g i o n a l v i s i b i l i t y improvement and p u b l i c h e a l t h w o u l d be e x p e c t e d f r o m s u c h a s t r a t e g y . A b a l a n c e b e t w e e n c o n t r o l o f f u g a t i v e d u s t e m i s s i o n s and s o u r c e s o f f i n e p a r t i c u l a t e s i s p e r h a p s t h e most a p p r o p r i a t e approach to standard attainment. S t r a t e g y Development i n Other A i r s h e d s S o u r c e i m p a c t s t u d i e s u s i n g t h e C h e m i c a l Mass B a l a n c e d i s p e r s i o n modeling approach have a l s o been completed i n Eugene and M e d f o r d , 0 r e g o n ( 9 , 1 0 ) . As i n P o r t l a n d , t h e work h a s i d e n t i f i e d e m i s s i o n i n v e n t o r y and m o d e l i n g i m p r o v e m e n t s w h i c h , when c o r r e c t e d , h a v e g r e a t l y i m p r o v e d m o d e l i n g r e s u l t s . F i g u r e 9 shows d i s p e r s i o n m o d e l r e s u l t s f o r t h e M e d f o r d a i r s h e d b e f o r e and a f t e r e m i s s i o n i n v e n t o r y and m o d e l i m p r o v e ments. S e v e r a l o f t h e most s i g n i f i c a n t r e s u l t s o f t h i s work are: *Road d u s t e m i s s i o n i n v e n t o r y e r r o r s were c o r r e c t e d a f t e r comparing d i s p e r s i o n model and CMB r e s u l t s . Road d u s t e m i s s i o n s were i n c r e a s e d by 2300 t o n s i n M e d f o r d a s a r e s u l t of emission f a c t o r adjustments and changes i n the unpaved road dust i n v e n t o r y . I n E u g e n e , new m e a s u r e m e n t s o f t r a f f i c v o l ume and v e h i c l e s p e e d s on u n p a v e d r o a d s l e d t o a 2600 t o n p e r y e a r r e d u c t i o n i n r o a d dust emissions. ^ R e s i d e n t i a l wood b u r n i n g e m i s s i o n s , i d e n t i f i e d by a t e l e p h o n e s u r v e y o f homeo w n e r s , were v e r i f i e d by c o m p a r i n g d i s p e r s i o n m o d e l and CMB v e g e t a t i v e b u r n ing estimates. * P o i n t s o u r c e plume t r a p p i n g a s s u m p t i o n s used i n t h e Eugene a i r s h e d m o d e l i n g were v e r i f i e d by c o m p a r i n g a l t e r n a t i v e m o d e l i n g assumptions of s u l f a t e e m i s s i o n impacts to measured s u l f a t e l e v e l s . *Major changes i n the Medford model's t r e a t m e n t o f a r e a s o u r c e i m p a c t s were completed after early results consistently u n d e r p r e d i c t e d road dust impacts measured by CMB. As a r e s u l t , m o d e l performance improved d r a m a t i c a l l y . C o n t r o l S t r a t e g y T r a c k i n g U s i n g CMB M e t h o d s F o l l o w i n g c o m p l e t i o n o f t h e d a t a b a s e improvement p r o grams, a b e t t e r , y e t s t i l l i n c o m p l e t e , k n o w l e d g e o f t h e s o u r c e s of the p a r t i c u l a t e i s b e i n g used t o d i r e c t c o n t r o l p r o g r a m s a i m e d a t a c h i e v i n g a i r s t a n d a r d s w i t h minimum c o s t t o t h e community. Had t h e m o d e l i n g work n o t b e e n compared t o t h e CMB r e s u l t s , f u t u r e c o n t r o l s w o u l d l i k e l y h a v e b e e n d i r e c t e d toward t r a d i t i o n a l , i n d u s t r i a l s o u r c e s .
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
CORE
Air Particulate
E T A L .
125
T
Control
Strategy
125
•
100
1:1 100
Hi-Vol (ng/m ) 75 3
75
• ©
•
Model Prediction (|ig/m ) 3
Model Prediction (^g/m ) 3
Figure 9. Medford annual model predictions—1978 (arithmetic mean). Hi-vol vs. model predicted TSP mass before ( l e f t ) and after ( r i g h t j model improvements
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
ATMOSPHERIC
122
AEROSOL
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
W i t h o u t t h e b e n e f i t o f t h e d a t a b a s e improvement p r o g r a m s , $27 m i l l i o n d o l l a r s i n i n d u s t r i a l c o n t r o l s would l i k e l y have been t h e k e y e l e m e n t i n a new c o n t r o l s t r a t e g y y e t w o u l d h a v e o n l y p r o v i d e d o n e - t h i r d o f t h e r e d u c t i o n r e q u i r e d t o meet s t a n d a r d s . I n s t e a d , a more e f f e c t i v e m i x o f p o i n t and a r e a s o u r c e c o n t r o l s w i l l l i k e l y be a d o p t e d and, a t c o n s i d e r a b l y l e s s c o s t t o (and w i t h c o n s i d e r a b l y more e f f e c t i v e n e s s f o r ) t h e community. Once t h e c a p a b i l i t y i s d e v e l o p e d , CMB e s t i m a t e s o f s o u r c e i m p a c t s c a n be u s e d t o t r a c k t h e p r o g r e s s o f t h e s t r a t e g y on a s o u r c e c l a s s b a s i s u s i n g a c t u a l a i r samples, ( i n a d d i t i o n t o e m i s s i o n e s t i m a t e s ) t o measure the e f f e c t i v e n e s s o f the c o n t r o l s . Oregon's Source Apportionment P r o g r a m and t h e F u t u r e S o u r c e a p p o r t i o n m e n t p r o g r a m s u s i n g C h e m i c a l Mass B a l a n c e d i s p e r s i o n m o d e l i n g , o p t i c a l m i c r o s c o p y , and o t h e r m e t h o d s h a s become, and w i l l c o n t i n u e t o be, an i m p o r t a n t p a r t o f t h e O r e g o n s p a r t i c u l a t e a i r q u a l i t y management p r o g r a m . During t h e p a s t two y e a r s , t h e D e p a r t m e n t s l a b o r a t o r y d i v i s i o n h a s a c q u i r e d a l l t h e n e c e s s a r y a n a l y t i c a l and a i r m o n i t o r i n g c a p a b i l i t i e s n e e d e d t o o b t a i n C h e m i c a l Mass B a l a n c e i n p u t d a t a a n d i n t e r a c t i v e CMB s o f t w a r e i s a v a i l a b l e t o A i r Q u a l i t y Division staff. Information i s also being gathered i n several O r e g o n c o m m u n i t i e s t o d e f i n e s o u r c e c o n t r i b u t i o n s f r o m wood combustion, t o r e s o l v e impacts c u r r e n t l y l i s t e d as " u n i d e n t i fied and i m p r o v e s o u r c e c h a r a c t e r i z a t i o n d a t a . These programs a r e p r o v i d i n g i n f o r m a t i o n on c u r r e n t s o u r c e i m p a c t s , a s w e l l a s an i n d e p e n d e n t means o f t r a c k i n g t h e s u c c e s s o f c o n t r o l programs. 1
f
1 1
A h i s t o r i c a l data base of s i z e - r e s o l v e d p a r t i c u l a t e data s u i t a b l e f o r source apportionment s t u d i e s p r o v i d e s a wealth of d a t a u s e f u l t o r e g u l a t o r y a u t h o r i t i e s . As new p r o g r a m s b e g i n t o f o c u s on i n h a l a b l e and r e s p i r a b l e p a r t i c u l a t e s t a n d a r d s , t h i s d a t a w i l l become i n c r e a s i n g l y v a l u a b l e . Conclusions The d e v e l o p m e n t o f new s o u r c e a p p o r t i o n m e n t m e t h o d s h a v e , f o r the f i r s t time, l e d to the development of r e g i o n a l p a r t i culate control strategies. Source impacts a s s i g n e d u s i n g a c h e m i c a l mass b a l a n c e (CMB) m o d e l h a v e b e e n u s e d i n a s s o c i a t i o n w i t h a i r s h e d d i s p e r s i o n models to i d e n t i f y e m i s s i o n i n v e n t o r y d e f i c i e n c i e s and i m p r o v e m o d e l i n g assumptions. E x p e r i e n c e g a i n e d d u r i n g t h e p a s t f o u r y e a r s h a s shown t h a t d a t a b a s e improvement p r o g r a m s s u c h a s t h o s e i m p l e m e n t e d i n O r e g o n h a v e p r o v i d e d new p e r s p e c t i v e s i n t o t h e n a t u r e o f each a i r s h e d ' s e m i s s i o n s . Subsequent major changes i n each community's e m i s s i o n i n v e n t o r i e s have improved dispersion m o d e l i n g r e s u l t s and p r o v i d e d a l e v e l o f d i s p e r s i o n m o d e l v e r i f i c a t i o n impossible to a t t a i n using t r a d i t i o n a l h i - v o l measurements a l o n e . A l t h o u g h the c u r r e n t t e c h n o l o g y of r e c e p t o r models i s s t i l l i n an e a r l y s t a g e o f d e v e l o p m e n t , t h e r a p i d g r o w t h o f t h e s e t e c h n i q u e s i s c e r t a i n t o p r o v i d e an i m p o r t a n t new tool to r e g u l a t o r y a g e n c i e s w i t h i n the immediate f u t u r e .
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
CORE
E T A L .
Air
Particulate Control
Strategy
123
Downloaded by SUFFOLK UNIV on January 17, 2018 | http://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch006
Literature Cited 1.
U.S. Environmental Protection Agency "Guidelines on A i r Quality Models", EPA-450/2-78-027, April 1978.
2.
Cooper, J.A.; Watson, J . G . "Receptor Oriented Methods of A i r Particulate Source Apportionment" J. Air Pollution Control Association, 1978, 30 (10).
3.
Friedlander, S.K. "Chemical Element Balance and Identification of Air Pollution Sources" Env. S c i . & Technol., 1973, 7 (3).
4.
Watson, J . G . "Chemical Element Balance Receptor Model Methodology For Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon." Oregon Graduate Center, February 1979.
5.
Cooper, J . A . ; Watson, J . G . "Portland Aerosol Characterization Study", Final Report to the State of Oregon Department of Environmental Quality, July 1979.
6.
Johnson, R . L . ; Huntzicker, J.J. "Analysis of Volatilizable and Elemental Carbon in Ambient Aerosols", Conference on Carbonaceous Particules in the Atmosphere, Berkeley, CA, 1978.
7.
Fabrick, A.J.; Sklarew, R.C. "Oregon/Washington Diffusion Modeling Study" Xonics, Inc., 1975.
8.
Roberts, J.; Watters, H . ; Austin, F.; Crooks, M. "Particulate Emissions For Paved Roads in Seattle and Tacoma Non-Attainment Areas", Puget Sound Air Pollution Control Agency, July 1979.
9.
Core, J.E.; Greene, W.T.; Terraglio, F.P. "Slash Burning Particulate Impact Analysis in Oregon's Williamette Valley" State of Oregon Department of Environmental Quality, June 1979.
10. Cooper, J . A . "Medford Aerosol Characterization Study Application of Chemical Mass Balance Methods to the Identification of Major Aerosol Sources in the Medford Airshed", Interim Report to the State of Oregon Department of Environmental Quality, November 1979. RECEIVED March 25,
1981.
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.