Applying Biotechnology and Microelectronics for Environmental Analysis

Biotronic Systems Corporation, 15225 Shady Grove Road, Suite 306,. Rockville, MD 20850 ... United States is due to the availabilty of chemical means o...
0 downloads 0 Views 615KB Size
Chapter 25

Applying

Biotechnology for

and

Microelectronics

Environmental Analysis

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

William D. Stanbro, Arnold L. Newman, and Kenneth W. Hunter, Jr. Biotronic Systems Corporation, 15225 Shady Grove Road, Suite 306, Rockville, MD 20850 A concept for a generic biosensor i s introduced that i s capable of measuring small molecules in environmental matrices. This sensor, the c a p a c i t i v e a f f i n i t y sensor, makes use of a combinat i o n of antibody and m i c r o e l e c t r o n i c technologies. Sensor operation i s demonstrated using sensors for hydrocortisone and p e n t a c h l o r o p h e n o l as examples. Because of the mature n a t u r e of the critical technologies, sensors based on this d e s i g n s h o u l d be c o m m e r c i a l l y available in the near future. Much of the current a g r i c u l t u r a l abundance of the United States i s due to the a v a i l a b i l t y of chemical means of pest control. However, pesticides also represent a considerable threat to the environment when they are used improperly. For t h i s reason the a b i l i t y to measure p e s t i c i d e residues at low concentrations i n environmental matrices such as surface and groundwaters and s o i l s i s of great importance. In t h i s paper we w i l l describe a concept for a generic biosensor, the capacitive a f f i n i t y sensor, capable of rapidly determ i n i n g the c o n c e n t r a t i o n of many t y p e s of s m a l l molecules i n the environment. Although several d e f i n i t i o n s of biosensor exist, we w i l l use the word to mean a microelectronic device that measures the i n t e r a c t i o n of an analyte with a b i o l o g i c a l l y produced molecule as part of the measurement system. F i g u r e 1 i s a b l o c k diagram of a generalized biosensor. The most c r i t i c a l element^ of the sensor i s the box marked Transducer; this i s where the i n f o r m a t i o n about the a n a l y t e ( i . e . the 0097-6156/88/0379-0331$06.00/0 ° 1988 American Chemical Society

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

332

BIOTECHNOLOGY FOR CROP PROTECTION

c o n c e n t r a t i o n ) i s t r a n s f o r m e d i n t o an e l e c t r i c a l signal. A b i o s e n s o r seeks t o e x p l o i t the r a p i d i t y and s p e c i f i c i t y of b i o m o l e c u l a r r e a c t i o n s , the consequences of which r e s u l t i n a change i n the e l e c t r i c a l or o p t i c a l p r o p e r t i e s t h a t can be transformed i n t o a change i n the measured v o l t a g e . Once a v o l t a g e change occurs i t can be f u r t h e r processed t o improve the s i g n a l t o n o i s e r a t i o and c o r r e l a t e t h e changes w i t h o t h e r s e n s o r s . The p r o c e s s e d s i g n a l can a l s o be u s e d t o change t h e t r a n s d u c e r c h a r a c t e r i s t i c s t o improve i t s performance i n a p a r t i c u l a r s i t u a t i o n . The a b i l i t y t o process the t r a n s d u c e r o u t p u t i n t h e s e ways i s one o f t h e g r e a t i n c e n t i v e s f o r developing sensor technology. Our g o a l i s t h e d e v e l o p m e n t o f a " u s e r f r i e n d l y " b i o s e n s o r f o r s m a l l m o l e c u l e s such as p e s t i c i d e s . To reach t h i s g o a l the sensor must have a number of characteristics. These i n c l u d e s p e c i f i c i t y , s e n s i t i v i t y , accuracy, p r e c i s i o n , ruggedness and m a n u f a c t u r a b i l i t y . While they are f o r the most p a r t s e l f - e x p l a n a t o r y , the c h a r a c t e r i s t i c of m a n u f a c t u r a b i l t y deserves f u r t h e r comment. The best sensor i s of l i t t l e use i f i t cannot be mass produced a t a reasonable cost. For t h i s reason our search f o r a t r a n s d u c t i o n mechanism f o r a b i o s e n s o r h a s c o n c e n t r a t e d w h e r e p o s s i b l e on w e l l p r o v e n t e c h n o l o g i e s t h a t l e n d themselves t o mass production. The b i o s e n s o r we present here combines two w e l l establ i s h e d t e c h n o l o g i e s ; a n t i b o d i e s and m i c r o e l e c t r o n i c s . Both p o l y c l o n a l a n t i b o d i e s and m o n o c l o n a l a n t i bodies prepared by hybridoma technology, are a v a i l a b l e c o m m e r c i a l l y f o r a wide v a r i e t y o f s m a l l m o l e c u l e s . The p r o c e s s e s f o r mass p r o d u c i n g a n t i b o d i e s a t a r e a s o n a b l e c o s t a r e w e l l u n d e r s t o o d (1). A n t i b o d i e s are a l s o a t t r a c t i v e because of t h e i r r e l a t i v e s t a b i l t y when compared w i t h other p r o t e i n s such as enzymes (1). M i c r o e l e c t r o n i c device f a b r i c a t i o n i s a standard t e c h n o l o g y t h a t can r a p i d l y p r o d u c e i n t r i c a t e s t r u c t u r e s on the m i l l i m e t e r t o micron s c a l e a t very modest c o s t p e r u n i t (2). Sensor Theory As d i s c u s s e d above t h e key t o any b i o s e n s o r i s i n t h e t r a n s d u c t i o n mechanism. The mechanism of the c a p a c i t i v e a f f i n i t y sensor i s shown i n F i g u r e 2. The sensor c o n s i s t s of a p l a n a r c a p a c i t o r composed of i n t e r d i g i t a t e d m e t a l f i n g e r s on an i n s u l a t i n g s u b s t r a t e . T h i s s t r u c t u r e i s then coated w i t h a t h i n l a y e r of a p a s s i v a t i o n m a t e r i a l . The r o l e of the p a s s i v a t i o n m a t e r i a l i s t o p r o t e c t t h e m e t a l s t r u c t u r e from d e t e r i o r a t i o n f r o m c o n t a c t w i t h t h e s o l u t i o n . A sample o f t h e anal y t e o r an a n a l o g r e t a i n i n g t h e a b i l i t y t o b i n d an a n t i b o d y t o t h e a n a l y t e i s c o v a l e n t l y bound t o t h e

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

25. STANBROETAL.

Analyte-

Applying Biotechnology and Microelectronics333

Transducer

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

Biomolecule I n t e r a c t s with analyte to produce e l e c t r i c a l signal

F i g u r e 1.

Display and Storage

Signal and Data P r o c e s s i n g

S i g n a l processed to improve s i g n a l t o n o i s e r a t i o * compensate f o r interferences, correlate m u l t i p l e s e n s o r s and convert t o concentration units

Data d i s p l a y e d i n u s e r f r i e n d l y form and/or a r c h i v e d on permanent s t o r a g e media

Block diagram o f a g e n e r a l i z e d biosensor.

F i g u r e 2. T r a n s d u c t i o n mechanism o f the a f f i n i t y sensor.

capacitive

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

334

BIOTECHNOLOGY FOR CROP PROTECTION

sensor surface. The s e n s o r i s t h e n p r e l o a d e d with anti-analyte antibodies which b i n d t o the s u r f a c e bound analyte. F i n a l l y , the assembly i s covered w i t h a s i z e - s e l e c t i v e membrane t h a t r e t a i n s the a n t i b o d i e s i n t h e s e n s o r , but a l l o w s t h e s m a l l a n a l y t e m o l e c u l e s t o enter or leave. The biosensor i s now ready t o perform r e a l - t i m e , o n - l i n e monitoring of the s e l e c t e d analyte. I n t h e absence o f f r e e a n a l y t e m o l e c u l e s from t h e e n v i r o n m e n t most o f t h e a n t i b o d i e s a r e bound t o t h e immobilized analyte. However, because the bond between t h e a n t i b o d y and t h e a n a l y t e i s r e v e r s i b l e , t h e r e e x i s t s a s t a t e of dynamic e q u i l i b r i u m governed by mass a c t i o n law k i n e t i c s . The c a p a c i t o r s t r u c t u r e i s so e n g i n e e r e d t h a t t h e bound a n t i b o d i e s a r e w i t h i n t h e e l e c t i c f i e l d of the c a p a c i t o r . When f r e e a n a l y t e e n t e r s t h e system, i t competes w i t h t h e i m m o b i l i z e d a n a l y t e f o r the a n t i b o d i e s , r e s u l t i n g i n a displacement of a n t i b o d i e s bound t o the immobilized analyte. Since the a n t i b o d i e s have a low d i e l e c t r i c constant (3) r e l a t i v e t o the d i e l e c t r i c constant of water, the change i n t h e d i e l e c t r i c c o n s t a n t between two c a p a c i t o r p l a t e s r e s u l t s i n a change i n c a p a c i t a n c e . T h i s change i n capacitance can be conveniently and p r e c i s e l y measured w i t h a number o f e l e c t r o n i c c i r c u i t s . Since the membrane prevents the l o s s of the a n t i b o d i e s , when the c o n c e n t r a t i o n o f a n a l y t e d e c r e a s e s i n t h e aqueous environment, the a n t i b o d i e s r e t u r n t o the sensor s u r face and the capacitance a l s o r e t u r n s t o b a s e l i n e . M a t e r i a l s and Methods Two t y p e s o f s e n s o r s w i l l be d e s c r i b e d ; one t o h y d r o c o r t i s o n e and one t o pentachlorophenol (PCP). C a p a c i t o r Substrate. The c a p a c i t o r s were produced by d e p o s i t i n g l a y e r s o f chromium, c o p p e r and g o l d on an a l u m i n a w a f e r 2.54 cm on a s i d e . The chromium, g o l d and i n i t i a l c o p p e r l a y e r s were d e p o s i t e d by v a p o r d e p o s i t i o n techniques w h i l e the copper l a y e r was b u i l t up t o i t s f i n a l t h i c k n e s s by e l e c t r o p l a t i n g . The i n t e r d i g i t a t e d s t r u c t u r e was produced u s i n g a standard p h o t o l i t h o g r a p h i c process employing a p o s t i v e photor e s i s t and s e l e c t i v e e t c h i n g t o l e a v e t h e d e s i r e d s t r u c t u r e . The hydrocortisone sensors were then p a s s i vated with 2 micrometers of a polymeric m a t e r i a l p a r y l e n e C (a p o l y m e r i z e d xylene), followed by 150 nm o f s p u t t e r e d S i 0 which forms a c h e m i c a l l y r e a c t i v e s u r f a c e f o r i m m o b i l i z i n g the analyte. The PCP s e n s o r s u b s t r a t e was p a s s i v a t e d w i t h a t h i n l a y e r o f p o l y d i m e t h y l s i l o x a n e deposited from acetone and allowed t o cure overnight at room temperature. 2

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

25. STANBRO ET AL.

Applying Biotechnology and Microelectronics335

B i n d i n g Chemistry. The h y d r o c o r t i s o n e sensor s u r f a c e was c r e a t e d by r e a c t i n g 3 - a m i n o p r o p y l t r i e t h o x y s i l a n e (APTS) ( P e t r a r c h S y t e m s ) w i t h t h e s u r f a c e i n d r y toluene f o r two hours a t room temperature f o l l o w e d by a 30 m i n u t e c u r e a t 60 d e g r e e s C. The PCP s e n s o r was coated by d i p p i n g i n 95% ethanol c o n t a i n i n g 2% APTS f o r one m i n u t e and c u r i n g o v e r n i g h t a t room t e m p e r a t u r e . I n b o t h c a s e s t h e a n a l y t e s were bound t o t h e amino f u n c t i o n a l group o f t h e s i l a n e t h r o u g h t h e c a r b o d i i m i d e - c a t a l y z e d f o r m a t i o n o f an amide l i n k a g e . The PCP sensor used 2,6-dichlorophenol t o which a butanoic a c i d group was bound a t t h e 4 p o s i t i o n o f t h e p h e n o l and t h e 4 p o s i t i o n o f t h e a c i d (Antech C o n s u l t a n t s ) . T h i s l e f t f r e e t h e c a r b o x y l a t e group o f t h e a c i d f o r r e a c t i o n w i t h t h e amine group. The h y d r o c o r t i s o n e system used h y d r o c o r t i s o n e hemisuccinate (Aldrich Chemical Company), and t h e c o u p l i n g r e a c t i o n was performed i n ethanol using l-ethyl-3-(3,3-dimethyaminopropyl)-carbodiimide ( A l d r i c h Chemical Company). Antibodies. The a n t i - P C P were a f f i n i t y purified monoclonal a n t i b o d i e s obtained from Westinghouse B i o A n a l y t i c S y s t e m s Co., R o c k v i l l e , MD. The a n t i h y d r o c o r t i s o n e was a commercially a v a i l a b l e p o l y c l o n a l a n t i b o d y p u r c h a s e d from Sigma C h e m i c a l Company, S t . L o u i s , MO; and t h e a n t i - T - 2 t o x i n a n t i b o d i e s a f f i n i t y p u r i f i e d m o n o c l o n a l s was o b t a i n e d from t h e U n i f o r m e d S e r v i c e s U n i v e r s i t y o f t h e H e a l t h S c i e n c e s , Bethesda, MD. Capacitance Measurement. Capacitance measurements were made on a GenRad Model 1657 RLC D i g i b r i d g e . A l l measurements were made a t 1000 Hz. Measurements o f C a p a c i t a n c e Change. A l l measurements r e p o r t e d h e r e were made i n 10 ml p h o s p h a t e b u f f e r e d s a l i n e (pH 7.4) and t h e t e s t d e v i c e had no s e l e c t i v e membrane. A l l e x p e r i m e n t s were c o n d u c t e d a t room temperature. R e s u l t s and D i s c u s s i o n . We w i l l present t h e r e s u l t s o f two e x p e r i m e n t s t o d e m o n s t r a t e t h e a b i l i t y o f t h e sensor t o respond t o a n t i b o d i e s b i n d i n g t o a sensor s u r f a c e and being d i s p l a c e d by f r e e a n a l y t e molecules. To i l l u s t r a t e t h e change i n c a p a c i t a n c e as a n t i b o d i e s b i n d t o t h e s e n s o r s u r f a c e , we have c h o s e n d a t a from the anti-PCP system. The upper curve o f F i g u r e 3 shows t h e change i n c a p a c i t a n c e ( p l o t t e d as t h e n e g a t i v e o f the r e l a t i v e change i n p a r t s p e r thousand) as anti-PCP a n t i b o d i e s b i n d t o i m m o b i l i z e d a n a l y t e on t h e s e n s o r surface. The bottom c u r v e shows a s m a l l change i n c a p a c i t a n c e when an a n t i b o d y s p e c i f i c t o T-2 t o x i n i s

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

336

BIOTECHNOLOGY FOR CROP PROTECTION

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

50

0

50

100

150

200

250

Antibody Concentration (pg/ml)

F i g u r e 3. D e c r e a s e i n c a p a c i t a n c e on a n t i b o d y b i n d i n g t o a pentachlorophenol c a p a c i t i v e a f f i n i t y sensor. 20

04

0.0

1

0.5 Hydrocortisone

r

1.0

L5

Concentration ffjM)

F i g u r e 4. I n c r e a s e i n c a p a c i t a n c e when a h y d r o c o r t i s o n e c a p a c i t i v e a f f i n i t y sensor i s exposed t o hydrocortisone.

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: November 22, 1988 | doi: 10.1021/bk-1988-0379.ch025

25. STANBRO ET AL.

Applying Biotechnology andMicroelectronics

337

added to the PCP system. This provides a c o n t r o l for possible non-specific adsorption of antibodies to the sensor surface. The second control shows the effect of preincubating the anti-PCP antibodies with PCP f o r several minutes before addition to the sensor. The PCP to anti-PCP molar r a t i o was 1.5 to 1. Here there i s a greatly reduced response which i s consistent with the free PCP occupying antibody binding s i t e s and thus r e d u c i n g t h e i r a v a i l a b i l i t y to r e a c t w i t h the immobilized analyte. Figure 4 i s an example of the sensor response when free hydrocortisone i s added to a sensor preloaded with anti-hydrocortisone antibody. The sensor response i s expressed as the relative change i n the baseline capac i t a n c e i n parts per thousand. From the r e s u l t s presented here i t i s apparent that the c a p a c i t i v e a f f i n i t y sensor i s capable of detecting the reversible binding and displacement of antibodies on i t s surface. It i s also apparent that the unbinding reaction can be brought about by the a d d i t i o n of free analyte. These r e s u l t s i l l u s t r a t e the general p r i n c i p l e s of sensor operation. I t should be p o s s i b l e to produce sensors for any analyte against which an antibody has been produced. This of course comprises an enormous array of d i f f e r e n t compounds, i n c l u d i n g many agrochemicals such as p e s t i c i d e s . The only components that must be changed i n going from one chemical to another are the immobilized analyte and the anti-analyte antibody. In addition, the technologies used i n producing the a n t i bodies and microelectronics are well known and amenable to mass production. This means that the time from design to production phase should be r a p i d , and also suggests that the sensor and i t s r e l a t e d e l e c t r o n i c s should be quite inexpensive to manufacture. In conclusion, we have presented a concept for a generic sensor, the c a p a c i t i v e a f f i n i t y sensor, based on a marriage of antibodies and m i c r o e l e c t r o n i c s . Development of this technology i s continuing with the expectation of producing commercially v i a b l e sensors for a wide variety of analytes i n the near future. Literature Cited 1.

Goding, J. W. Monoclonal Antibodies: P r i n c i p l e s and Practice; Academic Press: New York, 1983.

2.

Gise, P.; Blanchard, R. Modern Semiconductor Fabr i c a t i o n Technology; P r e n t i c e - H a l l : Englewood C l f f s , New Jersey, 1986.

3.

Mironov, S. L. Biochemistry and Bioenergetics, 1983, 10, 345-56. RECEIVED February 12, 1988

Hedin et al.; Biotechnology for Crop Protection ACS Symposium Series; American Chemical Society: Washington, DC, 1988.