5 Dehydroascorbic A c i d BERT M. TOLBERT and JONI B. WARD
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
Department of Chemistry, University of Colorado, Boulder, CO 80309
Dehydroascorbic acid (DHA) is the first stable oxidation product of L-ascorbic acid (AA). D H A can be easily and quantitatively prepared by air oxidation of A A over char coal in ethanol. D H A is stable for days in aqueous solution of p H 2-4. H N M R and 13C N M R studies show that the principle species of D H A is the bicyclic hydrate, 3,6-anhydro-L-xylo-hexalono-l,4-lactone hydrate. This finding is confirmed by synthesis and spectral studies of related com pounds. D H A contains equilibrium concentrations of vari ous dehydrated and open side-chain forms, but these species are too small to detect using N M R spectroscopy. The D H A dimer is converted to the monomer when it is dissolved in water. The chemistry of D H A is reviewed, in cluding the hydrolysis to diketogulonic acid and the reac tions of the 2- and 3-oxo groups. D H A readily forms Schiff bases and undergoes a Strecker reaction with amino acids. The known enzymatic reactions of D H A are reviewed. 1
Thefirstchemically stable product in the oxidation of L-ascorbic acid (AA) is L-dehydroascorbic acid ( D H A ) . It is normally prepared from A A using a variety of oxidizing agents such as the halogens (1-5), oxygen (6), quinones (7), and potassium iodate (8). D H A is present in biological tissue and is a part of the A A / D H A oxidizing/reducing couple. In addition, D H A or A A / D H A ratios may be related to cell division and, therefore, may have a critical role in growth regulation. The oxidized form of A A was first detected when Zilva (9) noticed that freshly oxidized solutions of AA retained their nutritional or physio logical activity. At the same period Szent-Gyorgyi also recognized that the oxidized form of AA could be regenerated to AA (10). Further inves tigations of these discoveries led to conclusion that AA could be reversibly oxidized to D H A (11) without loss of nutritional activity (12). On the basis of the structure of AA, the structure of D H A was postulated as a 2,3-diketolactone with possibly one or more of the keto groups hydrated (2). 0065-2393/82/0200-0101$06.75/0 © 1982 American Chemical Society In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
102
ASCORBIC ACID
D u r i n g t h e last 20 years a b e t t e r u n d e r s t a n d i n g of t h e s t r u c t u r e a n d c h e m i c a l n a t u r e of D H A a n d t h e free r a d i c a l i n t e r m e d i a t e t h a t m a y b e f o r m e d d u r i n g the o x i d a t i o n of A A has d e v e l o p e d . ments w e r e b a s e d N M R and
1 3
These
develop
on modern instrumental techniques including * H
C N M R spectroscopies a n d p u l s e d r a d i a t i o n e l e c t r o n s p i n
resonance ( E S R ) spectroscopy.
T h e c h e m i s t r y a n d p r o p e r t i e s of m o n o -
d e h y d r o a s c o r b i c a c i d ( A A " ) , a free r a d i c a l i n t e r m e d i a t e t h a t m a y f o r m e d i n t h e o x i d a t i o n of A A , is c o v e r e d elsewhere i n this v o l u m e . chapter
concerns
D H A , its
reactions,
structure, a n d
be
This
physiological
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
chemistry. T h e fact t h a t D H A possesses v i t a m i n C a c t i v i t y w a s
recognized
e a r l y i n studies of A A a n d w a s s t u d i e d b y s e v e r a l g r o u p s
(13,14).
E n z y m e s t h a t c a t a l y z e t h e r e d u c t i o n of D H A to A A h a v e b e e n d e m o n strated i n m a n y systems a n d are d i s c u s s e d later i n this c h a p t e r . D i m e r i c D H A , or b i s d e h y d r o a s c o r b i c a c i d ( B D H A ) , a n d D H A b o t h are i m p o r tant i n n u t r i t i o n ; this i m p o r t a n c e has b e e n t a k e n for g r a n t e d i n t h a t the common
assay of a s c o r b i c a c i d , the d i n i t r o p h e n y l h y d r a z i n e ( D N P H )
m e t h o d , does not d i s t i n g u i s h b e t w e e n these forms. T h e n o m e n c l a t u r e of the o x i d i z e d forms of A A is b a d l y i n n e e d of r e v i s i o n . N o t o n l y is d e h y d r o a s c o r b i c a c i d a l o n g a n d c u m b e r s o m e n a m e , b u t it is also c o n f u s i n g i n i n f e r r i n g t h a t the c o m p o u n d is a n a c i d . A s is d i s c u s s e d l a t e r i n this c h a p t e r , the p r i n c i p l e s t r u c t u r e is a b i c y c l i c c o m p o u n d c o n t a i n i n g b o t h l a c t o n e a n d h e m i k e t a l groups.
Names such
as a s c o r b i t o n e or d e h y d r o a s c o r b i t o n e w o u l d be better t r i v i a l r e p r e s e n tations.
Preparation of DHA and BDHA D H A has b e e n p r e p a r e d f r o m A A u s i n g a great v a r i e t y of o x i d i z i n g agents a n d c o n d i t i o n s . T h e o x i d i z e r s i n c l u d e the h a l o g e n s , C l , B r , a n d 2
I
2
(1-5);
the q u i n o n e s ( 7 ) ; i o d a t e ( 8 ) ; a n d o x y g e n ( 6 ) as w e l l as other
reagents.
S i n c e A A is a g o o d r e d u c i n g agent t h a t r e a d i l y reacts w i t h
2
o n e - e l e c t r o n or t w o - e l e c t r o n o x i d i z i n g agents, the p r o b l e m i n the p r e p a r a t i o n of D H A is to find reagents that d o not o v e r o x i d i z e A A a n d t h a t g i v e r e a c t i o n p r o d u c t s that are easily s e p a r a t e d f r o m D H A . D H A is o n l y stable u n d e r c e r t a i n c o n d i t i o n s i n w a t e r s o l u t i o n a n d is also easily o x i dized.
I n g e n e r a l , e q u i v a l e n t a m o u n t s of A A a n d t h e halogens d o not
g i v e q u a n t i t a t i v e y i e l d s of D H A because of p a r t i a l o v e r o x i d i z a t i o n , a n d a c o m p l i c a t e d p u r i f i c a t i o n p r o c e d u r e is r e q u i r e d to g i v e p u r e D H A ( J ) . A l s o , the p u r i f i c a t i o n p r o c e d u r e s often l e a d to m o r e d e c o m p o s i t i o n t h a n purification. O n e of t h e m o r e extensive reports o n t h e p r e p a r a t i o n of D H A is b y Pecherer ( I ) oxidation.
w h o w o r k e d out a large-scale p r e p a r a t i o n u s i n g i o d i n e
N e i t h e r i n this s t u d y , n o r i n a n y other has D H A b e e n
ob
t a i n e d i n c r y s t a l l i n e f o r m , a l t h o u g h there does not seem to b e a n y g o o d
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
T O L B E R T A N D WARD
103
Dehydroascorbic Acid
reason t o b e l i e v e i t i m p o s s i b l e .
D H A is u s u a l l y o b t a i n e d as a t h i c k
s y r u p o r as a n a m o r p h o u s o r m i c r o c r y s t a l l i n e s o l i d b y solvent p r e c i p i t a t i o n or l y o p h i l i z a t i o n . B e c a u s e D H A is v e r y easy to p r e p a r e f r o m A A , i t is best p r e p a r e d as n e e d e d u s i n g t h e f o l l o w i n g m e t h o d . A p a r t i c u l a r l y u s e f u l p r e p a r a t i o n of D H A , d e s c r i b e d b y O h m o r i a n d T a k a g i , uses o x y g e n o x i d a t i o n o v e r a c h a r c o a l c a t a l y s t ( 6 ) . T h e u s e of o x y g e n a n d c h a r c o a l t o c o n v e r t A A t o D H A is a w e l l - k n o w n r e a c t i o n t h a t has b e e n u s e d i n A A assays f o r m a n y years. T h e o x i d a t i o n c a n b e m a d e i n e t h a n o l , m e t h a n o l , w a t e r , o r v a r i o u s m i x t u r e s of these solvents.
We
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
c a r r y o u t this p r o c e d u r e as f o l l o w s : T e n grams of a s c o r b i c a c i d is d i s s o l v e d i n 300 m L of solvent, a n d 15 g of a c t i v a t e d c h a r c o a l is a d d e d .
O x y g e n o r a i r is b u b b l e d t h r o u g h
the s o l u t i o n at a flow rate of 20 m L / m i n f o r 3 0 - 6 0 m i n w h i l e t h e s o l u t i o n is g e n t l y s t i r r e d w i t h a m a g n e t i c stir b a r . A t t h e c o m p l e t i o n o f t h e r e a c t i o n t h e s o l u t i o n is filtered, first t h r o u g h a W h a t m a n # 2 filter p a p e r a n d t h e n b y s u c t i o n t h r o u g h a fine glass
filter.
T h e solvent is r e m o v e d
b y a r o t a r y e v a p o r a t o r w i t h a b a t h t e m p e r a t u r e of 3 0 ° C .
T h e resulting
s y r u p is p u r e D H A w i t h traces of t h e o r g a n i c solvent u s e d i n t h e p r e p a r a t i o n . A d d i t i o n of a s m a l l a m o u n t of w a t e r a n d r e p e a t e d l y o p h i l i z a t i o n w i l l r e m o v e t h e traces of o r g a n i c solvent. B e c a u s e t h e i n i t i a l r o t a r y e v a p o r a t i o n is faster w i t h t h e o r g a n i c solvent, w e h a v e u s u a l l y p r e p a r e d D H A i n 9 5 % e t h a n o l . I n m e t h a n o l the r e a c t i o n gives u p to 1 0 - 2 0 % of a m e t h a n o l c o m p l e x of D H A t h a t is o n l y p a r t l y r e c o n v e r t e d t o free D H A o n r e p e a t e d evaporations water.
from
E x t e n s i v e r o t a r y e v a p o r a t i o n w i t h r e p e a t e d a d d i t i o n s of d i e t h y l
ether, f o l l o w e d b y l y o p h i l i z a t i o n , y i e l d s a m o r e m a n a g e a b l e , s e m i s o l i d product.
D H A i n t h e s y r u p or s e m i s o l i d f o r m is stable f o r m a n y w e e k s
w h e n s t o r e d at — 1 0 ° t o — 2 0 ° C . A n a l y s i s of t h e p r o d u c t s p r e p a r e d as d e s c r i b e d a b o v e w a s done b y
1 3
C N M R , o n e of t h e f e w a n a l y t i c a l
t e c h n i q u e s t h a t gives u n a m b i g u o u s results o n t h e p u r i t y a n d i d e n t i t y of this c o m p o u n d . C r y s t a l l i n e B D H A c a n b e p r e p a r e d f r o m D H A b y t h e m e t h o d of D i e t z ( 1 5 ) : 10 g of D H A s y r u p , p r e p a r e d b y t h e m e t h o d
described
a b o v e , is d i s s o l v e d i n 30 m L of n i t r o m e t h a n e . A f t e r t h e s y r u p h a s d i s s o l v e d , 100 m L m o r e of i c e - c o l d n i t r o m e t h a n e is a d d e d . T h e s o l u t i o n is h e a t e d t o b o i l i n g . A w h i t e p r e c i p i t a t e of B D H A is f o r m e d a n d c a n b e filtered
off a n d d r i e d . H v o s l e f has p r e p a r e d m a c r o c r y s t a l l i n e B D H A f r o m
this m a t e r i a l f o r x - r a y c r y s t a l l o g r a p h i c studies
(16).
T h e d i m e r is stable i n s o l i d d r y f o r m . S e v e r a l c o m m e r c i a l firms s e l l " d e h y d r o a s c o r b i c a c i d " t h a t m a y or m a y n o t b e i d e n t i f i e d as B D H A .
We
h a v e a n a l y z e d several o l d c o m m e r c i a l a n d p r i v a t e l y p r e p a r e d samples of B D H A u s i n g
1 3
C N M R , a n d h a v e f o u n d l a r g e a m o u n t s of d e c o m p o s i
t i o n p r o d u c t s i n a l l of t h e m . H o w e v e r t h e p u r i t y of t h e o r i g i n a l p r o d u c t a n d storage c o n d i t i o n s w e r e n o t k n o w n .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
104
ASCORBIC A d D
Chemical
Reactions of DHA
T h e e n e - d i o l system of A A a n d its d i k e t o o x i d a t i o n p r o d u c t a r e w e l l - k n o w n structures i n o r g a n i c c h e m i s t r y .
T h e lactone group i n A A
is q u i t e stable i n a c i d o r a l k a l i n e s o l u t i o n ; i n contrast, t h e lactone g r o u p i n D H A is r a p i d l y h y d r o l y z e d i n a l k a l i n e o r a c i d s o l u t i o n a n d is stable only i n a l i m i t e d p H range a r o u n d 2 - 4 . A s a n effective ketone, D H A reacts r e a d i l y w i t h h y d r a z i n e s t o f o r m a v a r i e t y of 2- a n d 2,3-hydrazones. Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
the 2 , 3 - b i s k e t o b u t y r o l a c t o n e
T h e s e reactions a r e c h a r a c t e r i s t i c of
group.
T h e s t a n d a r d assay of A A takes
a d v a n t a g e of t h e r e a c t i o n b e t w e e n D N P H a n d D H A t o g i v e a b i s h y d r a z o n e t h a t e x h i b i t s a d i s t i n c t i v e a b s o r p t i o n b a n d at 516 n m i n d i l u t e s u l f u r i c a c i d s o l u t i o n ( 1 7 ) . T h i s r e a c t i o n is n o t q u a n t i t a t i v e ; a m i x t u r e of the h y d r a z o n e a n d d e c o m p o s i t i o n
p r o d u c t s is f o r m e d .
W e have esti
m a t e d t h a t t h e d e r i v a t i v e is f o r m e d i n a b o u t 3 5 % y i e l d . T h e success of the D N P H r e a c t i o n as a q u a n t i t a t i v e assay f o r A A is d e p e n d e n t o n t h e use of a d e q u a t e
controls, r e p r e s e n t i n g a significant weakness
of t h e
method. The
bishydrazones
of D H A a n d r e l a t e d c o m p o u n d s
s t u d i e d a n d u s e d t o synthesize a n u m b e r DHA
(18-23).
have
been
of n i t r o g e n d e r i v a t i v e s of
T h u s t h e b i s p h e n y l h y d r a z o n e of D H A is r e d u c e d b y
h y d r o g e n / p l a t i n u m to 2,3-diamino-2,3-dideoxyascorbic
acid, which i n
t u r n c a n b e c o n v e r t e d t o a v a r i e t y of a c y l d e r i v a t i v e s . T h e s t r u c t u r e of D H A p h e n y l o s a z o n e is a hexenonelactone
(24).
U n d e r p r o p e r c o n d i t i o n s D H A reacts w i t h a m i n e s t o f o r m Schiff bases.
Dahn and Moll
describe
this r e a c t i o n b e t w e e n
o-phenylene-
d i a m i n e a n d D H A as w e l l as w i t h other 2,3-diketobutyrolactones
(25).
W i t h a l i p h a t i c a m i n e s a n d a m i n o a c i d s , t h e Schiff base is n o t f a v o r e d i n aqueous
solution.
T h e extent of t h e r e v e r s i b l e f o r m a t i o n of Schiff
bases of D H A h a s n o t b e e n extensively s t u d i e d , a n d c l e a r l y needs m o r e a t t e n t i o n . D H A i n b i o l o g i c a l fluids is p r o b a b l y i n r e v e r s i b l e e q u i l i b r i u m w i t h a m i n o groups of a m i n o a c i d s , p r o t e i n s , a n d o t h e r a m i n e s .
How
ever, t h e extent of a n y s u c h c o n j u g a t i o n is u n k n o w n . I f s u c h bases a r e f o r m e d , t h e y p r o b a b l y i n v o l v e d e r i v a t i z a t i o n of t h e 2 - p o s i t i o n of D H A . T h e browning reaction between
carbohydrates
a n d amino
acids
has a t t r a c t e d a t t e n t i o n f o r m a n y years. I n t h e presence of a m i n o a c i d s , D H A undergoes a b r o w n i n g r e a c t i o n t h a t w a s d e s c r i b e d i n 1956 ( 26) a n d l a t e r extensively s t u d i e d (27-^33).
A d i s t i n c t i v e e a r l y p r o d u c t of
this r e a c t i o n is t h e f o r m a t i o n of a r e d c h r o m o p h o r e , A x 515 n m , ( I , 3 1 ) , m a
believed to be t h e product of a Strecker reaction between the a m i n o a c i d a n d D H A . T h i s r e a c t i o n p r o d u c t seems t o b e q u i t e specific f o r D H A .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
105
Dehydroascorbic Acid
T O L B E R T A N D WARD
T h e r e a c t i o n itself is analogous to the r e a c t i o n of n i n h y d r i n w i t h a m i n o acids:
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
H
CHOHCH OH
+ C0 K u r a t a et a l . (32)
2
2
+
RCHO
h a v e i s o l a t e d this c o m p o u n d a n d o b t a i n e d a H N M R 1
s p e c t r u m w i t h shifts as f o l l o w s : 3.74 p p m ( d o u b l e t ) , 4.19 p p m ( t r i p l e t ) , a n d 4.88 p p m ( d o u b l e t ) .
W e h a v e also e x a m i n e d a l o w p u r i t y s a m p l e
of this r e d c h r o m o p h o r e a n d o b t a i n e d a s i m i l a r * H N M R s p e c t r u m as w e l l as a
1 3
C N M R spectrum.
(33)
T h e results o b t a i n e d s h o w t h a t t h e
c h r o m o p h o r e has a n o p e n s i d e - c h a i n a n d does n o t exist i n a h e m i k e t a l f o r m analogous to t h a t o b s e r v e d i n D H A a n d B D H A . T h i s c o l o r r e a c t i o n has n o t b e e n u s e d to a n y extent i n t h e assay of DHA.
W e h a v e u s e d i t to i d e n t i f y D H A i n t h i n - l a y e r c h r o m a t o g r a p h y
( T L C ) w i t h excellent results. T h e p l a t e is s p r a y e d w i t h 1 M
glycine
a n d h e a t e d i n a n o v e n at 9 0 - 1 0 0 ° C for 4r-5 m i n . A d i s t i n c t i v e p i n k spot d e v e l o p s , a n d s l o w l y turns b r o w n i n 1-2 d . V a r i o u s q u a l i t a t i v e studies w e r e d o n e to i m p r o v e t h e s e n s i t i v i t y of this assay f o r D H A . d i d not give the chromophore. different a m i n o acids. methanol
solution
There was
little difference
Amines between
H e a t i n g D H A a n d g l y c i n e i n either w a t e r
gives
the
chromophore.
Although a
better
or
yield
m a y b e o b t a i n e d i n w a t e r , p r o b l e m s result i n w a t e r d u e t o t h e i n s t a b i l i t y of the c h r o m o p h o r e i n this solvent. B D H A also gives this r e a c t i o n i n s o l u t i o n , p r e s u m a b l y because i t d e c o m p o s e s to D H A u n d e r t h e c o n d i tions of t h e r e a c t i o n .
T h e y i e l d of the c h r o m o p h o r e
is l o w , a n d t h u s
o n l y m o d e r a t e sensitivities for D H A assays w e r e a c h i e v e d .
If the y i e l d
i n this reaction c o u l d be substantially i m p r o v e d b y appropriate choices of solvent a n d r e a c t i o n c o n d i t i o n s , t h e r e a c t i o n has t h e p o t e n t i a l f o r a g o o d assay p r o c e d u r e .
T h e r e a c t i o n is specific a n d t h e p r o d u c t
d i s t i n c t i v e a n d easy to q u a n t i t a t e b y
spectroscopy.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
quite
106
ASCORBIC ACID
A s s o c i a t e d w i t h t h e b r o w n i n g r e a c t i o n a r e a n u m b e r o f f a i r l y stable free r a d i c a l c o m p o u n d s i n w h i c h t h e u n p a i r e d e l e c t r o n is often associated w i t h a nitrogen atom.
A b l u e substance t h a t d i s p l a y s a n E S R t r i p l e t
s p e c t r u m c a n b e i s o l a t e d b y T L C ; a r e d c h r o m o p h o r e c a n also b e i s o l a t e d M a n y of t h e r a d i c a l c o m p o u n d s
(34-39).
red chromophore phore
either m a y be related to t h e
o r a r e i n t e r m e d i a t e s i n t h e synthesis o f t h e c h r o m o
(34-39).
M a n y decomposition
p r o d u c t s of D H A are p r o b a b l y t h e same as
those o b s e r v e d i n t h e d e c o m p o s i t i o n of A A (40).
Fifteen products from
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
D H A d e c o m p o s i t i o n i n aqueous s o l u t i o n w e r e r e p o r t e d (41). fifteen,
O f these
the five m a i n v o l a t i l e p r o d u c t s w e r e 3 - h y d r o x y - 2 - p y r o n e , 2 - f u r a n -
c a r b o x y l i c a c i d , 2 - f u r a l d e h y d e , acetic a c i d , a n d 2 - a c e t y l f u r a n . D H A also u n d e r g o e s a b e n z i l i c a c i d r e a r r a n g e m e n t i n a l k a l i n e s o l u t i o n (42). T h e r e d u c t i o n of D H A t o A A is a c c o m p l i s h e d
b y a v a r i e t y of
reagents. H y d r o g e n sulfide, cysteine, a n d other t h i o l s w i l l r e d u c e D H A . H y d r o g e n sulfide is f r e q u e n t l y u s e d since t h e excess reagent c a n b e p u r g e d from the reaction solution a n d sulfur, the oxidized product, c a n be removed b y
filtration.
B e c a u s e t h e r e a c t i o n w i t h h y d r o g e n sulfide is
d i s a g r e e a b l e t o use because of t h e t o x i c a n d o d o r o u s h y d r o g e n sulfide, this r e d u c t i o n has b e e n u s e d most often i n d i f f e r e n t i a l assay p r o c e d u r e s f o r D H A . S o d i u m d i t h i o n a t e r a p i d l y a n d q u a l i t a t i v e l y reduces D H A t o AA.
S o d i u m borohydride a n d l i t h i u m a l u m i n u m h y d r i d e give
complex
m i x t u r e s of p r o d u c t s w i t h D H A . Structural
Studies of DHA and
BDHA
T h e c r y s t a l l i n e d i m e r of D H A w a s a n a l y z e d b y x - r a y c r y s t a l l o g r a p h y (17), a n d t h e s t r u c t u r e p r o p o s e d b y e a r l i e r c h e m i c a l studies w a s c o n firmed
(43).
H
OH
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
107
Dehydroascorbic Acid
T O L B E R T A N D WARD
T h e d i m e r is n o t r e a d i l y s o l u b l e i n w a t e r , a l t h o u g h D H A is v e r y s o l u b l e i n water. BDHA
T h u s some questions h a v e a r i s e n as t o t h e exact n a t u r e of
i n water.
T h e d i m e r disassociates t o a m o n o m e r
f o r m a m i d e , d i m e t h y l a c e t a m i d e , a n d p y r i d i n e (44) e a r l i e r studies (45-47).
i n dimethyl
i n agreement
with
A series of studies of A A a n d B D H A h a v e n o w
c l a r i f i e d m a n y aspects of this p r o b l e m .
1 3
C N M R studies of A A w e r e
p u b l i s h e d (48-51) t h a t s h o w t h e s t r u c t u r e of A A i n s o l u t i o n is essentially as p r o p o s e d b y c l a s s i c a l c a r b o h y d r a t e c h e m i s t r y a n d is t h e same as t h e structure f o u n d i n crystalline ascorbic
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
studies.
Recent
1 3
a c i d b y x-ray crystallographic
C N M R studies of B D H A
i n dimethyl sulfoxide-d
6
( D M S O - d ) s h o w t h a t i n this solvent B D H A is a m i x t u r e of t w o f o r m s , 6
a s y m m e t r i c a n d a n a s y m m e t r i c d i m e r ( 5 2 ) . T h e a s y m m e t r i c f o r m is thermodynamically favored. T h e best a p p r o a c h to t h e s t r u c t u r e of m o n o m e r i c D H A w a s t h r o u g h *H N M R and
1 3
C N M R studies. O n t h e basis of * H N M R , D H A w a s
p r o p o s e d t o exist i n aqueous s o l u t i o n as a b i c y c l i c h y d r a t e d species, t h a t is, 3,6-anhydro-L-xt/Zo-hexulono-l,4-lactone h y d r a t e (53).
W e have made
f u r t h e r studies o n this s t r u c t u r e u s i n g D H A p r e p a r e d b y o x y g e n o x i d a t i o n i n e t h a n o l , o r m e t h a n o l o r w a t e r u s i n g c h a r c o a l as a catalyst. T h e m e t h o d is d e s c r i b e d e a r l i e r i n this c h a p t e r . 1 3
1 3
C N M R Studies.
D H A was dissolved i n deuterium oxide a n d the
C N M R s p e c t r u m w a s o b t a i n e d f r o m a J O E L P F T - 1 0 0 spectrometer
u s i n g a n e x t e r n a l d i o x a n e reference. tained i n D M S O - d Results o n and B D H A Pederson's
1 3
6
T h e s p e c t r u m of B D H A w a s o b
i n s t e a d of d e u t e r i u m o x i d e .
C N M R shifts i n parts p e r m i l l i o n f r o m M e S i f o r D H A 4
are presented i n T a b l e I. results (52)
F o r comparison, Hvoslef a n d
are g i v e n , i n c l u d i n g assignments of shifts to
specific s y m m e t r i c a n d a n t i s y m m e t r i c structures f o r B D H A .
Hvoslefs
results a r e r e a d i l y r e p r o d u c e d u s i n g t h e m a t e r i a l p r e p a r e d b y t h e O h m o r i oxidation and the D i e t z dimerization procedure.
T h e spectra f r o m t h e
t w o laboratories s h o w a consistent difference i n shifts, p r o b a b l y a r i s i n g f r o m differences i n reference standards. T h e difference i n shifts of C 4 a n d C 5 is c a u s e d b y a difference i n assignment of these shifts, a n d is discussed later. The and
1 3
C N M R shifts f o r D H A , p r e s e n t e d i n T a b l e I , w e r e s t u d i e d
carbon
decoupling
assignments experiments
made
b y t w o methods:
a n d b y comparison
of
1 3
by
proton-carbon
C N M R s p e c t r a of
various derivatives. * H N M R Decoupling Experiments.
D H A was dissolved i n deu
t e r i u m oxide a n d the spectra were recorded
from a Nicolet NT-360
spectrometer w i t h a n internal s o d i u m 2,2-dimethyl-2-silapentane-5-sulfonate ( D S S ) s t a n d a r d . T h e shifts f o r t h e p r o t o n s of D H A w e r e
deter
m i n e d f r o m t h e * H N M R s p e c t r u m ( F i g u r e 1 ) : C 4 , s i n g l e t a t 4.76; C 5 ,
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
108
ASCORBIC ACID
T a b l e I. Sample
I 3
C N M R D a t a for D H A and
Identification
D H A (52) D H A p r e p a r e d i n absolute methanol" D H A prepared i n 9 5 % ethanol* D H A prepared i n H 0 * B D H A s y m m e t r i c (52) B D H A a n t i s y m m e t r i c (52)" 2
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
h
B D H A symmetric' B D H A antisymmetric*
Cl
C2
BDHA
CS
C4
C5
C6
174.2
92.0
106.3
73.5
88.6
76.2
173.6 173.3 173.5 169.1 168.1 168.7 169.3 168.4 168.8
91.4 91.1 91.3 91.6 99.1 104.2 91.9 99.8 104.0
105.7 105.7 105.6 105.6 103.4 113.9 105.9 103.7 114.1
87.6 87.3 87.4 73.0 73.2 73.4 89.6 88.4 89.4
73.0 72.6 72.8 90.3 88.3 89.1 73.3 73.3 73.8
76.2 76.2 76.1 76.3 74.5 76.7 75.6 74.7 76.6
• Solvent, D2O; reference, external dioxane. * Solvent, DMSO-cfo; reference, internal Me4Si. 'Solvent, DMSO-cfo; reference, external dioxane.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
T O L B E R T A N D WARD
109
Dehydroascorbic Acid
singlet a t 4.6; C 6 , m u l t i p l e t a t 4.2. T h e i n t e r p r e t a t i o n of t h e * H N M R s p e c t r u m as a n A B C D p a t t e r n suggests t h a t t h e protons o n C 6 a r e differ ent f r o m o n e another; these protons s p l i t o n e another. T h e f a c t t h a t these p r o t o n s a p p e a r as different p e a k s i n t h e * H N M R suggests t h a t t h e r e is n o t free r o t a t i o n of C 6 . I n t h e p r o t o n - p r o t o n d e c o u p l i n g e x p e r i m e n t s ( F i g u r e 2 ) , t h e s p l i t t i n g o f t h e p r o t o n o n C 4 b y t h e p r o t o n o n C 5 is v e r y s m a l l . T h i s o b s e r v a t i o n suggests t h a t t h e o r b i t a l s f o r these p r o t o n s are s e p a r a t e d b y a n a n g l e of a p p r o x i m a t e l y 9 0 ° , a n d therefore
cannot
i n t e r a c t w i t h e a c h other to cause s p l i t t i n g . Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
Proton-Carbon Decoupling Experiments.
H a v i n g obtained correct
v a l u e s f o r t h e p r o t o n shifts, a series of p r o t o n - c a r b o n d e c o u p l i n g e x p e r i ments
were
performed
(Figures
3-5).
T h e experiments
i n v o l v e d c o m b i n i n g t w o types of d e c o u p l i n g : off-resonance frequency.
I n off-resonance
d e c o u p l i n g experiments
X
performed a n d single-
H i r r a d i a t i o n is
k e p t at h i g h p o w e r levels. T h e center of f r e q u e n c y is m o v e d 500-1000 H z a w a y from the protons to be irradiated, a n d the excitation b a n d w i d t h generator is s w i t c h e d off. C a r b o n s h a v i n g zero, o n e , t w o , o r t h r e e
1—•— —•—|— —'—'—i—'— — —i—'—«— —|— —'— —I— 5.0 4.8 4.6 4.4 4.2 4.0 P P M 1
Figure 2.
1
1
1
1
1
1
r
H NMR spectrum of DHA. The proton on C5 has been decoupled.
1
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
110
ASCORBIC ACID
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
C-4 C-6 C-5
C-1' EtOH C-2' EtOH C-3 C-2
C-1
-i
1
1
i
T"
r —
150
0
50
100
i
PPM
Figure 3. C NMR spectrum of DHA dissolved in D 0. The spectrum was recorded on a Nicolet NT-360 spectrometer with an internal DSS reference. 13
2
protons b o n d e d n o w a p p e a r as singlets, d o u b l e t s , t r i p l e t s , a n d q u a r t e t s , respectively.
C o u p l i n g i n f o r m a t i o n is therefore r e t a i n e d w i t h o u t m u c h
loss of s e n s i t i v i t y
(54).
T h e c a r b o n s of interest i n D H A are C 4 , C 5 , a n d C 6 . C a r b o n s - 1 , - 2 , a n d -3 a p p e a r as singlets. C a r b o n s - 4 a n d -5 a p p e a r as d o u b l e t s , a n d C 6 a p p e a r s as a t r i p l e t .
Because
C 4 a n d C 5 b o t h a p p e a r as
doublets,
a s s i g n i n g c h e m i c a l shifts to these c a r b o n s w i t h o u t f u r t h e r i n f o r m a t i o n w o u l d b e difficult. I t w a s i m p o r t a n t , therefore, t o p e r f o r m a series of single-frequency
proton-carbon
t a i n i n g t h e off-resonance
decoupling
experiments, w h i l e
main
decoupling.
S i n g l e - f r e q u e n c y p r o t o n d e c o u p l i n g , also k n o w n as selective coupling, depends
u p o n p r o p e r a s s i g n m e n t a n d i d e n t i f i c a t i o n of
de the
p r o t o n resonances f o r a g i v e n m o l e c u l e . O n c e the p r o t o n resonances are i d e n t i f i e d i n a n * H N M R s p e c t r u m , i t is p o s s i b l e to i r r a d i a t e specific
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
111
Dehydroascorbic Acid
T O L B E R T A N D WARD
p r o t o n s a t l o w r a d i o f r e q u e n c y p o w e r . T h e r e s u l t as seen i n t h e
1 3
CN M R
s p e c t r u m is t h e c o l l a p s e to a s i n g l e t of t h e m u l t i p l e t associated w i t h t h e carbon attached to that proton. some C - H c o u p l i n g
T h e o t h e r p r o t o n a t e d carbons
I n these e x p e r i m e n t s , e a c h p r o t o n resonance the resulting
1 3
retain
(54). was irradiated, a n d
C N M R s p e c t r u m w a s o b s e r v e d t o see w h i c h m u l t i p l e t
c o l l a p s e d t o a singlet. P r o p e r a s s i g n m e n t of t h e c h e m i c a l shifts c a n b e made for C 4 , C 5 , a n d C 6 (Figures 4 a n d 5 ) . T h e assignment
of p r o t o n
c h e m i c a l shifts is also s u p p o r t e d
by
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
c a r b o n - 1 3 c h e m i c a l shifts o b t a i n e d f o r t h e 5 , 6 - i s o p r o p y l i d e n e d e r i v a t i v e s of D H A , D-erythro-DHA
a n d 6-bromo-6-deoxy-L-DHA. A l l the dehydro
compounds were prepared b y oxidation using oxygen over charcoal i n 9 5 % ethanol. T h e preparation of the isopropylidene derivatives follows. L-5,6-0-Isopropylidene
AA.
I n a 5 - L r e a c t i o n flask e q u i p p e d w i t h
a n efficient p a d d l e stirrer a n d a w a t e r - c o o l e d c o n d e n s e r w i t h a d r y i n g t u b e , a n d h e a t e d b y a steam b a t h , w a s p l a c e d 250 g o f L - A A (1.4 m o l ) ,
i— —'— —•—r 1
100 Figure 4.
1
90
— —r~ 1
80
n— — ~ 1
r
70 P P M
C NMR spectrum of DHA obtained when the proton on C4 was selectively decoupled.
13
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
112
ASCORBIC
— i — > -
100 Figure 5.
C
13
i
i
I
i
T 90
i
ACID
i
80
70
PPM
NMR spectrum of DHA obtained when the proton on CS was selectively decoupled.
437 g of 2 , 2 - d i m e t h o x y p r o p a n e
(4.2 m o l ) , 880 m L of p - d i o x a n e ,
and
6 m L of t r i f l u o r o a c e t i c a c i d ( T F A ) . T h e r e a c t i o n is s t i r r e d a n d h e a t e d to reflux. cipitate.
A f t e r 15 m i n , t h e w h i t e v o l u m i n o u s p r o d u c t b e g i n s to H e a t i n g a n d s t i r r i n g are c o n t i n u e d f o r
pre
a n o t h e r 45 m i n , at
w h i c h t i m e t h e r e a c t i o n has s o l i d i f i e d i n t o a c o p i o u s w h i t e mass.
The
r e a c t i o n m i x t u r e is c o o l e d , s l u r r i e d i n s e v e r a l liters of p e t r o l e u m ether, and
filtered.
T h e p r o d u c t is d r i e d i n a v a c u u m desiccator.
The product
is o b t a i n e d as a w h i t e s o l i d i n 9 5 - 1 0 0 % y i e l d . D-5,6-0-Isopropylidene IsoAA.
T h e p r o p o r t i o n of reactants a n d the
r e a c t i o n c o n d i t i o n s are t h e same for p r e p a r i n g this i s o m e r as f o r p a r i n g A A . H o w e v e r , t h e r e a c t i o n takes 2 - 3 h to c o m p l e t e .
pre
T h e r>iso-
p r o p y l i d e n e i s o A A does n o t p r e c i p i t a t e f r o m the r e a c t i o n m i x t u r e , e v e n o n c o o l i n g to r o o m t e m p e r a t u r e . evaporation
(water
T h e solvents are r e m o v e d b y r o t a r y
aspiration, bath temperature
of
35°C)«
and
the
r e s u l t i n g r e d - b r o w n o i l is p o u r e d i n t o f o u r t i m e s its v o l u m e of efficiently s t i r r e d p e t r o l e u m ether to p r e c i p i t a t e the p r o d u c t as a t a n p o w d e r .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
The
5.
powder must be
filtered
113
Dehydroascorbic Acid
T O L B E R T A N D WARD
a n d q u i c k l y d r i e d under v a c u u m to prevent
reconversion into a n o i l . T h e D-isopropylidene i s o A A c a n be obtained as w h i t e flakes b y p r e c i p i t a t i n g w i t h p e t r o l e u m ether f r o m a c h l o r o f o r m acetone s o l u t i o n . Discussion NMR
of Structural Studies.
Collected
data from
the
1 3
C
spectra are shown i n T a b l e I I . L - D H A a n d D - i s o D H A have similar
c h e m i c a l shifts, s u g g e s t i n g
a similar structure.
They
both
show a n
a s s i g n e d shift f o r C 6 t h a t is f u r t h e r d o w n f i e l d t h a n f o r t h e C 6 of t h e respective s t a r t i n g m a t e r i a l s . O n e w o u l d expect t h e C 6 t o b e s h i f t e d
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
d o w n f i e l d i f t h e c o m p o u n d is i n t h e h e m i k e t a l f o r m . T h i s fact, w i t h t h e i n f o r m a t i o n f r o m t h e p r e c e d i n g p r o t o n e x p e r i m e n t s , supports a p r o p o s e d h e m i k e t a l structure. T h e a s s i g n e d shift f o r C 2 of L - D H A a n d D - i s o D H A is f u r t h e r u p f i e l d than w o u l d be expected i f C 2 were a keto group, indicating hydration at this c a r b o n . For
L - i s o p r o p y l i d e n e - D H A , D-isopropylidene i s o D H A , a n d 6-bromo-
6 - d e o x y - L - D H A , t h e a s s i g n e d shifts f o r C 2 a n d C 3 a r e u p f i e l d values e x p e c t e d f o r k e t o g r o u p s .
from
T h i s o b s e r v a t i o n i n d i c a t e s t h a t these
c a r b o n s a r e h y d r a t e d . I n these c o m p o u n d s t h e C 6 h y d r o x y g r o u p h a s either b e e n
d e r i v a t i z e d o r r e p l a c e d , p r e v e n t i n g t h e f o r m a t i o n of t h e
h e m i k e t a l . T h e s e c o m p o u n d s r e a d i l y f o r m a n o p e n - c h a i n f o r m of D H A , suggesting a reasonable stability for the h y d r a t e d diketo structure. D - I s o D H A , w h i c h r e a d i l y forms the h e m i k e t a l , has a n e n d o - 5 - h y d r o x y l g r o u p , b u t L - D H A is a n e x o - 5 - h y d r o x y l c o m p o u n d .
T h e endo-hydroxyl
does n o t cause sufficient steric h i n d r a n c e to p r e v e n t t h e f o r m a t i o n of t h e hemiketal ring. T h e most i m p o r t a n t i n f e r e n c e to b e d r a w n f r o m t h e d a t a is t h a t DHA
c a n exist as a m i x t u r e of v a r i o u s structures.
A n e q u i l i b r i u m of
m a j o r a n d m i n o r f o r m s of D H A i n a q u e o u s s o l u t i o n u n d o u b t e d l y exists, w i t h the hydrated hemiketal being the favored form
( S c h e m e 1, A ) .
M o s t of these forms h a v e b e e n p o s t u l a t e d f o r m a n y years ( 2 ) . T h e o n l y f o r m detected
by
1 3
C N M R s p e c t r o s c o p y i n a q u e o u s s o l u t i o n is t h e
hydrated hemiketal form DHA
( S c h e m e 1, A ) .
A s s u m i n g t h a t 9 9 % of t h e
is t h e h y d r a t e d h e m i k e t a l f o r m , this f o r m is c a l c u l a t e d t o b e
favored
b y 2.5 k c a l / m o l .
When
t h e s i d e - c h a i n is d e r i v a t i z e d as i n
L - i s o p r o p y l i d e n e - D H A , D-isopropylidene i s o D H A , or 6-bromo-6-deoxyL-DHA,
the open-chain
dihydrate
is seen.
This
finding
suggests
a
r e a s o n a b l e s t a b i l i t y f o r t h e h y d r a t e d h e m i k e t a l f o r m a n d is e v i d e n c e f o r an
open
side-chain compound
i n t h e e q u i l i b r i u m m i x t u r e of D H A
( S c h e m e 1, C ) . T h i s c o m p o u n d has b e e n suggested as a m a j o r p r o d u c t i n a g e d solutions of D H A ( 5 2 ) . A l t h o u g h s m a l l c o n c e n t r a t i o n s ( < 1% ) m a y exist i n s o l u t i o n , t h e p r i n c i p l e c o m p o u n d f o r m e d i n a g e d solutions of D H A has
1 3
C N M R shifts t h a t c o r r e s p o n d t o d i k e t o g u l o n a t e ( D K G ) .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Forms
Identification
Forms
Note: Shifts in ppm from Me4Si.
L-DehydroAA L-ISODHA Isopropylidene-L-DHA Isopropylidene-D-isoDHA 6-Bromo-6-deoxy-L-DHA
Oxidized
L-AA D-ISOAA Isopropylidene-L-AA Isopropylidene-D-isoAA 6-Bromo-6-deoxy-L-AA
Reduced
Compound
173.6 173.5 173.9 173.9 173.6
170.6 173.1
91.4 91.5 91.3 91.3 91.3
105.7 104.8 96.0 95.7 96.0 87.6 83.1 84.6 84.4 83.5
76.7 74.4 74.9 74.7 76.8
156.1 155.6 152.9 152.6 155.2
118.3 118.2 118.2 118.7 118.1
73.0 71.9 74.2 73.9 68.2
69.4 71.0 73.3 73.9 69.0
C5
76.2 69.5 64.4 65.2 34.2
62.6 61.4 64.8 65.3 32.8
C6
—
—
110.5 110.4
—
26.1 25.8
26.2
109.4
—
— — 25.0
S
-CH
— — 109.8
Carbonyl Isopropylidene
and Related Compounds
173.8
on D H A
C4
Data
C3
C NMR
C2
1 3
Cl
Table II.
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
—
25.0 24.6
25.7
— — 24.4
3
-CH
Dehydroascorbic Acid
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
T O L B E R T A N D WARD
Scheme 1.
Equilibrium mixture of the various forms of DHA.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
116
ASCORBIC ACID
T h e e v i d e n c e for t h e other forms of D H A s h o w n i n S c h e m e
1 is
b a s e d o n t h e o r y of r e a c t i o n m e c h a n i s m s . T h e f a c t t h a t D H A reacts w i t h D N P H to f o r m a h y d r a z o n e is s u p p o r t i v e e v i d e n c e f o r t h e existence of a 2- or 3 - m o n o k e t o c o m p o u n d .
A 3-monoketo c o m p o u n d
is r e q u i r e d b y
a n y r e a s o n a b l e m e c h a n i s m f o r the f o r m a t i o n of the h y d r a t e d h e m i k e t a l f o r m . T h e 2,3-diketo c o m p o u n d w o u l d b e v e r y u n s t a b l e d u e t o t h e h i g h p o s i t i v e c h a r g e associated w i t h the c a r b o n y l carbons. w o u l d b e v e r y s u s c e p t i b l e to n u c l e o p h i l i c attack.
These
carbons
However, a small
c o n c e n t r a t i o n of the 2,3-diketo f o r m s h o u l d exist i n e q u i l i b r i u m m i x t u r e s . Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
D i r e c t o x i d a t i o n of A A s h o u l d give the 2,3-diketo f o r m . A
proposed
mechanism
for
the
acid-catalyzed
h y d r a t e d h e m i k e t a l is s h o w n i n S c h e m e
2.
formation
O n the basis of
of
the
analogy
w i t h h e m i k e t a l r i n g f o r m a t i o n a n d m u t a r o t a t i o n i n sugars, o p e n i n g a n d c l o s i n g of the h e m i k e t a l r i n g is expected to b e fast c o m p a r e d w i t h other reactions of D H A , s u c h as h y d r o l y t i c cleavage to D K G . H y d r a t i o n of the c a r b o n y l groups s h o u l d also b e r a p i d . It thus appears t h a t there is a r a p i d e q u i l i b r i u m of a l l the p o s t u l a t e d forms of D H A i n aqueous s o l u t i o n . W h i c h of these forms are a c t i v e i n b i o l o g i c a l reactions is u n k n o w n . T h e f a c i l e f o r m a t i o n of the h y d r a t e d a n d h e m i k e t a l forms of D H A , as w e l l as the a l c o h o l complexes, opens the c r i t i c a l q u e s t i o n of w h e t h e r D H A i n b i o l o g i c a l fluids is to a n y great extent c o n j u g a t e d
with
other
c o m p o u n d s s u c h as a m i n o acids a n d p r o t e i n s . A t p H 7, D H A is r a p i d l y converted fluids
to D K G , b u t there is no e v i d e n c e t h a t D H A i n b i o l o g i c a l
is r a p i d l y h y d r o l y z e d .
It is therefore
appropriate
to
question
w h e t h e r D H A , as s u c h , exists i n a n y significant c o n c e n t r a t i o n i n b i o l o g i c a l fluids.
F u r t h e r studies of D H A i n tissue are n e e d e d to c l a r i f y the n a t u r e
of this c o m p o u n d i n b i o l o g i c a l systems. T h e U V spectra of t h e D H A u s e d i n the experiments
described
shows a w e a k b r o a d t r a n s i t i o n at 225 n m l e a d i n g i n t o a strong a b s o r b a n c e b e l o w 200 n m . T h e t r a n s i t i o n at 225 n m c a n be u s e d i n l i q u i d c h r o m a t o g r a p h y of D H A i f the s a m p l e is f a i r l y p u r e . compounds
Unfortunately, many
absorb i n this r e g i o n , so d i r e c t s p e c t r o p h o t o m e t r i c
D H A b y U V w i t h h i g h pressure l i q u i d c h r o m a t o g r a p h y
assay of
(HPLC)
prob
a b l y is not possible i n most experiments. Stability o f D H A and B D H A . s o l u t i o n (33,44). it appears Because
to d e c o m p o s e s l o w l y to
BDHA
80-100%
BDHA
is n o t stable i n
aqueous
I n the s o l i d f o r m d r y B D H A is q u i t e stable, a l t h o u g h a complex
dissociates to the m o n o m e r
m i x t u r e of
products.
i n w a t e r , a n d D H A has
of the v i t a m i n C a c t i v i t y of A A , B D H A is a n i n t e r e s t i n g f o r m
of this v i t a m i n w i t h properties of l o w s o l u b i l i t y i n w a t e r a n d g o o d resist ance to a i r o x i d a t i o n . D H A is h y d r o l y z e d i n aqueous solutions to y i e l d D K G . T h e r e a c t i o n v e l o c i t y is p H d e p e n d e n t , subject to b o t h a c i d a n d base catalysis.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
The
T O L B E R T AND WARD
Dehydroascorbic Acid
117
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
5.
Scheme 2.
Acid-catalyzed formation of the hydrated hemiketal form of DHA.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
118
ASCORBIC ACID
k i n e t i c s w e r e r e p o r t e d t o b e first o r d e r w i t h respect to H a K i of 7.6 X 1 0 " at p H = 4
v e
+
with
(55,56)
7.2. T h e specific r a t e constant f o r this
r e a c t i o n w a s r e p o r t e d as 2.08 X 1 0 " s" a t 3 0 ° C . 5
1
I n n e u t r a l a n d a l k a l i n e aqueous
solutions, D H A is v e r y r a p i d l y
h y d r o l y z e d to D K G . I f D H A is a d j u s t e d to p H 7.0 i n b u f f e r e d s o l u t i o n a n d i m m e d i a t e l y assayed b y T L C o r
1 3
C N M R , o n l y D K G is o b s e r v e d .
I n u n b u f f e r e d s o l u t i o n t h e c o n v e r s i o n is s l o w because h y d r o l y s i s o f D H A p r o d u c e s a n a c i d , l o w e r i n g t h e p H to a p p r o x i m a t e l y 2.5. M a n y o f t h e 1 3
C N M R spectra of D H A d e s c r i b e d i n this c h a p t e r w e r e r u n o n samples
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
at 3 0 ° C over 1 2 - 2 4 h , a n d these spectra c o u l d b e r e p e a t e d 3 d l a t e r i f t h e samples w e r e stored at 4 ° C . Hvoslef
suggests
that t h e h e m i k e t a l f o r m
of D H A is c o n v e r t e d
s l o w l y to t h e o p e n s i d e - c h a i n f o r m i n w a t e r . W a r d ( 3 3 ) shows t h a t t h e p r e s u m e d o p e n s i d e - c h a i n f o r m is a c t u a l l y D K G , w h i c h has
1 3
C NMR
shifts as s h o w n i n T a b l e I I I . I n t h e N M R spectra of D K G t h e shifts of C 2 a n d C 3 a r e c h a r a c t e r i s t i c of gera-diols a n d thus t h e p r i n c i p a l f o r m of D K G i n aqueous
s o l u t i o n is w i t h f u l l y h y d r a t e d c a r b o n y l s o n C 2
and C 3 . Assay of D H A .
T h e r e is n o c o m p l e t e l y satisfactory assay o f D H A
a v a i l a b l e at this t i m e . T h e t w o most c o m m o n l y u s e d p r o c e d u r e s a r e t h e D N P H reaction, done under conditions i n w h i c h the oxidation of A A to D H A is m i n i m i z e d ( 5 8 , 5 9 ) a n d t h e d i f f e r e n t i a l d i c h l o r o i n d o p h e n o l m e t h o d (60,61).
B o t h m e t h o d s are subject to i n t e r f e r e n c e a n d r a t h e r
l a r g e r a n d o m errors. D H A c a n b e s e p a r a t e d f r o m A A a n d most i o n i c c o m p o u n d s b y i o n exchange columns.
S u c h c o l u m n s d o n o t separate D H A f r o m other A A
metabolites a n d neutral carbohydrates. these c o m p o u n d s
D H A c a n be separated
from
b y reverse p h a s e H P L C u s i n g w a t e r o r w a t e r - a c e t o -
n i t r i l e eluants. G o o d separations of D H A f r o m b i o l o g i c a l samples c a n be expected to be achieved b y H P L C .
D e t e c t i o n is a p r o b l e m since U V
a b s o r p t i o n is i n a d e q u a t e . T h e r e d c h r o m o p h o r e w i t h a m i n o acids is n o t v e r y sensitive. P e r h a p s D H A c o u l d b e r e d u c e d t o A A after s e p a r a t i o n a n d d e t e c t e d b y t h e s t r o n g 2 6 3 - n m a b s o r p t i o n of A A o r b y a n e l e c t r o c h e m i c a l detector.
D H A levels a n d D H A / A A ratios a r e p r o b a b l y q u i t e
i m p o r t a n t i n b i o l o g y a n d m e d i c i n e , a n d g o o d p r o c e d u r e s f o r these assays are of c o n s i d e r a b l e interest.
Table III.
1 3
C N M R Shifts of D i k e t o g u l o n i c A c i d
Cl
pH7.0 pH2.0 tt
174.5 171.2
C2,C3
a
94.7,94.4 94.5,96.1
C4
74.6 74.3
C5
68.6 68.0
Shifts for C2 and C3 are too similar to assign to specific carbons.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
C6 62.5 62.4
5.
119
Dehydroascorbic Acid
T O L B E R T A N D WARD
Biochemistry of DHA A n u m b e r of e n z y m e s h a v e b e e n c h a r a c t e r i z e d t h a t c a t a l y z e reactions i n v o l v i n g D H A . I n a d d i t i o n , o t h e r aspects of D H A b i o c h e m i s t r y c a n be
deduced
from
metabolic
studies
of
ascorbic
acid.
Experiments
d e m o n s t r a t i n g t h e b i o l o g i c a l o x i d a t i o n o f A A a n d r e d u c t i o n of D H A w e r e first m a d e i n 1928 ( J O ) a n d d u r i n g t h e next d e c a d e several g r o u p s s t u d i e d these reactions.
B y 1941 C r o o k (62) w a s a b l e to separate t h e
a s c o r b i c a c i d oxidase a n d D H A r e d u c t a s e a c t i v i t i e s a n d t o s h o w t h a t
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
glutathione was used i n the reductase reaction. T h e best c h a r a c t e r i z e d of t h e e n z y m e s i n v o l v i n g D H A is a s c o r b i c a c i d oxidase ( L - a s c o r b a t e : 0
2
o x i d o r e d u c t a s e , E C 1.10.3.3).
e n z y m e catalyzes t h e r e a c t i o n of A A a n d o x y g e n
This plant
to g i v e D H A a n d
1 m o l of w a t e r ( 6 3 ) . H COH 2
A s c o r b a t e oxidase is a d i m e r c o n t a i n i n g t w o i d e n t i c a l s u b u n i t s , a n d appears to b e a c c o m p a n i e d (64-66). colored.
This compound
the K
m
forms
a n d is b l u e
T h e c o p p e r m a y b e r e m o v e d to g i v e a n i n a c t i v e a p o e n z y m e .
A s c o r b a t e oxidase 67,68).
b y s m a l l e r a m o u n t s of o l i g o m e r i c
contains 8 - 1 0 atoms o f c o p p e r
contains C u
2 +
i n three different e n v i r o n m e n t s
(63,
T h e e n z y m e also c a t a l y z e d t h e o x i d a t i o n of o-catechols, a l t h o u g h is less f a v o r a b l e t h a n t h a t f o r A A : Km, ( + ) - c a t e c h i n , 3.08 m M ;
Km, L - A A , 0.24 m M (69).
T h e r o l e o f ascorbate o x i d a s e i n p l a n t s is
not k n o w n . T w o other c o p p e r e n z y m e s possess ascorbate oxidase a c t i v i t y , h u m a n c e r u l o p l a s m a n d Polyporus laccase (70,71). as a n A A oxidase i n v i v o .
Ceruloplasm may function
B o t h c e r u l o p l a s m a n d laccase a r e 1 0 t i m e s 4
less a c t i v e t o w a r d A A o x i d a t i o n t h a n is ascorbate
oxidase.
However,
t h e r e a c t i o n is definitely e n z y m i c , a n d w a t e r i s p r o d u c e d . In
r e c e n t years D H A r e d u c t a s e
has b e e n
purified from
several
sources a n d c h a r a c t e r i z e d . D H A r e d u c t a s e ( E C 1.8.5.1) p u r i f i e d f r o m carp hepatopancreas (72).
w a s specific f o r g l u t a t h i o n e as a r e d u c i n g
Km values w e r e 5.7 X
1 0 " M f o r D H A a n d 1.5 X 4
agent
IO" M for 3
g l u t a t h i o n e . T h e e n z y m e w a s n o t affected b y m e t a l i o n c h e l a t i n g agents. D H A r e d u c t a s e f r o m s p i n a c h leaves has a MW o f a b o u t 25,000 d a l t o n s
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
120
ASCORBIC ACID
a n d a p H o p t i m u m of 7.5. K
m
values w e r e 4.4 m M f o r g l u t a t h i o n e a n d
0.34 m M f o r D H A ( 7 3 ) . D H A r e d u c t a s e appears to b e w i d e l y d i s t r i b u t e d i n p l a n t a n d a n i m a l tissue, a n d to consistently u s e g l u t a t h i o n e as the r e d u c i n g agent (74, 7 5 ) . A D H A lactonase has b e e n d e s c r i b e d (76, 77) i n t h e ox, r a b b i t , r a t , a n d g u i n e a p i g . I n the ox t h e lactonase is present i n several tissues b u t is most a b u n d a n t i n t h e l i v e r .
T h e e n z y m e appears to b e absent i n
h u m a n a n d m o n k e y tissue. T h i s result is consistent w i t h t h e o b s e r v a t i o n that p r i m a t e s a n d fishes d o n o t c a t a b o l i z e l a b e l e d a s c o r b i c a c i d to c a r b o n Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
d i o x i d e . A A a n d D H A a p p e a r t o b e m e t a b o l i z e d i n t o a series of w a t e r s o l u b l e p r o d u c t s that are excreted i n the u r i n e , b u t 2 , 3 - D K G is d e c a r boxylated a n d otherwise degraded and C
4
to i n t e r m e d i a t e s t h a t enter t h e C
5
c a r b o h y d r a t e pools (78).
D H A a n d A A c a n react to f o r m t h e free r a d i c a l i n t e r m e d i a t e , m o n o d e h y d r o a s c o r b a t e i o n ( A A " ) , also c a l l e d s e m i d e h y d r o a s c o r b a t e . that r e d u c e A A " w e r e d e m o n s t r a t e d i n a n i m a l s (79,80), and microorganisms
Enzymes
plants
(81),
(82).
O t h e r t h a n t h e three enzymes
( A A oxidase, D H A reductase, a n d
D H A lactonase) n o other enzymes h a v e b e e n d e m o n s t r a t e d t h a t d i r e c t l y i n v o l v e D H A . D H A m a y b e p r o d u c e d b y a n u m b e r of oxygenases t h a t use A A as a cofactor, a n d i t seems reasonable that m u c h of t h e D H A f o r m e d i n v i v o is p r o d u c e d b y these reactions. Intravenous
i n j e c t i o n o f D H A i n rats at 4 0 - 6 0
mg/kg
produces
e x c i t a t i o n , s a l i v a t i o n , l a c r i m a t i o n , a n d e l e v a t e d b l o o d pressure M o s t of t h e responses
h i g h e r doses, r e s p i r a t o r y arrest occurs a b o u t 300 m g / k g .
(83-85).
o r i g i n a t e d w i t h t h e c e n t r a l nervous system. A t (86).
The L D
5 0
appears to b e
W h e n r e p e a t e d injections of D H A are g i v e n to rats
at a b o u t 20 m g / k g , m a r k e d h y p e r g l y c e m i a is o b s e r v e d i n m a n y of t h e rats after 3 w e e k s
(87).
T h i s diabetogenic
effect w a s c o n f i r m e d
(88)
a n d seems to b e associated w i t h a b n o r m a l i t i e s of t h e beta cells of t h e islets of L a n g e r h a n s of t h e pancreas. of t h e beta cells is n o t seen.
U n l i k e a l l o x a n diabetes,
necrosis
A l l o x a n a n d D H A a r e s t r u c t u r a l analogues
i n that b o t h have a p o t e n t i a l 1,2,3-triketo structure. T h e doses of D H A r e q u i r e d to p r o d u c e
these p h y s i o l o g i c a l effects are so l a r g e t h a t t h e
t o x i c i t y of D H A does n o t h a v e a n y n o t i c e a b l e significance i n t h e n u t r i t i o n a l use of A A . D H A is a m i n o r b y - p r o d u c t of storage a n d is a n o r m a l component
of b o t h foods a n d tissue. N o r m a l b l o o d levels o f D H A a r e
p r o b a b l y a r o u n d 0.2 m g / 1 0 0 m L , a n d tissue levels m a y b e c o m p a r a b l e . D H A is r a p i d l y t r a n s p o r t e d across c e l l m e m b r a n e s .
Autoradiographic
studies u s i n g l a b e l e d D H A s h o w t h a t D H A is m o r e r a p i d l y a b s o r b e d b y g u i n e a p i g s t h a n is A A (89). from the blood
(90-92)
I n j e c t e d D H A is n o t r a p i d l y a b s o r b e d
a n d t h e observations suggest that D H A is n o t
f a v o r e d as a p h y s i o l o g i c a l transport f o r m .
O n l y i n the brain a n d bone
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5.
T O L B E R T A N D WARD
121
Dehydroascorbic Acid
m a r r o w are D H A t a k e n u p m o r e r a p i d l y t h a n A A . B o t h leucocytes a n d erythrocytes are r e a d i l y p e r m e a b l e to D H A as w e l l as A A (93,94).
After
u p t a k e of D H A b y leucocytes, o n l y A A is f o u n d , s h o w i n g a n a c t i v e D H A reductase system. T h e r e d u c t i o n o f D H A i n r e d b l o o d cells i s less r a p i d a n d i n c o m p l e t e , s u g g e s t i n g t h a t a D H A r e d u c t a s e system is either absent or of l o w a c t i v i t y . A g e n e r a l belief, s u p p o r t e d b y a l i m i t e d a m o u n t of e x p e r i m e n t a l evidence,
is t h a t D H A levels
or alternatively, D H A / A A
ratios, a r e
sensitive i n d i c a t i o n s of c e l l p h y s i o l o g y , i n c l u d i n g p a t h o g e n i c states a n d
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
mitotic index
(95-98).
Because
glutathione
( G S H ) is t h e r e d u c i n g
agent f o r D H A reductase, t h e D H A / A A r a t i o m a y reflect t h e G S S G / G S H r a t i o , a n d this r a t i o w a s r e l a t e d to t h e N A D P H / N A D P r a t i o . A s s u m i n g the D H A / A A r a t i o reflects t h e o x i d a t i o n state o f t h e m e t a b o l i s m o f t h e c e l l , i n c l u d i n g t h e N A D P H / N A D P r a t i o , t h e c o r r e l a t i o n appears t o h a v e m e r i t . C e r t a i n l y m o r e e x p e r i m e n t a l studies a r e i m p o r t a n t i n this area.
Acknowledgments W e t h a n k P a u l S e i b f o r t h e samples o f acid a n d 6-bromo-6-deoxy-L-dehydroascorbic
D-en/£hro-dehydroascorbic
acid.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.
Pecherer, B. J. Am. Chem. Soc. 1951, 73, 3827-3830. Kenyon, J.; Munro, H. J. Chem. Soc. 1948, 158-161. Muller-Mulot, W. Hoppe-Seylers Z. Physiol. Chem. 1970, 351, 52-55. Patterson, J. W. J. Biol. Chem. 1950, 183, 81-88. Weis, W.; Staudinger, H. Liebigs Ann. Chem. 1971, 754, 152-153. Ohmori, M.; Takagi, M. Agric. Biol. Chem. 1978, 42, 173-174. Sjostrand, S. E. Acta. Physiol. Scand. 1970, Suppl. 356, 1-79. Penney, J. R.; Zilva, S. S. Biochem. J. 1945, 29, 1-4. Zilva, S. S. Biochem. J. 1927, 21, 689. Szent-Gyorgi, A. Biochem. J. 1928, 22, 1387. Schultze, M.; Stotz, E.; King, C. G. J. Biol. Chem. 1937, 122, 395-405. Tillmans, J.; Hirsh, P.; Dick, H. Z. Unters. Lebensm. 1932, 63, 267. Fox, F. W.; Levy, L. F. Biochem. J. 1936, 30, 211. Todhunter, E.; McMillan, T.; Ehmke, D. J. Nutr. 1950, 42, 297-308. Dietz, H. Justus Liebigs Ann. Chem. 1970, 738, 206-208. Hvoslef, J. Acta Cryst. Scand. 1970, 24, 2238-2239. Roe, J. H. In "Methods of Biochemical Analysis"; Vol. 1 Glick, D., Ed., Interscience: New York, 1954, 126. Michael, M.; Brode, G.; Siebert, R. Chem. Ber. 1937, 70, 1862-1866. El Khadem, H.; El Ashry, S. H. J. Chem. Soc. 1968, 2247-2251. El Khadem, H.; El Ashry, S. H. Carbohydr. Res. 1970, 13, 57. El Khadem, H.; Meshreki, M.; Ashry, S.; El Sekeili, M. Carbohydr. Res. 1972, 21, 430—439. El Sekeily, M. et al. Carbohydr. Res. 1977, 59, 141-149. El Sekeily, M.; Mancy, S. Carbohydr. Res. 1979, 68, 87-93. Roberts, G. J. Chem. Soc. Perkin Trans. 1 1979, 603-605. Dahn, H.; Moll, H. Helv. Chim. Acta, 1964, 47, 1860-1869.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
122 26. 27. 28. 29. 30. 31. 32.
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.
ascorbic acid
Dulkin, S. I.; Friedeman, T. E . Food Res. 1956, 21, 519-527. Ranganna, S.; Setty, L. J. Agric. Food Chem. 1974, 22, 1139-1142. Nomura, D.; Okamura, T. Nippon Nogei Kagaku Kaishi 1972, 46, 67-72. Yu, M. H.; Wu, M.; Wang, D.; Salunkhe, D. J. Inst. Can. Sci. Technol. Aliment. 1974, 7, 279-283. Kurata, T.; Fujimaki, M. Agric. Biol. Chem. 1976, 40, 1429-1430. Ranganna, S.; Setty, L. J. Agric. Food Chem. 1974, 22, 719-722. Kurata, T.; Fujimaki, M.; Sakurai, Y. Agric. Biol. Chem. 1973, 37, 14711477. Ward, J. B., M. S. Thesis, Univ. of Colorado, Boulder, CO, 1980. Yano, M.; Hayashi, T.; Namiki, M. Agric. Food Chem. 1976, 24, 815-819. Yano, M.; Hayashi, T.; Namiki, M. Agric. Biol. Chem. 1976, 40, 12091215. Ibid., 1978, 42, 809-817. Ibid., 2239-2243. Kurata, T.; Fujimaki, M. Agric. Biol. Chem. 1974, 38, 1981-1988. Namiki, M.; Yano, M.; Hayashi, T. Chem. Letters 1974, 125-128. Mikova, K.; Davidek, Chem. Listy 1974, 68, 715. Velicek, J.; Davidek, J.; Kubelka, V.; Zelinkova, Z.; Porkorny, J. Z. Lebensm.-Unters. Forsch. 1976, 162, 285-290. Lowendahl, L.; Peterson, G. Anal. Biochem. 1976, 72, 623-628. Hvoslef, J. Acta Crstallogr. 1972, 28, 916-923. Dietz, H. Justus Liebigs Ann. Chem. 1970, 738, 206-208. Albers, H.; Muller, E.; Dietz, H. Hoppe-Seyler's Z. Physiol. Chem. 1963, 334, 243—258. Muller-Mulot, W. Hoppe-Seyler's Z. Physiol. Chem. 1970, 351, 56-60. Ibid., 52-60. Matusch, R. Z. Naturforsch. 1977, Teil 32b, 562-568. Berger, S. Tetrahedron 1977, 33, 1587-1589. Radford, T.; Sweeny, J.; Iacobucci, G.; Goldsmith, D. J. Org. Chem. 1979, 44, 658-659. Ogawa, T.; Uzawa, J.; Matsui, M. Carbohydr. Res. 1979, 59, C32-35. Hvoslef, J.; Pedersen, B. Acta Chem. Scand. 1979, B33, 503-511. Pfeilstricker, K.; Marx, F.; Bochisch, M. Carbohydr. Res. 1975, 45, 269274. Levy, G. C.; Nelson, G. L. "C-13 NMR"; Wiley Intersciences: New York, 1972; Chap. 1. Kazuko, T.; Ohmura, T. Nippon Nogei Kagaku Kaishi, 1966, 40, 196-200. Velicek, J.; Davidek, J.; Janicek, G. Collect. Czech. Chem. Commun. 1972, 37, 1465-1470. Dutta, S. K. Indian J. Pharm. Sci. 1978, 40, 85-87. Roe, H. H.; Kuether, C. A. J. Biol. Chem. 1943, 147, 399. Schaffert, R. R.; Kingsley, G. R. J. Biol. Chem. 1955, 212, 59. Bessey, D. A. J. Biol. Chem. 1938, 126, 771-784. Sauberlich, H. E. Ann. N.Y. Acad. Sci. 1975, 258, 438-449. Crook, E. M. Biochem. J. 1941, 35, 226-236. Dawson, C. R.; Strothkamp, K.; Krul, K. Ann. N.Y. Acad. Sci. 1975, 258, 209-220. Strothkamp, K. G.; Dawson, C. R. Biochemistry 1974, 13, 434-440. Lee, M. H.; Dawson, C. R. J. Biol. Chem. 1973, 248, 6596-6602. Amon, A.; Markakis, P. Phytochemistry 1973, 12, 2127-2132. Deinum, J.; Reinhammer, B.; Marchesini, A. FEBS Lett. 1974, 42, 241245. Avigliano, L.; Gerosa, P.; Rotilio, G.; Finazzi Agro, A.; Calabrese, L.; Mondovi, B. Ital. J. Biochem. 1972, 21, 248-255. Marchesini, A.; Capelletti, P.; Canonica, L.; Danieli, B.; Tollari, S. Biochem. Biophys. Acta 1977, 489, 290-300.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF GUELPH LIBRARY on May 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch005
5. tolbert and ward Dehydroascorbic Acid
123
70. Osaki, S.; McDermott, J.; Frieden, E. J. Biol. Chem. 1964, 239, 3570-3575. 71. Osaki, S.; Johnson, A.; Frieden, E. J. Biol. Chem. 1971, 246, 3018. 72. Yamamoto, Y.; Sato, M.; Ikeda, S. Bull. Jpn. Soc. Sci. Fish. 1977, 43, 59-67. 73. Foyer, C. H.; Halliwell, B. Phytochemistry 1977, 16, 1347-1350. 74. Hughes, R. E . Nature 1964, 203, 1068-1069. 75. Christine, L.; Thompson, G.; Iggs, B.; Brownie, A.; Stewart, C. Clin. Chim. Acta 1956, 1, 557-569. 76. Kagawa, Y.; Takiguchi, H. Biochem. 1962, 51, 197-203. 77. Kagawa, Y.; Takiguchi, H.; Shimazono, N. Biochim. Biophys. Acta 1961, 51, 413-415. 78. Kagawa, Y.; Mano, Y.; Shimazono, N. Biochim. Biophys. Acta 1960, 43, 348-349. 79. Kersten, H.; Kersten, W.; Staudinger, H. J. Biochim. Biophys. Acta 1958, 27, 598-608. 80. Gliss, D.; Schulze, H - U . FEBS Lett. 1975, 60, 374-379. 81. Yamauchi, N.; Ogata, K. Jpn. Soc. Horticult. Res. 1978, 47, 121-127. 82. Schulze, H-U.; Schott, H - H ; Standinger, H. J. Hoppe-Seylers J. Physiol. Chem. 1972, 353, 1931-1942. 83. Wegman, A. Acta Physiol. Scand. 1954, 42, 363-370. 84. Patterson, J.; Mastin, D. Am. J. Physiol. 1951, 167, 119-126. 85. Sjostrand, S. E. Acta Physiol. Scand. 1970, Suppl. 356, 1-79. 86. Patterson, J. W. J. Biol. Chem. 1950, 183, 81-85. 87. Merlini, D.; Caramia, F. J. Cell. Biol. 1965, 26, 245-261. 88. Pillsbury, S.; Watkins, D.; Cooperstein, S. J. Pharm. Exper. Therap. 1973, 185, 713-718. 89. Hornig, D.; Weber, F.; Wiss, O. Int. J. Vitam. Nutr. Res. 1974, 44, 217229. 90. Ibid., 42, 223-241. 91. Ibid., 42, 511-523. 92. Hammarstrom, L. Acta Physiol. Scand. 1966, 70 Suppl 289, 1-84. 93. Hornig, D.; Weiser, H.; Weber, F.; Wiss, O. Clin. Chim. Acta 1971, 32, 33-39. 94. Ibid. 31, 25-35. 95. Edgar, J. A. Nature 1970, 227, 24-26. 96. Edgar, J. A. Experientia 1979, 25, 1214-1215. 97. Warden, J.; Ferreira, T.; Contreiras, J. Genet. Iber. 1972, 24, 283-303. 98. Banerjee, S. Indian J. Physiol. Pharmacol. 1977, 21, 85-93. RECEIVED for review February 3, 1981.ACCEPTEDSeptember 2, 1981.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.