Alkylation. Unit Processes Review - Industrial & Engineering

Synthetic Biology Cracks Blue Rose Case. For the FBI investigators of David Lynch's Twin Peaks television series, “blue rose” cases ...
7 downloads 0 Views 1MB Size
an IWEC IUnit Processes Review

Alkylation by Lyle F. Albright and R. Norris Shreve, Purdue University, Lafayette, Ind.

Past fundamental research has enabled present production of “alkylates” and detergents to reach extraordinarily high quantities

IN

VIEWING the growth and changes in alkylation as shown in these reviews, and as supplemented by several decades of experience in the manufacture of alkyl compounds, it is apparent that fundamental changes have taken place. M a n y decades ago the first large-scale industrial application was in alkyl nitrogen derivatives for dyes and medicines. However, this was followed by such products as tetraethyllead, on which research and industrial development is still progressing. For instance, in these reviews there is considerable emphasis upon the superiority of tetramethyl- instead of tetraethyllead. I n other aspects of the fast developing chemical industry, particularly in the organic field, alkylated products have forged ahead to become items of tremendous tonnage. For instance, alkyl aryl sulfonates are now produced a t a rate of greater than a billion pounds per year. T h e blending stocks for high octane gasoline are another instance of “Allarge scale alkylated products. kylate” production has been increasing steadily for the last few years, and the production capacity of this country is now over 350,000 barrels per day. Here the present review (Table I) indicates a continued study of the fundamentals of the reaction and its products by special emphasis on catalysts and what they produce. This same basic study is reported upon for carbon to carbon aromatic alkylations (Table 11) together with dealkylation and disproportionation. With America’s large production of cellulose and starch, the continued study of carbon-oxygen alkylations in this field (Table IV) indicates a

potential increase in derivatives in this area. I n this review, it has seemed necessary to create a special section for alkylated aluminum derivatives because of their growing importance as indicated by the number of articles (Table V I I ) on these compounds for catalysts of the so-called Ziegler type.

Carbon-Carbon Alkylations Aliphatic. T h e increased interest in alkylation for the production of high octane gasoline blending stocks is indicated by the large number of patents and process improvements included in Table I . Several relatively new type catalysts were described, but commercial processes for producing “alkylate” continue to utilize primarily sulfuric acid or hydrogen fluoride. Recently the rearrangement or disproportionation of the branched hydrocarbon compounds has been investigated (77A, &A), a n d such a procedure may be useful for further improvement of the octane number of gasolines. Aromatic. A significantly larger number of publications were found again for this type of alkylation than for any other type. Major interest in this area, as indicated by Table 11, is in alkylations involving olefins. Dealkylation, disproportionation, and phenol alkylations continue to be popular areas of investigation. T w o reports (48B, 578) concerned the theory of substitution in the aromatic rings, a n d the role of the solvent in these substitution reactions was described based on electron-transition energies (82B). T h e ortho-alkyl-

ated phenols have found use as lubricant additives ( 5 B ) . Miscellaneous. Only a relatively small number of studies pertaining to miscellaneous carbon-carbon alkylations were found again for the past year. They are described in Table 111.

Carbon-Oxygen Alkylation Interest in this type of alkylation remained a t a relatively high level, as indicated by Table I V . Almost half the publications pertained to alkylations of cellulose or starch.

Carbon-Nitrogen Alkylations Table V summarizes papers published last year for carbon-nitrogen alkylations. Quaternary ammonium compounds continue to be tested for a wide variety of drug uses. T h e equivalence of the nitrogen bonds in tetramethylammonium bromide has been demonstrated using carbon-14 products ( 2 E ) .

Carbon-Silicon Alkylation Eighteen articles were reviewed regarding carbon-silicon alkylation (see Table V I ) . Most of the interest remains in the direct synthesis process.

Carbon-Aluminu m A I kylation T h e interest in carbon-aluminum alkylations has risen sharply in the last several years, as it has been found t h a t organo-aluminum compounds a r e excellent catalysts for producing addition polymers. Most of the studies listed i n Table V I 1 pertain to methods for producing such catalysts. VOL. 52, NO. 6

JUNE 1960

533

a n m y Unit Processes Review noted again, as indicated by Table VIII. Alkylation of boron was of importance, n o doubt largely because of the potential importance of the boron alkyls as rocket

Alkylation with Other Elements Widespread interest in producing a large number of organo-metallics was

Table 1. Reactants Isobutane; olefins Isobutane; olefins Isobutane; olefins Isoparaffin; olefin Isoparaffins ; olefin Isoparaffins ; olefins Isobutane ; butylene Isobutane ; propylene Isobutane; propylene Isobutane or aromatics; olefins Isobutane; olefins

Carbon-Carbon Aliphatic Alkylations

Catalyst

Liquid acid Acid Acid 96% HzSOd HzSO4 H2SO4 Liquid acid

Product Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Alkylated hydrocarbons

HF

Gasoline

Isobutane; olefins

HF

Gasoline

Isobutane ; olefins

HF

Gasoline

Acid Liquid acid

...

...

Isobutane and butane; olefins

fuels. T h e instability of alkyl and ary derivatives of transition metals, including platinum, has been investigated ( 4 H ) , and a n explanation has been proposed.

Gasoline

Comments Evaporative cooling process Effluent refrigeration process Process improvement Improved emulsion alkylation Improved reactor Process improvement Increased yields of gasoline Processes using propylene Recovering spent acid Mercaptans or amines used as promoting agents Chemistry and yields discussed Thermal defluorination reduces acid consumption Treatment of acid layer to recover olefins Treatment of alkylation residues to get motor fuel 69 yoyield of c6 hydrocarbons Batch process discussed

Isobutane; ethylene Isobutane; ethylene

Ion-exchange resin and BFs Gasoline Na and acetylenic hydro- Gasoline carbons Gasoline AlC13 Gasoline stocks A1C13-ether Novel catalyst prepared from Gasoline metal halide and halogenated fatty acid Alkyl H phosphate and BFO Gasoline blending stocks Free radicals Gasoline

n-Butane; ethylene

Aluminosilicate

Gasoline stocks

Amines ; olefins Lubricating oil distillate; chlorinated paraffin wax Ditolylalkanes; c&6 olefin Malonic esters; alkyl halides or sulfates Chloromethyl esters of carboxylic acids ; olefin 2-Phenylbutyronitrile; butyl chloride Carbanions ; 1-chloro-l,2-diphenylethane Allylbenzene; benzyl chloride Alkylbenzene ; ethylene

Free radicals Dry gumbrin; HC1

a-C alkylation Alkylated hydrocarbon

Laboratory method Patented process Catalyst also useful for isomerization and polymerization Process described Halogens or halides are reaction modifiers 200-500 atm. and 450"460" C. Yield described ..

Alkali metal Dimethylformamide ; dimethylacetamide ZnC12-HC1

Aliphatic alkylation Various alkylated products

Useful intermediates prepared Products described

Several products

Preparation described

NaNHs and NaH

Alkylated compounds

Yields given

Substituted products

NH3 used as solvent

Isobutane; ethylene Isoparaffins and cycloparaffins ; olefins Isobutane; ethylene Isobutane; olefins Isobutane ; olefin

Alkylbenzene; picoline

ethylene and

Benzylated products NaNH, and NH, used Side-chain alkylation prod- 30 atm., 250" C. ucts Side-chain alkylation prod- Isoprene is promoter ucts

Tetraalkyllead Sodium

Table II.

Carbon-Carbon Aromatic Alkylations

Catalyst

Reactants

(22A-24A )

Product

Comments

Ref

Olefins Used as Alkylating Agents

Benzene and methylcyclohexane; ethylene Benzene; ethylene Benzene; ethylene-C14 Benzene ; ethylene

AlC18 AlCla AlBr 8 Bed of H,P04

on kieselguhr Xylenes; ethylene and propylene BF,. PZOS Aromatic; olefin or alkyl halide H F and complex of BF3 and divalent Fe group metal fluoride Benzene; ethylene Phosphate diatomite Aromatics ; ethylene

Potassium graphite

Benzene; ethylene Aromatic; olefins Benzene; propylene, butylene;

HaSO 6 H3P04

H2

Benzene and cumene; propylene or isopropyl alcohol

534

AIC13

INDUSTRIAL A N D ENGINEERING CHEMISTRY

Ethylbenzene and methylcyclohexane Alkylated benzene Ethylbenzene Ethylbenzene Alkylated xylenes Alkylated aromatics Ethylbenzene

75 C.

(87B)

Mechanism studied Kinetics investigated Utilization of streams with low olefin concentration Operation variables studied Keep catalyst complex under 50 O C. unless pressure used

( 4 5 B1 (29B) (77B) (39B) ( 7026

Vapor phase process variables (24B investigated Nuclear and side chain alkyl- Conversion and products de(73B) ation products scribed Ethylbenzene Extractive reaction (70~) Alkylated aromatics Revised alkylation unit ( 92% ) Alkylated aromatics Combination alkylation and (93B) hydrofining process Isopropylated aromatics Rate constants measured-as ( 3 B ,4 B , 7 B function of temperature

a n ) r d Unit Processes Review Reactants

Catalyst

Comments

Product

Ref.

Benzene and homologs ; propylene Benzene; propylene

A1C13

Monoalkyl derivatives

Almost quantitative yields Two reactors used

( 76B)

Benzene; propylene and isopropyl chloride Cumene ; propylene

AlC13

Cumene and diisopropylbenzene Diisopropylbenzene

Complete process described

(44B)

Friedel-Crafts

Diisopropylbenzenes

Apparatus and catalyst desrrihed . . .~. . Vapor phase process Fluidized catalyst used 35% yield of diisopropylbenzene Process patented

(2.23, 23B)

(63B-65B)

~

Benzene ; propylene Benzene ; propylene Benzene ; olefins

Cumene ZnClz Synthetic alumino-silicate Cumene Aluminosilicate Alkylated aromatics

Cumene; triisopropylbenzene; and propylene Cumene; propylene

Alumina-silicate

rn-Diisopropylbenzene

Cracking catalyst

Isopropylated cumenes

Benzene ; propane

Ni on kieselguhr

Alkylbenzenes

25% yield of diisopropylbenzenes Destructive alkylation proc-

(42B) ( 5 4 4 59B) (60B) (37B) (36B, 66B)

(35B)

css

p- and o-Alkylated product

Isopropylbenzene ; 2-butene BF,.HsPOa l,l-bis(4-Hydroxyphenyl)ethane; BF3. H3P04 isobutylene Monoalkylbenzene; tertiary ole- HzS04 fin Aromatics ; cracked gases

Up-to 65% yields Alkylated aromatic com- Optimum conditions reported pounds p-tert-Alkylated alkylbenzenes 95% conversion

( 7 7OB) ( 703B)

Alkylated and aromatized hydrocarbon Methylphenylbutanes

Pebble heater used

(20B)

No 2-phenylpentane or amylbenzenes formed Products characterized Process described

(86B)

Benzene; 1-pentene

ZnCl2

Xylene; cyclopentene Di- and trialkylbenzenes; diisobutylene Benzene; propylene low polymer

AlCla

HBPO,, A1C13

Alkylated benzene

Benzene; C9-C18 olefin

96%

Alkylated benzene

Toluene; Clo-olefins

H804

Alkylated toluene

Benzene; Cs-Cla olefin preferred Benzene; low polymers of ethylene Benzene; low polymer propylene Aromatic hydrocarbons; C12-Cle olefin Aromatics ; various alkylating agents

Friedel-Crafts AlC13

Alkylated benzene Alkylated benzene

Friedel-Crafts

Alkylated benzene

HF

Detergent basis

Alkylcyclopentylbenzenes Tri- and tetraalkylbenzenes

...

...

Cll-ClS branched chain monoalkyl benzenes

Sulfuric acid treatment reduces corrosion Use of solvent minimized sulfonation Optimum conditions described Two-stage process Yields measured

( 69B )

(74B) (705B) (94B)

(72B, 28B) (47B)

(27B) (84B)

Active clays added as catalyst attenuators Improved detergent obtained from product Many of products synthesized for first time

(707B)

...

( 75B )

( 3 7 B , 67B) (7.23)

Halides Used as Alkylating Agents

Aromatics ; alkyl chlorides Xylenes ; methyl chloride Benzene; ethyl-P-C14 chloride and iodide Benzene; alkyl chlorides Various aromatics ; butyl chloride Poly(p-bromostyrene) ; butyl chloride p-Xylene ; tert-pentyl chlorides or amylenes Benzene; Clz-monochlorides Several aromatics ; halogenated hydrocarbon Benzoylacetanilides ; alkyl halides

Dry gumbrin in presence nf HQI -._ _ __ A1C13 AlC13 Aluminosilicate with HC1 Copper

activated

Alkylated aromatics Trimethylbenzenes Ethylbenzene

Patented process Rearrangements occur

( 62B (46B)

Alkylated benzene

Yields up to 70y0

( 76B )

Various alkylated aromatics

Radical and ionic alkylation

(67B)

Lithium

Poly@-butylstyrene)

(32B)

A1C13 or H F

Alkylated xylenes

Tetrahydrofuran is solvent used tert-Phenyl-p-xylene absent

Se, Sn, Pb, Cr, Ti, W, and

Alkylated benzene Alkylation products

Continuous process described Conditions described

C- and 0-alkylation products

EtOH, EtONa, or N a H used

(83B)

Less severe conditions required with catalyst Conditions described Yields and conditions reported No dialkylated products

(707B)

(27~)

(80B) (ZB,99B)

Mn _.--

Miscellaneous Alkylating Agents

Benzene or toluene ; methanol or dimethyl ether Benzene; alcohols Benzene ; isopropyl alcohol

Oxides of Al, Mg, and Si

Poly( methylbenzenes)

BFs Aluminosilicate

Alkylated benzenes Isopropylated benzene

Benzene; tetraalkoxysilanes Benzene and homologs ; allyl borate Aromatics ; Grignard reagents

AlC13 Friedel-Crafts

Alkylated benzenes Allylbenzene

Li

C~Z-CZO alkylated benzenes

... Wurtz-Grignard reaction

( 79B 1

(IOOB)

(709B) (97B) (77N

Complex Aromatic Alkylations

Benzene; formaldehyde; HC1 ZnCL Various aromatics ; several alkyl- Several ating agents Polymers or copolymers of sty- Freidel-Crafts rene; methylene chloride or chloromethyl ether

Benzyl chloride Chloromethylated products Chloromethylated polystyrenes

Continuous process described Alternative methods of preparation described Useful as lacquers

VOL. 52, NO. 6'

0

(SOB) (708B) (74B, 34B)

JUNE 1960

535

a n C 4-

Unit Processes Review Complex Aromatic Alkylations (confinued)

Reactants Anilides; chloromethyl ether

Catalyst

Comments

Product Chloromethylated anilides

HzS04

Dihydrosafrole; formaldehyde; CaC12 HCl Naphthalene; formaldehyde; HBr Aromatic azo compounds ; HCl ; paraformaldehyde or dichloromethyl ether w-Phenylalkanoic acid; HC1; ZnC1, formalin Xylenes; formaldehyde, Hz HeS04

Chloromethyldihydrosafrole

Ref.

Useful as surfactants or gerniicides Improved yields obtained

(77B) (704B)

Chloromethylated naphthalenes Chloromethylated products

Dye products obtained

p-Chloromethylated products

Yields reported

( 73B)

Chloromethylated products

Final product poly(alky1ated benzenes )

(7QB)

(478) ( 706B)

Dealkylation and Disproportionation of Aromatics

Toluene; Hz Alkyl aromatics; Alkylbenzenes Toluene; Hz Xylenes; Hn

H,

Cobalt molybdate 4- alkali Active carbon plus Pt or Pd .4luminosilicate

...

Xi-A12O

rn-Xylene; benzene

Aluminum silicates

p-Diisopropylbenzene Poly( isopropylbenzenes) ; benzene and cumene Xylene Poly( methylbenzenes)

Si02-A1203 Si-Al cracking catalyst Liquid H F Liquid HF

Pseudocumene and sec-butyl- Liquid HF pseudocumene H F and BF3 Xylenes ; ethylbenzene Difluorophosphoric Alkylbenzenes plus BF3 Alkylnaphthalenes ; Hz Organoaluminum Alkylated polynuclear aromatics ; ... H2

Benzene Aromatics Aromatics and olefins Benzene; methane Toluene and benzene Demethylation and isomerization products Cumene and beniene Transalkylation products

Dealkylation at 1000 p.s.i. Dealkylation Dealkylation Kinetics investigated Some hydrogenation occurred Static and fluid bed systems

(78B) (8B 1 (25B, 26B) (97B) (85B) (58B)

Space velocities reported Operating variables studied

Trirnethylbenzene Disproportionation reaction Durene and other alkylated 80 '-1 60 C . products Durene, isodurene, prehn- Patented process itene Alkylated aromatic Disproportionation acid Rearranged alkylated aro- Continuous flow reactor dematics scribed Naphthalenes Process described Dealkylated products Kinetics and mechanism described

(77B) (68B) (4QB) ( 50B ) (57B) (30~) (8QB) (33B) (SB, 7OB)

Alkylation of Phenols, Naphthalenes, and Others

Miscellaneous reactants Triphenyl borate; ethyl bromide Phenols; alcohols Phenol ; cyclohexanol Phenols ; olefins

...

Alkylphenols Poly(ethylphenols) Alkylphenols Cycyloalkylated products Alkylated phenols

A1C13 HzSOa Hap01 AlC1?03SR

Alkylated phenols Alkylated phenols Amylated phenols Phenols Alkyleugenols Eugenol or estragole

Phenols; olefins p-Cresol; olefins or alkyl halides rn-Cresol ; amylenes Methylphenols; NaOH Cinnamon leaf oil; EtzSOe Guaiacol or anisole; allyl chlo- Cu ride Aniline; ethanol or dimethyl A 1 2 0 3 either Naphthalene; methyl radical Naphthalene; ethanol Phenanthrene and anthracene oil; olefins-cracked gasoline Ala3 Fluorene ; cyclohexanol

536

(6B) (43B) (75B) (7B) (40B)

(Q6B) (53B) (87B) (95B) (52~) ( 98B 1

...

.,.

Ethylaniline

Vapor phase process

(777B)

~~ethylnaphtlialeIie Ethylnaphthalenes -4lkylated products

Several isomers produced Pressure process Properties of products described

(38B1 78B) (55B, 56B)

Alkylated fluorenes

Table Ill. Reactants Acetylene ; benzyl chloride Cyclic, unsaturated or aliphatic hydrocarbons; olefins or alkyl halides Indene; sodium benzylate Furan; ethylene Pyridinemonocarboxylic acids; quaternary ammonium bases Tri- and tetrapyrroles; Grignard reagents Pyrrolidine enamines 1,2-Diaryl-3,5-dioxopyrazolidines ; alcohols Unsymmetrical diketones; benzyl chloride Terpene derivatives; inorganic alkyl ester Steroids; methyl Grignard reagent

New products characterized Process described Patented process Products described Catalyst preparation discussed Several olefins used Mechanism proposed Yields reported Process described

(88B)

Carbon-Carbon Miscellaneous Alkylations

Catalyst

Product Benzylated acetylene Alkylated products

Comments Several compounds prepared in NHs Reactor patented

Ref.

Alkylated indenes Ethylfurans Benzylated and alkylated hydrocarbons Alkylated products

Conditions described Process described In dimethyl formamide and alcohol

(8C) (77C)

Large number of compounds prepared

(4C)

Raney nickel

C-alkylated products Alkylated products

Steric considerations important Several compounds prepared

KNHs

Benzylated products

Mechanism discussed

(6C)

Tertiary amine

Alkylated in C=C double bond 16-Methylated steroid

Several compounds studied

19C)

Inflammatory steroids

(2C)

... ,.. Base BF3-etherate

... ...

...

...

INDUSTRIAL AND ENGINEERING CHEMISTRY

(IC) (3C)

(7C)

(700

(5C)

a n m d Unit Processes Review ~~

Table IV. Reactants Alcohol Aliphatic alcohols ; diazomethane Alcohols ; perfluoro-olefins Allyl alcohol; other alcohols Phenols ; vic-haloepoxyalkanes Diethyl ether; water Hydroquinone; propylp-toluenesulfonate Alkali cellulose; halogenated fatty acids and gaseous alkylene oxides Alkali cellulose; allyl and ethyl chlorides

Carbon-Oxygen Alkylation Comments Both fluidized and static beds used Mechanism proposed

Catalyst Activated A1203

Product Ethers, water, ethylene

Alkoxides of Al, B, and Sb and BF3 etherate Bases Hg and strong acid

Methyl ethers

Strong alkali Acids

Epoxyalkyl aryl ethers Ethanol Hydroquinone dipropyl ethers Cellulose mixed ethers

...

...

Complex ethers Allyl ethers

Water-soluble cellulose

allyl

ethyl

Cyanoethylated cellulose

Cotton: caustic and N a I ; acrvlonitrile Alkali cellulose,: 1.3-dichloro-2, butene Cellulose ; alkali; carboxyalkyl halide Alkali cellulose; halomethanesulfonic acids Alkali cellulose; chloromethyl methyl phosphoric acid Starch; caustic; dimethyl sulfate Starch; acrylonitrile

( 2 0 , 140, 750) (790)

(220,230)

Products soluble in water Insolubilizes product in presence of free radical catalysts NaI improved reaction

y-Chlorocrotonoyl ethers of Used to prepare carboxycellulose methyl cellulose Carboxyalkyl cellulose ethers Improved process claimed

Hydroethylated flours

Useful as binders, adhesives, and thickeners Possible use as cation exchange material Other alkylating agents used Useful as medicinal dusting powders Useful as sizing agents

Sulfoalkyl starch ethers

Water soluble product

Sulfomethylated thiolignin

Tested as tanning product

Cyanoethylated wool

Improved dyeability with acid dyes Improved light resistance properties Several new products

Sulfomethyl celluloses

...

Phosphomethylated cotton

... ...

Alkyl ethers of starch Cyanoethylated starch

Cereal flours; NaOH; ethylene oxide Potato starch; sodium sulfoethyl chloride Thiolignin; NaHS04; formaldehyde Wool; NaOH; acrylonitrile Silk; diazomethane

...

0-Methylated silk

Acetylenic 7-glycols ; acrylonitrile

...

Cyanoethylated product

Table V. Reactants Primary or secondary alcohols; NH3

New types of ethers prepared Ether purified with phosphoric anhydride Several phenols used Dealkylation step studied Used to prepare dyes

Ref. (40)

Carbon-Nitrogen Alkylations

Catalyst Ni, Co, or Cu and aldehyde or ketone

Amines ; alcohols

Ala03

rec-Aliphatic amines

Various amines; alcohols Alcohols ; NH3

Raney nickel Dehydration

Alkylated amines Mixed amines

Acetic acid ; monoethylamine and triethylamine; NH3 or Hz Propionaldehyde; NH3 and HZ Primary amines; dialkylaminoalkyl halides or hydrochlorides Complex secondary amines ; formaldehyde; H Z Butylamines; NHa

Ni-A1 oxide

Diethylamine

Comments Operating variables investigated N a 2 C 0 3 10HzO . accelerates reaction Fatty series of amines produced Structures identified Recoverv Drocess for trimethylamine described Reductive amination

AI-Ni

n-Butylamine sec-Diamines

Reduction step involved Aminoalkylation process

(25E) (5E)

Platinum

tert-Amines

compounds

(29E)

A1203

Disproportionated butylamines and butylene Monoethanolamine

Antispasmodic prepared 370 a-375 ' C.

High-pressure process operating variables investi-

(17E)

Suitable equipment described Several examples cited Kinetics studied in N , N dimethylformamide No ring alkylation below 280" C. Other catalysts possible

(13E, 14E)

...

Alkyl halides ; liquid ammonia

...

Ethylene chlorohydrin ; ammonia

Product Isopropylamine and butylamine Aliphatic primary amines

Aromatic amines ; alcohols

PCla

Alkylated aromatic amines

Aromatic amines; aliphatic alcohols Diarylamines; methyl iodide

Raney nickel

Alkylated aromatic amines Alkylated aromatic amines

Aniline; dimethyl ether

Activated A1203

Methylated aniline

Aromatic amino, nitro, or nitroamino Cu deposited on CrzOs compounds; Hz; lower dialkyl ketone Aromatic nitro compounds or amines ; Pt on A1203 Hz; aldehydes or ketones Aromatic amines ; acrylonitrile and p substituted propionitriles 4-Substituted 2-pyridazones ; dialkyl ... sulfates Alkali salts of purine compounds; or... ganic halides ; amides .

I

.

Alkylated aromatic amines

gated

N-Alkylated aromatic amines Process described N-Cyanoethylated aromatic amines N-Alkylated product in 2 position N-Alkylated purine compounds

Ref. (28E) (23E) (27E)

~,

(26E)

( 72E) (22E)

(21E) ( 79E) (32E)

Several products obtained

(6E)

Several examples reported

(8E)

Useful pharmaceuticals prepared

(4E)

VOL. 52, NO. 6

JUNE 1960

537

an 4-I

Unit Processes Review

Table V.

Carbon-Nitrogen Alkylations (continued)

Reactants Catalyst ... Normorphine ; allyl bromide Anabasine ; methyl cyanide Ureas ; tert-olefins Ionic Fe and H P S O ~ Urea; olefins HSSO, Urea; tert-alcohols HISO, Tertiary amines ; acid halides ; form. . aldehyde ; primary amines tert-amines ; lauryl bromide ... tert-amines; alkyl halide, sulfate, nitrate, or sulfonate Triethylamine : bromides derived from calamary and sardine oils

.. ,..

Trialkyl amines ; ester or alkyl halide

Product iV-Allylnormorphine N-Cyanoethylated anabasine Alkylated ureas tert-Alkylated ureas tert-Alkylureas Quaternary ammonium compounds Quaternary ammonium compounds Quaternary ammonium compounds Quaternary ammonium salts from fish oils Quaternary ammonium germicides Quaternary tropeine Quaternary ethanolamines

twt-Tropeine; ester of haloacetic acid Ethanolamine; alkyl bromides

Table VI.

Catalyst Copper sulfide

Product Organohalosilanes

Methylchlorosilanes ; methyl chloride

A1

Trimethylchlorosilane

Silicon; methyl chlaride or bromide

Cu plus AI or Mg

Organohalosilanes

Silicon; Silicon; Silicon; Silicon ;

Ca and Cu Cu Cu Cu

Alkylhalosilanes Alkylhalosilanes Ethylbromosilanes Several silanes

Cu Pt

Complex alkylates Organohalosilanes Alkylhalosilanes

Silicon ; -y-chloroalkylsilanes Halogenated silanes; olefins or acetylene Silicate of alkali or alkaline earth metal; metal halide; olefin Trichlorosilane; diolefinic hydrocarbon Alkylhalosilane; fluoro-olefin Trichlorosilane; acrylonitrile

Alkylated silanes Fluorocarbon silanes Substituted amides 8-Cyanoethyl trichlorosilane Pt compounds (Cyanoa1koxy)alkylsubstituted organosilicon compounds . . . Butylchlorosilanes ... Alkylfluorosilanes . . , . .

Methyl dichlorosilane; B-cyanoethyl allyl ether Silicon tetrachloride; butylmagnesium chloride Inorganic silicon fluorides ; silicon tetraalkyl compounds

L-seful disinfectants produced Products useful as cough remedies Product exhibits antibiotic action, chain length and iodine value important Alkyl groups contain less than eight carbons Have spasmolytic properties Emulsifiers and dispersants

Carbon-Silicon Alkylation

Reactants Silicon; alkyl halides

alkyl halide plus hydrogen halide ethyl chloride ethyl bromide dichloroalkanes and dichloroalkenes

Comments Process described Water solution needpd Patented processes Several products obtained Products described Useful plasticizers obtained

Comments High surface area of solid desired Hurd method of direct synthesis Preparaticn of catalyst described Several compounds produced 350 "-370 ' C. 260 '-380 C. Cyclic silane produced for first time Several side reactions occurred Carrier for catalyst important Long chain silanes prepared Several compounds prepared 450 '-527 C. in quartz tube Useful in preparing siloxane rubbers Products used to produce organosilicon rubbers Water repellants Dealkylation step involved

~~

Table VII.

Carbon-Aluminum Alkylation

...

Product Trialkylaluminum compounds

...

Triethylaluminum

Al; Hz; olefin Triethylaluminum; ethylene

... ...

Triethylaluminum Trialkylaluminum

Al; H z ; ethylene Al; H P ; a-olefins Al; diethylaluminum hydride; isobutylene Al; alkylaluminum hydrides; olefin7 AlCla; ethylzinc halide Al; alkyl halides Al; ethyl chloride; Na Al; ethyl bromide; anisole AI-Si alloys ; alkyl halides

...

Hg;

.. ...

Triethylaluminum Alkylaluminum Alkylaluminums

Hg;

, . .

Alk ylaluminum

Comments Patent processes : dialkylaluminum halides activate aluminum Cthylaluminum hydrides are intermediates Equipment for process described Alkyl groups formed are CI-CZO;some disproportionation reactions involved A1 wet first with triethylaluminum 9 5 yo yields A1 activated by alkali metal or alkaline earth metal Processes for activating A1

...

Diethylaluminum halide Alkylaluminum halides Diethylaluminum chloride Trialkylaluminum etherates Various alkylaluminum compounds Organoaluminum compounds

Production of ethvlzinc halide described hfethod of adding reactants described Part of product recyclized Products are polymerization accelerators hfechanism discussed; complex Si compounds also formed Patented process

Alkylaluminum fluorides A1 halo-organic compounds

Products are polymerization catalysts 10O0-2OO0 C. at 100 atm.

Alkylated A1 products Alkyls of A1 and Pb Disproportionation products and olefins

Li, B, Ti, and Zr products Production of free radical described

Reactants Al; dialkylaluminum halides ; olefins ; HP Al; H P ; ethylene

Alkyl- or arylaluminum halides ; alkali fluorides AlF3; trialkylaluminum compounds A1 or AI-Mg with A1 halide; dialkyl or aryl ether LiAlH ; diazoethane A1 or Pb; free radicals A1 and B trialkyls

538

Catalyst

...

I p or Brz .

I

.

...

... . . , , . ,

... ...

INDUSTRIAL AND ENGINEERING CHEMISTRY

Unit Processes Review

anb d -

Table VIII.

Alkylation with Other Elements

Carbon-Sulfur Alkylations

Reactants HzS; methanol

H2S; dimethyl ether H2S; benzylamine; sodium sulfide HzS; olefinic hydrocarbons

Catalyst Dehydration catalyst Tungsten sulfide

Product Methyl mercaptan or dimethyl sulfide Dimethyl sulfides Benzyl mercaptan Mercaptans

...

Free radicals

Comments Operating variables described Waste gases rec cled Yields up to 38% Water beneficial to reaction

Carbon-Boron Alkylation

Mg; methyl chloride; boride Boron halides ; organic halides ; alkali metal Ethyl borate ; triethylaluminum BF3; triethylaluminum

Trimethylboron Trisubstituted boranes

420" C .

...

Alkylboron compounds Boron trialkyls

...

Triethyl boron Alkylated boron products

Several solvents tried Ether is solvent ; several compounds 75'3, yields Numerous products reported

. . I

... ...

BF3; diethylaluminum fluoride KF N-Sub'stituted borazoles; Grignard and Li reagents AlCla Sodium borides ; trimethylvinylsilane

Organosilicon substituted boranes Trialkylboranes with tertbutyl groups Boron alkyls with functional groups Higher boron alkyls unsyrn-Diethyldiborane

..

BFs; tert-butylmagnesium chloride ; butenes Diborane ; complex olefins

..

... ...

Lower trialkylborines ; olefins Diborane; diethylboranes

Ether is solvent

Detailed operating procedure reported Several boranes produced 0

2

or Si in side chain

Some CIOalkyl groups added Also some monoalkylated materials obtained

Carbon-Tin Alkylations

Sn ; alkyl chlorides Na S n ; alkyl halides Mg ... Alkyltin halides; Grignard reagents ... Diorganotin oxides ; Grignard reagents Dibutyltin hydride; tetrafluoroethyl- Free radical ene Divalent tin salts; organothallium ... compounds Dimethyltin dichloride; trimethyl... bismuth; trimethylantimony

Alkyltin chlorides Organotin compounds Tin alkyls Tetraorganotin derivatives Complex alkylated product

Sn and Na are alloyed Sn and Mg are alloyed Properties of product reported Hydrocarbon solvent used Fluorinated alkyl group added

Dialkyltin halides

Process described

Pyrolyses products

Products identified

Carbon-Lead Alkylation

Pb; ethyl chloride

Na

Tetraethyllead

Pb; ethyl chloride Pb; olefins; H2

K Na

Tetraethyllead Organic lead compounds

Lead oxide or sulfide; metallohydrocarbon compound

...

Tetraethyllead

...

Tetramethyllead ; tagged methyliodide

...

Rearrangement products

Tetramethyllead ; tetraethyllead; AuCl-

...

Alkyl lead chlorides

Organolead compounds

...

Continuous flow process described Pb and K alloyed Pb and Na alloved: , , solvent may be used Organometallic compounds of Al, Na, K , and alkaline earth metal used Stabilizers studied; lecithin and (or) cephalin are effective Tool for radical transfer reactions Mechanism of dealkylations steps studied

Carbon-Metal Alkylations (Miscellaneous)

Zn or ZnHz; olefins; Hz Dialkylcadmium ; cadmium halides C u ( N 0 8 ) ~ ;tetramethyllead

Cu or H g

...

Palladium chloride; allyl alcohol HgC12; alkylaluminum compounds Hg; ethyl bromide

Na and dimethyl formamide

Zn alkyls Alkylcadmium halides Methylcopper Dialkyldipalladium dichloride; propylene Ethyl- or methylmercury chloride Diethylmercur y

Dicyclopropylmercury and divinylmercur y Diethylmercury HgO; triethylborane Na; amyl chloride Amylsodium .. Trialkylgermane ; acrylonitrile ; Organogermanium comacrylic acids and esters, allyl alcohol, pounds with complex alkyl acrolein groups MgHz; diethylmagnesium; olefins; Alkylaluminum or B Organomagnesium comcompounds pounds Hz Mg; alkyl halides Pyridine and diethyl Alkylmagnesium halide salts ether Benzyllithium Li; alkyl benzyl ethers Cyanoethylated products Phosphine or phenylphosphine; acrylonitrile HgC12; Grignard reagent

Radiation may help Several alkyl groups investigated Mechanism involves methyl radical Some disproportionation reactions occur too Patented process Na and Hg are alloyed Electrophilic cleavage of compounds studied Process discussed High agitation provided Properties of new compounds reported Yields of reaction discussed ; (30H, 33H) radiation may help Solvent needed (37H) Tetrahydrofuran as solvent Process variables discussed

VOL. 52, NO. 6

a

JUNE 1960

539

a n v d Unit Processes Review Literature Cited Carbon-Carbon Aliphatic Alkylations (1.4) Abbott Laboratories, Brit. Patent 798,563 (July 23, 1958). (2A) Ando, T., Tokura, N., Bull. Chem. Snc. J a j a n 31, 1026-30 (1958). ( 3 4 ) Appell, H . R . (to Universal Oil Products Co.), U. S. Patent 2,882,289 (April 14, 1959). (4A) Beavon, D. K . (to Texas C o . ) , Ibid., 2,865,971 (Dec. 23, 1958). (5A) Chenicek, J. A., Bloch, H. S. (to Universal Oil Products C o . ) , Ibid., 2,867,673 (Jan. 6, 1959). (6.4) Davis, H. R., Jr., Brandon. D. B. (to M. W. Kellogg Co.), Ibid., 2,880,255 (March 31, 1959). (7A) Esso Research and Engineering Co., Brit. Patent 803,458 (Oct. 22, 1958). (8A) Ibid., 804,966 (Nov. 26, 1958). (9.4) Fritzsche, E., Ger. (East) Patent 12,288 (Oct. 26, 1956). (10A) Goerner, G. L., Holzschuh, -4. A., J . Org. Chem. 23, 1346-9 (1958). (11A) Hann, P.D. (to Phillips Petroleum Co.), U. S. Patent 2,872,493 (Feb. 3, 1959). 2A) Hauser, C. R., Hauser, C. F., Hamrick, P. J., Jr., J . Org. Chem. 23, 1713-14 (1958). 3A) Kelly, J. T. (to American Oil Co.), U. S. Patent 2,843,642 (July 15, 1958). 4A) Kelly, J . T., Knight, H . M. (to American Oil Co.). Ibid.. ,, _ 2.898.390 , , (Aug. 4, 1959). 5-4) Kotlyarevskil, I. L., Volkov, A. N., Fisher, L . B., Izvest. Sibir. Otdel. Akad. Nauk S.S.S.R. 1959, No. 3, 62-6. 6A) Lawson, S. D. (to Phillips Petroleum Co.), U. S. Patent 2,894,999 (July 14, 1959’1. 7 ~ ) - L i n n , C. B. (to Universal o i l Products Co.), Ibid., 2,858,349 (Oct. 28,

-,--,.

196%

(18A) Marzluff, W. F.: Smith, H. A . (to American Cyanamid Co.), Ibid., 2,863,930 (Dec. 9, 1958). (19A) Nazarova, N. M., Balandin, A. A., FreYdlin, L. K., Doklady Akad. Nauk. S.S.S.R. 121, 865-8 (1958). (20.4) Owen, C. H. (to Phillips Petroleum Co.), U. S . Patent 2,855,449 (Oct. 7, 1958). (21A) Pevere, E. F. (to Texas Inc.), Ibid., 2,888,500 (May 26, 1959). (22X) Pines, H. (to Universal Oil Products Co.), Ibid., 2,849,508 (Aug. 26, 1958). (23A) Pines, H., Wunderlich, D., J . Am. Chem. Soc. 80, 6001-4 (1958). (24A) Ibid., 81, 2568-71 (1959). (25‘4) Pishnamazzade, B. F., Gulieva, S. D., Dnklady Akad. Nauk Azerbatdzhan. S.S.R. 12, 895-900 (1956). (26A) Plotkina, N. I., Plyusnin, V. G., Izuest. Sibir. Otdel. Akad. h’auk S.S.S.R. 1958, NO. 11, 17-27. (27A) Putney, D. H. (to Stratford Engineering Corp.), U. S. Patent 2,857,247 (Oct. 21, 1958). (28A) Putney, D . H., Webb, O., Jr., Petrol. Rejner 38, No. 9, 166-8 (1959). (29A) Radzevenchuk, I. F., Zhur. Priklad. Khim. 32.1174-7 (1959). (30A) Resin, F. L:, OzZ Gas J . 56, 73-5 (Nov. 24, 1958’1. .. (31A) Ridgway, J. A., Jr., IND. ENG. CHEM.50, 1531-6 (1958). (32A) Roebuck, A. K., Evering, B. L. [to Standard Oil Co. (Indiana) 1, U. S. Patent 2,897,248 (July 28, 1959). (33A) Schmerling, L., Haensel, V. (to Universal Oil Products Co.), Zbid., 2,834,818 (May 13, 1958). (34A) Stiles, S.R . (to M. W. Kellogg Co.), Ibid., 2,859,259 (Nov. 4, 1958).

540

(35A) Ibid., 2,859,260. (36A) Stratford Engineering Corp., Brit. Patent 803,481 (Oct. 29, 1958). (37A) Texaco Development Corp., B i d . , 801,145 (Sept. 10, 1958). (38A) Urrv, W. H., Juveland, 0. O., J . A m . Chem. SOC. 80, 3322-8 (1 9%). (39.4) VCB Kombinat “Otto Grotewohl,” Ger. (East) Patent 11,288 (March 8, 1956). (40A) Walker, R. W., Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic. 58-7155; Dissertalinn Abstr. 19, 1569-71 (1959). Carbon-Carbon Aromatic Alkylations leva, A . R., Zhur. Obschei

(3B) Babin, E. P., Pl\iusnin, V. G., Nasakina, M . I., Iziest. Sibzr. Otdel. Akad. Nauk S.S.S.R. 1958. No. 11, 28-35. (4B) Ibid., 1959, No. 1: 72-5. (5B) Bartleson, J. D., Chem. C 3 Eng. Data Ser. 3. 330-7 11958). (6B) BilorossoGa, A.’G., Farberov, M. I., llchenye Zafiiski Yaroslau. Tekhnnl. Inst. 2, 21-32 (1957). (7B) Beltrame, P., Chim. ind. ( M i l a n ) 40, 906-8 (1958). (8B)Betts, W.D. (to Coal Tar Research Assoc.), Brit. Patent 810,751 (March 25. 1959). (9B) Betts, W. D., Popper, F., J . AjjZ. Chem. (London) 8. 509-13 11958). ~, (10B) Ibid., pp.’513-18. i l l B ) Bloch. H . S. (to Universal Oil ‘ Products Co.), U. S‘. Patent 2,887,520 (May 19, 1959). (12B) Bloch, H. S., Hervert, G. L. (to Universal Oil Products Co.), Ibid., 2,887,518 (May 19, 1959). 3B) Bogdanov, M. N., Zhur. Obshche? Khim. 28, 1621-3 (1958). 4B) Charlton. Mi.. Cundall. J. H., Selby, T. .4., Brit. Patent 810,026 (March 11, 1959). 5B) Chemische Werke Albert. Ger. Patent 943,707 (June 1, 1956). 6B) Crisp, E. T., Keir, N. H., Brit. Patent 794,570 (May 7, 1958). 7B) Dimitrov, K., Comfit. rend mad. bulgarescz. 11, 403-6 (1958). (18B) Doumani, T. F., IND.ENG. CHmf. 50, 1677-80 (1958). (19B) Fetterly, L. C., Koetitz, K. E., Penhale, D. W.(to Shell Development Co.), E.S. Patent 2,854,493 (Sept. 30, 1958). (20B) Frey, F. E., Hepp, H . J. (to Phillips Petroleum Co.), Ibid., 2,851,339 (Sept. 9, 1958). (21B) Friedman, B. S., Morritz, F. L., others, J . Am. Chem. SOC.80, 5867-71 (1958). (22B) Gaz de France Soci6tC national, Fr. -4ddn. Patent 66,673 (Aug. 16, 1957). (23B) Tbzd., Fr. Patent 1,020,129 (Feb. 2, 1953). (24B) Gel’bshteYn, A. I., Zansokhova, A. A,, Shcheglova, G. G., Khim. Peom. 1958, pp. 284-7. (25B) Georgiev, K . D., KazanskiY, B. A., Izuest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk 1959, pp. 491-8. (26B) Ibzd., pp. 499-506. (27B) Hakala, T. H. (to Esso Research and Engineering Co.), U. S.Patent 2,886,609 (May 12, 1959). (28B) Hervert, G. L. (to Universal Oil Products Co.), Zbid., 2,887,519 (May 19, 1959). (29B) Hodnett, E. M., Feldman, C. F., Jr., J . A m . Chem. Sod. 81, 1638-40 (1959).

INDUSTRIAL AND ENGINEERING CHEMISTRY

(30B) Hoff, M. C., Ibid., 80,6046-9 (1958). (31B) Hoog, H., Schaafsma, A. (to Shell Development Co.), U. S. Patent 2,871,254 (Jan. 27, 1959). (32B) Houel, B., Comfit. rend. 248, 800-2 (1959). (33B) Jezl, J. L., Stuart: A. P.(to Sun Oil Co.), U. S. Patent 2,880,251 (March 31, 1959). (34B) JuraEka, F., Chem. j78,mysl 9, 269-71 (1959). (35B) KazanskiY, B. A,, Rozengart, M . I., Kuznetsova, 2. F., Dnklady Akad. .$‘auk S.S.S.R. 126, 571-4 (1959). (36B) Keizer: A. de (to Shell Development Co.), U. S. Patent 2,881,227 (April 7, 1959). (37B) Keizer, A. de, van Dijk, C. P., Gips, A . A. (to Shell Development Co.), Ibid., 2,870,229 (Jan. 20, 1959). (38B) Kent, J. A,, Norman, R. 0. C., J . Chem. Soc. 1959. m. 1724-6. (39B) Kirkland, E. Funderburk, 0. P., Wadsworth, F. T., J . 0 r g . Chem. 23, 1631-5 (1958). (40B) Kluge, H. D.. Moore, F. Mi. (to Texas Co.). U. S. Patent 2,868,823 (Jan. 13: 1959). (41B) Kozorezov, Y . I., DorogochinskiY, A . 2.. Dnkladv Akad. Nauk S.S.S.R. 123. 857-9 (1958): (42B) Kuchkarev, A B., Dnklady Akad. X a u k Lkbek. S.S.R. 1957, No. 1, 21-5. (43B) Kuskov, V. K., Burtseva, T. A., Doklady Akad. Nauk S.S.S. R. 125, 811-1 3 (1959). (44B) Landau, R., Egbert, R. B., Saffer, A. (to Mid-Centiry Corp.), U. S. Patent 2,855,430 (Oct. 7, 1958). (45B) Lebedev, N. N., Kolchin. I. K., Markovich, I. S., Trudy Mnskou. Khzm.Tekhnol. Inst. im. D . I. hlendeleeca 1956, NO. 23, 52-60. (46B) Lee, C. C., Hamblin, M. C., James, N.. Can. J . Chem. 36. 1597-1601 (1958). (47B) Lock, G., Schne‘ider, R., Chem. Ber. 91. 1770-4 (19581 91, (1958). (48B) Lysenko, A. P., Plyusnin, V. G., Zhur. Fiz. Khim. 32, 1074-6 (1958). (49B) McCaulay, D. A. [to Standard Oil Co. (Indiana)], U. S. Patent 2,881,228 (April 7, 1959% 1959). (50B) Ibid., Ibzd., 2,848,511 (Aug. 19, 1958). Ibtd.,2,857,441 (Oct. 21, 1958). (51B) Ibid., 152B) Mahboob. S.. Reddv. C. C.. Zaheer. ‘ S. H. (to Council of Sciektific and Indus: trial Research). Indian Patent 63,719 (March 18, 1959). (53B) Malchick, S. P., Hannan, R. B., J . A m . Chem. Snc. 81, 2119-22 (1959). (54B) Mamedaliev, Y . G.: Aliev, V. S., Sultanov, S. A., Doklady Akad. Nauk Azerbardzhan. S.S.R. 14, 681-5 (1958). (55B) Mamedaliev, Y . G., Gasanov, D . G., Uchenye Zafiiski Azerbaidzhan. Gnsudarst. Univ. im. S.M. Kirnva 1957, No. 4, 47-53. (56Bl Ibid., NO. 5, 35-46. (57B) Mamedaliev, Y . G., Kichieva, D. D., Doklady Akad. .:auk Azerbafdzhan. S.S.R. 14, 595-601 (1958). (58B) Mamedaliev, G. M., Mamedaliev, Y . G., Topchiev, A . V., Izvest.Akad. Nauk S.S.S.R., Otdel. Tekh. Nauk 1958, No. 6, 91-5. (59B) Mamedaliev, Y . G., Sultanov, S. A., Azerbaidzhan. N e j t . Khoz. 1957, No. 8, 28-30. (60B) Ibid., 37, No. 9, 34-5 (1958). (61B) Mel’kanovitskaya, S. G., Tsukervanik, I. P., Zhur. Obshchcei Khim. 28, 2032-8 (1958). (62B) Mid-Century Corp., Brit. Patent 794,693 (May 7, 1958). (63B) N. V. de Bataafsche Petroleum Maatschappij. Dutch Patent 87,523 (Feb. 15, 1958).

v.:

anI-4 (64B) Ibid., Brit. Patent 809,908 (March 4, 19591. ( 6 5 B j s I b i d . , 809,909. (66B) Ibid., Dutch Patent 86,350 (Sept. 16, 10571 .,-,,.

(67B) Ibid., 87,769 (March 15, 1958). (68B) Oelderik, J. M., Waterman, H. I., Brennstoj-Chem. 40, 13-22 (1959). (69B) Patinkin, S. H., Sanford, R . A. (to Sinclair Refining Co.), U. S. Patent 2,867,674 (Jan. 6, 1959). (70B) Penney, W. H. Univ. Microjlms (Ann Arbor, Mich.), L. C. Card No. Mic. 59-1315; Dissertation Abstr. 19, 2559-60 (1959). (71B) Petrov, A. D., Zakharov, E. P., Krasnova, T. L., Zhur. ObshcheY Khim. 29, 49-55 (1959). (72B1 Petrow, A. D., E r d d u. Kohle 11, 855-7 (1958). (73B) Podall, H. E., Foster, W. E., J . Org. Chem. 23,401-3 (1958). (74B) Pokrovskaya, E. S., Shishkina, M. V., Doklady Akad. N a u k S.S.S.R. 125, 1269-71 (1959). (75B) Radzevenchuk, I. F., Russ. Patent 116,610 (Jan. 19, 1959). (76B) Radzevenchuk, I. F., Zhur. Obshchet: Khim. 28,2423-6 (1958). (77B) Randall, D. I., Renfrew, E. E., Jr. (to General Aniline & Film Gorp.), U. S. Patent 2,849,465 (Aug. 26,1958). (78B) Romadane, I., Zhur. Obshchei Khim. 29, 102 (1959). (79B) Romadane, I., Pelchers, J., Ibid., 29, 103-6 (1959). (80B) Ruhrchemie A.-G., Gcr. Patent 950,064 (Oct. 4, 1956). (81B) Schmerling, L. (to Universal Oil Products Co.), U. S. Patent 2,852,577 ~. (Sept. 16, 1958). (82B) Schubert, W. M., Craven, J. M., others. Tetrahedron 5 . 194-201 (19591. (83B) Searles, A. L.,'Ressler, D., J . A m . 80, 3656-63 (1958). Chem. SOC. (84B) Shikhalieva; R . A,, Movsumzade, M. M., Zzvest. Vysshikh Ucheb. Zavedenii, Neft i Gaz 1958, No. 5, 97-101. (85B) ShuYkin, N. I., Berdnikova, N. G., Kashkovskaya, L. K., Izvest. Akad. Nauk S.S.S.R.,Otdel. Khim. Nauk 1959, pp. 308-1 3. (86B) Shuikin, N. I., Pozdnyak, N. A., Zbid., 1959, pp. 304-7. (87B) Shuikin, N. I., Viktorova, E. A., Litvinov, V. P., Vestnik Moskov. Univ., Ser. M a t . Mekh. Astron. Fiz. i. Khim. 12, NO. 5, 121-4 (1957). (88B) Sidorova, N. G., Tyshchuk, G. K., Zhur. Obshche; Khim. 28, 2030-2 (1958). (89B) Slaughter, J. I., McCaulay, D. A. [to Standard Oil Co. (Indiana)], U. S. Patent 2,849,509 (Aug. 26, 19581. (90B) Snow, J. E. (to Heyden Newport Chemical. Gorp.), Ibid., 2,859,253 (Nov. 4, 1958). (91B) Socittt des usines chimiques R h h e Poulenc., Fr. Patent 1,124,561 (Oct. 15, 1956). (92B) Stiles, S. R . (to M. W. Kellogg Co.), U. S. Patent 2,852,581 (Sept. 16, 1958). (93B) Still, F. C., Ger. Patent 954,692 (Dcc. 20, 1956). (94B) Thompson, K . M. (to Atlantic Refining Co.), U. S. Patent 2,875,257 (Feb. 24, 1959). (95B) Tishchenko, D. V., Sheina, S., Zhur. Priklad. Khim. 31, 1876-9 (1958). (96B) . , Touchiev. A. V.. Tumerman. B. M.. Trudy Moskov.'Neft. Inst. im. I. M . Gubkina 1958, NO. 23, 9-21. (97B) Tsuchiva, A., Hashimoto. A.. others. Bull. Ja,banPetrol.'Inst. 1, 73-7(1959). . (98B) Tsukervanik, I. P., Mel'kanovitskaya, S. G., Russ. Patent 117,492 (Feb. 6, 1959'1.

(99B) Tsukervanik, I. P., Rozhkova, N. K., Doklady Akad. Nauk Uzbek. S.S.R.1958, NO.7, 23-5. (100B) Turova-Pollak, M. B., Rudenko, N. V., Doklady Akad. Nauk S.S.S.R. 126, 1289-92 (1959). (101B) Union Rheinische Braunkohlen Kraftstoff A.-G.. Ger. Patent 960.631 (March 28, 1957). (102B) Universal Oil Products Co., Brit. Patent 794,153 (April 30, 1958). (103B) Vaker, V. L., Ryabov, V. D., Doklady Akad. N a u k S.S.S.R. 125, 547-8 (1959). (104B) Wachs, H., Forman, S. E. (to Food Machinery and Chemical Gorp.), U. S. Patent 2,878,265 (March 17, 1959). (105B) Wadsworth, F. T. (to American Oil Co.), Zbid., 2,881,226 (April 7, 1959). (106B) Wakae, M., Konishi, K., Ydki Gdsei Kagaku KyBkai Shi 17, 33-8 (1958). (107B) Weaver. L. J. (to Monsanto Chemical Go.), U. S. Patent 2,853,533 (Sept. 23, 1958). (108B) Yamashito, Y . , Shimamura, T., Kdqakuin Daigaku Kenkyd Hdkoku 3, 38-43 (1$56). (109B) Yur'ev. Y. K.. Savosina, M. N., Zhur. Obshchei Khim. 29,432-5 (1959). (1 10B) Zavgorodnil, S. V., Shvetsova, L. S., Zbid., 28, 2668-70 (1958). (111B1 Zollner, G.. Marton. J.. A c f a . Chim. Acad. Sci. Hung. 13, 283-91 (1957). I

Carbon-Carbon Miscellaneous Alkylations (1C) Ando, T . , Tokura, N., Bull. Chem. SOC. Japan 31, 351-5. (2C) Arth, G. E., Johnston, D. B. R . , others, J . A m . Chem. SOC. 80, 3160-1 (1958). (3C) Badische Anilin- & Soda-Fabrik A.-G., Ger. Patent 941,790 (April 19, 1956). (4C) Booth, H., Johnson, A. W., others, J . Chem. SOC. 1959, pp. 1587-94. (5C) Denss, R., Experientia 15, 95-6 (1959). (6C) Harris, T. M., Hauser, C. R., J . A m . Chem. SOC. 81, 1160-4 (1959). (7C) Hillers, S., Berzina, A., Lauberte, L., Latvijas PSR Zinatvu Akad. &tis 1958, NO. 4, 71-9. (8C) Hirsch, S. S., Lorenz, D. H., Becker, E. I., J. Org. Chem. 23,1829-32 (1958). (9C) Verley, A., Fr. Patent 1,076,478 (Oct. 27, 2954). (1OC1 Williamson, W. R . N., Tetrahedron 3, 314-15 (1958). (11'2) Wuest, H. M., Bigot, J. A., others, Koninkl. Ned. Akad. Wetmschap. Proc. 61B, 150-3 (1958). Carbon-Oxygen Alkylations (1D) American Cyanamid Co., Brit. Patent 812,063 (April 15, 1959). (2D) Bawn, C. E. H., Ledwith, A., Chem. &3 2nd. (London) 1958, pp. 1329-31. (3D) Bikales, N. M . (to American Cyanamid Co.), U. S. Patent 2,890,925 (June 16,1959). (4D) Deshpande, V. V., Kuloor, N. R (to Council of Scientific and Industrial Research), Indian Patent 60,921 (Oct. 1,

____

1958'1..

(5D) Drake, G. L., Jr., Reeves, W. A., Guthrie, J. D., Textile Research J . 29, 270-5 (1959). (6D) Fuller, M . F. (to E. I. du Pont de Nemours & Co.), U. S. Patent 2,883,375 (A+l . 31 , I 9,5 9,, \. (7D)*Gaslini, F., T a p p i 41, No. 9, 162A165A (1958). (8D) Isagulaynts, V. I., Azizyan, T. A., Russ. Patent 114,490 (Aug. 31, 1958). (9D) Kalle & Co., A.-G., Ger. Patent 947,158 (Aug. 9, 1956). (10D) Kerr, R . W. (to Corn Products

-- - - I

I

Unit Processes Review

Refining Co.), U. S. Patent 2,858,305 (Oct. 28, 1958). (11D) Koskikallio, J., Whalley, E., Can. J. Chem. 37, 788-94 (1959). (12D) Kuwamura, T., Nakamura, Y . , others, Sen-iGakkaishi 15, 191-6 (1959). (13D) Monsanto Chemical Co., Brit. Patent 808,290 (Feb. 4, 1959). (14D) Muller, E., Bauer, M., Rundel, W., 2.Naturforsch. 14B, 209-10 (1959). (15D) Neeman, M., Cascrio, M. C., others, Tetrahedron 6, 36-47 (19591. (16D) Nishino, J., Nishikura, A., others, Y d k i GBsei Kagaku KyBkaishi 17, 159-62 (1959). (17D) Porath, J. 0. (to Mo och Domsjo Aktiebolag), U. S. Patent 2,891,057 (June 16,1959). (18D) Rankin, J. C., Mehltretter, C. L., Senti, F. R., Cereal Chem. 36, 215-27 (1959). (19D) Shepard, R. A., Lessoff, H.. others, J . Org. Chem. 23, 2011-12 (1958). (20D) St. Clair, W. E. (to Koppers Co., Inc.), U. S. Patent 2,892,849 (June 30, 1959). (21D) 'Wagner, R. B. (to Hercules Powder Co.), Ibid., 2,891,056 (June 16, 1959). (22D) Watanabe, W. H., Conlon, L. E. (to Rohm & Haas Co.), Zbid., 2,847,477 . . (Aug. 12, 1958). (23D) Watanabe, W. H., Conlon, L. E., Hwa, J. C. H., J . Org. Chem. 23, 1666-8 (19581. (24D) Wyandotte Chemicals Corp., Brit. Patent 807,576 (Jan. 21, 1959). (25D) Zakharova, A. I., Efros, A. M., Zhur. Obshchel Khim. 28, 3243-5 (1958). Carbon-Nitrogen Alkylations (1E) Ambelang, J. G., Massie, G. M . (to Firestone Tire & Rubber Co.), U. S. Patent 2,849,488 (Aug. 26, 1958). (2E) Babayan, A. T., Indzhikyan, M. G., Neiman, M. B., Itzest. Akad. Nauk S.S.S R.. Otdel. Khim. Nauk 1959, p. 174. (3E) Badische Anilin- 8: Soda-Fabrik A.-G., Ger. Patent 944,130 (June 7, 1956). (4E) Boehringer, C. H., Sohn, Ger. Patent 1,014,998 (Sept. 5, 1957). (5E) Bothe, H., Wunderlich, H., Ger. (East) Patent 12,179 (Oct. 8, 1956). (6E) Butskus, P. F., Denis, G. I.? Nauch. Doklady Vysshel Shkoly, Khim. t . Khim. Tekhnol. 1958, pp. 743-5. (7E) Centre national de la recherche scientifique, Fr. Patent 1,122,406 (Sept. 6, 1956). (8E) CIBA Ltd., Swiss Patent 333,358 (Nov. 29, 1958). (9E) Consortium de produits chimiques et de synthtse, Fr. Patent 1,085,934 (Feb. 8, 1955). (10E) Eprova Ltd., Brit. Patent, 796,364 (Jute 11. 1958). (11E) Horst, H. d. v. der, Ger. (East) Patent 13,031 (April 8, 1957). (12E) Horyna, J., eerfiy, O., Hanousek, V., Czech. Patent 87,381 (Oct. 15, 1957). (13E) Industrie Chemie Thoma G.m.b.H., Ger. Patent 1,003,220 (Feb. 28, 1957). (14E) Ibzd., Brit. Patent 812,058 (April 15, 1959).

5Ej. Janata, V., Czech. Patent 87,359 (\ -O- -c.t 15. 19571. - - I

6E) Kozlov, N . S., Panova, N. I., Zhur. ObshcheY Khim. 28,2384-6 (1958). 7E) Krishnamurthy, V. A., Rao, M . R . A., J . Indian Znst. Sci. 40, 145-51 (1958). 8E) Kuliev, A. M., Abdinova, A. B., Uchenye Zapiski Azerbaiddrhan. Gosudarst. Univ. im. S. M . Kirova 1958, No. 5,47-53. 9E) Lamb, S. A., Ward, S. (to Imperial Chemical Industries Ltd.), Brit. Patent 793,716 (April 23, 1958). VOL. 52, NO. 6

JUNE 1960

541

anr)q

Unit Processes Review

(20E) Massie, G. M. (to Firestone Tire Br Rubber Co.), U. S. Patent 2,849,485 (Aug. 26, 1958). (21E) Pasek, J., Ruzicka, V., Sbornik vysokk Skoly chem.-technol. v Praze 1957, pp. 243-52. (22E) Patai, S., Weiss, S., J. Cizem. Soc. 1959,pp. 1035-8. (23E) Rheinpreussen A.-G. fur Bergbau und Chemie, Ger. Patent 949,234 (Sept. 13, 1956). (24E) Rice, R. G., Kohn, E. J., Daasch, L. W., J. Org. Chem. 23,1352-4 (1958). (25E) Schade, H., Ger. (East) Patent 12,870 (March 7, 1957). (26E) Schade, H . , Sperling, \V., Zbid., 14,768 (May 17, 1958). (27E) Shpital’nyy, A. S.; Kuznetsova, I. V., Volkova, h7. I., Russ. Patent 109,876 (June 25,1958). (28E) Socittt industrielle des dtrivks de l’acktylene, Fr. Patent 1,113,411 (March 29, 1956). (2%) Temmler-Werke Vereinigte Chemische Fabriken Hermann Ternmler, Ger. Patent 921,203 (Dec. 13, 1954). (30E) Timbekov, E. K., Sadykov, .4. S., Doklady Akad. Nauk Gzbek. S.S.R. 1955, NO. 5, 31-3. (31E) Toyornizu: M., Enomoto, S . , Tomiyasu, Y . , Nippon Suisangaku Kaishi 24, 743-8 11958). (32E) Universal Oil Products Co., Brit. Patent 797,224(June 25, 1958). (33E) Urbanskaya, 0. S., Zhur. Obshchri Khim. 29, 174-9 (1959). (34E) Weijlard, J. (to Merck & Co., Inc.), U. S. Patent 2,891,954 (June 23; 1959). (35E) Zeile, K., Adickes, F., \Yick; H. (to C. H. Boehringer Sohn), Brit. Patent 802,716 (Oct. 8; 1958) Carbon-Silicon Alkylations (1F) Andrianov, K. A . , Golubtsov, S . A., Petryahova, A . A., Khim. Prom. 1958, pp. 342-6. (2F) Bluestein, B. A. (to General Electric Co.), U. S. Patent 2,887,501 (May 19, 1959). (3F) Zbzd., 2,887,502. (4F) Cheng, S. I., Chien, P. I,., J . Chinese Chem. Soc. Ser. 11. 8. 79-86 (1956). (5F) Kali-Chemie ’ A.-G., Ger. Patent 965,328 (June 6, 1957). (6F) Little, E. L., Jr., Nelson, M. C. (to E. I. du Pont de Nemours Br Co.), U.S. Patent 2,865,939 (Dec. 23; 1958). (7F) Midland Silicones, Ltd., Brit. Patent 807,235 (Jan. 14, 1959). (8F) Nikishin, G. I., Petrov, A . I.. SadykhZade, S. I . , Khim. i Prakt. Primenenie Kremneoig. Soedineii, Trudy Konf. Leningrad 1958, NO. I ? 68-74. (9F) Office national d’Ctudes et de recherches aeronautiques, Fr. Patent 1,132,611 (March 13, 1957). OF) Zbid., 63,525 (Sept. 29, 1955). 1FI Petrov. A. D.. Nikishin. G. I.. Smetankina, N. P., Zhur. Obshc’hei Khim: 28, 2085-9 (1958). 2F) Petrov, A. D., Sadykh-Zade, S. I., Egorov, Y . P., Ira& Akad. A’auk Arerbaidzhan. S.S.R., Ser. Fiz-Tekii. i Khim. h‘auk 1958, No. 6, 123-4. 3F) Saam, J. C . (to Dow Corning Corp.), U. S. Patent 2,860,153 (Nov. 11, 1958). 4F) Speier, J. L., Jr. (to Dow Corning Corp.), Zbtd., 2,872,435(Feb. 3, 1959). 5F) Topchiev, A. V., Nametkin, N. S., Kartasheva, L. I., Zzvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk 1958, pp. 949-53. (16F) Voronkov, M . G., Romanova, N. G., Zhur. Obshcher Khim. 28, 2122-8 (1958). (17F) Wagner, G. H., Whitehead, W. G., Jr. (to Union Carbide Corp.), U. S. Patent 2,851,473 (Sept. 9: 1958).

542

(18F) Ziika, J., BetkovP, A , Chem. p d m y s l 9, 65-8 (1959). Carbon-Aluminum Alkylations ( l G ) Badische Anilin- & Soda-Fabrik A.-G., Brit. Patent 804,059 (Nov. 5, 1958). (2G) Dobratz, E. H . (to Koppers Co., Inc.), U. S. Patent 2,892,738 (June 30, 1959).

( 3 G ) -Do, Chemical Co., Brit. Patent 801,674 (Sept. 15, 1958). (4G) Geiseler, G., Kr-othe, W., Chem. Ber. 91, 2446-51 (1958). (5G) Johnson, J. F. (to Esso Research and Engineering Co.), U. S. Patent 2,863,896 (Dec. 9. 1958). (6G) Kali-Chemie A.-G., Ger. Patent 1,009,630 (June 6, 1957). (7G) King, R. W., Movsovic, D. J. (to Petrochemicals Ltd.), Brit. Patent 81 1,076 (April 2, 1959). (8G) Zbid., 798,599 (July 23, 1958). (9G) Koppers Co., Inc., Zbid., 808,705 (Feb. 11, 1959). (10G) Zbid., 808,706. (1 1G) Zbid., 808,707. (12G) Latham, K. G. (to Esso Research and Engineering Co.), Zbid., 800,609 (.4ug. 27, 1958). (13G) Nowlin, G., Lyons, H. D. (to Phillips Petroleum Co.), U. S. Patent 2,852,544(Sept. 16, 1958). 4G) Osteroth, D., Chem. Labor u. Betrieb 10, 133-46 (1959). 5G) Redman, H . E. (to Ethyl Corp.), U. S. Patent 2,885,314(May 5, 1959). 6G) Zbid., 2,886,581 (May 12, 1959). 7G) Shiihara, I., Iyoda, J., K8gyB Kagaku Zasshi 60. 1388-92 (1957). 8G) Stamicarbon, A. V.; Dutch Patent 86.904 iNov. 15, 1957). 9 G ) Walter, H.‘A. (to Monsanto Chemical Co.), U. S . Patent 2,864,842 (Dec. 16,1958). (20G) Zakharkin, L. I., Okhlobystin, 0. Y., Zrvest. Akad. ,?‘auk. S.S.S.R., Otdel. Khim. Nauk 1959, p. 181. (21G) Ziegler, K., Ger. Patent 936,630 (Dec. 15, 1955). (22G) Ziegler, K . , Gellert, H., Zbid., 1,008,733 (May 23, 1957). (23G) Tbbid., 961,537 (April 11, 1957). (24G) Ibzd., (to Karl Zicyler), U. S. Patent 2,835,689 (May 20, 1958). Alkylation with Other Elements (1H) Bell, R . T. (to Pure Oil C o . ) , U. S. Patent 2,874,129(Feb. 17, 1959). (2H) Blitzer, S. M., Pearson, T. H . (to Ethyl Corp.). Zbid., 2,859,225 (Nov. 4. 1958). (3H) Blilzer, S. M., Zietz. J. R., Jr. (to Ethyl Corp.), Zbid., 2,852,543 (Sept. 16. 1958). (4Hf Chatt, J., Shaw, B. L., J . Chem. 5‘06. 1959,pp. 705-16. (5H) Compagnia Italiana Petrolio S.p.A., Ital. Patent 546,378 (July 18, 1956). (6H) Costa, G., Camus, A. M., Pauluzzi, E., Gazz. chim. ital. 86, 997-1013 (1956). (7H) Dillard, C. R . , McNeill, E. H., others, J . A m . Chem. SOC.80, 3607-9 (1958). (8H) Farbwerke Hoechst A.-G. vorm. Meister Lucius & Bruning, Ger. Patent 954,878 (Dec. 27, 1956). (9H) Faulkner, C. J., Zbtd., 946,447 (Aug. 2, 1956). (10H) Gilman, H., McNinch, H. A., Wittenberg, D., J . Org. Chem. 23, 2044-5 (1958). (11H) Hennion, G. F., McCusker, P. A . , Marra, .J. V., J.A m . Chem. Soc. 81, 1768 ( 1959).

INDUSTRIAL AND ENGINEERING CHEMISTRY

2H) Honeycutt, J. B.: Jr., Riddle, J. M. Zbid., 81, 2593 (1959). 3H) Kali-Chemie A.-G., Brit. Patent 812,787 (April 29, 1959). 4H) Kali-Chemie 4.-G., Ger. Patent 1.014.541 JAW. 29. 1957’1. 5H) Koster, Ann. 618, 31-43 (1958). 6H) Koster, R . (to Studien-Gesellschaft Kohle m.b.H.!, U.S. Patent 2,886,599 (hf:y 12, 1959). (17H) Krespan, C. G.: Engelhardt, V. A., J. Org. Chem. 23, 1565 (1958). (18H) Lanpher, E. J., Redman, L. M.. Morton, A. A . , Zbid., 23, 1370-1 (1958). (19H) Lesbre, M.? Satgk, J., Compt. rend. 247, 471-4 (1958). (20H) May, P. D., Ridgway, J. A., Jr., LVadsworth, F. T. (to American Oil Co.), U. S. Patent 2,865,965(Dec. 23, 1958). (21H) Metal & Thermit Corp., Brit. Patent 813,479 (May 21, 1959). (22H) Mikhaylov, B. M., Shchegoleva, T. A.: Zzvest. Akad. Nauk S.S.S.R., Otdel. Khim. .Vauk 1959,,pp. 546-7. (23H) “Montecatini” Societa generale per ]’industria mineraria e chimica, Ital. Patent 556,538 (Feb. 7, 1957). (24H) Ibid., 560,499 (April 5, 1957). (25H) Neher, C. M., Padgitt, F. L., Weimer, P. E. (to Ethyl Corp.), U. S. Patent 2,856,419 (Oct. 14, 19%). (26H) Nesmeyanov, ‘4. N., Borisov, A. E., Novikova, N. V., Zzaest. Akad. :\‘auk S.S.S.R., Otdel. Khim. nlhuk 1959, pp. 644-6. (27H) Nikolenko, L. N., Koptyup, V. A., Savinkova, E. V., .Vauch. Doklady Vyssher Shkoly, Khim. i Khim. Teknoi. 1958, No.j1,