Analysis of Boranes and Carboranes by Mass Spectrometry

Jul 22, 2009 - J. F. DITTER, F. JAMES GERHART, and ROBERT E. WILLIAMS. Space-General ... McDONALD, WILLIAMS, THOMPSON, and MARGRAVE...
19 downloads 0 Views 2MB Size
14 Analysis of Boranes and Carboranes by Mass Spectrometry

Mass Spectrometry in Inorganic Chemistry Downloaded from pubs.acs.org by MIDWESTERN UNIV on 01/23/19. For personal use only.

J . F . D I T T E R , F . J A M E S G E R H A R T , and R O B E R T E .

WILLIAMS

Space-General Corporation, Center for Research and Education, Los Angeles, Calif.

Boranes mass

and carboranes

spectral

fragment

each have their own

patterns.

rather

Boranes

severely,

the

more so than the "stable," as their alkylated spectral

profiles.

resistant

Conversely,

have sharp

cut-off

and carbon C-containing

peak,

somewhat

they, as

broad, rounded

the stable

class of

points

at their

high

compounds,

ion that appears for

above

CΒΗ , 4

6

12

the

quite profiles

mass numbers.

involves

of the mass spectral

as illustrated

are

the exact number

atoms in carboranes

of

careful normal

dimethyl

A boron

measure­

peak owing the

well mass

and hence their spectral

for determining

ment of the intensity 13

impact

ones

(and their alkyl derivatives),

to fragmentation,

useful technique

"unstable" display

characteristic

electron

and consequently

derivatives,

the closo-carboranes

under

to the cut-off

derivative

of C Β Η . 2

Various

6

8

i o n g r o u p s i n the mass s p e c t r a l patterns of b o r o n h y d r i d e s

( n a t u r a l a b u n d a n c e of

n

B/

1

0

B =

4.0) h a v e c h a r a c t e r i s t i c a l l y b r o a d ,

r o u n d e d profiles that g e n e r a l l y a l l o w easy i d e n t i f i c a t i o n i n c h e m i c a l m i x ­ tures (24).

I n e a c h i o n g r o u p the b o r o n isotopes are essentially d i s ­

t r i b u t e d i n a statistical m a n n e r , a n d , as a consequence, the greater the n u m b e r of borons i n a p a r t i c u l a r i o n g r o u p , the f a r t h e r r e m o v e d w i l l b e the p e a k of m a x i m u m intensity f r o m the t o p mass n u m b e r . A n e v e n m o r e i n f l u e n t i a l factor i n d e t e r m i n i n g the p o i n t of m a x i m u m i n t e n s i t y , h o w ­ ever, is the ease of a b s t r a c t i o n of h y d r o g e n atoms, a n d i n boranes this a b s t r a c t i o n occurs r e l a t i v e l y easily. W i t h o u t e x c e p t i o n , at n o r m a l i o n i z i n g voltages, the i o n of h i g h e s t i n t e n s i t y has f e w e r h y d r o g e n s t h a n the p a r e n t molecule.

F u r t h e r m o r e , these same s p e c t r a l characteristics are c a r r i e d

over to a l k y l d e r i v a t i v e s of t h e boranes. 191

192

MASS S P E C T R O M E T R Y IN INORGANIC C H E M I S T R Y

Figure

1.

Molecular

configurations

of typical

boron

hydrides

O n the other h a n d , for the stable closed-cage cZoso-carboranes

the

f r a g m e n t a t i o n patterns are representative of m i n i m a l h y d r o g e n abstract i o n . ( T h e terms closo- a n d nido-, p e r t a i n i n g to carboranes, w e r e a d o p t e d at the latest m e e t i n g of the B o r o n N o m e n c l a t u r e C o m m i t t e e , A m e r i c a n C h e m i c a l Society M e e t i n g , N e w Y o r k C i t y , S e p t e m b e r 12-16, 1966. )

The

s p e c t r a l patterns d i s p l a y s h a r p cut-oflEs at the h i g h e s t mass n u m b e r s , a n d the h i g h e s t i n t e n s i t y p e a k almost i n v a r i a b l y is that of the p a r e n t i o n ; i n a f e w cases the i o n w i t h one or t w o h y d r o g e n s a b s t r a c t e d is of s l i g h t l y h i g h e r i n t e n s i t y t h a n the p a r e n t i o n . T h e second, t h i r d , etc. generations of ions ( those w i t h one, t w o , etc. b o r o n a n d / o r c a r b o n atoms a b s t r a c t e d ) h a v e intensities that are o n l y s m a l l percentages

of t h e i r p a r e n t

group

14.

DiTTER E T A L .

intensities.

193

Boraties and Carboranes

A s w i t h boranes, these characteristics are reflected i n the

r e l a t e d a l k y l a t e d cZoso-carboranes, a n d once a g a i n the o v e r - a l l profile serves as a r e a d y " f i n g e r p r i n t " for q u i c k i d e n t i f i c a t i o n .

Figure

2.

Molecular

configurations

of typical

B e c a u s e of the

closo-carboranes

194

MASS S P E C T R O M E T R Y IN INORGANIC C H E M I S T R Y

resistance

to h y d r o g e n

a b s t r a c t i o n , cZoso-carborane

spectra

resemble,

s o m e w h a t , the s p e c t r u m of e l e m e n t a l b o r o n . N i d o - c a r b o r a n e s , w h i c h h a v e o p e n m o l e c u l a r structures a n d w h i c h g e n e r a l l y c o n t a i n h y d r o g e n b r i d g e b o n d i n g , resemble boranes m o r e t h a n t h e y r e s e m b l e cZoso-carboranes

i n t h e i r f r a g m e n t a t i o n patterns. A t least

this is the case w i t h the f e w nido-carboranes that h a v e b e e n s y n t h e s i z e d a n d a n a l y z e d mass s p e c t r a l l y . I n the f o l l o w i n g discussion the s t r u c t u r a l configurations of

boranes

w i l l b e c o m p a r e d w i t h the t w o classes of carboranes, a n d s t r u c t u r a l d i f ­ ferences w i l l t h e n b e r e l a t e d i n a g e n e r a l w a y to mass s p e c t r a l f r a g m e n ­ tation patterns. T h e mass spectra of a l l cZoso-carboranes a n d the s p e c t r u m of the m e t h y l d e r i v a t i v e of the

and derivatives

rado-carborane,

CB >H , r

w e r e o b t a i n e d w i t h a P e r k i n - E l m e r H i t a c h i R M U - 6 D spectrometer

9

(80

volts i o n i z i n g p o t e n t i a l ) l o c a t e d at W e s t C o a s t T e c h n i c a l S e r v i c e , S a n G a b r i e l , C a l i f . T h e r e m a i n i n g spectra w e r e o b t a i n e d w i t h a C o n s o l i d a t e d M o d e l 21-620 spectrometer. f r a g m e n t a t i o n patterns w i t h

A l t h o u g h there are some d i s s i m i l a r i t i e s i n different

instruments a n d w i t h

different

voltages, the o v e r - a l l mass s p e c t r a l p r o f i l e s — w h i c h are o u r m a i n interest h e r e — d o n o t c h a n g e a p p r e c i a b l y . I n several instances, as i n d i c a t e d , the exact i s o m e r i c structures of s o m e of the cZoso-carboranes w e r e u n k n o w n , b u t i t is h i g h l y d o u b t f u l w h e t h e r i s o m e r i c differences

c o u l d effect a n y

gross changes i n s p e c t r a l patterns.

Borane

Structures

M o l e c u l a r structures of some t y p i c a l b o r o n h y d r i d e s are s h o w n i n F i g u r e 1.

T h o s e h a v i n g the m o r e c o n d e n s e d

structures ( B , H , r

9

B Hi , 6

0

a n d B10H14) h a v e one t e r m i n a l h y d r o g e n for e a c h b o r o n a t o m , w h i l e those w i t h o p e n structures ( B H i 4

a n d B H n ) also h a v e B H

0

5

2

groups.

T h e f o r m e r are the s o - c a l l e d " s t a b l e " boranes, w h i l e the latter, e x c e p t i n g d i b o r a n e , are the " u n s t a b l e " boranes, d e n o t e d as s u c h i n a c c o r d a n c e w i t h t h e i r r e l a t i v e t h e r m a l stabilities ( 2 5 ) .

A better d e s i g n a t i o n is the f o r m u l a

( B H ) ( B H ) a . , w h e r e η has a n i n t e g r a l v a l u e , a n d χ = w

3

boranes a n d 3 for unstable boranes

(6).

2 for

of a l l boranes is the presence of three-center Β — Η — Β ( h y d r o g e n bonding (12).

stable

O n e significant c h a r a c t e r i s t i c bridge)

O n electron i m p a c t there is a p r o n o u n c e d t e n d e n c y

for

the h y d r o g e n atoms to b e a b s t r a c t e d i n p a i r s , a n d some mass s p e c t r a l evidence

with bridge-deuterated

decaborane

(23)

and labeled tetra-

b o r a n e ( 7 ) i n d i c a t e d t h a t the first p a i r of h y d r o g e n s a b s t r a c t e d consists of a t e r m i n a l h y d r o g e n a n d its adjacent h y d r o g e n b r i d g e a t o m . w o r k w i t h zero source contact mass s p e c t r o m e t r y (14),

Later

h o w e v e r , suggests

that, for tetraborane at least, this m e c h a n i s m m a y b e incorrect.

14.

DiTTER E T A L .

Boranes and

195

Carboranes

Figure 3. Structural similarities of hexaborane-10 and three of the nido-carboranes. The structure of C B He> which is analogous to the others, is not shown /t

Closo-Carborane As

2

Structures

mentioned previously, two

k n o w n : c l o s e d cage (closo-)

g e n e r a l classes of

a n d o p e n (nido-)

carboranes

compounds.

The

are closo-

c o m p o u n d s as a class are s i g n i f i c a n t l y m o r e stable u n d e r e l e c t r o n i m p a c t , are less r e a c t i v e c h e m i c a l l y , a n d are t h e r m a l l y m o r e stable t h a n e i t h e r the boranes or nicZo-carboranes. A d d i t i o n a l l y , e a c h b o r o n a n d e a c h c a r b o n in a

rfoso-carborane

has a s i n g l e t e r m i n a l h y d r o g e n , a n d g e n e r a l l y there

are n o h y d r o g e n b r i d g e s .

W i t h one e x c e p t i o n , C B > H r

7

(15),

the

closo-

carboranes r e p o r t e d to d a t e c o n t a i n t w o c a r b o n atoms a n d h a v e t h e g e n e r a l f o r m u l a C B „ H „ . T h e structures of representative c o m p o u n d s 2

+ 2

of this t y p e are s h o w n i n F i g u r e 2. The

s i m p l e s t m e m b e r of the series a n d the one first d i s c o v e r e d is

C2B3H5, cZoso-l,5-dicarbapentaborane ( 5 , 10, 13, 19, 2 1 ) , a t r i g o n a l b i p y r a m i d w i t h a c a r b o n i n e a c h of the t w o apex positions. Grimes (9)

Recently

has p r e s e n t e d e v i d e n c e for a n a l k y l d e r i v a t i v e of the 1,2-

i s o m e r i n w h i c h one skeletal c a r b o n is i n a n apex p o s i t i o n a n d the other is e q u a t o r i a l . T h e s e c o n d c a r b o r a n e i n the closo -series is C B 4 r I e , a 2

196

MASS S P E C T R O M E T R Y

I N INORGANIC C H E M I S T R Y

t e t r a g o n a l b i p y r a m i d , of w h i c h t w o isomers are k n o w n : t h e 1,2- a n d t h e 1,6-dicarba-compounds

17, 19, 22). S i m i l a r l y , g o i n g u p t h e scale

(10,13,

b y successive a d d i t i o n o f BH units, there a r e C B H 2

21 ), C B H (13,28,31), 2

6

2

(8, 13, 26), a n d C B H i 2

r )

C B H (13, 28), C B H

8

1 0

7

9

2

8

(1,10,11,13,17,19,

7

1 0

(13,20, 28), C B H 2

9

13L

(5, 12, 13, 19). I n e a c h case there are k n o w n

2

o r p o t e n t i a l isomers w i t h carbons a r r a n g e d i n v a r i o u s positions i n t h e m o l e c u l a r skeletons.

I n t h e case o f C B i H i , t h e s t r u c t u r e is a c l o s e d 2

0

2

i c o s a h e d r o n , a n d a l l atoms o c c u p y e q u i v a l e n t p o s i t i o n s ; t h e n u m b e r i n g system i s s u c h t h a t o n e a r b i t r a r i l y selects o n e o f t h e carbons as t h e apex ( N o . 1 ) , a n d t h e e q u a t o r i a l positions a r e t h e n n u m b e r e d c l o c k w i s e i n each plane. Monocarbahexaborane

( 7 ) , t h e o n l y r e p o r t e d cZoso-carborane

one c a r b o n a t o m ( I S ) , is isoelectronic w i t h C B H . 2

4

6

with

I t has a b r i d g e

h y d r o g e n a n d is t h e o n l y cZoso-carborane t o date w i t h this feature. Nido-Carborane

Structures

T h e n i d o - c a r b o r a n e s that h a v e b e e n d i s c o v e r e d a n d c h a r a c t e r i z e d

to date i n c l u d e four, CB H 5

C B H 4

2

BH

2

6

9

(16), C B H 2

4

8

(18, 19), C B H 3

3

7

(4), a n d

( 3 ) , t h a t arise f r o m systematic s u b s t i t u t i o n o f CH groups f o r

groups w i t h i n B H i w i t h w h i c h t h e y are isoelectronic. A l l o f these 6

0

species, i n c l u d i n g B H i , h a v e p e n t a g o n a l p y r a m i d structures. B H i has 6

a

10 11

B2

20

22

0

6

B4

B3

30 32

40 42 44

B8

*7

Id ft 74 76 78 80 82 84 86

B

+

5

50 52 54

+

60 62 64 66

B|0

B9

88 90 92 «

*

0

*

100 102T o n k 1Ô8 110

m/e

Figure

4.

Synthetic

polyisotopic mass spectrum occurring abundance

of boron of

naturally

14.

DiTTER E T A L .

Boranes and

197

Carboranes

f o u r b r i d g e h y d r o g e n s , w h i l e the n i d o - c a r b o r a n e s h a v e three, t w o , one, a n d zero b r i d g e h y d r o g e n s , r e s p e c t i v e l y ; e x c e p t i n g C B H 4

2

the structures

6

of these c o m p o u n d s are s h o w n i n F i g u r e 3. I n the case of C B H , o n l y 5

9

m e t h y l derivatives h a v e b e e n r e p o r t e d , w h i l e the p a r e n t species itself r e m a i n s u n d e t e c t e d . S i m i l a r l y , e v i d e n c e for the p a r e n t c o m p o u n d

C B H 3

3

7

is s t i l l tentative, b u t three C - m e t h y l d e r i v a t i v e s h a v e b e e n i s o l a t e d a n d characterized.

A fifth n i d o - c a r b o r a n e , C B H i 2

9

(19, 2 9 ) ,

3

presumably

containing two bridge hydrogens a n d h a v i n g an open icosahedral structure, also has b e e n p r e p a r e d . Tebbe, Garrett, a n d H a w t h o r n e (27) have reported an example of a t h i r d t y p e of c a r b o r a n e , C B H i , w h i c h t e n t a t i v e l y has b e e n d e t e r m i n e d 2

7

3

to c o n t a i n t w o m e t h y l e n e g r o u p s a n d t w o h y d r o g e n b r i d g e s . It does not f a l l i n t o either the closo- or nidoGeneral Characteristics

categories.

of Boron Spectra

If e l e m e n t a l b o r o n c o n s i s t i n g o n l y of

10

B - i s o t o p e w e r e s u b j e c t e d to

e l e c t r o n i m p a c t a n d t h e n a n a l y z e d mass s p e c t r o m e t r i c a l l y , one observe o n l y m o n o i s o t o p i c species at m/e to

B , B ,

1 0

+

1 0

2

+

1 0

would

10, 20, 30, etc., c o r r e s p o n d i n g

B , etc. S i m i l a r l y , the B - i s o t o p e i n p u r e e l e m e n t a l f o r m 3

+

n

w o u l d generate peaks at m/e 11, 22, 33, 44, etc. ( B , . . . ) . I n b o r o n of n

naturally occurring composition

( B/ n

1 0

+

B == 4.0), h o w e v e r , the result

w o u l d b e a p o l y i s o t o p i c mass s p e c t r u m of essentially s t a t i s t i c a l l y d i s tributed

l l

B and

1 0

B , as d e p i c t e d i n F i g u r e 4. F o r i o n groups c o n t a i n i n g

s m a l l n u m b e r s of borons

(say B i to B ) the s p e c t r a l profile is statis+

4

+

t i c a l l y w e i g h t e d i n f a v o r of the h i g h e r mass n u m b e r s of the

group,

because of the h i g h c o n c e n t r a t i o n ( 8 0 % ) of B ; — i . e . , i n the B - g r o u p , n

n

B

is the most a b u n d a n t i o n , w h i l e i n the B - g r o u p , B

+

3

3

n

4

4

+

and

1 1

B

3

1 0

B

1

are i n e q u a l a b u n d a n c e . A s the n u m b e r of borons increases b e y o n d f o u r , h o w e v e r , the m a x i m u m i n t e n s i t y p e a k ( o r p e a k s ) begins to shift a w a y f r o m the cut-off peak.

I n the B , - g r o u p , B r

n

4

1 0

Bi

is the most a b u n d a n t

+

i o n , w h i l e i n the B i o - g r o u p , it is " B s ^ B / , w h i c h is 2.81 times as a b u n d a n t as

n

B

1 0

+

.

T h e a b u n d a n c e ratios of a l l the i s o t o p i c species i n a p a r t i c u l a r i o n g r o u p are r e a d i l y c a l c u l a t e d b y s i m p l e statistics. I f the b o r o n occurs i n n a t u r a l a b u n d a n c e , the c o n c e n t r a t i o n of a n y i o n , B n

x

1 0

B , is g i v e n b y y

[ H B / o B J = W(.80)*(.20)*. I n this expression, W is the statistical w e i g h t — t h e n u m b e r of different ways

n

B and

1 0

B atoms c a n b e a r r a n g e d i n the a v a i l a b l e skeletal positions

— n u m e r i c a l l y e q u a l to (x

+

y)\/x\y\. T h e values of W

i n m a t h e m a t i c a l h a n d b o o k s as " b i n o m i a l coefficients."

are t a b u l a t e d

198

MASS S P E C T R O M E T R Y

MONOISOTOPIC

POLYISOTOPIC

5 9

B

52

54

56

58

60

IN INORGANIC C H E M I S T R Y

H

8

62 64

6

4

2

0

H'S ABSTRACTED

m/e

B9H|5 .1

102 104 106 108 110 112

Figure 5.

14

12 10

8

6

4

Parent group mass spectra of pentaborane-9 nonaborane-15

2

and

A s a n e x a m p l e , c o n s i d e r a c o m p o u n d w i t h five b o r o n atoms. B a s e d o n t h e a b o v e e q u a t i o n the concentrations a n d i s o t o p i c a b u n d a n c e ratios, r e l a t i v e to

1 1

B , are as f o l l o w s : 5

Abundance

Concentration

Isotopic Species

1(.80) 5(.80) (.20) 10(.80)3(.20)2 10(.80) (.20) 5(.80)(.20) 1(.20) 5

ιΐΒ ιοβ

"Bg^B* "Bo^Ba B^°B B 11

1 0

5/4 10/4 10/4 5/4 1/4

4

4

2

3

4

4

δ

5

2 3 4 δ

Ratio

1.0 =1.25 = 0.625 = 0.156 = 0.0195 = 0.00098

S i m i l a r c a l c u l a t i o n s c a n b e c a r r i e d o u t f o r a l l other i o n g r o u p s ( a l r e a d y t a b u l a t e d i n T a b l e I of R e f . 2 4 ) , a n d the e l e m e n t a l b o r o n s p e c t r u m i n F i g u r e 4 is b a s e d o n these d a t a . T h e u t i l i t y of s u c h d a t a lies i n c a l c u l a t i n g m o n o i s o t o p i c s p e c t r a f r o m p o l y i s o t o p i c d a t a since the concentrations of a l l i s o t o p i c species c a n b e d e t e r m i n e d b y m e a s u r i n g o n l y those ions c o n ­ taining

1 1

B-atoms.

F o r e x a m p l e , the m o n o i s o t o p i c s p e c t r u m of B > H is o b t a i n e d b y first r

measuring

n

B H 5

9

+

(m./e. 64), then subtracting B n

9

4

1 0

BH

9

+

,

l l

B

8

, o

B H 2

0

+

,

14.

DiTTER E T A L .

Boranes

and

199

Carboranes

etc. ( r e l a t i v e values 1.0, 1.25, 0.625, etc.) f r o m m/e 63 d o w n to m/e 5 9 (

1 0

B H 5

9

+

).

T h e r e s i d u a l o f m/e 6 3 t h e n is B H n

intensities of B H 5

8

+

, B H 5

7

+

1 1

B

4

1 0

BH

, . . . B

5

8 +

+

,

n

B

3

1 0

5

8

, a n d f r o m this t h e

+

B H \ etc., a n d u l t i m a t e l y a l l ions, B , H , 2

8

r

are d e t e r m i n e d . N e x t i n l i n e is t h e B

4

9

+

H / group,

t h e n Β Η / , etc. 3

I n e a c h g r o u p , i f t h e correct n u m b e r of b o r o n atoms is a s s u m e d , t h e d a t a s h o u l d r e d u c e to a neat m o n o i s o t o p i c s p e c t r u m . I f t h e n u m b e r o f b o r o n atoms a s s u m e d is s m a l l e r t h a n the a c t u a l n u m b e r present, t h e d a t a also m a y r e d u c e to n e g l i g i b l y s m a l l r e s i d u a l s , b u t i f t h e n u m b e r a s s u m e d is greater t h a n t h e a c t u a l n u m b e r present, i n o r d i n a t e l y large n e g a t i v e residuals w i l l o c c u r d u r i n g t h e r e d u c t i o n process. T h e c r i t e r i o n , therefore, is the largest n u m b e r of b o r o n atoms that w i l l s u i t a b l y r e d u c e t h e d a t a . Mass Spectra of Boranes If, to t h e b o r o n i o n species i n F i g u r e 4 w e c o u l d a d d h y d r o g e n s , t h e cut-off p e a k w o u l d shift u p w a r d i n p r o p o r t i o n to t h e n u m b e r of h y d r o g e n s a d d e d , a n d the profiles w o u l d b e t h e same as f o r e l e m e n t a l b o r o n . F o r

METHYLPENTABORANE

I

66 68 70 72 74

7T

10

8

6

4

2

0

H'S ABSTRACTED

m/e

ETHYLPENTABORANE

12

Figure

6.

10

8

6

4

2

0

Parent group mass spectra of two alkyl derivatives pentaborane-9

of

200

MASS S P E C T R O M E T R Y

example, B H 5

+

9

IN INORGANIC C H E M I S T R Y

w o u l d o c c u p y the r e g i m e f r o m m/e 59 to m/e 64, c o r r e ­

s p o n d i n g to t h e mass r a n g e o f m/e 50 to m/e 55 of the B

5

m/e 63 because the species

1 0

B H 3

+

9

to

1 1

B H 5

9

+

r a t h e r t h a n the r a n g e

species; the highest i n t e n s i t y p e a k w o u l d b e

+

n

B4

1 0

BH

9

+

w o u l d b e statistically m o s t p r o b ­

able. H o w e v e r , since e l e c t r o n i m p a c t also k n o c k s h y d r o g e n s off some of the p e n t a b o r a n e m o l e c u l e s , the entire s p e c t r u m of ions f r o m m/e (

1 0

B

5

+

) to m/e 64 ( B , H 1 1

r

+

9

) shows u p . F u r t h e r m o r e , B H 5

h i g h e s t i n t e n s i t y , a n d v a r i e d y i e l d s of the v a r i o u s Β Η „ δ

+

5

50

is the i o n of

ions c o m b i n e d

+

w i t h t h e statistical d i s t r i b u t i o n o f b o r o n isotopes causes the profile to p e a k at m/e 59 to m/e 60, as s h o w n i n F i g u r e 5. T h e effect is e v e n m o r e p r o n o u n c e d for the B H - c o n t a i n i n g " u n s t a b l e " b o r a n e , B H i , w h i c h has 2

9

5

its m a x i m u m i n t e n s i t y p e a k n i n e mass n u m b e r s b e l o w its m o l e c u l a r w e i g h t of 114.

A l s o , the t w o ions B H i 9

+ 5

and B H 9

X 4

+

are of n e g l i g i b l y s m a l l

intensities, a c h a r a c t e r i s t i c w h i c h h o l d s t r u e for a l l " u n s t a b l e " boranes. I n essence, t h e n , the b o r o n isotope d i s t r i b u t i o n a n d the ease of a b s t r a c t i o n o f h y d r o g e n s g i v e boranes t h e i r b r o a d , r o u n d e d profiles, a n d this c o n ­ tributes to easy i d e n t i f i c a t i o n .

B H 5

9

• 1

52

1 I

54

I

57

1 I

58

I

I I

60

62

1 1 1

64

m/e

CBH 2

3

8

6

4

0

5

ι I I 1 1 I I I 56 58 60 62

Figure

2

H'S ABSTRACTED

4

2

7. Comparison of mass spectra of 1,5-C B H 2,4-C B H closo-carboranes with that of B H 2

2

5

7

3

and

5

5

0

9

14.

DiTTER E T A L .

Boranes

and

201

Carboranes

B|0H|4 110 112 114 116 118 120 122 124

14 12 10

8

6

4

2

H'S ABSTRACTED

m/e

C2BgH,0 , . M i l l

10

108 110 112 114 116 118 120 122

8

6

4

2

0

C 2 B, 0 H | 2

4

130 132 134 136 138 140 142 T44

Figure

I?

8. Comparison of mass spectra of C B H CB H closo-carboranes with that of B 2

2

10

12

8

and 1,2-

10

H

10

u

T h e same g e n e r a l f r a g m e n t a t i o n patterns h o l d t r u e f o r t h e r e l a t e d a l k y l - b o r a n e s , a n d t w o t y p i c a l examples a r e s h o w n i n F i g u r e 6. A d d i n g m e t h y l a n d e t h y l groups m e r e l y shift t h e cut-offs u p w a r d 14 a n d 28 mass n u m b e r s , r e s p e c t i v e l y , reflecting t h e a d d i t i o n of C H a n d C H 2

2

4

to t h e

m o l e c u l a r w e i g h t . T h e fact that t h e p a r e n t g r o u p profile is c h a n g e d o n l y s l i g h t l y suggests

that the hydrogen

a b s t r a c t i o n u p o n electron

impact

occurs p r e f e r e n t i a l l y o n t h e b o r a n e skeleton, n o t o n t h e a l k y l s i d e c h a i n s , a n d this has b e e n v e r i f i e d b y mass s p e c t r a l analysis of c o m p o u n d s

with

d e u t e r a t e d a l k y l groups ( 3 0 ) .

Mass Spectral Profiles of CJoso-Carboranes. cZoso-carboranes, 5

2

3

5

I n F i g u r e 7 t h e p a r e n t g r o u p spectra of t w o

1,5-C B H 2

spectrum of B H . while C B H

Carboranes

9

3

(C B H 2

5

7

5

a n d 2 , 4 - C B H , are c o m p a r e d 2

5

7

w i t h the

has t h e same n u m b e r of borons as B H ,

has t h e same n u m b e r of s k e l e t a l atoms.)

5

9

T h e spectral

202

MASS S P E C T R O M E T R Y

IN INORGANIC C H E M I S T R Y

differences are q u i t e p r o n o u n c e d . T h e s m a l l degree of h y d r o g e n abstract i o n i n the cZoso-carboranes

c a n b e seen i n their m o n o i s o t o p i c

spectra;

i n e a c h case the p a r e n t i o n is of c o n s i d e r a b l y greater i n t e n s i t y t h a n a n y of its offspring.

T h e same g e n e r a l profile is e v i d e n t for the

C B H i o , shown i n comparison with B i H i 2

8

0

i n F i g u r e 8.

4

carborane,

C B H i o was 2

8

p r e p a r e d i n y i e l d s of less t h a n 1 % , a n d w e d o not k n o w w h i c h isomer w a s f o r m e d . T h e s p e c t r u m of l , 2 - C B 2

1 0

H i , also s h o w n i n F i g u r e 8, has 2

a f a i r l y intense p a r e n t i o n , b u t its highest i n t e n s i t y p e a k for some reason is t w o mass n u m b e r s b e l o w that of its p a r e n t . T h e reason f o r this a p p a r ent d i s c r e p a n c y is n o t k n o w n . I n F i g u r e 9 are spectra of the 1,2- a n d 1,6isomers of c Z o s o - C B H , a n d here w e see t h a t the C B H , 2

4

6

2

4

r

i o n is the

+

one of highest intensity. I n g e n e r a l , h o w e v e r , the o v e r - a l l s p e c t r a l c h a r acteristics c l o s e l y resemble other

cZoso-carboranes.

A s w i t h boranes, a l k y l d e r i v a t i v e s of carboranes f r a g m e n t n e a r l y t h e same as d o the n o n a l k y l a t e d parents. T h e h y d r o g e n s f r o m the a l k y l side chains a n d those f r o m the c a r b o r a n e skeleton a p p e a r to h a v e a b o u t the same g e n e r a l resistance to a b s t r a c t i o n . F i g u r e 10 c o m p a r e s the s p e c t r u m of 2 , 4 - C B H 2

5

7

w i t h that of a C - m e t h y l d e r i v a t i v e , C H C B H 6 , w h i l e 3

2

5

F i g u r e 11 shows spectra of the d i m e t h y l d e r i v a t i v e s of C B H i , C B H , 2

8

0

SYM-

H'S ABSTRACTED

m/e

UNSYM

64

66

68

Figure 9.

70

72

6

74

4

2

0

Parent group mass spectra of the 1,6- and 1,2isomers of CBH 2

A

6

2

7

9

14.

DiTTER E T A L .

C

Boranes

and

203

Carboranes

2 5 7 B

74

H

76 78 80 82

6

84 86

m/e

CH -C2B H 3

5

. . . .

88

Figure

C B H 2

6

8

4

2

0

H'S ABSTRACTED

6

ι ι ι I

90 92 94 96 98 100

10.

Similarities

in the mass spectra C-methyl derivative

of 2,4-C B H 2

(exact i s o m e r i c structures as y e t u n k n o w n ) .

5

and a

7

T h e spectra are

self-explanatory. 2V/do-Carboranes. A s m e n t i o n e d p r e v i o u s l y t h e n i d o - c a r b o r a n e s c o n ­ t a i n h y d r o g e n b r i d g e s , a n d t h e y are n o t as t h e r m a l l y or c h e m i c a l l y stable as t h e i r cZoso-counterparts.

F i g u r e 12 shows t h e spectra o f C B H 2

4

8

and

the m e t h y l d e r i v a t i v e o f C B - , H , a n d i t is a p p a r e n t that t h e i r f r a g m e n t a ­ 9

t i o n patterns are m o r e closely a l l i e d w i t h boranes t h a n w i t h t h e closocarboranes. T h i s is also d e m o n s t r a t e d r a t h e r d r a m a t i c a l l y b y c o m p a r i s o n w i t h the spectra of the t w o cZoso-carborane isomers of C B H 2

Over-all

Comparison

4

6

i n F i g u r e 9.

of Boranes and Carboranes

T o s h o w i n a g e n e r a l w a y h o w t h e p o l y i s o t o p i c mass s p e c t r a of t h e b o r a n e a n d c a r b o r a n e series c h a n g e as t h e n u m b e r o f b o r o n atoms i n ­ creases, w e h a v e p l o t t e d i n F i g u r e 13 t h e r e l a t i v e positions of t h e m a x i ­ mum

i n t e n s i t y peaks f o r a l l t h e c o m p o u n d s f o r w h i c h w e h a v e s p e c t r a .

F o r e x a m p l e , f o r t h e l o w e r m o l e c u l a r w e i g h t cîoso-carboranes t h e m a x i mum

i n t e n s i t y p e a k occurs o n e mass n u m b e r less t h a n t h e m o l e c u l a r

w e i g h t o f t h e p a r e n t m o l e c u l e , w h i l e f o r B i H i , w h i c h is a " B H " - t y p e 0

4

b o r a n e , t h e r e l a t i v e p o s i t i o n of this peak is seven mass n u m b e r s b e l o w the mass n u m b e r o f t h e p a r e n t .

I n s e v e r a l instances—e.g., B , H , t h e r

9

204

MASS S P E C T R O M E T R Y

IN INORGANIC C H E M I S T R Y

spectra s h o w t w o peaks of essentially e q u a l " m a x i m u m " i n t e n s i t y , a n d w e chose to use average ( n o n u n i t ) values i n the p l o t . I n the p l o t w e note a g e n e r a l t r e n d u p w a r d for a l l b o r o n

compounds

o w i n g to the w a y i n w h i c h b o r o n i s o t o p i c species are d i s t r i b u t e d ; h o w ­ ever, t h e p r e d o m i n a n t f a c t o r g o v e r n i n g the p o s i t i o n of the m a x i m u m i n t e n s i t y p e a k arises f r o m the ease of a b s t r a c t i o n of h y d r o g e n s f r o m p a r e n t ions. 4

B H - c o n t a i n i n g boranes

lose h y d r o g e n s

2

most readily, w h i l e the

s t a b l e " B H - b o r a n e s a n d the n i d o - c a r b o r a n e s are s o m e w h a t m o r e resistant

to h y d r o g e n a b s t r a c t i o n . T h e cZoso-carboranes most stable of these species. s u c h r e l a t e d species

are w i t h o u t q u e s t i o n the

O n e w o u l d p r e d i c t that the mass s p e c t r a of

as B i H ( C O ) 0

8

2

w o u l d also r e s e m b l e

the

closo-

carboranes. Determination

of Boron and Carbon

by ^C-lsotope

Analysis

W i t h a n y c a r b o n - c o n t a i n i n g c o m p o u n d of n a t u r a l i s o t o p i c a b u n d a n c e , there w i l l b e mass s p e c t r a l c o n t r i b u t i o n s f r o m i o n species c o n t a i n i n g t h e

(0Η3) 0 Β Η 2

2

8

8

140 142 144 146 148 150

10

JL_L 8

6

Mill 4

2

0

H'S ABSTRACTED

m/e

(CH^JgCgByHy

128 130 132 134 136 138

(CH ) C BgH 3

2

2

II.

ι • ».

8

6

I I » I I

4

2

0

6

116 118 120 122 124 126

Figure

10

1I ι 1I I I 1 _

10

Parent group mass spectra of three closo-carboranes

8

6

4

2

0

dimethyhted

14.

DiTTER E T A L .

B

Boranes

and

205

Carboranes

6 I0 H

64 66 68 70 72 74 76

10

m/e

C H

3

C B

6

I I t

4

2

0

H'S ABSTRACTED

5 8 H

Mill

10

78 80 82 84 86 88 90

8

6

4 2

8

6

4

0

2 4 8

C

B

H

66 68 70 72 74 76

Figure

13

8

C-isotope.

12.

Comparison of the spectra of two with that of hexaborane-10

2

nido-carboranes

T h e r e also w i l l b e s m a l l c o n t r i b u t i o n s f r o m d e u t e r i u m -

c o n t a i n i n g species, b u t i n c a l c u l a t i n g a b u n d a n c e ratios t h e d e u t e r i u m c a n b e c o n v e n i e n t l y l u m p e d together w i t h t h e C - s p e c i e s . 13

I n some cases,

w h e r e the n u m b e r o f h y d r o g e n atoms is s m a l l , i t c a n b e n e g l e c t e d e n t i r e l y . F o r a c o m p o u n d w i t h a n u n k n o w n c o m b i n a t i o n of c a r b o n , b o r o n , a n d h y d r o g e n ( o r other elements, f o r that m a t t e r ) , mass s p e c t r a l analysis g e n e r a l l y c a n b e u s e d to d e t e r m i n e t h e exact n u m b e r of b o r o n a n d c a r b o n atoms i n t h e p a r e n t c o m p o u n d .

T h e r e q u i r e m e n t s a r e : ( 1 ) a mass spec-

trometer t h a t gives g o o d p e a k d e f i n i t i o n , a n d ( 2 ) n e g l i g i b l e c o n t r i b u t i o n s f r o m i m p u r i t i e s i n t h e v i c i n i t y of t h e p a r e n t i o n mass n u m b e r .

Sharp

cut-offs at t h e p a r e n t i o n m/e are also d e s i r a b l e , a n d . i n this respect t h e cZoso-carboranes are almost i d e a l l y s u i t e d . T h e m e t h o d c a n b e i l l u s t r a t e d with C B H i 2 , the dimethyl derivative of C B H . 4

6

2

6

8

First Approximation. T h e c o m p o u n d i n q u e s t i o n h a s a b o r a n e profile a n d , e x c e p t i n g a s m a l l

13

closo-car-

C - i s o t o p e p e a k at m/e 127 ( r e l a -

t i v e i n t e n s i t y 1.0), t h e h i g h mass cut-off occurs at m/e 126 ( i n t e n s i t y

206

MASS S P E C T R O M E T R Y I N I N O R G A N I C C H E M I S T R Y

2 3 . 9 ) . N o w the cut-off p e a k w o u l d h a v e to b e a t t r i b u t e d to B - c o n t a i n i n g 1 1

ions f r o m species s u c h as C B H i , C B o H i , o r C B H n , etc. 3

quently, the C-isotope 1 3

C

C

1 2

1

B H

1 1

2

7

,

+

1 3

1 3

C

1

1 2

C

3

7

3

peak

13

B H

1 1

6

4

2

5

5

Conse-

a t m/e 127 w o u l d t h e n h a v e t o b e

1 2

+

,or

1 3

C

1

1 2

C

4

n

B H 5

1 1

+

, etc. A s w i t h b o r o n

isotopes, i t is a f a i r l y s i m p l e m a t t e r t o c a l c u l a t e r e l a t i v e a b u n d a n c e s o f ions c o n t a i n i n g

1 3

C and

1 2

C ; b a s e d o n n a t u r a l a b u n d a n c e o f the t w o i s o -

topes, the c a l c u l a t i o n s are as f o l l o w s : General formula: ForC B H 3

7

For C B H 4

6

1 3

2

2

[

2

1 2

2

C l

[

[

1 2

4 (.98931) 3 (.01069) 1(.98931)

4

4

C l

=

0.03242

=

0.04322

=

0.05402

1 (.98931)3

c ]

[l C 13 ]

CRBKIL

2

3

C l

y

3(.98931) (.01069)

c ]

3

1 2

x

C y

[l C 13 ]

:

2

For

x

[l C 13 ]

:

1 2

[ l C 1 3 ] = W(.98931) (.01069)

4

5 ( . 9 8 9 3 1 ) (.01069) 4

1 (.98931)

c ] 5

5

T h e o b s e r v e d r a t i o o f m/e 127 t o m/e 126 i s 1/23.9, o r 0.0418, p o i n t i n g to

C B Hi 4

We 1 2

C

6

as t h e c o r r e c t

2

could 4

1 1

B

6

1

H

n

2

formula for the compound

have

Hi ,

t o m/e 127, a l t h o u g h this is unnecessary w h e n t h e

+

included

t h e d e u t e r i u m isotope

i n question.

also

contribution,

Lu

4 5 6 NO. OF BORONS Figure

7 8 9 IN MOLECULE

1 3 . Comparison of spectral profile boranes and carboranes

characteristics

of

14.

DiTTER E T A L .

Figure

14.

Boranes and

Distribution

207

Carboranes

of ion species in the mass spectrum "second approximation'

of

B C, H — 6

t

]2

(Legend: Similar cross-hatched areas represent related boron isotopic species; ion formulas in boxes represent related carbon isotopic species of interest)

c a l c u l a t i o n is o n l y a first a p p r o x i m a t i o n .

Just for the sake of c o m p l e t e ­

ness, h o w e v e r , the c o n t r i b u t i o n of this i o n w o u l d b e P E W ] [Ή

1 2

12(.99984)«(.0001β)

]~ ~

(Λ8984)~ΰ

A d d e d to the p r e v i o u s r e s u l t for

1 H

~

°'

00192

C w e get a t o t a l c a l c u l a t e d c o n t r i b u t i o n

of .04322 - f .00192 — .04514, c o m p a r e d w i t h the o b s e r v e d i n t e n s i t y r a t i o of 0.0418.

I t is not necessary to d e r i v e these values for e a c h s i t u a t i o n , h o w e v e r , since tables of i s o t o p i c a b u n d a n c e (2)

ratios are a l r e a d y a v a i l a b l e .

Beynon

for e x a m p l e , has t a b u l a t e d t h e m for v a r i o u s c o m b i n a t i o n s of c a r b o n ,

h y d r o g e n , n i t r o g e n , a n d o x y g e n ( no b o r o n , u n f o r t u n a t e l y ) u p to mass 250. I n some cases ( i n c l u d i n g the C H 4

1 2

p o r t i o n of C B « H 4

1 2

) , it is necessary

to extrapolate ( l i n e a r l y ) the d a t a i n his t a b l e . Second Approximation.

I n the first a p p r o x i m a t i o n w e a s s u m e d that

o n l y one i o n w a s c o n t r i b u t i n g to m/e

126, n a m e l y

1 2

C

4

l l

B {Hi (

2

+

.

T h i s is

208

M A S S S P E C T R O M E T R Y IN INORGANIC C H E M I S T R Y

Figure 15. Distribution of ion species in the mass spectrum of B C H —"third approximation' (Legend: same as in Figure 14) 6

not strictly true, however, terium neglected 1 1

B

5

1 0

Jt

because two

4

1 1

B i - c o u n t e r p a r t of m/e

C - c o n t a i n i n g isotopes

(deu-

One

is the

127 a n d , f r o m statistical c a l c u l a t i o n s , i t is 127; the other i o n is the

B H n — t h e p r i n c i p a l i o n of m/e

13

C - c o u n t e r p a r t of

125. A s s h o w n i n F i g u r e 14, s u b -

+

6

1 3

a g a i n for s i m p l i c i t y ) also are present.

1.5 times the i n t e n s i t y of m/e C

12

t r a c t i o n of 1.5 f r o m the i n t e n s i t y of m/e 126 leaves a r e s i d u a l v a l u e of 22.4, w h i c h , as a s e c o n d a p p r o x i m a t i o n , w e c a n a t t r i b u t e to the i o n . T h e o b s e r v e d ratio of

1 3

C

1 2

C / 3

1 2

C

4

1 2

C

4

n

B Hi 6

2

+

n o w is 1.0/22.4, or 0.0446. T h i s

is closer to o u r c a l c u l a t e d v a l u e ( d e u t e r i u m i n c l u d e d ) of 0.04514 t h a n w a s o u r first a p p r o x i m a t i o n ( . 0 4 1 8 ) . S i m i l a r l y , i f it w e r e necessary to p e r f o r m these same for C B H i 3

7

3

computations

a n d C B H n , the a m o u n t s u b t r a c t e d f r o m m/e 5

5

b e 1.75 a n d 1.25, r e s p e c t i v e l y , since these are the counterparts of m/e

127. T h e residuals of m/e

a n d 22.6, r e s p e c t i v e l y , a n d the ratios of m/e b e 0.0452 a n d 0.0442, r e s p e c t i v e l y ; these

n

B6

l 0

126 w o u l d

B i and

n

B

4

1 0

Bi

126 t h e n w o u l d b e 22.1

127 to these residuals w o u l d

figures

deviate b y about

25%

f r o m the r e q u i r e d a b u n d a n c e ratios of 0.032 a n d 0.054 ( d e r i v e d b y m e t h ods g i v e n i n the "first a p p r o x i m a t i o n " section ).

14.

DiTTER E T A L .

Boranes and

209

Carboranes

Further Refinement o f Spectral Data. A s m e n t i o n e d i n t h e p r e v i o u s section a n d as s h o w n i n F i g u r e 15, t h e d a t a c a n b e f u r t h e r r e f i n e d b y t a k i n g i n t o a c c o u n t t h e C - a n a l o g of C 1 3

4

B H i i , the principal contributor

1 1

6

+

to m/e 125. M o r e o v e r , several i t e r a t i v e processes c a n b e u t i l i z e d to "zero i n " o n t h e exact c o n t r i b u t i o n of this i o n , f r o m w h i c h one c a n c a l c u l a t e p r e c i s e l y t h e i n t e n s i t y of

1 3

Ci

1 2

C

3

1 1

B Hi e

1

+

i n m/e 126. W e p e r f o r m e d this

task w i t h t h e d a t a at h a n d a n d o b t a i n e d n e a r l y exact checks w i t h t h e statistically c a l c u l a t e d v a l u e 1 3

C

1

1 2

C

3

1 1

B H e

1 2

+

of 0.04514 f o r t h e a b u n d a n c e

r a t i o of

.

T h e p o i n t of this w h o l e p r o c e d u r e is t h a t g i v e n g o o d spectra, o n e c a n use t h e m to d e t e r m i n e t h e exact n u m b e r s o f borons, carbons, h y d r o ­ gens, etc. ( b a r r i n g t h e absence of p a r e n t i o n s ) i n a c o m p o u n d .

In many

instances this t e c h n i q u e c a n p r e c l u d e t h e necessity f o r e l e m e n t a l c h e m i c a l analyses. I f t h e m a t e r i a l i n q u e s t i o n is i m p u r e , t h e mass s p e c t r a l analyses m a y n o t g i v e correct a n s w e r s — b u t , t h e n , n e i t h e r w i l l e l e m e n t a l analyses. F u r t h e r m o r e , w i t h a s m a l l a m o u n t of f r a c t i o n a t i o n , i t is g e n e r a l l y easy t o t e l l b y shifts of s p e c t r a l peaks w h e t h e r o r n o t i t is a r e l a t i v e l y p u r e c o m ­ pound.

T h e t e c h n i q u e c a n b e u t i l i z e d w i t h a n y i s o t o p i c elements o f

k n o w n abundance. Acknowledgment T h i s i n v e s t i g a t i o n w a s s p o n s o r e d b y t h e Office o f N a v a l R e s e a r c h .

Literature

Cited

(1) Beaudet, R. Α., Poynter, R. L., J. Am. Chem. Soc. 86, 1258 (1964). (2) Beynon, J. H., "Mass Spectrometry and Its Applications to Organic Chemistry," p. 486, Elsevier Publishing Co., New York, 1960. (3) Binger, P., Tetrahedron Letters 24, 2675 (1966). (4) Bramlett, C. L., Grimes, R. N., J. Am. Chem. Soc. 88, 4269 (1966). (5) Clark, C. C., U.S. Patent No. 3,062,756 (November 6, 1962). (6) Ditter, J. F., Spielman, J. R., Williams, Robert E., Inorg. Chem. 5, 118 (1966). (7) Fehlner, T. P., Koski, W. S., J. Am. Chem. Soc. 85, 1905 (1963). (8) Garrett, P. M., Tebbe, F. N., Hawthorne, M. F., J. Am. Chem. Soc. 86, 5016 (1964). (9) Grimes, R. N., J. Am. Chem. Soc. 88, 1070 (1966). (10) Grimes, R. N.,J.Am. Chem. Soc. 88, 1895 (1966). (11) Koster, R., Grassburger, Μ. Α., Angew Chem., Internat. Ed. 4, 439 (1965). (12) Lipscomb, W. N., "Boron Hydrides," W. A. Benjamin, Inc., New York, 1963. (13) Lipscomb, W. N., Science 153, 373 (1966). (14) Norman, A. D., Schaeffer, R., Baylis, A. B., Pressley, G. Α., Jr., Stafford, F. E., J. Am. Chem. Soc. 88, 2151 (1966). (15) Onak, T. P., Drake, R., Dunks, G. B., J. Am. Chem. Soc. 87, 2505 (1965).

210

MASS SPECTROMETRY

I N INORGANIC

CHEMISTRY

(16) Onak, T. P., Dunks, G. B., Spielman, J. R., Gerhart, F. J., Williams, Robert E., J. Am. Chem. Soc. 88, 2061 (1966). (17) Onak, T. P., Gerhart, F. J., Williams, Robert E., J. Am. Chem. Soc. 85, 3378 (1963). (18) Onak, T. P., Williams, Robert E., Weiss, H. G., J. Am. Chem. Soc. 84, 2830 (1962). (19) Onak, T. P., "Advances in Organometallic Chemistry," Vol. 3, p. 263, F. G. A. Stone, R. West, eds., Academic Press, New York, 1965. (20) Potenza, J. Α., Lipscomb, W. N., Inorg. Chem. 5, 1301 (1966). (21) Shapiro, I., Good, C. D., Williams, Robert E., J. Am. Chem. Soc. 84, 3837 (1962). (22) Shapiro, I., Keilin, B., Williams, Robert E., Good, C. D., J. Am. Chem. Soc. 85, 3167 (1963). (23) Shapiro, I., Lustig, M., Williams, Robert E., J. Am. Chem. Soc. 81, 838 (1959). (24) Shapiro, I., Wilson, C. O., Ditter, J. F., Lehmann, W. J., ADVAN. CHEM. SER. 32, 127 (1961). (25) Stock, Alfred, "Hydrides of Boron and Silicon," Cornell University Press, Ithaca, New York, 1933. (26) Tebbe, F. N., Garrett, P. M., Hawthorne, M. F., J. Am. Chem. Soc. 86, 4222 (1964). (27) Tebbe, F. N., Garrett, P. M., Hawthorne, M . F., J. Am. Chem. Soc. 88, 607 (1966). (28) Tebbe, F. N., Garrett, P. M., Young, D. C., Hawthorne, M . F., J. Am. Chem. Soc. 88, 609 (1966). (29) Wiesboeck, R. Α., Hawthorne, M . F., J. Am. Chem. Soc. 86, 1642 (1964). (30) Williams, Robert E., unpublished data. (31) Williams, Robert E., Gerhart, F. J., J. Am. Chem. Soc. 87, 3513 (1965). RECEIVED

October 24, 1966.