Air Pollution - Analytical Chemistry (ACS Publications)

Jan 14, 1990 - Department of Environmental Sciences and Engineering, School of Public ... Environmental Science & Technology 2010 44 (16), 6269-6274...
1 downloads 0 Views 100KB Size
Anal. Chem. 1999, 71, 109R-119R

Air Pollution Donald L. Fox

Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400 Review Contents Gases Books Reviews Ozone Radicals Nitrogen Sulfur Dioxide Hydrocarbons: Gas Chromatography Hydrocarbons: Non-Gas Chromatography Spectroscopy Aerosols Books and Reviews Polycyclic Aromatic Hydrocarbons Single-Stage/Multistage Collection Single-Particle Analysis Multielement Analysis Nitrate/Sulfate Clouds Miscellaneous Acknowledgment Literature Cited

109R 109R 109R 109R 110R 110R 111R 111R 112R 113R 113R 113R 113R 114R 114R 114R 114R 115R 115R 115R 115R

This review is extracted from the literature for January 1997 to December 1998 and is an extension of literature previously discussed (A1). The major source of information was Chemical Abstracts: Pollution Monitoring and Air PollutionsBooks and Reviews. The organization consists of two major divisions: gaseous methods, which have single-letter designations before reference numbers, and aerosol and particulate methods, which have twoletter designations before reference numbers. Areas that are included in this review are listed in the table of contents. The classification scheme is not necessarily technique or pollutant specific. For example, SO2 and NO2 methods are present in the Nitrogen section. Please read other sections that might contain information of interest. GASES Books. This section contains several books on specific topics in the air pollution analytical area as well as a number of proceedings of international conferences during the previous two years. Csuros edited a laboratory manual for environmental sampling and analysis (A2). Other texts on environmental analysis appeared (A3, A4). The use of chemometrics in environmental analysis has been described (A5). Seinfeld and Pandis applied chemistry and physics to the range of atmospheric problems (A6). Proceedings appeared on air pollution monitoring, simulation, and control (A7), remote chemical detection (A8), spectroscopic atmospheric monitoring techniques (A9), and atmospheric moni10.1021/a19900114 CCC: $18.00 Published on Web 04/28/1999

© 1999 American Chemical Society

toring by lidar (A10, A11). A two-volume proceeding on measurement of toxic and related air pollutants appeared (A12, A13). Several volumes were prepared for the Proceedings of the EUROTRAC Symposium ′96 (A14-A16). Three proceedings on remote sensing of the atmosphere were published (A17-A19). Reviews. Clement et al. (B1) prepared a comprehensive review of environmental analysis for all media with 959 references. Suzuki (B2) reviewed the methods designated by the Japan Environment Agency for “harmful air pollutants”. Automatic instrumentation for air pollution measurements was presented (B3). Mizoguchi (B4) discussed less complicated air monitoring methods and their field use in east Asia. A review discussing quality assurance associated with the National Ambient Air Quality Standards appeared (B5). Dore and McGinlay (B6) reviewed recent developments in air pollution measurement techniques for a number of species. Kleinman and Phalen (B7) discussed selection and use of particle and gas generation systems for exposure studies. Slemr et al. (B8) and Egmose et al. (B9) prepared reviews of preparation of reference gases for volatile organic compound (VOC) measurements. A review on the theoretical aspects and practical applications of denuder sampling techniques appeared (B10). Woolfenden (B11) reviewed current practice for use of sorbent tubes for monitoring VOCs in ambient air. Helmig (B12) discussed ozone removal techniques in the sampling of atmospheric volatile organic trace gases. Several reviews discussed LIDAR and DIAL applications for remote sensing of the atmosphere (B13-B16). Colin (B17) reviewed the application of differential optical absorption spectroscopy (DOAS) for measurements of trace constituents in the atmosphere. Fried et al. (B18) presented a review of tunable diode laser absorption spectroscopy (TDLAS) use and application in atmospheric studies. Reiter-Domiaty et al. (B19) reviewed the applicability of measuring atmospheric formaldehyde by DIAL. Galen et al. (B20) discussed the applications of chemiluminescence to the analysis of trace sulfur species in air. Two reviews appeared on the application of passive tube samplers for trace gas collection (B21, B22). Navas et al. (B23) reviewed chemiluminescence techniques for determining nitrogen compounds. Lopes et al. (B24) reviewed the sources, formation, and reactivity of PAHs in the atmosphere. Broker et al. (B25) reviewed emissions and atmospheric concentrations of dioxins and furans in the atmosphere. Ozone. Guidelines for ozone monitoring site selection to incorporate 8-h monitoring appeared (C1). Warren (C2) described the probe performance audits for continuous ambient monitors. A test that identifies ozone monitors prone to anomalous behavior Analytical Chemistry, Vol. 71, No. 12, June 15, 1999 109R

while sampling hot and humid ambient air was reported by Maddy (C3). Nakano and Yamamoto developed a sampling paper for detecting ozone in air (C4). A small active ozone sampler was developed and evaluated (C5). Several studies of passive ozone samplers appeared (C6-C8). Mikuska and Vercera (C9) described the application of gallic acid and xanthene dyes for the determination of ozone in air with a chemiluminescence detector. Kleindienst et al. (C10) investigated interferences in ambient chemiluminescence-based ozone monitors. Ozone methods using DIAL appeared (C11, C12). Vaughn et al. (C13) presented the results of an intercomparison of ground-based UV-visible sensors for ozone and NO2. Van Roozendael et al. (C14) compared ground-based visible measurements of total ozone with Dobson and Brewer spectrophotometers. Radicals. An inlet/sampling duct for airborne OH and sulfuric acid measurements was designed, tested, and used by Eisele et al. (D1). Tanner and co-workers reported on the operation and calibration of a selected-ion chemical ionization mass spectrometer for measurement of OH (D2). They also reported on the use of this equipment in an airborne configuration (D3) and a field comparison with a long-path laser spectrometer (D4). Mount et al. (D5) reported on the intercomparison of four OH measurement techniques in a field study. Dubey and co-workers (D6) developed techniques to quantify photochemical interference in laser-induced fluorescence (LIF) measurements of atmospheric OH by addition of perfluoropropene. A LIF instrument for OH measurements was developed and evaluated by Hessling et al. (D7). Mather et al. (D8) used LIF to measure OH and HO2. Creasey et al. (D9) developed a LIF instrument for OH and HO2 using the fluorescence assay by gas expansion (FAGE) technique. Bailey et al. (D10) measured the collisional quenching rates of OH by N2, O2, and CO2 and discussed the impact on measurements of OH by LIF. Holland and co-workers (D11) found excellent agreement of the diurnal OH cycles observed by DOAS and LIF. Reiner and co-workers (D12) presented a chemical amplification technique using NO and SO2 to detect RO2 by ion-molecule reaction-mass spectrometry. Volz-Thomas and co-workers (D13, D14) conducted peroxy radical intercomparisons using chemical amplification and matrix-isolation ESR spectroscopy. They found evidence to suggest that the chemical amplification method underestimated the RO2 in the atmosphere. Sauer et al. (D15) measured peroxides using a scrubber sampler followed by a reversed-phase HPLC with a peroxidase fluorescence reaction for detection. Nitrogen. This section includes methods for NH3, NO, NO2, NOy, NO3, HNO3, and PAN. Chang et al. (E1) used diffusion scrubbing and ion chromatography (IC) to measure atmospheric ammonia with a detection limit of 0.02 ppbv. Jaeschke et al. (E2) developed a vertical wet denuder technique to partition ammonia and ammonium during sampling. Thijsse et al. (E3) investigated five different configurations of diffusion samplers for monthly average ammonia measurements and found two types suitable for this activity. Yun et al. (E4) developed an ammonia gas sensor with using thick-film technology that consists of two sensing elements. This system is selective for ammonia. Nakano et al. (E5) developed an automatic monitor for ammonia using an ammonia110R

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

sensitive tape. Gerboles et al. (E6) described the use of a static volumetric method for the preparation of NO and SO2 reference standard gas mixtures and techniques to express the uncertainties associated with the concentrations. Sekine and Kagawa (E7) reported on the stability of samples collected by a diffusional personal sampler for NO and NO2 including the pretreatment processes for the collection media. Two groups described instrumentation using laser-induced two-photon ionization for low-level measurements of NO (E8, E9). Neti (E10) obtained a patent for the chemiluminescent determination of NO/NOx. This system catalytically converts NOx to NO in a preconditioned vitreous carbon bed. Bernard et al. (E11) compared Palmes’ passive samplers for NO2 with automatic chemiluminescence analyzers for possible use in health studies. De Santis et al. (E12) developed a passive sampling technique for NO2 and SO2 with a detection limit of 5 ppb for NO2 for a 24-h sampling period. The construction and performance of these systems was described. The effect of eddy turbulence on NO2 open tube samplers was investigated experimentally (E13). Shooter et al. (E14) reported on the characteristics and applications of nitrogen dioxide passive samplers. A field comparison of two NO2 passive samplers to assess spatial variation was performed by Van Reeuwijk et al. (E15). Three reports of the use of passive samplers for ambient measurements of NO2 and SO2 were reported. Analysis of NO2 samples by the Saltzman method and SO2 by ion chromatography was reported (E16-E18). Krochmal (E19) investigated the effect of aqueous triethanolamine solutions on the absorption of SO2 and NO2 from air using passive samplers. Ayers et al. (E20) described validation procedures for Ferm-type passive samplers for NO2 and SO2. Heal and Cape (E21) conducted a numerical evaluation of chemical interferences in the measurement of ambient NO2 by passive diffusion samplers. They concluded that NO2 concentrations are systematically overestimated as a result of chemical reactions in the tube by the reaction of NO with O3 to give NO2. Roeyset (E22) compared an NO/NOx monitor and an active and a passive sampling method for the determination of NO in urban air. For weekly averaging times, all three methods were within 10-20%. For a 24-h averaging time, the active sampler, and the monitor, the deviation was within 5%. Nagasawa et al. (E23) reported improvements in the response characteristics of a copper phthalocyanine thin-film-based NO2 gas sensor. The use of a chromatomembrane cell for preconcentration of small quantities on nitrogen oxides was reported by Erxleben et al. (E24). Gaffney et al. (E25) developed a system to separate and detect NO2 and PAN, PPN, and PBN with capillary GC and detection limits in the low tens of parts per trillion. Roman et al. (E26) reported the detection of NO2 and SO2 by pulsed laser photoacoustic spectroscopy (PAS). Fong and Brune (E27) reported on the use of laser-induced fluorescence to measure tropospheric NO2 directly with a prototype instrument and detection limit of 280 pptv. Gianfrani et al. (E28) used tunable diode lasers in the near-infrared region to monitor NO2 and O2. NO-NOx-NOy measurements were reported with a chemiluminescence analyzer using a modified converter cycle (E29). Kliner et al. (E30) investigated a catalytic reduction technique for measurement of NOy. Bradshaw and co-workers (E31) reported on the difficulties of making odd-nitrogen measurements at low concentrations. Williams et al. (E32) presented the results

of an intercomparison of ground-based NOy measurement techniques. Aliwell and Jones (E33) used sky visible absorption spectroscopy to measure tropospheric NO3. A new chemical ionization mass spectrometer technique for the fast measurement of gas-phase nitric acid was reported in the literature (E34-E36). Pakkanen et al. (E37) reported a comparative study of measurements of atmospheric gaseous nitric acid, ammonia, particulate nitrate, and ammonium concentrations using filter packs and denuder systems. Jongejan et al. (E38) used a wet-rotating annular denuder to determine acid gases in the atmosphere with detection by IC. Danalatos and Glavas (E39) modified operating conditions for columns to improve the peak separation for determination of PAN via GC. Nikitas et al. (E40) reported on PAN measurements in the troposphere using a luminol-NO2 detector combined with a thermal converter. Sulfur Dioxide. Knopf (F1) described the preparation of calibration standards for SO2 using a dynamic-gravimetric system. Bia and Li (F2) prepared SO2 by the thermal decomposition of barium sulfate. Tang et al. (F3) described the performance of a passive sampling system for monitoring SO2 in the atmosphere. On the basis of a 1-month exposure, the new passive system can monitor SO2 concentrations in the atmosphere ranging from 0.1 to 120 ppb. A multiple parallel plate wetted screen diffusion denuder is described for high-flow air sampling applications (F4). He et al. (F5) developed a chemiluminescence detection method for SO2 in air. Zheng and Jing (F6) described the use of a luminolH2O2 detector that is sensitive to low concentrations of SO2. A continuous chemiluminescence detector based on the reaction of dissolved SO2 with Ce4+ was developed and evaluated by Tscherwenka et al. (F7). Wang et al. (F8) determined SO2 in air with a solid-adsorption sampling system and flow injection analysis spectrophotometry. A chemical amplification method for the determination of sulfur dioxide was reported (F9). Batterman et al. (F10) conducted a laboratory study of the SO2 sorption characteristics of 12 types of filters for air sampling. Hydrocarbons: Gas Chromatography. Articles in this section specifically refer to gas chromatography (GC) techniques. Warner and Allen (G1) tested solid a sorbent tube-type diffusion sampler for collection of natural VOCs. A linear uptake rate was observed for R-pinene in the concentration range of 10-100 ppbv. Kirshen et al. (G2) described the application of high-speed GC to air analysis of chlorinated hydrocarbons, polar organics and benzene, toluene, ethylbenzene, and xylene (BTEXs). Wright et al. (G3) measured diffusive sampling rates for BTX on Chromosorb 106 and Carbograph-1 over periods of 1-4 weeks in field validation experiments. A novel preconcentration technique for on-line coupling to high-speed narrow-bore capillary GC was introduced (G4, G5). Nickerson and Snyder (G6) have patented a bonded liquid-phase analyte trap for gas-phase sample streams that permits rapid cooling and heating cycles. Haunold et al. (G7) showed that cooled solid-sorbent sampling tubes (-30 °C) were able to collect C2 hydrocarbons. Kivi-Etelaetalo et al. (G8) described a simple low-cost thermal desorption and cold trap device for analysis of VOCs by GC. Nakamura (G9) has developed a gas sample concentrator suitable for use in measuring volatile organic compounds. Lewis et al. (G10) developed an automated method to determine C5-C10 and C2-C6 VOCs in urban and rural

air, using programmed temperature vaporization injection from a sorbent tube trap. Gorlo et al. (G11) described a calibration procedure for solid-phase microextraction (SPME)-gas chromatographic analysis of organic vapors in air. Bartelt and Zilkowski (G12) described the nonequilibrium quantification of volatiles in air streams by SPME. Considerations for SPME sampling from air are discussed, and new fiber calibration information was presented for larger hydrocarbons, alcohols, and esters. Velikonja Bolta et al. (G13) described SPME for formaldehyde sampling and GC-electron capture detection (ECD). GC/MS is a critical analytical system for VOC measurements. Viden and Janda (G14) described a simple thermal desorption unit for analysis of VOCs in air samples by GC/MS. Several papers reported the use of solid sorbents for collections of hydrocarbons, followed by removal and introduction into a GC/MS system. Seko and Onda (G15) described VOC sampling and parameters for selection of solid sorbents. Their method used thermal desorption and GC/MS. You et al. (G16) collected VOCs on GDX-502 and then eluted them with supercritical CO2. The extracts were analyzed by GC/MS with a total of 52 compounds identified. Mangani et al. (G17) described the use of solid-phase extraction and GC/MS to measure semivolatile organic compounds. 1,2Dichloroethane and 1,2-dichloropropane were determined by solidsorbent collection, thermal desorption GC/MS techniques (G18). Sorbent type and focusing techniques were described. Leibrock and Slemr (G19) determined oxygenated hydrocarbons in air by GC/MS. Daughtrey et al. (G20) presented the performance characteristics of an automated gas chromatograph/ion trap mass spectrometer system used for field investigations. The system exhibited detection limits of 0.01-1.0 ppb C, for most of the 100 target compounds. GC/MS was used for the determination of aldehydes (G21), carboxylic acids and phenols (G22, G23), and other oxygenates (G24). Lahaniati et al. (G25) sampled biogenic carbonyls in air with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA)-coated C18-silica gel cartridges. They were identified by GC/MS. Maeda et al. (G26) used a sampling system with dual stainless steel canisters and automatic sample introduction system to continuously monitor VOCs on a GC/MS system. Maeda et al. (G27) developed a system for hazardous air pollutants using an adsorption-thermal desorption capillary GC system equipped with a flame ionization detector (FID) and an ECD. C2-C7 hydrocarbons were measured by capillary GC-FID (G28). Canister sampling was used with GC-FID to determine C2C10 (G29). McQuaid et al. (G30) reported improvements in detection limits for VOCs by the use of digital signal processing of the FID output of a GC-FID system. Hunter et al. (G31) described the use of the helium ionization detector (HID) and the FID for GC monitoring of hydrocarbons and chlorinated and sulfur-containing organics. Wang et al. (G32) used capillary GCFID to determine CH3SH. Marley and Gaffney (G33) determined atmospheric hydrocarbons with a dual-detector GC system that used a FID and a detector based on the chemiluminescence reaction with ozone. Fukui and Doskey (G34) developed a cryogenic preconcentration/high-resolution gas chromatographic-ECD technique for the rapid and simultaneous quantification of C1-C4 organic nitrates and halocarbons in ambient air. Stashenko et al. (G35) reported a comparison of extraction methods and detection systems in the Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

111R

GC analysis of volatile carbonyl compounds. Detectors included ECD, FID, NPD, and MS-SIM. Amin et al. (G36) used GC-ECD to evaluate passive samplers for analysis of chlorinated solvents. Bassford et al. (G37) developed a GC-ECD system to monitor atmospheric halocarbons. A GC-sulfur chemiluminescence detector (SCD) was used to measure 28 reduced sulfur compounds (G38). Yamamoto et al. (G39) used an automated GC system to continuously measure 54 VOCs in the atmosphere. The detection limit of 0.01 ppb for each compound was obtained using a 1-L air sample. Leston et al. (G40) reported on the performance of automated filed GCs compared to integrated canister samples. The vast majority of samples demonstrated good agreement for target compounds in both the qualitative and quantitative sense. However, the field GCs generally underreported the determination of total non-methane organic compound values. Larsen et al. (G41) reported the results of an interlaboratory comparison of sampling and analysis of terpenes in air with participation of 10 European laboratories. Dutaur et al. (G42) reported on the effects of water vapor on sampling for monoterpenes. Hydrocarbons: Non-Gas Chromatography. This section contains studies that do not specifically focus on the use of gas chromatography as a separation technique. Many references are related to hydrocarbon sampling and determination of carbonyl compounds. Mastrogiacomo et al. (H1) evaluated a new graphitized carbon black adsorbent for sampling VOCs. The performance of a radial diffusive sampler for VOC monitoring containing Carbotrap absorbent was described. This design permitted high uptake and thermal desorption (H2). Brown and Crump, (H3) used diffusive samplers containing Tenax TA to sample C6-C16 organic compounds in indoor and outdoor air. Calogirou et al. (H4) used an ozone scavenger during terpene sampling with Tenax and were able to investigate oxygenated products. Several studies concerning polished stainless steel canisters were reported. Simon et al. (H5) developed an innovative flow controller for time-integrated sampling for sampling times ranging from hours to weeks. Bennett and Gravley (H6) evaluated the performance of ultralow flow controllers for the collection of 24-h integrated whole air samples in SUMMA canisters. A study of the effect of moisture on VOC recovery rates from stainless steel canisters was reported (H7). McClenny et al. (H8) described the reasons for the variation of the relative humidity of air released from canisters after ambient sampling. Batterman et al. (H9) investigated the stability of seven aldehydes and four terpenes in electropolished canisters and reported half-lives in humidified air, humidified N2, and in dry air. Castellnou et al. (H10, H11) compared on-site sampling with canisters and cooled and ambient solid-sorbent traps. Canisters and cooled traps demonstrated higher VOC content. Burnett et al. (H12) developed a canister autosampler for analysis of polar and nonpolar VOCs. Qian et al. (H13) developed a passive sampling tube impregnated with Schiff’s reagent to collect HCHO. A passive sampler was used for determination of experimental diffusion coefficients of acetic and formic acid vapors in air (H14). A chamber validation study of a passive air sampling device for measuring ambient VOCs at subzero temperatures was reported (H15). 112R

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

Moschonas and Glavas (H16) added Carbotrap to a glass bead cryotrap to increase the retention of C2 hydrocarbons. Woo et al. (H17) evaluated a portable high-throughput liquid absorption air sampler for monitoring formaldehyde. Surowiec and Dasgupta (H18) described the collection of formic and acetic acids using a liquid film suspended on a loop. The acids were detected by capillary electrophoresis. Bertoni and Tappa (H19) reported on improvements in breakthrough volume evaluation methods for solid sorbents. Comes et al. (H20) determined Langmuirian parameters for Tenax GC absorption of volatile aromatic and aliphatic hydrocarbons, ketones, asters, aldehydes, and alcohols. McClenny and Colon (H21) evaluated the performance criteria for monitoring VOCs with U.S. EPA Compendium Method TO-17. Hydrocarbon calibration standards were the subject of several research groups. Chu et al. (H22) developed a technique for ondemand generation of a formaldehyde in an air standard based on methanol conversion to HCHO over a molybdenum catalyst. Fugit et al. (H23) described the use of bags made of polymeric films for the storage of standard gas mixtures of isoprene and monoterpenes. Tedlar bags were found to have excellent reliability. Apel et al. (H24) described the long-term stability of oxygenated VOCs in pressurized cylinders. Brenner and Mueller (H25) discussed the development of calibration gas mixtures for VOC ozone precursor compounds. A computer-controlled calibration apparatus for the dynamic generation of organic vapors was developed by Barko and Hlavay (H26). Martos and Pawliszyn (H26) showed the calibration of solid-phase microextraction for air samples based on the physical chemical properties of the coating. A number of studies reported on the analysis of carbonyl compounds. Apel and co-workers (H28) reported the results of an intercomparison of six ambient HCHO measurement techniques at a field site in Colorado. These investigators also conducted a measurement comparison of oxygenated VOCs at a rural site in Tennessee (H29). Schlitt (H30) described an automatic sampling method for aldehydes and ketones that used a small glass impinger mounted in a modified autoinjector for an HPLC column. Anderson and Mischler (H31) evaluated the use of 2,4-DNPH-coated silica gel cartridges in the presence of ozone to collect formaldehyde. Kleindienst et al. (H32) compared DNPH-coated silica gel and C18 cartridges for HCHO in the presence and absence of ozone. KI traps were successful at removing the negative ozone interference on the silica gel cartridges and the positive ozone interference on the C18 cartridges. Lee et al. (H33) described an aircraft measurement technique for HCHO and soluble carbonyl compounds. Liquid scrubber samples were derivatized and measured by HPLC. Schlitt (H34) developed a device that uses a small glass impinger to automatically sample and analyze with HPLC-UV. An interlaboratory comparison among 31 laboratories assessed errors associated with personnel sampling for aldehydes (H35). Low-molecular-weight carbonyl compounds were measured by Slemr and Junkerman using DNPH-coated cartridges and an enzymatic reaction and fluorometric detection (H36). C1-C4 carbonyls were determined with C18- and silica gel-coated cartridges. Removal of ozone with KI traps improved measurements (H37). Pires and Carvalho (H38) reported artifact formation for

C5-C8 carbonyls using C18 DNPH-coated cartridges. Possanzini and DiPalo (H39) reported on the use of silica gel cartridges coated with 2-diphenyl-acetyl-1,3-indandione-1-hydrazone (DAIH) to measure HCHO and acetaldehyde. They reported better sensitivity than the DNPH method. Fried and co-workers (H40, H41) compared HCHO measurements by an IR tunable diode laser absorption spectrometer and a long-path UV-visible absorption spectrometer at a remote site. Kern et al. (H42) used TDLAS to measure HCHO in a polluted site. Chanda et al. (H43) described an improved long-path DOAS for measurement of aromatic hydrocarbons and ozone and nitrogen dioxide. Suzuki (H44) reported the automated analysis of low-molecular-weight organic acids in ambient air by a microporous tube diffusion scrubber system coupled to an ion chromatograph. Korenman et al. reported using a quartz piezosensor modified with poly(ethylene glycol) adipate to determine C3-C4 aliphatic alcohols (H45) and phenol and cresols (H46). Finklea et al. (H47) described the use of a quartz cyrstal microbalance to detect small aromatic compounds with planer molecular geometry. Spectroscopy. Spectroscopic methods have the capability of determining multiple compounds in the atmosphere. Applications in ambient monitoring scenarios have expanded in recent years using long path lengths through the atmosphere or with closed cell systems that use air extracted from the ambient atmosphere. Kagann (J1) described the use of IR and UV spectrometry instrumentation for optical remote sensing. Ropertz et al. (J2) presented a calibration procedure for two open-path FT-IR spectrometers. Douard et al. (J3) discussed quality assurance procedures and measurements for open-path FT-IR spectroscopy. Error analysis (J4) and instrument resolution considerations (J5) for FT-IR spectrometry were presented. Flaud (J6) identified the types of spectroscopic data needed for optical remote sensing in the atmosphere. Several investigators presented the use of DOAS for air pollution measurements (J7-J9). Stutz and Platt (J10) used a quartz-fiber mode mixer to improve the detection limits of DOAS instruments with photodiode array detectors. Volkamer et al. (J11) measured O2 reference spectra to eliminate interference with UV DOAS measurements of monocyclic aromatics. Schiff (J12) compares and contrasts the uses of DOAS and TDLAS for air pollutant monitoring. Two applications of TDLAS for atmospheric monitoring appeared (J13, J14). The use of IR diode lasers in air pollution measurements was presented (J15-J18). Gondal et al. (J19) described the use of a pulsed optoacoustic technique to detect trace gases. Atkinson et al. (J20) discussed diode laser-pumped and linear cavity systems for gas detection via intracavity laser spectroscopy. AEROSOLS Books and Reviews. Nichols edited a book on aerosol sampling guidelines (AA1). Mark (AA2, AA3) reviewed the physical processes and properties affecting the atmospheric behavior of particles and methods, strategies, and instruments available to sample particles in ambient air. Ingham reviewed the use, advantages, and disadvantages of computational fluid dynamics in airborne particle sampling (AA4). Harper (AA5) reviewed

measurement and monitoring of airborne respirable particles. Two extensive reviews of sampling for biological aerosols were presented (AA6, AA7). Jaenicke presented a review discussing various aspects of atmospheric aerosol size distributions (AA8). Slanina et al. (AA9) presented a review on the chemical analysis of aerosols. An extensive review of speciation techniques for fine atmospheric aerosols was presented by Tanner (AA10). Ziemann edited a book on aerosol and particulate analysis techniques (AA11). Claes et al. (AA12) reviewed the inorganic composition of atmospheric aerosols. Injuk and co-workers (AA13) focused their review on techniques to determine the structural heterogeneity of airborne particles. Reviews appeared on spectroscopic methods for aerosol analysis by PIXE (AA14), ion beam (AA15), nuclear techniques (AA16), atomic mass spectroscopy (AA17), and IR (AA18). Moosmueller et al. (AA19) reviewed the current state of photoacoustic and interferometric detection methods for in situ measurement of aerosol light absorption. Smith presented a review on polycyclic aromatic hydrocarbons (PAHs) including topics of sources, size distributions, reactions, sampling, and extraction/analysis (AA20). Zhu and Matsushita (AA21) reviewed new methods for sampling, extracting, and determining PAHs. Baron (AA22) reviewed the design and performance of personal aerosol samplers. Polycyclic Aromatic Hydrocarbons. Lane and Gundel (BB1) described improvements in the collection of airborne PAHs by using coating techniques for denuder surfaces of a gas and particle sampler. Cereceda-Balic developed a precipitation sampler for the determination of PAHs in wet deposition (BB2). Xu et al. (BB3) reported a fungicide contamination problem with NIST SRM 1649 used for PAH calibration. When analyzed by negative ion laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry, the fungicide produced significant interferences for this technique. Chee et al. (BB4) proposed the use of microwave-assisted solvent extraction of air particulate matter for the determination of PAHs with the prospect of minimizing cleanup steps. Warzecha described the use of HPLC and capillary GC/MS methods to separate and analyze of nitroarenes from airborne nitro-PAHs (BB5). Oxy-, nitro-, and hydroxy-PAHs in atmospheric aerosol samples were determined by GC with ECD and MS. Analysis was preceded with a silica-alumina cleanup system (BB6). Janoszka et al. (BB7) described the use of HPLC and TLC for nitrogen-containing PAHs in particulate matter. Becker et al. (BB8) measured sulfur-containing PAHs with separation by GC and detection by atomic emission spectroscopy and MS. Siegmann et al. (BB9) described the use of chemical and physical properties to characterize PAHs in submicrometer particles. Simultaneous use of measurements of light scattering, photoelectric charging, and diffusion charging permitted attribution of PAH-containing particles to combustion and noncombustion sources. Allen et al. (BB10) reported on the characterization of PAH compounds as a function of particle size interval in an urban area. Two groups utilized chemometric methods to improve resolution in the analysis of PAHs. Shen et al. (BB11) used the heuristic evolving latent projection method. Chen et al. (BB12) developed Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

113R

an approach based on annihilation of rank and resolution by projection to analyze experimental results. Fisher et al. (BB13) described the use of Fourier transform imaging fluorescence microscopy to analyze aerosols collected on filters for PAHs. Single-Stage/Multistage Collection. Lyons (CC1) described design principles for entry and transmission lines for aerosol sampling. A continuously adjustable dilution system (1:10-1:10-4) for submicrometer aerosols was evaluated (CC2). Li and Lundgren (CC3) investigated the effect of clean air core geometry on fineparticle contamination and calibration of a virtual impactor. Osak et al. (CC4) investigated the characteristics of existing and potential filter media for high-volume air samplers. A quartz fiber filter band material with low elemental blank concentrations was presented for sequential aerosol sampling (CC5). Single-stage sampling can be designed to be size selective for airborne particles below a certain aerodynamic diameter. Sioutas et al. (CC6) developed and evaluated a high-volume rectangular geometry conventional impactor. Eisner (CC7) investigated temperature-induced losses of semivolatile compounds from PM2.5 samplers. Price (CC8) discussed issues in monitoring for PM2.5 related to reference and equivalent methods, network design, area representativeness, and sampling frequency. Allen et al. (CC9) reported on the intercomparison of three PM2.5 methods over different sampling intervals. Kim et al. (CC10) described and evaluated a PM10 inlet for a β-gauge sampler. Hopke et al. (CC11) conducted a characterization of a Gent PM10 sampler. Witschger et al. (CC12) described a simplified method for testing personal inhalable aerosol samplers. Smith et al. (CC13) conducted a laboratory investigation of the mass stability of sampling cassettes from inhalable aerosol samplers. Hering et al. (CC14) designed a microslot impactor to collect large concentrated samples suitable for trace organic constituents. A multichannel, multicomponent sampler was developed and evaluated for use in field study programs (CC15). A trichotomous sampler was described with cuts at PM10, PM2.5, and PM1 (CC16). Performance of a two stage PM10/PM2.5 streaker was reported (CC17). Single-Particle Analysis. Carson investigated on-line analysis of individual aerosol particles (DD1). Laser ablation ionization and ion trap mass spectrometry were used to analyze individual particles in real time (DD2). Humidity effects on analysis of individual particles by laser desorption/ionization MS were reported (DD3). Two studies using time-of-flight mass spectroscopy (TOFMS) were published (DD4, DD5). Castaldi and Senkan (DD6) applied this technique to naphthalene, Holland et al. (DD7) to PAHs, on individual particles. Weiss described the performance of an online TOFMS system (DD8). Detection response of elemental species by TOFMS was investigated (DD9). TOFMS was used to identify pyrotechnically derived aerosol particles present over several days in the troposphere (DD10). Morrical et al. (DD11) coupled two-stage laser desorption/ionization with TOFMS for the analysis of individual organic particles. MicroPIXE and nuclear microscopy were applied to the analysis of individual particles collected on a substrate (DD12). Lubben and Schrader (DD13) obtained Raman spectra of levitated single aerosol particles containing sulfates and nitrates. 114R

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

Tsai et al. (DD14) conducted a performance evaluation of an API aerosizer and developed a numerical method to simulate the compressible flow field and particle trajectory in the instrument. De La Mora (DD15) used variable-pressure impactors for aerodynamic focusing to improve the resolution of aerosol size spectrometers. Multielement Analysis. Heller-Zeisler et al. (EE1) reported on a procedure for production of a simulated filter-based air particulate matter reference material including the tests for homogeneity of within and between filters. X-ray fluorescence spectroscopy was the subject of several investigations. Thomson et al. (EE2) described near-real-time mass concentration measurement of medium and heavy elements in aerosols using XRF analysis of sections of filter paper tape. Chiapello et al. (EE3) investigated the effects of thin-film and medium-film samples on XRF analysis of aerosols. Improvements in the detection limits of total reflection XRF analysis were reported (EE4). Schmeling et al. (EE5, EE6) described different filter digestion techniques for subsequent analysis by total reflection XRF analysis. Stahlschmidt et al. (EE7) described a total reflection XRF technique for Pb, Cd, and Zn. Injuk et al. (EE8) reported on the performance of two total reflection XRF setups and a proton-induced X-ray emission system for the aerosol analysis. The lowest detection limit was 0.01 ng m-3 achieved by total reflection XRF. Maeda et al. (EE9) developed an in-air high-resolution PIXE system. Ali et al. (EE10) investigated different types of filters for atmosphere trace elements analysis by PIXE, XRF, and SEM. Nucleopore membrane filters were found to be the most suitable for sampling and PIXE was the most reliable for analysis. Nejedly and co-workers reported on QA/QC considerations of PIXE analysis (EE11) and an intercomparison of IC, PIXE, and XRF (EE12). Chan et al. (EE13) described the application PIXE analysis to urban aerosol samples collected on cellulose fibrous filters. Ortner et al. (EE14) and Zeisler et al. (EE15) described the use of nuclear methods for the analysis of aerosol particles. Cohen reported on quality assurance and intertechnique comparisons of ion bean analysis methods in aerosol analysis (EE16). Several reports appeared on the direct collection of aerosols with graphite probe filters followed by graphite furnace atomic absorption spectrometry (EE17-EE19). Torsi et al. (EE20) combined electrostatic precipitation with electrothermal atomization AAS for the determination of metals associated with particulate matter. Analysis of metals in particulate matter used capillary electrophoresis with spectrophotometric determination (EE21), ICP-AES (EE22, EE23), and isotope dilution MS (EE24). Nitrate/Sulfate. Shen and Zhao (FF1) used a denuder/filter pack system to determination ammonia and particulate ammonium salts in atmospheric samples. Bergin et al. (FF2) characterized the evaporation of ammonium nitrate aerosol in a heated nephelometer and discussed the implications for field measurements. Koop et al. (FF3) developed a new optical technique to study aqueous H2SO4 aerosol particles. Cheng and Tsai (FF4) presented a model to describe the evaporation losses of ammonium nitrate particles during filter sampling. Tohno et al. (FF5) developed a methodology to identify the internal mixing state of sulfate and nitrate ions

in individual aerosol particles using a thin-film process. Elred and Cahill (FF6) reported sulfate artifact formation during sampling. Clouds. Morales et al. (GG1) described the determination of selected organic and inorganic acids in rainwater by ion chromatography. A droplet aerosol analyzer was tested that is capable of measuring the ambient size of cloud droplets and cloud interstitial aerosol particles (GG2). Mainka et al. (GG3) used capillary electrophoresis to analyze for mono- and dicarboxylic acids and carbonyls in raindrops. Bai and Lu (GG4) used spectroscopic methods to determine trace hydrogen peroxide in rainwater. Miscellaneous. This section contains articles on aerosol carbon content, direct mass measurements, and bioaerosol sampling. Cass (HH1) proposed the development of organic molecular tracers for particulate air pollution sources. Distinctive organic compounds or compound groups that are present in the emissions of some sources are identified. Horvath (HH2) presented an experimental calibration for aerosol light absorption measurements using the integrated plate method. A thermooptical method was described to analyze carbonaceous aerosols for organic and elemental carbon content (HH3). Total carbon content was determined by thermal combustion-ion chromatography (HH4). Kuhlbusch et al. (HH5) used an optical and thermal method to determine graphitic carbon in ambient aerosol samples. Allen et al. (HH6) evaluated a tapered element oscillating microbalance (TEOM) method for the direct measurement of ambient particulate mass in urban areas. Obeidi et al. (HH7) used TEOM and diffusion denuders to investigate volatile fine particulate matter. Upton (HH8) developed guidelines to select suitable instruments to directly read aerosol mass concentrations. Cage et al. (HH9) presented an evaluation of four bioaerosol samplers for the ambient monitoring. Zaromb et al. (HH10) described a portable high-throughput liquid absorption air sampler for preconcentrating biological aerosols. Collection efficiencies ranged from about 20 to >80% for geometric-mean aerodynamic mass diameters of about 1.5-6 µm. ACKNOWLEDGMENT

I acknowledge Chemical Abstracts Service for providing access to STN International to aid in the literature search used in the preparation of this work. I also thank Gretchen Koball for her assistance in preparation of the manuscript. Donald L. Fox is a Professor in the Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill. He received his Ph.D. degree in chemistry from Arizona State University. His research and teaching interests include atmospheric photochemical processes, air pollution chemistry and monitoring. He is a member of the American Chemical Society.

LITERATURE CITED GASES Books (A1) Fox, D. L. Anal. Chem. 1997, 69, 1R-13R. (A2) Cruses, M., Ed. Environmental Sampling and Analysis Lab Manual; Lewis: Boca Raton, FL, 1997. (A3) Kebbekus, B. B.; Mitra, S. Environmental Chemical Analysis; Blackie: London, U.K., 1998. (A4) Patnaik, P., Ed. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes; CRC: Boca Raton, FL, 1997. (A5) Einax, J. W.; Zwanziger, H. W.; Geiss, S. Chemometrics in Environmental Analysis; VCH: Wienheim, Germany, 1997.

(A6) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, 1998. (A7) Caussade, B., Power, H., Brebbia, C. A., Eds. Air Pollution IV: Monitoring, Simulation, and Control; Comput Mech: Southampton, U.K., 1996 (Proceedings of the Fourth International Conference on Air Pollution, 29-30 August 1996, Toulouse, France). (A8) Fallahi, M., Howden, E., Eds. In Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3082 (Electrooptical Technology for Remote Chemical Detection and Identification II, 21 April, Orlando, FL). (A9) Schaefer, K., Ed. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3106 (Spectroscopic Atmospheric Monitoring Techniques, 19-20 June 1997, Munich, Germany). (A10) Wolf, J.-P., Ed. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3104 (Lidar Atmospheric Monitoring, 16-18 June 1997, Munich, Germany). (A11) Sedlacek, A. J., Fischer, K. W., Eds. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3127 (Application of Lidar to Current Atmospheric Topics, 31 July-1 August 1997, San Diego, CA). (A12) A&WMA Specialty Conference on Measurement of Toxic and related Air Pollutants, Vol. I; Air & Waste Management Association: Pittsburgh, PA, 1997 (held in Research Triangle Park, NC 29 April-1 May 1997). (A13) A&WMA Specialty Conference on Measurement of Toxic and Related Air Pollutants, Vol. II; Air & Waste Management Association: Pittsburgh, PA, 1997 (held in Research Triangle Park, NC 29 April-1 May 1997). (A14) Borrell, P. M., Borrell, P., Kelly, K., Cvitas, T., Seiler, W., Eds. Transport and Transformation of Pollutants in the Troposphere, Volume 1: Clouds, Aerosols, Modeling and Photo-Oxidants; Comput Mech: Southampton, UK, 1997 (Proceedings of EUROTRACS Symposium, 25-29 March 1996). (A15) Le Bras, G., Ed. Transport and Chemical Transformation of Pollutants in the Troposphere, Volume 3: Chemical Processes in Atmospheric Oxidation; Laboratory Studies of Chemistry to Tropospheric Ozone; Springer: Berlin, Germany, 1997. (A16) Salnina, S., Ed. Transport and Chemical Transformation of Pollutants in the Troposphere, Volume 4: Biosphere-Atmosphere Exchange of Pollutants and Trace Substances; Springer: Berlin, Germany, 1997. (A17) Fischer, J., Ed. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2961 (Satellite Remote Sensing and Modeling of Clouds and the Atmosphere, September 24, 1996, Taormina, Italy). (A18) Wang, J., Wu, B., Ogawa, T., Guan, Z.-h., Eds. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3501 (Optical Remote Sensing of the Atmosphere and Clouds, Beijing, China 15-17 September 1998). (A19) Hayasaka, T., Wu, D. L., Jin, Y.-Q., Jiang, J.-s., Eds. Proc. APIEInt. Soc. Opt. Eng. 1998, 3503 (Microwave Remote Sensing of the Atmosphere and Environment, Beijing, China 15-17 September 1998). Reviews (B1) Clement, R. E.; Yang, P. W.; Koester, C. J. Anal. Chem. 1997, 69(12), 251R-287R. (B2) Suzuki, S. Eco Ind. 1998 1997, 3(1), 9-24. (B3) Szczurek A. Environ. Prot. Eng. 1996, 22(1-2), 29-37. (B4) Mizoguchi, T. Kankyo Gijutsu 1996, 25(11), 639-645. (B5) Elkins, J. B., Jr.; Sleva, S.; Waite, R. G.; Musick, D.; Papp, M. Meas. Toxic Relat. Air Pollut., Proc. Int. Spec. Conf. 1996, 689703. (B6) Dore, C. J.; McGinlay, J. Spec. Publ.-R. Soc. Chem. 1997, 210, 95-125. (B7) Kleinman, M. T.; Phalen R. F. Methods Inhalation Toxicol. 1997, 39-67. (B8) Slemr, F.; Brenner, K.; Mueller, H. Gas Aktuell 1997, 52, 4-12. (B9) Egmose, K.; Christensen, J. M.; Lillemark, L.; Nyeland, B.; Pedersen O.; Merry, J. Dan. Kemi 1995, 76(1), 8-11. (B10) Namiesnik, J.; Pilarczyk, M. Toxicol. Environ. Chem. 1997, 64(1-4), 203-229. (B11) Woolfenden, E. J. Air Waste Manage. Assoc. 1997, 47(1), 2036. (B12) Helmig, D. Atmos. Environ. 1997, 31(21), 3635-3651. (B13) Staicu, A.; Pascu, M. L. Rom. Rep. Phys. 1996, 48(9-10), 841854. (B14) Ahmad, S. R. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3127, 2-13. (B15) Chudzynski, S.; Ernst, K.; Stacewicz, T.; Szymanski, A. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3188, 168-179. (B16) Weitkamp, C. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 3052, 7284. (B17) Colin, R. Proc. EUROTRAC Symp. ′96: Trasnp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 425-434. (B18) Fried, A.; Henry, B.; Wert, B.; Sewell, S.; Drummond, J. R. Appl. Phys. B: Lasers Opt. 1998, B67(3), 317-330. (B19) Reiter-Domiaty, U.; Gruber, D.; Windholz, L. Proc. EUROTRAC Symp. ′96: Transp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 739-744. (B20) Galan, G.; Navas, M. J.; Jimenez, A. M. Int. J. Environ. Anal. Chem. 1997, 68(4), 497-510. (B21) Korenaga, T. Bunseki 1997, (4), 315-317.

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

115R

(B22) Tamakawa, K.; Kato, T.; Itou Y. Kankyo Gijutsu 1996, 25(11), 661-668. (B23) Navas, M. J.; Jimenez, A. M.; Galan, G. Atmos. Environ. 1997, 31(21), 3603-3608. (B24) Lopes, W. A.; de Andrade, J. B. Quim. Nova 1996, 19(5), 497516. (B25) Broker, G.; Bruckmann, P.; Heister, E.; Krause, G. H. M.; Quass, U. Handb. Dioxine 1998, 73-163. Ozone (C1) Guideline on ozone monitoring site selection. Technol. Rep., EPA-454/R-98-002, 1998. (C2) Warren, M. V. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf.; Air & Waste Management Association: Pittsburgh, PA, 1997; Vol. 1, pp 356-367. (C3) Maddy, J. Proc., Annu. Meet-Air Waste Manage. Assoc. 1998, MPB02P/1-MPB02P/9. (C4) Nakano, N.; Yamamoto, A. Jpn. Kokai Tokyo Koho JP 09,318,614 [97,318,614] (Cl. G01N31/00), 12 Dec 1997, Appl. 96/161, 018, 31 May 1996. (C5) Geyh, A.; Wolfson, J.; Koutrakis, P.; Mulik J.; Avol, E. Environ. Sci. Technol. 1997, 31(8), 2326-2330. (C6) Kirchner, M.; Rediske, G.; Welzl, G.; Gebefuegi, I. Transp. Chem. Transform. Pollut. Troposphere 1997, 1, 875-879. (C7) Kirchner, M.; Hangartner, M.; Werner, H. Gefahrstoffe-Reinhalt. Luft 1997, 57(11), 467-470. (C8) Bernard, N. L.; Gerber, M. J.; Astre, C. M.; Saintot, M. J. Environ. Sci. Technol. 1999, 33(2), 217-222. (C9) Mikuska, P.; Vecera, Z. Anal. Chim. Acta 1998, 374(2-3), 297-302. (C10) Kleindienst, T. E.; McIver, C. D.; Ollison, W. M. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf.; Air & Waste Management Association: Pittsburgh, PA, 1997; Vol. 1, pp 215-225. (C11) Bellecci, C.; Caputi, G.; De Donato, F.; Gaudio, P.; Valentini, M. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 2956, 118-123. (C12) Proffitt, M.; Langford, A. Appl. Opt. 1997, 36(12), 2568-2585. (C13) Vaughan, G.; Roscoe, H.; Bartlett, L.; O’Connor, F.; Sarkissian, A.; Van Roozendael, M.; Lambert, J.-C.; Simon, P.; Karlsen, K.; et al. J. Geophys. Res. 1997, 102(D1), 1411-1422. (C14) Van Roozendael, M.; Peeters, P.; Roscoe, H. K.; De Backer, H.; Jones, A. E.; Bartlett, L.; Vaughan, G.; Goutail, F.; Pommereau, J.-P.; Kyro, E.; Wahlstrom, C.; Braathen, G.; Simon, P. C. J. Atmos. Chem. 1998, 29(1), 55-83. Radicals (D1) Eisele, F.; Mauldin, R.; Tanner, D.; Fox, J.; Mouch T.; Scully T. J. Geophys. Res.[Atmos.] 1997, 102(D23), 27993-28001. (D2) Tanner, D.; Jefferson, A.; Eisele, F J. Geophys. Res. [Atmos.] 1997, 102(D5), 6415-6425. (D3) Mauldin R.; Frost G.; Chen G.; Tanner, D.; Prevot, A.; Davis, D.; Eisele, F. J Geophys. Res. [Atmos.] 1998, 103(D13), 16713-16729. (D4) Mount G.; Eisele, F.; Tanner D.; Brault, J.; Johnston, P.; Harder J.; Williams, E.; Fried, A.; Shetter, R. J Geophys. Res., [Atmos.] 1997, 102(D5), 6437-6455. (D5) Mount, G. H.; Brault, J. W.; Johnston, P. V.; Marovich, E.; Jakoubek, R. O.; Volpe, C. J.; Harder, J.; Olson, J. J. Geophys. Res., [Atmos.] 1997, 102(D5), 6393-6413. (D6) Dubey, M.; Hansico, T.; Wennberg, P.; Anderson, J. Geophys. Res. Lett. 1996, 23(22), 3215-3218. (D7) Hessling, M.; Aschmutat, U.; Hofzumahaus, A.; Holland, F.; Ehhalt, D. H. Proc. EUROTRAC Symp. ’96: Transp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 661-665. (D8) Mather, J.; Stevens, P.; Brune, W. J Geophys. Res. [Atmos.] 1997, 102(D5), 6427-6436. (D9) Creasey, D. J.; Halford-Maw, P. A.; Heard, D. E.; Pilling, M. J.; Whitaker, B. J. J. Chem Soc., Faraday Trans. 1997, 93(16), 2907-2913. (D10) Bailey, A. E.; Heard, D. E.; Paul, P. H.; Pilling M. J. J. Chem. Soc., Faraday Trans. 1997, 93(16), 2915-2920. (D11) Holland, F.; Aschmutat, U.; Brandenburger, U.; Brauers, T.; Dorn, H.-P.; Hausmannn, M.; Hessling, M.; Hofzumahaus, A.; Ehhalt, D. H. Proc. EUROTRAC Symp. ′96: Transp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 651-654. (D12) Reiner T.; Hanke, M.; Arnold, F. J. Geophys. Res., [Atmos] 1997, 102(D1), 1311-1326. (D13) Volz-Thomas, A.; Gilge, S.; Heitlinger, M.; Mihelcic, D.; Musgen, P.; Patz, H.-W.; Schultz, M.; Borrell, P.; Borrell, P. M.; Selmr, J.; Behmann, T.; Burrows, J. P.; Weissenmayer, M.; Arnold, T.; Klupfel, T.; Perner, D.; Cantrell, C. A.; Shetter, R.; Carpenter, L. J.; Clemitshaw, K. C.; Penkett, S. A. Proc. EUROTRAC Symp. ′96: Transp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 621-626. (D14) Heitlenger, M.; Kley, D.; Mihelcic, D.; Muesgen, P.; Schultz, M.; Volz-Thomas, A. Ber. Forschungszent. Juelich 1998, 3520, 1-172. 116R

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

(D15) Sauer, F.; Limbach, S.; Moortgat, G. Atmos. Environ. 1997, 31(8), 1173-1184. Nitrogen (E1) Chang, I.-H.; Lee, D. S.; Lee, Y.-K.; Whang, K. Anal. Sci. 1997, 13, 267-272. (E2) Jaeschke, W.; Dierssen, J. P.; Gunther, A.; Schumann, M. Atmos. Environ. 1998, 32(3), 365-371. (E3) Thijsse, T. H. R.; Duyzer, J. H.; Verhagen, H. L. M.; Wyers, G. P.; Wayers, A.; Mols. J. J. Atmos. Environ. 1998, 32(3), 333337. (E4) Yun, D.; Kwon, C.; Hong, H.-K.; Kim, S.-R.; Lee, K.; Song, H.; Kim, J. Transducers 97, Int. Conf. Solid-State Sens. Actuators 1997, 2, 959-962. (E5) Nakano, N.; Kawabe, T.; Isaka, M.; Nozima, Y. Bunseki Kagaku 1998, 47(7), 423-428. (E6) Gerboles, M.; Diaz, E.; Noriega-Guerra, A. Accredit. Qual. Assur. 1998, 3(2), 69-78. (E7) Sekine, Y.; Kagawa, J. Shigen Kankyo Taisaku 1997, 33(15), 1313-1317. (E8) Lee, S.-H.; Hirokawa, J.; Kajii, Y.; Akimoto, H. Rev. Sci. Instrm. 1997, 68(7), 2891-2897. (E9) Sandholm, S.; Smyth S.; Bai, R.; Bradshaw, J. J. Geophys. Res., [Atmos.] 1997, 102(D23), 28651-28661. (E10) Neti, R. U. S. US 5,633,710 (Cl. 436-116; G01N21/76), 27 May 1997, Appl. 403,494, 14 Mar 1995. (E11) Bernard, N.; Astre, C.; Vuillot, B.; Saintot, M.; Gerber, M. J. Exposure Anal. Environ. Epidemiol. 1997, 7(2), 165-178. (E12) De Santis, F.; Allegrini, I.; Fazio, M.; Pasella, D.; Piredda, R. Anal. Chim. Acta 1997, 346(1), 127-134. (E13) Muthusubramanian, P., De Santis, F., Allergrini, I. Air Pollut. V, Int. Conf Air Pollut., 5th 1997, 863-872. (E14) Shooter, D.; Brimblecombe, P.; Shooter, J.; Lowe, D.; Day, P. J.; Du, S. Environ. Technol. 1997, 18(3), 243-254. (E15) Van Reeuwijk, H.; Fischer, P. H.; Harssema, H.; Briggs, D. J.; Smallbone, K.; Lebret, E. Environ. Monit. Assess. 1998, 50(1), 37-51. (E16) Yamada, E.; Yoshida, D.; Hu, L.; Yamada, T. Bunseki Kagaku 1996, 45, 5(12), 1083-1088. (E17) Krochmal, D.; Kalina, A. Environ. Pollut. 1997, 96(3), 401407. (E18) Krochmal, D.; Kalina, A. Atmos. Environ. 1997, 31(20), 34733479. (E19) Krochmal, D.; Czas. Technol. (Krakow) 1996, 93(6), 116128. (E20) Ayers, G.; Keywood, M.; Gillett, R.; Manins, P.; Malfroy, H.; Bardsley, T. Atmos. Environ. 1998, 32(20), 3587-3592. (E21) Heal, M.; Cape, J. Atmos. Environ. 1997, 31(13), 1911-1923. (E22) Roeyset, O. Fresenius’ J. Anal. Chem. 1998, 360(1), 69-73. (E23) Nagasawa, T.; Murakami, K.; Watanabe, K. Mater. Res. Sco. Symp. Proc. 1998, 488, 329-334. (E24) Erxleben, H.; Miskvin, L. N.; Nikitina, T. G.; Simon, J. Fresenius’ J. Anal. Chem. 1998, 361(3), 324-325. (E25) Gaffney, J. S.; Bornick, R. A.; Shen, Y.-H.; Marley, N. A. Atmos. Environ. 1998, 32(8), 1445-1454. (E26) Roman, M.; Pascu, M. L.; Staicu, A. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3405, 1215-1219. (E27) Fong, C.; Brune, W. Rev. Sci. Instrum. 1997, 68(11), 42534262. (E28) Gianfrani, L.; Sasso, A.; Tino, G. Sens. Actuators, B 1997, B39(1-3), 283-285. (E29) Wang, H.; Shao, K.; Tang, X. Huanjing Kexue 1998, 19(3), 1-6. (E30) Kliner, D.; Daube, B.; Burley, J.; Wofsy, S. J. Geophys. Res., [Atmos.] 1997, 102(D9), 10759-10776. (E31) Bradshaw, J.; Sandholm, S.; Talbot, R. J. Geophys. Res., [Atmos.] 1998, 103(D15), 19129-19148. (E32) Williams, E. J.; Baumann, K.; Roberts, J. M.; Nunnermacker, L. J.; Newman, L.; Olszyna, K.; Meagher, J.; Hartsell, B.; Edgerton, E.; Pearson, J. R.; Rodgers, M. O. J. Geophys. Res., [Atmos.] 1998, 103(D17), 22261-22280. (E33) Aliwell, S.; Jones, R. J. Geopyhs. Res, [Atmos.] 1998, 103(D5), 5719-5727. (E34) Mauldin, R. L., III; Tanner, D. J.; Eisele, F. L. J. Geophys. Res., [Atmos.] 1998, 103(D3), 3361-3367. (E35) Huey, L.; Dunlea, E. J.; Lovejoy, E. R.; Hanson, C. J. J. Geophys. Res., [Atmos.] 1998, 103(D3), 3355-3360. (E36) Fehsenfeld, F. C.; Huey, L. G.; Sueper, D. T.; Norton, R. B.; Williams, E. J.; Eisele, F. L.; Mauldin, R. L., III; Tanner, D. J. J. Geophys. Res., [Atmos.] 1998, 103(D3), 3343-3353. (E37) Pakkanen, T. A.; Hillamo, R. E.; Risto, E.; Aurela, M.; Andersen, H. V.; Grundahl, L.; Ferm, M.; Persson, K.; Karlsson, V.; Reissel, A.; Royset, O.; Floisand, I.; Oyola, P.; Ganko, T. J. Aerosol Sci. 1998, 30(2), 247-263. (E38) Jongejan, P. A. C.; Bai, Y.; Veltkamp, A. C.; Wyers, G. P.; Slanina, J. Int. J. Environ. Anal. Chem. 1997, 66(4), 241-251. (E39) Danalatos, D.; Glavis, S. J. Chromatogr., A 1997, 786(2), 361365.

(E40) Nikitas, C.; Clemitshaw, K.; Oram, D.; Penkett, S.; J. Atmos. Chem. 1997, 28(1-3), 339-359. Sulfur Dioxide (F1) Knopf, D. PTB-Ber. ThEx-Phys.-Technol. Bundesanst. 1998, (PTB-ThEx-5), 1-139. (F2) Bai, R.; Li, J. Yankuang Ceshi 1998, 17(1), 40-43, 47. (F3) Tang, H.; Brassard, B.; Brassard. R.; Peake, E. Field Anal. Chem. Technol. 1997, 9(5), 307-314. (F4) Dasgupta, P.; Ni, L.; Poruthoor, S.; Hindes, D. Anal. Chem. 1997, 69(24), 5018-5023. (F5) He, Z.; Wu, F.; Meng, H.; Yuan, L.; Song, G.; Zeng, Y. Anal. Sci. 1998, 14(4), 737-740. (F6) Zheng, X.; Jing, J. Sichuan Lianhe Daxue Xuebao, Goncheng Kexueban 1998, 2(1), 34-38, 80. (F7) Tscherwenka, W.; Kasper, A.; Seibert, P.; Puxbaum, H. Transp. Chem. Transform. Pollut. Tropsphere 1997, 1, 118-23. (F8) Wang, S.; Ding, L.; Wei, Q. Jilin Daxue Ziran Kexue Xuebao 1997, (4), 79-82. (F9) Pandurangappa, M.; Balasubramanian, N. Chem. Anal. (Warsaw) 1997, 42(5), 681-689. (F10) Batterman, S., Osak, I.; Gelman, C. Atmos. Environ. 1997, 31(7), 1041-1047. Hydrocarbons-Gas Chromatography (G1) Warner, J.; Allen, E. Proc., Annu. Meet-Air Waste Manage. Assoc., 89th 1996, tp23b06/1-tp23b06/16. (G2) Kirshen, N.; Coe, D.; Hodges, C.; Bao, Y. Meas. Toxic Relat. Air Pollut., Proc. Int Spec. Conf. 1996, 262-270. (G3) Wright, M. D.; Plant, N. T.; Brown, R. H. Environ. Monit. Assess. 1998, 52(1-2), 57-64. (G4) Pham Tuan, H.; Janssen, H.-G.; Cramers, C. J. Chromatogr., A 1997, 79(1+2), 177-185. (G5) Tuan, H.; Janssen, H.-G.; Cramers, C.; Mussche, P.; Lips, J.; Wilson, N.; Handley, A. J. Chromatogr., A 1997, 791(1+2), 187-195. (G6) Nickerson, M. A.; Snyder, W. D. U.S. US 5,720,798 (Cl. 96102; B01D15/08), 24 Feb 1998, Appl. 641,248, 30 Apr 1996. (G7) Haunold, A.; Rosenberg, E.; Grasserbauer, M. Int. J. Environ. Anal. Chem. 1997, 67(1-4), 157-172. (G8) Kivi-Etelaetalo, E.; Kostiainen, O.; Kokko, M. J. Chromatogr., A 1997, 787(1-2), 205-214. (G9) Nakamura, K. Jpn. Kokau Tokkyo Koho JP 10 104, 143 [98 104, 143] (Cl. G01N1/36), 24 Apr 1998, Appl. 96/255, 833, 27 Sep 1996. (G10) Lewis, A.; Bartle K.; McQuaid, J.; Pilling, M.; Seakins P.; Ridgeon, P. J. High Resolut. Chromatogr. 1996, 19(12), 686690. (G11) Gorlo, D.; Wolska, L.; Zygmunt, B.; Namiesnik, J. Talanta 1997, 44(9), 1543-1550. (G12) Bartelt, R. J.; Zilkowski, B. W. Anal. Chem. 1999, 71(1), 92101. (G13) Velikonja Bolta, S.; Zupancic-Kralj, L.; Marsel, J. Chromatographia 1998, 48(1/2), 95-100. (G14) Viden, I.; Janda, V. J. High Resolut. Chromatogr. 1997, 20(3), 181-182. (G15) Seko, T.; Onda, N. Anal. Sci. 1997, 13, 437-442. (G16) You, J.; You, J.; Wang, G.; Bao, Y.; Guan, Y. Fenxi Huaxue 1998, 26(7), 886-890. (G17) Mangani, F.; Lattanzi, L.; Maione, M. Chromatographia 1998, 47(1/2), 57-62. (G18) Honda, M.; Nishii, Y.; Ono, H. Nara-ken Eisei Kenkyusho Nenpo 1998, 31, 93-97. (G19) Leibrock, E.; Slemr, J. Proc. EUROTRAC symp. ’96: Transp. Transform. Pollut. Troposphere, 4th, 1996 1997, 2, 667-671. (G20) Daughtrey, E. H., Jr.; Adams, J. R.; Oliver, K. D.; Kronmiller, K. G.; McClenny, W. A. J. Geophys. Res., [Atmos.] 1998, 103(D17), 22375-22386. (G21) Tokuhara, M.; Kido A.; Yasuda, K.; Kido, K. Bunseki Kagaku 1997, 46(5), 367-374. (G22) Chien, C.-J.; Charles, J.; Sexton, K.; Jeffries, H. Environ. Sci. Technol. 1998, 32(2), 299-309. (G23) Yu, J.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 1998, 32, 2(16), 2357-2370. (G24) Shire, J.; Harshfield, G.; Zielinska, B.; Pasek, R. Meas. Toxic Relat. Air Pollut., Proc. Int. Spec. Conf. 1996, 740-747. (G25) Lahaniati, M.; Cologirou, A.; Duane, M.; Larsen, B.; Kotzias, D. Fresenius Environ. Bull. 1998, 7(5/6), 302-307. (G26) Maeda, T.; Tanabe, K.; Morita, M. LC-GC 1998, 16(5), 478, 480, 482, 484, 486. (G27) Maeda, T., Funaki, K., Yanaguchi, Y., Ichioka, K., Suzuki, K., Yamamoto, N., Morita, M. J. High Resolut. Chromatogr. 1998, 21(8), 471-474. (G28) Ciccioli, P.; Brancaleoni, E.; Mabilia, R.; Cecinato, A. J. Chromatogr., A 1997, 777(2), 267-274. (G29) Gong, Q.; Demerjian, K. J. Geophys. Res., [Atmos.] 1997, 102(D23), 28059-28069. (G30) McQuaid, J.; Lewis, A. C.; Bartle, K. D.; Walton, S. J. J. High Resolut. Chromatogr. 1998, 21(3), 181-184.

(G31) Hunter, M. C.; Bartle, K. D.; Lewis, A. C.; McQuaid, J. B.; Myers, P.; Seakins, P. W.; Van Tilburg, C. J. High Resolut. Chromatogr. 1998, 21(2), 75-80. (G32) Wang, L.; Lu, Y.; Yang, Q.; Chen, Z.; Ye, B. Huanjing Kexue 1997, 18(3), 64-66. (G33) Marley, N. A.; Gaffney, J. S. Atmos. Environ. 1998, 32(8), 1435-1444. (G34) Fukui, Y.; Doskey, P. V. J. High Resolut. Chromatogr. 1998, 21(4), 201-208. (G35) Stashenko, E.; Ferreira, M.; Sequeda, L.; Martinez, J.; Wong J. J. Chromatogr., A 1997, 779(1-2), 360-369. (G36) Amin, T.; Bindra, S.; Narang, R. S. J. AOAC Int. 1998, 81(5), 1027-1032. (G37) Bassford, M.; Simmonds, P.; Nickless, G. Anal. Chem. 1998, 70(5), 958-965. (G38) Chen, Y. C.; Lo, J. G. Anal. Sci. 1997, 13, 199-204 (Suppl., Asianalysis IV). (G39) Yamamoto, N.; Okayasu, H.; Hiraiwa, T.; Murayama, S.; Maeda, T.; Morita, M.; Suzuki, K. J. Chromatogr., A 1998, 819(1+2), 177-186. (G40) Leston, A. R.; VanArsdale, A.; Oi, A. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 2, 667-677. (G41) Larsen, B.; Bomboi-Mingarro, T.; Brancaleoni, E.; Calogirou, A.; Cecinato, A.; Coeur, C.; Chatzianestis, I.; Duane, M.; Frattoni, M.; Fugit, J.-L.; Hansen, U.; Jacob, V.; Mimikos, N.; Hoffman, T.; Owen, S.; Perez-Pastor, R.; Reichmann, A.; Seufert, G.; Staudt, M.; Steinbrecher, R. Atmos. Environ. 1997, 31, 35-49. (G42) Dutaur, L.; Riba, M. L.; Simon, V.; Namiesnik, J.; Torres, L. Chem. Anal. (Warsaw) 1998, 43(3), 375-386. Hydrocarbons: Non-Gas Chromatography (H1) Mastrogiacomo, A. R.; Pierini, E.; Sampaolo, L.; Bruner, F. J. Chromatogr., A 1998, 810(1+2), 131-139. (H2) Bates, M.; Gonzalez-Flesca, N.; Sokhi, R.; Cocheo, V. Analyst (Cambridge, U.K.) 1997, 122(12), 1481-1484. (H3) Brown, V. M.; Crump, D. R. Environ. Mont. Assess. 1998, 52(1-2), 43-55. (H4) Calogirou, A.; Duane, M.; Kotzias, D.; Lahaniati, M.; Larsen, B. R. Atmos Environ. 1997, 31(17), 2741-2751. (H5) Simon, P.; Farant, J.-P.; Cole, H.; Krasnec, J. Meas. Toxic Relat. Air Pollut., Proc. Int. Spec. Conf. 1996, 245-252. (H6) Bennett, J. M.; Gravley, R. J. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf., 1997, 1, 337-355. (H7) Westerinen, A.; Reisman, B. B. Meas. Toxic Relat. Air Pollut., Proc. Int. Spec. Conf. 1996, 234-244. (H8) McClenny, W. A.; Schmidt, S. M.; Kronmiller, K. G. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 2, 652-662. (H9) Batterman, S. A.; Zhang, G.-Z.; Baumann, M. Atmos. Environ. 1998, 32(10), 1647-1655. (H10) Castellnou, A.; Gonzaliz-Flexca, N.; Grimalt, J. O. Environ. Monit. Assess. 1998, 52(1-2), 97-106. (H11) Castellnou, A.; Gonzalez-Flexca, N.; Grimalt, J. O. J. Chromatogr., A 1997, 778(1+2), 269-277. (H12) Burnett, M. L.; Neal, D.; Uchtman, R.; Naughton, V. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 1, 3-11. (H13) Qian, Y.; Zhou, Q.; Chen, Z. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 2, 959-961. (H14) Gibson, L.; Cooksey, B.; Littlejohn, D.; Tennent, N. Anal. Chim. Acta 1997, 34(1), 1-10. (H15) Gagner, R.; Hrudey, S. Meas. Toxic Relat. Air Pollut. Proc. Spec. Conf. 1997, 2, 962-970. (H16) Moschonas, N.; Glavas, S. J. Chromatogr., A 1997, 790(1+2), 117-123. (H17) Woo, C. S.; Barry, S. E.; Zaromb, S. Environ. Sci. Technol. 1998, 32(1), 169-176. (H18) Surowiec, K.; Dasgupta, P. K. J. Microcolumn Sep. 1998, 10(3), 265-271. (H19) Bertoni, G.; Tappa, R. J. Chromatogr., A 1997, 767(1-2), 153161. (H20) Comes, P.; Gonzalez-Flesca, N.; Grimalt, J. O. J. Chromatogr., A 1998, 816(2), 195-200. (H21) McClenny, W. A.; Colon, M. J. Chromatogr., A 1998, 813(1), 101-111. (H22) Chu, P. M.; Thorn, W. J.; Sams, R. L.; Guenther, F. R. J. Res. Natl. Inst. Stand. Technol. 1997, 102(5), 559-568. (H23) Fugit, J. L.; Dutaur, L.; Simon, V.; Riba, M. L.; Torres, L. Fresenius Environ. Bull. 1996, 5(11/12), 682-687. (H24) Apel, E. C.; Calvert, J. G.; Greenberg, J. P.; Riemer, D.; Zika, R.; Kleindienst, T. E.; Lonneman, W. A.; Fung, K.; Fujita, E. J. Geophys. Res., [Atmos.] 1998, 103(D17), 22281-22294. (H25) Brenner, K.; Mueller, H. GIT Labor-Fachz. 1998, 42(8), 774777. (H26) Barko, G.; Hlavay, J. Fresenius J. Anal. Chem. 1998, 360(1), 119-121. (H27) Martos, P.; Pawliszyn, J. Anal. Chem. 1997, 69(2), 206-215. (H28) Gilpin, T.; Apel, E.; Fried, A.; Wert, B.; Calvert, J.; Genfa, Z.; Dasgupta, P.; Harder, J. W.; Heikes, B.; Hopkins, B.; Westberg, H.; Kleindienst, T.; Lee, Y.-N.; Zhou, X.; Lonneman, W.; Sewell, S. J. Geophys. Res., [Atmos.] 1997, 102(D17), 21161-21188. (H29) Apel, E. C.; Calvert, J. G.; Riemer, D.; Pos, W.; Zika, R.; Kleindienst, T. E.; Lonneman, W. A.; Fung, K.; Fujita, E.;

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

117R

(H30) (H31) (H32) (H33) (H34) (H35) (H36) (H37) (H38) (H39) (H40) (H41) (H42) (H43) (H44) (H45) (H46) (H47)

Shepson, P. B.; Starn, T. K.; Roberts, P. T.; J. Geophys. Res., [Atmos.] 1998, 103(D17), 22295-22316. Schlitt, H. J. Chromatogr., A 1997, 762(1+2), 187-192. Anderson, E.; Mischler, S. Proc., Annu. Meet.-Air Waste Manage. Assoc., 89th 1996, mp1003/1-mp1003/14. Kleindienst, T.; Corse, E. W.; Blanchard, F. T.; Lonneman, W. A. Environ. Sci. Technol. 1998, 32(1), 124-130. Lee, Y.-N.; Zhou X.; Leaitch, W.; Banic, C. J. Geophys. Res., [Atmos.] 1996, 101(D22), 29075-29080. Schlitt, H. J. Chromatogr., A 1997, 762(1+2), 187-192. Goelen, E.; Lambrechts, M.; Geyskens, F. Analyst (Cambridge, U.K.) 1997, 122(5), 411-419. Slemr, J.; Junkermann, W. In Transport and Chemical Transformation of Pollutants in the Troposphere; Oystein, H., Ed.; Springer: Berlin, Germany, 1997; pp 357-364. Garcia-Alonso, S.; Perez-Pastor, R. M. Anal. Chim. Acta 1998, 367(1-3), 93-99. Pires, M.; Carvalho, L. R. F. Anal. Chim. Acta 1998, 367(13), 223-231. Possanzini, M.; Di Palo, V. Chromatographia 1997, 46(5/6), 235-240. Harder, J.; Fried, A.; Sewell, S.; Henry, B. J. Geophys. Res., [Atoms.] 1997, 102(D5), 6267-6282. Fried, A.; Sewell, S.; Henry, B.; Wert, B. P.; Gilpin, T.; Drummond, J. R. J. Geophys. Res., [Atmos.] 1997, 102(D5), 6253-6266. Kern, T.; Klemp, D.; Kley, D.; Schmitz, T. Transp. Chem. Transform. Pollut. Troposphere 1997, 1, 1013-1018. Chanda, A.; Robbins, J.; Mackay, G. I.; Nadler, S. D.; Schiff, H. I. Proc., Annu. Meet.-Air Waste Manage. Assoc., 90th 1996, RP11502/1-RP11502/17. Suzuki, Y. Anal. Chim. Acta 1997, 353(203), 227-237. Korenman, Y. I.; Bel’skikh, N. V.; Kuchmenko, T. A. Zh. Prikl. Khim. (S.-Peterburg) 1997, 70(4), 626-630. Korenman, Y.; Tunikove A.; Bel’skikh, N.; Bastic, M.; Rajakovic, L. J. Anal. Chem. 1997, 52(3), 278-282 (Transl. of Zh. Anal. Khim.). Finklea, H.; Phillippi, M.; Lompert, E.; Grate, J. Anal. Chem. 1998, 70(7), 1268-1276.

Spectroscopy (J1) Kagann, R. H. Proc., Annu. Meet.-Air Waste Manage. Assoc., 90th 1997, RA14103/1-RA14103/16. (J2) Ropertz, A.; Lamp, T.; Douard, M.; Weber, K.; Gairtner, A.; Elbers, C.; Nitz, R. Proc. Annu. Meet.-Air Waste Manage. Assoc., 91st 1997, TPC07P/1-TPC07P/2. (J3) Douard, M.; Zeutzius-Reitz, J.; Lamp, T.; Ropertz. A.; Weber, K. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3107, 114-125. (J4) Sedlmaier, A.; Sussmann, R.; Schaefer, K. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3107, 103-113. (J5) Jaakkola, P.; Tate, J. D.; Paakkunainen, M.; Kauppinen, J.; Saarinen, P. Appl. Spectrosc. 1997, 51(8), 1159-1169. (J6) Flaud, J. M. AIP Conf. Proc. 1998, 434, 221-230. (J7) Ziomas, I.; Tzoumaka, P.; Balis, D.; Papayannis, A.; Melas, D.; Bais, A.; Zerefos, C. Fresenius Environ. Bull. 1997, 6(5/6), 320-324. (J8) Ravegnani, F.; Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Kostadinov, I. Proc SPIE-Int. Soc. Opt. Eng. 1997, 3106, 179-186. (J9) Schiff, H. I.; Robbins, J.; Chanda, A.; Nadler, S. D.; Mackay, G. I.; Kita, P.; Appel, D. Proc., Annu. Meet.-Air Waste Manage. Assoc., 89th 1997, tp26b04/1-tp26b04/13. (J10) Stutz, J., Platt, U. Appl. Opt. 1997, 36(6), 1105-1115. (J11) Volkamer, R., Etzkorn, T., Geyer, A., Platt, U. Atmos. Environ. 1998, 32(21), 3731-3747. (J12) Schiff, H. I. Proc., Annu. Meet.-Air Waste Manage. Assoc., 90th 1997, RA14105/1-RA14105/15. (J13) Fried, A.; Wert, B. P.; Henry, B.; Drummond, J. R. Proc. SPIEInt. Soc. Opt. Eng. 1998, 3285, 154-162. (J14) Fischer, H.; Bergamaschi, P.; Wienhold, F.; Zenker, T.; Harris, G. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2834, 130-141. (J15) Scharlemann, E. T. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3127, 275-285. (J16) Holdsworth, R. J.; Martin, P. A. Environ. Monit. Assess. 1998, 52(1-2), 141-148. (J17) Stanton, A. C.; Silver, J.; Bomse, D.; Oh, D.; Hovde, D.; Paige, M.; Kane, D. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2834, 4145. (J18) Nelson, D.; Zahniser, M.; McManus, J.; Shorter, J.; Wormhoudt, J.; Kolb, C. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2834, 148159. (J19) Gondal, M.; Bakhtiari, I.; Durrani, S. J. Anal. At. Spectrom. 1998, 13(5), 455-458. 118R

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

(J20) Atkinson, G. H.; Mehdizadeh, E.; Kalisky, Y.; Zhang, J.; Hineman, M.; Wolperdinger, M. PCT Int. Appl. WO 9709606 A1 13 Mar 1997. AEROSOLS Books and Reviews (AA1) Nichols, A. L., Ed. Aerosol Sampling Guidelines; Royal Society of Chemistry: Cambridge, U.K., 1998. (AA2) Mark, D. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 29-94. (AA3) Mark, D. Phys. Chem. Prop. Aerosols 1998, 80-152. (AA4) Ingham, D. B. Phys. Chem. Prop. Aerosols 1998, 429-457. (AA5) Harper, M. Process. Handl. Powders Dusts, Proc. Int. Symp. 1997, 79-91. (AA6) Griffiths, W. D. Aerosol Sampling Guidel. 1998, 122-165. (AA7) Matthias-Maser, S. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 349-368. (AA8) Jaenicke, R. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 1-28. (AA9) Slanina, J.; TenBrink, H. M.; Bai Y. Meas. Modell. Environ. Pollut., Int. Conf., 1st 1997, 343-357. (AA10) Tanner, R. L. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 147-171. (AA11) Ziemann, P. J., Ed. Special Issue: Aerosol and Particulate Analysis. TrAC, Trends Anal. Chem. 1998, 17(6). (AA12) Claes, M.; Gysels, K.; VanGrieken, R.; Harrison, R. M. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 95-145. (AA13) Injuk, J.; De Bock, L.; Van Grieken, R. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 173-202. (AA14) Zhu, G.; Wang, X.; Wang, G. Yuanzihe Wuli Pinglun 1997, 14(3), 158-160. (AA15) Cohen, D. D. Nucl. Instrum. Methods Phys. Res., Sect. B 1998, 136-138, 14-22. (AA16) Zeisler, R.; Haselberger, N.; Markarewicz, M.; Ogris, R.; Parr, R. M.; Stone, S. F.; Valkovic, O.; Valkovic, V.; Wehrstein, E. J. Radioanal. Nucl. Chem. 1997, 217(1), 5-10. (AA17) Bacon, J. R.; Crain, J. S.; McMahon, A. W.; Williams, J. G. J. Anal. At. Spectrom. 1997, 12(10), 407R-448R. (AA18) Weis, D. D.; Ewing, G. E. Glas. Hem. Tehnol. Maked. 1997, 16(1), 3-10. (AA19) Moosmueller, H.; Arnott, W. P.; Rogers, C. F. J. Air Waste Manage. Assoc. 1997, 47(2), 157-166. (AA20) Smith, D. J. T.; Harrison, R. M. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 1998, 5, 253-294. (AA21) Zhu, L.; Matsushita, H. Huanjing Kexue Jinzhan 1997, 5(5), 18-29. (AA22) Baron, P. Appl. Occup. Environ. Hyg. 1998, 13(5) 313-320. Polycyclic Aromatic Hydrocarbons (BB1) Lane, D. A.; Gundel, L. Polycyclic Aromat. Compd. 1996, 9(1-4), 67-73. (BB2) Cereceda-Balic, F. J. Ber. Forschungszent. Juelich 1998, 1-167. (BB3) Xu, M.; Kim, H. S.; Guan, S.; Marshall, A. G.; Dougherty, R. C. Chemosphere 1997, 36(1), 167-180. (BB4) Chee, K. K.; Wong, M. K.; Lee, H. K. Environ. Monit. Assess. 1997, 44(1-3), 391-403. (BB5) Warzecha, L. J. High Resolut. Chromatogr. 1996, 19(11), 639-642. (BB6) Moyano, E.; Galceran, M. T. Quim. Anal. (Barcelona) 1997, 16(3), 159-164. (BB7) Janoszka, B.; Bodzek, D.; Szotek, A.; Warzecha, L. Acta Chromatogr. 1997, 7, 149-158. (BB8) Becker, G.; Nilsson, U.; Colmsjo, A.; Ostman, C. J. Chromatogr., A 1998, 826(1), 57-66. (BB9) Siegmann, K.; Scherrer, L.; Siegmann, H. C. J. Mol. Struct. 1998, 458(1-2), 191-201. (BB10) Allen, J. O.; Durant, J. L.; Dookeran, N. M.; Taghizadeh, K.; Plummer, E. F.; Lafleur, A. L.; Sarofim, A. F.; Smith, K. A. Environ. Sci. Technol. 1998, 32(13), 1928-1932. (BB11) Shen, H.; Liang, Y.; Yu, R.; Li, X.; Sun X. Sci. China, Ser. B: Chem. 1998, 41(1), 21-29. (BB12) Chen, D.-Z.; Liang, Y. Z.; Shen, H.-L.; Cui, H.; Yu, R.-Q. Gaodeng Xuexiao Huaxue Xuebao 1998, 19(8), 1227-1231. (BB13) Fisher, M.; Bulatov, V.; Hasson, S.; Schechter, I. Anal. Chem. 1998, 70(11), 2409-2414. Single-Stage/Multistage Collection (CC1) Lyons, C. P. Aerosol Sampling Guidel. 1998, 32-60. (CC2) Hueglin, Ch.; Scherrer, L.; Burtscher, H. J. Aerosol Sci. 1997, 28(6), 1049-1055. (CC3) Li, S.-N.; Lundgren, D. A. Aerosol Sci. Technol. 1997, 27(5), 625-635. (CC4) Osak, I.; Batterman, S. A.; Gelman, C. Proc., Annu. Meet.Air Waste Manage. Assoc., 89th 1996, mp1002/1-mp1002/ 14. (CC5) Stahlschmidt, T.; Haupt, O.; Schulz, M.; Dannecker, W. Gefahrstoffe-Reinhalt. Luft 1998, 58(5), 199-204.

(CC6) Sioutas, C.; Ferguson, S. T.; Wolfson, J. M.; Ozkaynak, H.; Koutrakis, P. J. Aerosol Sci. 1997, 28(6), 1015-1028. (CC7) Eisner, A. D. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 1, 458-464. (CC8) Price, J. H. Proc., Annu. Meet.-Air Waste Manage. Assoc., 90th 1997, WA7305/1-WA7305/9. (CC9) Allen, G.; Babich, P.; Wang, E.; Davey, M.; Koutrakis, P. Meas. Toxic Relat. Air Pollut., Proc. Spec. Conf. 1997, 2, 734744. (CC10) Kim, H. T.; Kim Y. J.; Lee, K. W. Aerosol Sci. Technol. 1998, 29(4), 350-354. (CC11) Hopke, P. K.; Xie, Y.; Raunemaa, T.; Biegalski, S.; Landsberger, S.; Maenhaut, W.; Artzxo, P.; Cohen, D. Aerosol Sci. Technol. 1997, 27(6), 726-735. (CC12) Witschger, O.; Willeke, K.; Grinshpun, S. A.; Aizenberg, V.; Smith, J.; Baron, P. A. J. Aerosol Sci. 1998, 29(7), 855-874. (CC13) Smith, J. P.; Bartley, D. L.; Kennedy, E. R. Am. Ind. Hyg. Assoc. J. 1998, 59(8), 582-585. (CC14) Hering, S.; Gundel, L.; Daisey, J. M. J. Aerosol Sci. 1997, 28(7), 1283-1290. (CC15) Teffera, S.; Barbosa, S.; Bope, W. Proc., Annu. Meet.-Air Waste Manage. Assoc., 89th 1996, mp307/1-mp307/11. (CC16) Lundgren, D.; Hlaing, D.; Rich, T. Proc., Annu. Meet.-Air Waste Manage. Assoc., 89th 1996, tp49a02/1-tp49a02/15. (CC17) Prati, P.; Cardoni, F.; Formenti, P.; Zucchiatti, A.; Lucarelli, F.; Mando, P. A.; Cereda, E. AIP Conf. Proc. 1997, 392, 579582. Single-Particle Analysis (DD1) Carson, P. G. UMI, Order No. DA9718748; Diss. Abstr. Int., B 1997, 58(1), 172. (DD2) Yang, M.; Reilly, T. A.; Gieray, R. A.; Whitten, W. B.; Ramsey, J. J. Korean Phys. Soc. 1997, 30(2, Pt. 2), 359-363. (DD3) Neubauer, K. R.; Johnston, M. V.; Wexler, A. S. Atmos. Environ. 1998, 32(14/15), 2521-2529. (DD4) Gard, E.; Mayer, J. E.; Morrical, B. D.; Dienes, T.; Fergenson, D. P.; Prather, K. A. Anal. Chem. 1997, 69(20), 4083-4091. (DD5) Johnston, M. V.; Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2835, 90-94. (DD6) Castaldi, M. J.; Senkan, S. M. J. Air Waste Manage. Assoc. 1998, 48(1), 77-81. (DD7) Holland, M. J.; Linton, R. W.; Steger, J. L.; Merrill, R. G.; Strossman, G. S.; Fister, T. F.; Odom, R. W. Meas. Toxic Relat. Air Pollut., Proc. Int. Spec. Conf. 1996, 604-612. (DD8) Weiss, M.; Verheijen, P. J. T.; Marijnissen, J. C. M.; Scarlett, B. J. Aerosol Sci. 1996, 28(1), 159-171. (DD9) Silva, P. J.; Gross, D. S.; Galli, M. E.; Prather, K. A. Proc., Annu. Meet.-Air Waste Manage. Assoc., 91st 1998, TP31B05/ 1-TP31B05/5. (DD10) Liu, D.-Y.; Rutherford, D.; Kinsey, M.; Prather, K. A. Anal. Chem. 1997, 69(10), 1808-1814. (DD11) Morrical, B. D.; Fergenson, D. P.; Prather, K. A. J. Am. Soc. Mass Spectrom. 1998, 9(10), 1068-1073. (DD12) Grime, G. W. X-Ray Spectrom. 1998, 27(4), 221-231. (DD13) Lubben, J. F.; Schrader, B. J. Mol. Struct. 1997, 410-411, 543-546. (DD14) Tsai, C. J.; Chein, H. M.; Chang, S. T.; Kuo, J. Y. J. Aerosol Sci. 1998, 29(7), 839-853. (DD15) De La Mora, J. F. Chem. Eng. Commun. 1996, 151, 101124. Multielement Analysis (EE1) Heller-Zeisler, S. F.; Fajgelj, A.; Bernasconi, G.; Tajani, A.; Zeisler, R. Fresenius' J. Anal. Chem. 1998, 360(3-4), 435438. (EE2) Thomson, G. M.; Pochan, C. A.; Markland, R. A.; Thomson, S. A. Am. Ind. Hyg. Assoc. J. 1997, 58(2), 98-104. (EE3) Chiapello, I.; Bergametti, G.; Quisefit, J. P.; de Chateaubourg, P. Analusis 1997, 25(5), 141-147. (EE4) Wobrauschek, P. J. Anal. At. Spectrom. 1998, 13(5), 333337. (EE5) Schmeling, M.; Kockow, D. Anal. Chim. Acta 1997, 346(1), 121-126. (EE6) Schmeling, M.; Klockenkamper, R.; Klockow, D. Spectrochim. Acta, Part B 1997, 52B(7), 985-994. (EE7) Stahlschmidt, T., Schulz, M. Dannecker, W. Spectrochim. Acta, Part B 1997, 52B(7), 995-1001. (EE8) Injuk, J.; Van Grieken, R.; Klockenkamper, R.; von Bohlen, A.; Kump, P. Spectrochim. Acta, Part B 1997, 52B(7), 977984. (EE9) Maeda, K.; Hasegawa, K.; Hamanaka, H.; Oriwara, K. Nucl. Instrum. Methods Phys. Res., Sect. B 1998, 134(3, 4), 418426. (EE10) Ali, A. E.; Basco, J. J. Radioanal. Nucl. Chem. 1996, 209(1), 147-155.

(EE11) Nejedly, Z.; Campbell, J. L.; Teesdale, W. J.; Dlouhy, J. F.; Dann, T. F.; Hoff, R. M.; Brook, J. R.; Wiebe, H. A. J. Air Waste Manage. Assoc. 1998, 48(5), 386-397. (EE12) Nejedly, Z.; Kral, J.; Voltr, J.; Krejci, R.; Swietlicki, E.; Cerny, J.; Kubik, P.; Svejda, J. Nucl. Instrum. Methods Phys. Res., Sect. B 1998, 136-138, 981-985. (EE13) Chan, Y. C.; McTainsh, G. H.; Vowles, P. D.; Simpson, R. W.; Cohen, D. D.; Bailey, G. M. Int. J. Environ. Anal. Chem. 1997, 68(1), 33-45. (EE14) Ortner, H. M.; Hoffman, P.; Weinbruch, S.; Stadermann, F. J.; Wentzel, M. Analyst (Cambridge, U.K.) 1998, 123(5), 833-842. (EE15) Zeisler, R.; Haselberger, N.; Makarewicz, M.; Ogris, R.; Parr, R. M.; Stone, S. F.; Valkovic, O.; Valkovic, V.; Wehrstein, E. J. Radioanal. Nucl. Chem. 1997, 217(1), 5-10. (EE16) Cohen, D. D. Harmonization Health Relat. Environ. Meas. Using Nucl. Isot. Technol., Proc. Int. Symp.; International Atomic Energy Agency: Vienna, Austria, 1997; pp 457-472. (EE17) Ge, Y.; Zhou, L.; Zhang, B.; Cai, H. Huanjing Huaxue 1998, 17(2), 191-194. (EE18) Ge, Y.; Zhou, L.; Zhng, B.; Cai, H. Guangpuxue Yu Guangpu Fenxi 1998, 18(4), 446-449. (EE19) Altman, E. L.; Panichev, N. A.; Fedorov, P. A. Can. J. Anal. Sci. Spectrosc. 1997, 42(2), 62-67. (EE20) Torsi, G.; Locatelli, C.; Reschiglian, P.; Melucci, D.; Rossi, F. N. Adv. At. Spectrosc. 1998, 4, 1-25. (EE21) Fung, Y. S.; Tung, H. S. Proc., Annu. Meet.-Air Waste Manage. Assoc., 91st 1998, TP31B06/1-TP31B06/15. (EE22) Lin, X.; Liu, C.; Zhang, H. Yankuang Ceshi 1998, 17(2), 143146. (EE23) Wang, C. F.; Chin, C. J.; Chiang, P.-C. Anal. Sci. 1998, 14(4), 763-768. (EE24) Nusko, R.; Heumann, K. G. Fresenius’ J. Anal. Chem. 1997, 357(8), 1050-1055. Nitrate/Sulfate (FF1) Shen, J.; Zhao, Q. Huanjing Huaxue 1998, 17(4), 326-331. (FF2) Bergin, M. H.; Orgren, J. A.; Schwartz, S. E.; McInnes, L. M. Environ. Sci. Technol. 1997, 31(19), 2878-2883. (FF3) Koop, T.; Ng, H. P.; Molina, L. T.; Molina, M. J. J. Phys. Chem. A 1998, 102(45), 8924-8931. (FF4) Cheng, Y.-H.; Tsai, C.-J. J. Aerosol Sci. 1997, 28(8), 15531567. (FF5) Tohno, S.; Chatani, S.; Kasahara, M. Earozoru Kenkyu 1998, 13(3), 230-236. (FF6) Eldred, R. A.; Cahill, T. A.; Environ. Sci. Technol. 1997, 31(5), 1320-1324. Clouds (GG1) Morales, J. A.; DeGraterol, L. S.; Velasquez, H.; De Nava, M. G.; De Borrego, B. S. J. Chromatorgr., A 1998, 804(1+2), 289-294. (GG2) Cederflet, S.-I.; Martinsson, B. G.; Svenningsson, B.; Weidensohler, A.; Frank, G.; Hansson, H.-C.; Swietlicki, E.; Wendish, M.; Beswick, K. M.; Bower, K. N.; Gallagher, M. W.; Pahl, S.; Maser, R.; Schell, E. Atmos. Environ. 1997, 31(16), 2657-2670. (GG3) Mainka, A.; Ebert, P.; Kibler, M.; Prokop, T.; Tenberken, B.; Bachmann, K. Chromatographia 1997, 45, 158-162. (GG4) Bai, L.; Lu, X. Huanjing Wuran Yu Fangzhi 1997, 19(3), 40-41. Miscellaneous (HH1) Cass, G. R. TrAC, Trends Anal. Chem. 1998, 17(6), 356366. (HH2) Horvath, H. J. Aerosol Sci. 1997, 28(7), 1149-1161. (HH3) Birch, E. M. Analyst (Cambridge, U.K.) 1998, 123(5), 851857. (HH4) Fung, Y. S.; Dao, K. L. Int. J. Environ. Anal. Chem. 1998, 69(2), 125-139. (HH5) Kuhlbusch, T. A. J.; Hertlein, A.-M.; Schutz, L. W. Atmos. Environ. 1998, 32(6), 1097-1110. (HH6) Allen, G.; Sioutas, C.; Koutrakis, P.; Reiss, R.; Lurmann, F. W.; Roberts, P. T. J. Air Waste Manage. Assoc. 1997, 47(6), 682-689. (HH7) Obeidi, F.; Eatough, D. J.; Meyer, M. B.; Wilson, W. E. Proc., Annu. Meet.-Air Waste Manage. Assoc., 90th 1997, TP31B03/ 1-TP31B03/14. (HH8) Upton, S. L. Aerosol Sampling Guidel. 1998, 61-86. (HH9) Cage, B. R.; Schreiber, K. T.; Portnoy, J. M.; Barnes, C. S. Proc. ERDEC Sci. Conf. Chem. Biol. Def. Res., 1994 1996, 63-72. (HH10) Zaromb, S.; Birenzvige, A.; Akinyemi, A. Proc. ERDEC Sci. Conf. Chem. Biol. Def. Res., 1994 1996, 79-85.

A19900114

Analytical Chemistry, Vol. 71, No. 12, June 15, 1999

119R