Aspergillus Toxins Other Than Aflatoxin

values of 120-166 mg/kg (per o$) and 60-65 mg/kg (IP). ..... The ir spectrum of terreic acid had sharp absorptions at 3300, 1655, ..... 2, Varian Asso...
1 downloads 0 Views 2MB Size
5 Aspergillus Toxins Other Than Aflatoxin RICHARD J. COLE National Peanut Research Laboratory, U.S. Department of Agriculture, P.O. Box 637, Dawson, Ga. 31742

Available physical, chemical, and biological data are presented for all known Aspergillus mycotoxins other than the aflatoxins with emphasis on the chemistry of those that are of major interest. Included in this latter category are the ochratoxins, the sterigmatocystins, and the aspergillic acid group. Other Aspergillus mycotoxins presented in less detail are kojic acid, austamide, ascladiol, terreic acid, viriditoxin, cytochalasin E, maltoryzine, 3-nitropropanoic acid, oxalic acid, helvolic acid, gliotoxin, fumigatin, fumagillin, terrein, spinulosin, and butenolide.

Members of the genus Aspergillus represent some of the most prevalent mycotoxin-producing fungi associated with feed and food materials. The known mycotoxins of Aspergillus spp., other than aflatoxins, are pre­ sented in this review. Major emphasis is on the chemistry of those Aspergillus toxins currently recognized to be of major interest, including the ochratoxins, the sterigmatocystins, and aspergillic acid. A l l Aspergillus toxins, until proved otherwise, are considered potentially hazardous to animal health. Ochratoxins

The ochratoxins comprise a group of chemically related metabolites isolated originally from culture extracts of Aspergillus ochraceus (1, 2) and subsequently from other Aspergillus spp. (3) and from Pénicillium viridicatum (4, 5). The achratoxins contain a 3,4-dihydro-3-methylisocoumarin moiety linked through a carboxyl group to L-β-phenylalanine by a secondary amide bond. The most toxic derivatives, ochratoxins A (Structure Ia) and C (Structure Ic) contain a chlorine atom at position 5 (6,7,8). Ochratoxin Β (Structure Ib), which differs from ochratoxin A 68

5.

69

Aspergillus Toxins

COLE

Structure I.

=

Ochratoxins

=

=

la: R H, IL Cl, R, H lb: R = H, Ri = H, Ri = H

H

le: R R= = H,R CiHs, = Rï = Rs = Id: Cl,RCl, = OHH 1

s

b y t h e absence o f c h l o r i n e at p o s i t i o n 5, w a s c o n s i d e r a b l y less t o x i c (6, 8, C h u et a l . ( J O ) p o s t u l a t e d t h a t t h e c h l o r i n e atoms o n o c h r a t o x i n s A

9).

a n d C p l a y an indirect role i n toxicity. T h e y presented a direct correlation b e t w e e n t h e d i s s o c i a t i o n constants f o r t h e p h e n o l i c h y d r o x y l g r o u p s o n the ochratoxins a n d t h e i r a c u t e t o x i c i t y . T h e y suggested t h a t t h e p h e ­ n o l i c h y d r o x y l g r o u p i n t h e d i s s o c i a t e d f o r m w a s necessary f o r t o x i c i t y a n d t h a t the c h l o r i n e a t o m m a y h a v e a d i r e c t effect o n t h e d i s s o c i a t i o n o f the p h e n o l i c h y d r o x y l groups i n ochratoxins A a n d C , r e n d e r i n g t h e m toxic. T h e y f u r t h e r n o t e d t h a t the a c i d d i s s o c i a t i o n constant o f o c h r a t o x i n Β w a s o n e - t e n t h as large as o c h r a t o x i n A , a n d t h e t o x i c i t y o f o c h r a t o x i n Β w a s c o r r e s p o n d i n g l y a b o u t o n e - t e n t h t h a t of o c h r a t o x i n A (9). D a t a o n t h e t o x i c i t y of t h e r e c e n t l y r e p o r t e d 4 - h y d r o x y o c h r a t o x i n A ( S t r u c t u r e I d ) w e r e n o t presented i n d e t a i l , b u t t h e t o x i n w a s r e p o r t e d to b e n o n - l e t h a l to rats at 40 m g / k g ( i n t r a p e r i t o n e a l ) (5). O c h r a t o x i n A w a s l e t h a l to a l l rats tested a t this dosage l e v e l . T h e c h e m i c a l structures o f t h e ochratoxins w e r e e l u c i d a t e d b y S o u t h A f r i c a n scientists ( J , 2, 6) a n d s u b s e q u e n t l y p r o v e d b y synthesis ( I I ) . A c i d h y d r o l y s i s o f o c h r a t o x i n A g a v e L - / ? - p h e n y l a l a n i n e a n d 7-carboxy-5chloro-3,4-dihydro-8-hydroxy-3-methyhsocoumarin.

Support for a second­

ary a m i d e was presented b y the I R spectrum w h i c h showed a t y p i c a l a m i d e I b a n d a t 1678 c m " ( C = 0 s t r e t c h i n ) a n d a m i d e I I b a n d a t 1

1535 c m

1

( N - H bending)

boxyl group

absorptions

a n d a t 3380 c m " ( N - H s t r e t c h i n g ) . C a r 1

appeared

at 1723 c m "

1

(C=0

stretching),

a n d a b r o a d b a n d a p p e a r e d b e t w e e n 2500 a n d 3000 c m " ( O - H s t r e t c h ­ 1

i n g ) . T h e lactone f u n c t i o n w a s o b s e r v e d a t 1678 c m " ( s h i f t e d t o l o w e r 1

frequency

because of intramolecular Η b o n d i n g w i t h t h e 8 h y d r o x y l

g r o u p ) a n d at 1132 c m "

1

( C - O - C stretching).

T h e u v spectrum of ochratoxin A showed A

m a x

E t 0 H

215 (c — 36,800)

a n d 333 n m (e = 6400); o c h r a t o x i n Β h a d t h e s a m e u v s p e c t r u m w i t h t h e exception (A

m a x

E t 0 H

of a hypsochromatic

shift o f t h e l o n g w a v e

length

band

218, c — 37,200 a n d 318 n m , = 6900) (2). €

T h e h i g h r e s o l u t i o n mass s p e c t r u m o f o c h r a t o x i n A s h o w e d

m/e

403.08187 w i t h a c a l c u l a t e d e l e m e n t a l c o m p o s i t i o n o f C o H i C l N O e a n d , 2

8

i n a c c o r d a n c e w i t h t h e c a l c u l a t e d f o r m u l a , a n isotope p e a k a t m/e 405 (2).

A p r o t o n a t e d m o l e c u l a r i o n p e a k a t n o m i n a l mass 404 w a s o b s e r v e d

i n t h e l o w r e s o l u t i o n mass s p e c t r u m o f o c h r a t o x i n A after i o n i z a t i o n w i t h isobutane.

chemical

70

MYCOTOXINS

I ι ι ' • ι

1 , ι ι, ι, I ! ι ι ι, I ι, ι ι ι I ι ι ι ι I , ι ι ι I ι ι ι ι I ι, ι !, ι I ι ι ι ι 1 ι ι ; ι I

' Figure

8 7 1. Sixty MHz

^-τ

ι ι ι I ι

6 5 4 3 2 1 proton magnet resonance spectrum of ochratoxin chloroform-ά solution

i^lJ^J

ί~~ in

T h e p r o t o n m a g n e t i c resonance s p e c t r u m of o c h r a t o x i n A ( F i g u r e 1 ) consisted of a n A B X system i n t h e 3 , 4 - d i h y d r o i s o c o u m a r i n m o i e t y .

The

signals for t h e s e c o n d a r y m e t h y l at p o s i t i o n 3 r e s o n a t e d at δ 1.54 as a doublet ( / =

7.0 H z ) . I n c l u d e d i n this system w e r e t h e m e t h y l e n e p r o ­

tons at p o s i t i o n 4 w h i c h r e s o n a t e d at δ 3.2 ( c o m p l e x s i g n a l ) a n d t h e m e t h i n e p r o t o n at p o s i t i o n 3 w h i c h r e s o n a t e d at a p p r o x i m a t e l y δ 4.75 ( c o m p l e x s i g n a l ) . T h e s e signals are s i m i l a r to those o b s e r v e d f o r t h e same 3 , 4 - d i h y d r o i s o c o u m a r i n system i n m e l l e i n ( S t r u c t u r e I I ) ( 1 2 ) :

the

m e t h i n e p r o t o n ( p o s i t i o n 3 ) a p p e a r e d as a sextet at δ 4.50 (7 = 7.0 H z ) . S t r o n g l y c o u p l e d t o the m e t h i n e p r o t o n w e r e

the secondary

methyl

( p o s i t i o n 3 ) w h i c h r e s o n a t e d at δ 1.50 as a d o u b l e t (7 — 7.0 H z ) a n d the m e t h y l e n e protons ( p o s i t i o n 4 ) w h i c h r e s o n a t e d at δ 2.83 as a d o u b l e t (7 = 7.0 H z ) .

( T h e s e three v a l u e s w e r e i n c o r r e c t l y r e p o r t e d as 3.0 H z . )

N e a r l y s u p e r i m p o s e d o n the m e t h y l e n e protons ( δ 3.20 ) of o c h r a t o x i n A w a s a c o m p l e x t w o - p r o t o n s i g n a l a s s i g n e d to the b e n z y l i c m e t h y l e n e protons, a n d n e a r l y s u p e r i m p o s e d o n the m e t h i n e s i g n a l (δ 4.55) w a s a

Structure II. Mellein

5.

71

Aspergillus Toxins

C O L E

c o m p l e x s i g n a l ( δ 5.02)

assigned to the m e t h i n e p r o t o n p o s i t i o n e d next

to t h e a m i d e n i t r o g e n . T h e s i n g l e a r o m a t i c p r o t o n of the d i h y d r o i s o c o u m a r i n m o i e t y r e s o n a t e d at δ 8.60 as a singlet; the five a r o m a t i c protons of p h e n y l a l a n i n e r e s o n a t e d at δ 7.40 as a singlet. T h e c a r b o x y l p r o t o n w a s o b s e r v e d at δ 13.00 a n d the h y d r o x y l p r o t e i n at δ 11.61. T h e e x t r e m e d o w n field p o s i t i o n of t h e latter w a s t y p i c a l of a n Η - b o n d e d O H g r o u p .

This

same extreme d o w n f i e l d p o s i t i o n w a s r e p o r t e d for the Η - b o n d e d d i h y d r o i s o c o u m a r i n O H protons of m e l l e i n a n d 4 - h y d r o x y m e l l e i n (δ — 11.03 a n d 11.03) (12).

T h e a m i d e p r o t o n o n o c h r a t o x i n A r e s o n a t e d at δ 8.75 as a

doublet ( / =

8.0 H z ) .

T h e N M R s p e c t r u m of o c h r a t o x i n Β c o n t a i n e d

s i m i l a r c h e m i c a l shifts b u t d i f f e r e d f r o m o c h r a t o x i n A b y the presence of t w o o r t h o - c o u p l e d a r o m a t i c protons ( l o c a t e d o n positions 5 a n d 6 ) reso­ n a t i n g at δ 8.22 a n d 7.05 (7 — 8.0 H z ) The

1 3

C-NMR

(off

(2).

center resonance d e c o u p l i n g s p e c t r u m )

of d i -

m e t h y l i s o c o u m a r i n c a r b o x y l a t e as p r e s e n t e d b y M a e b a y a s h i et a l . ( J 3 ) is s h o w n i n F i g u r e 2. T h e t w o signals o c c u r r i n g at l o w e s t field, 31.56 a n d 27.65 p p m d o w n f i e l d f r o m C S , w e r e a s s i g n e d to c a r b o n y l carbons 1 a n d 2

11 r e s p e c t i v e l y . T h e c h e m i c a l shifts b e t w e e n 71.08 a n d 49.12 p p m w e r e assigned to the a r o m a t i c carbons w i t h the s i g n a l for t h e a r o m a t i c c a r b o n C - 6 e a s i l y r e c o g n i z e d f r o m t h e off resonance d e c o u p l i n g s p e c t r u m .

The

t w o m e t h o x y c a r b o n s w e r e l o c a t e d at 128.19 a n d 139.80 p p m . T h e m e t h y l ­ ene c a r b o n at C - 4 w a s o b s e r v e d at 158.66 p p m ; t h e t e r t i a r y m e t h y l ( C - 1 0 ) o n p o s i t i o n 3 of the d i h y d r o i s o c o u m a r i n m o i e t y w a s at 171.95 p p m .

The

m e t h i n e c a r b o n ( C - 3 ) w a s a s s i g n e d to the c h e m i c a l shift at 118.79 p p m . T h e most r e c e n t o c h r a t o x i n - t y p e c o m p o u n d r e p o r t e d w a s 4 - h y d r o x y ochratoxin A (Structure Id)

( 5 ) f r o m Pénicillium

viridicatum.

Charac­

teristic differences b e t w e e n the N M R s p e c t r a of o c h r a t o x i n A a n d 4hydroxyochratoxin A were i n the dihydroisocoumarin moiety. A n Ο C H O C12

J

AMY3

OCH Ο 113 " 3

J

11

'CHo 10

J

aromatic C

CH ÎC3) nOCH OCH3

(C6)

3

c=o ici) C=Ol iCll)!

Figure 2.

C—off

13

(C12)

CDCI

J

mi

(C13)

rm

center resonance decoupling spectrum of marin carborylate in chloroform-d solution

CH

2

C«3

(cio) rm

dimethylisocou-

72

MYCOTOXINS

system i n the 3,4 p o s i t i o n e d a r e a w a s e v i d e n t i n t h e N M R s p e c t r u m of 4 - h y d r o x y o c h r a t o x i n A w h e r e a s o c h r a t o x i n A h a d a n A B X system i n t h i s region. T h e A M Y

3

system c o n s i s t e d of t h e f o l l o w i n g : a s e c o n d a r y m e t h y l

at p o s i t i o n 3 w h i c h a p p e a r e d as a d o u b l e t at δ 1.68

(7 = 7 . 0 H z ) ,

the

m e t h i n e p r o t o n at p o s i t i o n 3 w h i c h r e s o n a t e d as a q u a r e t e t of d o u b l e t s at δ 4.80 (7 = 2 , 7 H z ) , a n d the m e t h i n e p r o t o n o n p o s i t i o n 4 w h i c h r e s o n a t e d as a d o u b l e t at δ 5.11 (7 = 2 H z ) . T h e biosynthesis of t h e ochratoxins has b e e n s t u d i e d w i t h t h e a i d of 1 4

C - and

1 3

C - l a b e l e d precursors.

I t has b e e n d e m o n s t r a t e d t h a t p h e n y l ­

a l a n i n e w a s i n c o r p o r a t e d d i r e c t l y i n t o t h e o c h r a t o x i n s ( 1 3 , 14, 1 5 ) , a n d i t w a s p r e s u m e d t h a t the biosynthesis of p h e n y l a l a n i n e o c c u r r e d i n t h e usual manner—i.e., v i a the shikimic a c i d pathway.

S e a r c y et a l .

(14)

r e p o r t e d t h a t t h e i r d a t a w e r e consistent w i t h t h e h y p o t h e s i s t h a t t h e m a j o r p o r t i o n of t h e i s o c o u m a r i n m o i e t y of o c h r a t o x i n A w a s s y n t h e s i z e d v i a acetate c o n d e n s a t i o n w i t h most of t h e

1 4

C - l a b e l from

supplemented

[ 2 - C ] s o d i u m acetate l o c a t e d i n c a r b o n s 2, 4, a n d 6 ( S t r u c t u r e I I I ) . 1 4

o

Structure

HI.

Ochratoxin

A

( T h e n u m b e r i n g system of t h e i s o c o u m a r i n n u c l e u s i n t r o d u c e d b y S e a r c y et a l . (14)

is r e t a i n e d to f a c i l i t a t e d i s c u s s i o n . )

T h e y o b s e r v e d l i t t l e or

n o r a d i o a c t i v i t y i n carbons 1, 3, 5. 9, 10, or 11 of t h e i s o c o u m a r i n m o i e t y . T h e y c o n c l u d e d t h a t the absence of r a d i o a c t i v i t y i n c a r b o n 10 suggested t h a t it was not d e r i v e d f r o m acetate. a p f e l (15)

I n similar studies, Steyn a n d H o l z -

reported that the isocoumarin a c i d moiety was derived f r o m

five acetate units b y h e a d - t o - t a i l c o n d e n s a t i o n , a n d t h e y c o n c l u d e d , t h e r e ­ fore, t h a t carbons 9 a n d 10 w e r e also d e r i v e d f r o m acetate.

T h e y sug­

gested that the absence of a p p r e c i a b l e r a d i o a c t i v i t y o b s e r v e d b y S e a r c y et a l . ( J 4 ) i n carbons 9 a n d 10 m a y h a v e a r i s e n f r o m a l o w y i e l d of acetate f r o m d e g r a d a t i o n experiments a n d f r o m t h e r e l i a n c e o n t o t a l r a d i o a c t i v i t y r a t h e r t h a n o n specific r a d i o a c t i v i t y . T h e y also e s t a b l i s h e d w i t h the a i d of m e t h i o n i n e - S - C H 3 that t h e source of t h e c a r b o x y l c a r b o n at p o s i t i o n 4 14

was v i a transmethylation probably from r e c e n t l y M a e b a y a s h i et a l . ( 1 3 )

using

1 3

S-adenysylmethionine.

C - N M R studies c o n f i r m e d the

p a r t i c i p a t i o n of s o d i u m f o r m a t e - C i n t h e f o r m a t i o n of the 1 3

More

carboxyl

f u n c t i o n at p o s i t i o n 4. T h e s e studies s t r o n g l y suggested t h a t t h e i s o c o u m a r i n a c i d w a s d e ­ rived

v i a t h e a c e t a t e - m a l o n a t e p a t h w a y w i t h t h e e x c e p t i o n of the c a r ­

b o x y l f u n c t i o n at C

4

w h i c h w a s d e r i v e d f r o m the C i p o o l . T h e p o i n t i n

5.

COLE

Aspergillus

73

Toxins

the biosynthesis of o c h r a t o x i n A at w h i c h the c h l o r i n e a t o m w a s i n c o r p o ­ rated was not determined. It was assumed that phenylalanine was formed via the shikimic acid pathway. Sterigmatocystins T h e s t e r i g m a t o c y s t i n s are a g r o u p of c l o s e l y r e l a t e d f u n g a l m e t a b o ­ lites c h a r a c t e r i z e d b y a x a n t h o n e n u c l e u s f u s e d to a d i h y d r o d i f u r a n o or a tetrahydrodifurano moiety.

T h e most e c o n o m i c a l l y i m p o r t a n t m e m ­

b e r of t h e g r o u p is s t e r i g m a t o c y s t i n ( S t r u c t u r e I V a ) f r o m A . nidulans,

A . rugulosus,

a n d Bipoloris

Aspergillus

(16),

members

include aspertoxin

(3-hydroxy-6,7-dimethoxydifuroxanthone)

( S t r u c t u r e I V b ) , ( I S , 19, 20),

O-methylsterigmatocystin (Structure I V c )

(21)

sp. (17),

other

versicolor

and dihydro-O-methylsterigmatocystin (Structure V a )

Aspergillus

flavus;

5-methoxysterigmatocystin

(Structure

(22),

from

IVd)

(23),

Structure

9

IVa:

IV. Sterigmatocystins R = H,R = CHs, Rs = H, Rs H R = OH, Ri = CHs, Ri = CHs, Rs — H R = H, Ri = CHs, R* = CHs, Rs H R = H, R, = CHs, Rs = H,R = OCHs R = H,R = H,R*=z H, Rs = H 1

=

IVb: IVc:

=

r=

IVd:

S

IVe:

6-demethylsterigmatosystin (Structure I V e )

1

dihydrosterigmatocys-

(24),

tin (Structure V b ) (25), a n d dihydrodemethylsterigmatocystin (Structure Vc)

(25)

f r o m Aspergillus

versicolor.

T h e m a j o r differences a m o n g the

v a r i o u s sterigmatocystins are t h e p r e s e n c e o r absence of u n s a t u r a t i o n i n the d i f u r a n o r i n g s y s t e m ( s i m i l a r to aflatoxins B i a n d B ) 2

a n d i n the

s u b s t i t u t i o n p a t t e r n o n p o s i t i o n s 6, 7, a n d 10 of the xanthone r i n g system a n d / o r p o s i t i o n 3 of t h e d i f u r a n o system. E n g l e b r e c h t a n d A l t e n k i r k (26)

s t u d i e d t h e t o x i c i t y of s t e r i g m a t o ­

c y s t i n analogs o n p r i m a r y c e l l c u l t u r e s . T h e y c o n c l u d e d t h a t c o m p o u n d s c o n t a i n i n g the A - f u r o b e n z o f u r a n - r i n g s y s t e m ( S t r u c t u r e I V ) w e r e m o r e 1 2

t o x i c t h a n those c o n t a i n i n g a s a t u r a t e d f u r o b e n z o f u r a n - r i n g system ( S t r u c ­ ture V ) .

T h e c a r c i n o g e n i c i t y of s t e r i g m a t o c y s t i n has b e e n w e l l

Structure

V. Sterigmatocystins Va: R = CH R* = CHs Vb: R = CHs, Ri == H Vc: R = H, Ri = H 3y

docu-

74

M Y C O T O X I N S

m e r i t e d (27, 28, 29).

E n g e l b r e c h t a n d A l t e n k i r k (26)

further suggested

t h a t a c a r b o n y l g r o u p u n s a t u r a t e d i n the α,β p o s i t i o n a n d a n u n s a t u r a t e d b o n d i n the A - - p o s i t i o n are r e q u i r e d f o r c a r c i n o g e n i c i t y . A l s o a m e t h o x y 1

2

g r o u p at p o s i t i o n 6 e n h a n c e d t o x i c i t y of these c o m p o u n d s , a n d a m e t h o x y g r o u p at p o s i t i o n 7 d e c r e a s e d t o x i c i t y . H o l z a p f e l et a l . ( 1 7 ) , i n studies o n t h e acute t o x i c i t y of s t e r i g m a t o c y s t i n to a l b i n o rats, r e p o r t e d v a l u e s of 1 2 0 - 1 6 6 m g / k g (per B u l l o c k et a l . (16) cystin.

o$) a n d 6 0 - 6 5 m g / k g

LD

5

0

(IP).

e l u c i d a t e d the c h e m i c a l s t r u c t u r e of s t e r i g m a t o ­

S t e r i g m a t o c y s t i n is a p a l e y e l l o w c r y s t a l l i n e c o m p o u n d

m e l t i n g p o i n t of 2 4 6 ° C ( d e c ) 208, 235, 249, a n d 329 n m ( l o g

4.28, 4.39, 4.44, a n d 4.12,



with a

Its u v s p e c t r u m s h o w e d

(30).

A

E t 0 H

m a x

respectively)

T h e u v s p e c t r u m a g r e e d w i t h s p e c t r a of m a n y o t h e r h y d r o x y l a t e d

(16).

a n d / o r m e t h o x y l a t e d xanthones

T h e most c h a r a c t e r i s t i c features

(30).

of t h e i n f r a r e d ( i r ) s p e c t r u m of s t e r i g m a t o c y s t i n w e r e 3450 c m " 1650 c m "

1

( y - p y r o n e ) , 1627 c m " , 1 6 1 0 c m " , a n d 1590 c m " 1

1

(OH),

1

(phenyl)

1

(16).

T h e h i g h r e s o l u t i o n mass s p e c t r u m of s t e r i g m a t o c y s t i n s h o w e d 324.0627 w h i c h a n a l y z e d for C i H n 0 . 8

m/e

T h e most p r o m i n e n t p e a k i n t h e

6

c h e m i c a l - i o n i z a t i o n mass s p e c t r u m w a s at n o m i n a l mass m/e 325 w i t h n o p r o m i n e n t f r a g m e n t ions. T h e p r o t o n N M R s p e c t r u m of s t e r i g m a t o c y s t i n consisted of c h e m i c a l shifts f o r t w o

different systems:

x a n t h o n e system.

the d i h y d r o d i f u r a n o

system a n d

the

C o u p l i n g b e t w e e n the three n o n e q u i v a l e n t p r o t o n s

of

t h e x a n t h o n e s y s t e m , H , H , a n d H i , g a v e rise to a n A B X s p e c t r u m i n 8

9

0

w h i c h J A X — 7BX — 8.1 H z ( F i g u r e 3 ) . c o n s i s t e d of a t r i p l e t at δ 7.64 ( / = t r u m was complicated

b y the H

T h e X p o r t i o n of this s p e c t r u m

8.1 H z ) . T h e A B p o r t i o n of the s p e c ­ p r o t o n of t h e d i h y d r o d i f u r a n o

4

s y s t e m w h i c h r e s o n a t e d i n the same a r e a ( s u p e r i m p o s e d shifts f o r H et a l . (16)

8

a n d H i between δ 6.7-7.0) ( F i g u r e 3 ) . 0

observed

8

ring

chemical

However, Bullock

a c o u p l i n g constant of 2 H z i n a c o m p l e x

c o r r e s p o n d i n g to the c h e m i c a l shifts of t h e H 6.8; 7AB =

on

group

a n d H i protons ( a b o u t δ 0

2 H z ) of s t e r i g m a t o c y s t i n . R o d r i c k s et a l . (19)

reported that

t h e c o r r e s p o n d i n g A B p o r t i o n of the A B X system ( x a n t h o n e p r o t o n s ) i n a s p e r t o x i n acetate was n o t e n t i r e l y d i s c e r n i b l e , b u t t h r e e d o u b l e t s

were

o b s e r v e d w i t h a c o u p l i n g constant of 1 H z (δ 6.98 a n d 6.78; J B — 1 H Z ) A

i n t h e r e g i o n of the H

8

and H i

0

protons.

superimposed on the acetal proton ( H ) 4

T h e remaining doublet

was

of t h e d i h y d r o d i f u r a n o system.

T h e r e f o r e , analysis of t h e A B X s y s t e m of a s p e r t o x i n acetate w a s Jax JBX =

8.0HZ

(ortho substituted)

and / B = A

1HZ

(meta

=

substituted)

(19).

N M R a n a l y s i s of the c o r r e s p o n d i n g protons i n t h e s p e c t r u m of d i h y d r o - o - m e t h y l s t e r i g m a t o c y s t i n (22)

p r o v i d e d a m o r e d i s c e r n i b l e v i e w of

t h e x a n t h o n e protons since t h e a c e t a l p r o t o n ( d o u b l e t δ 6.5, / = w a s n o t s u p e r i m p o s e d o n the c h e m i c a l shifts of protons H

8

6.0Hz)

a n d Η χ of t h e 0

5.

C O L E

ι ι ι

I

Aspergillus Toxins

ι ι ι ι I ι ι ι ι

75 1

I

I

1080

1

i: f

,° 3 C H

Figure

3.

Proton NMR

spectrum of sterigmatocystin

in cloroform-d

solution

x a n t h o n e system. I t c a n be r e a d i l y o b s e r v e d f r o m this s p e c t r u m ( F i g u r e 4 ) t h a t t h e X p o r t i o n of the s p e c t r u m ( H d i - o r t h o t r i p l e t at δ 7.57

(7 =

9

p r o t o n ) a g a i n a p p e a r e d as a

8.0 H z ) ; the A B p o r t i o n ( H

8

and

Ηχο)

resonated as t w o o r t h o - m e t a d o u b l e t of d o u b l e t s at δ 7.0 a n d 6.8, r e s p e c ­ t i v e l y (7 = 8.0 H z a n d 1.0 H z ) . T h e values for 7 A X — 7 B X — 8 . 0 H z a n d 7AB =

1.0 H z also agree w i t h 7-ortho a n d 7-meta for b e n z e n o i d systems.

T h e N M R s p e c t r u m of s t e r i g m a t o c y s t i n also c o n t a i n e d the t y p i c a l c h e m i c a l shifts for protons of a d i h y d r o d i f u r a n o s y s t e m s i m i l a r to those o b s e r v e d for the c o r r e s p o n d i n g protons i n aflatoxin Βχ (31, 3 ) : Ηχ = t r i p l e t , δ 6.62 (7 = 2 . 5 H z ) ; H H

3

=

t r i p l e t s of d o u b l e t , δ 4.81 (7 =

6.85 (7 = 7 H z ) .

The noncoupled

2

33)

(Figure

= t r i p l e t , δ 5.50 (7 =

2.5Hz);

2.5 a n d 7.0 H z ) ; H

4

— doublet, ca. δ

a r o m a t i c p r o t o n , H , r e s o n a t e d at δ 5

6.50 as a singlet, a n d t h e m e t h o x y protons at p o s i t i o n 6 w e r e o b s e r v e d at δ 4.00 ( F i g u r e 3 )

(16).

T h e s t r u c t u r a l analysis of the p - b r o m o b e n z o a t e d e r i v a t i v e of s t e r i g ­ matocystin b y x-ray diffraction (33)

a g r e e d w i t h t h e s t r u c t u r e of s t e r i g ­

m a t o c y s t i n p r o p o s e d b y B u l l o c k et a l . (16).

T h e s t r u c t u r a l assignment

of s t e r i g m a t o c y s t i n w a s v e r i f i e d f u r t h e r t h r o u g h t o t a l synthesis m e t h y l s t e r i g m a t o c y s t i n (34)

(zb)-O-

a n d b y the c o n v e r s i o n of O - m e t h y l d i h y d r o -

sterigmatocystin into dihydroaspertoxin b y treating it w i t h methanolic a l k a l i a n d t h e n w i t h l e a d tetraacetate a n d d i l u t e a l k a l i n e h y d r o l y s i s

(1).

β!ο

Figure

j

0

4.

Proton

6

|

0

. . . . . .

NMR spectrum of cystin in chloroform-d

j

q

.

^

ppj

'

(5)

4 0

dihydro-O-methyhterigmatosolution

H o l k e r a n d M u l h e i r n ( 3 5 ) s t u d i e d t h e biosynthesis of sterigmatocys­ t i n b y d e g r a d a t i o n of

1 4

C - l a b e l e d t o x i n p r o d u c e d b y Aspergillus

versicolor

f r o m [ 1 - C ] acetate. T h e y r e p o r t e d t h a t t h e d i s t r i b u t i o n of r a d i o a c t i v i t y 1 4

i n d i c a t e d t h a t t h e x a n t h o n e r i n g system i n s t e r i g m a t o c y s t i n

probably

o r i g i n a t e d v i a the a c e t a t e - m a l o n a t e p a t h w a y a n d t h a t t h e 4 - c a r b o n b i s f u r a n m o i e t y also s e e m e d to arise f r o m h e a d - t o - t a i l c o n d e n s a t i o n of t w o acetate u n i t s w i t h t h e C — C b o n d j o i n i n g the x a n t h o n e a n d b i s f u r a n m o i e t i e s d e r i v e d f r o m acetate m e t h y l groups.

T h e y also o b s e r v e d that

t h e l e v e l of r a d i o a c t i v i t y i n the b i s f u r a n m o i e t y w a s s i g n i f i c a n t l y l o w e r t h a n t h a t i n the xanthone system. F r o m the a b o v e observations H o l k e r a n d M u l h e i r n ( 3 5 ) suggested t h a t s t e r i g m a t o c y s t i n w a s d e r i v e d f r o m t w o separate k e t i d e u n i t s c o m b i n e d i n a n u n k n o w n f a s h i o n . S i n c e sterigmatocystins, v e r s i c o l o r i n s , a n d aflatoxins a l l c o n t a i n the furobenzofuran

r i n g system, i t has b e e n s p e c u l a t e d t h a t t h e y h a v e

a

c o m m o n b i o g e n e t i c p a t h w a y or that the aflatoxins m a y b e d e r i v e d f r o m s t e r i g m a t o c y s t i n a n d / o r v e r s i c o l o r i n t y p e precursors

( 3 2 , 3 5 , 36,

R e c e n t e v i d e n c e p a r t i a l l y s u p p o r t e d these hypotheses.

H s i e h et a l . ( 3 3 )

demonstrated that

14

37).

C - s t e r i g m a t o c y s t i n w a s efficiently c o n v e r t e d to afla­

t o x i n B i b y t h e r e s t i n g m y c e l i u m of Aspergillus

parasiticus.

T h e i r results

5.

C O L E

77

Aspergillus Toxins

indicated a biosynthetic p a t h w a y leading from 5-hydroxysterigmatocystin to s t e r i g m a t o c y s t i n a n d t h e n to aflatoxin B . x

S c h r o e d e r et a l . ( 3 9 )

re­

p o r t e d t h a t a n o r a n g e v e r s i c o l o r i n - t y p e p i g m e n t , t e n t a t i v e l y i d e n t i f i e d as v e r s i c o n a l acetate, a c c u m u l a t e d i n c u l t u r e s of Aspergillus

flavus w i t h a

c o n c o m i t a n t r e d u c t i o n i n aflatoxin p r o d u c t i o n as a r e s u l t of t h e i n h i b i t o r y a c t i o n of the i n s e c t i c i d e d i c h l o r v o s . Aspergillic

Acid

A s p e r g i l l i c a c i d ( S t r u c t u r e V I ) , first of a n u m b e r of closely r e l a t e d p y r a z i n e metabolites reported, was discovered a n d n a m e d b y W h i t e a n d W h i t e a n d H i l l (41).

(40)

A s w i t h m a n y other m y c o t o x i n s , a s p e r g i l l i c

a c i d w a s o r i g i n a l l y d i s c o v e r e d b e c a u s e of its a n t i b i o t i c p r o p e r t i e s . A s p e r ­ g i l l i c a c i d a n d its analogs are m a j o r m e t a b o l i t e s A . flavus a n d o t h e r Aspergillus

of c e r t a i n strains of

spp.

A s p e r g i l l i c a c i d is a c u t e l y toxic to m i c e ( 1 0 0 - 1 5 0 m g / k g , i p ) b u t has n o c h r o n i c effects at s u b l e t h a l dosages (41).

T h e analogs of a s p e r g i l l i c

a c i d s h o w e d ranges of t o x i c i t y f r o m n e a r z e r o to t o x i c i t y e q u a l i n g t h a t f o r a s p e r g i l l i c a c i d (42,

43, 44).

T o x i c i t y a p p e a r e d to b e r e l a t e d to the

h y d r o x a m i c a c i d f u n c t i o n a l i t y , a n d little effect o n t o x i c i t y w a s o b s e r v e d f o r differences i n t h e 3 a n d 6 p o s i t i o n e d s i d e - c h a i n substituents. M a c D o n a l d (45, 46) 1 4

i n studies w i t h D L - l e u c i n e - C a n d L - i s o l e u c i n e -

C s h o w e d t h a t Aspergillus

1 4

flavus

synthesized aspergillic acid a n d h y -

d r o x y a s p e r g i l l i c a c i d ( S t r u c t u r e V I I ) f r o m one m o l e c u l e of l e u c i n e p l u s one m o l e c u l e of i s o l e u c i n e .

T h i s c o n c l u s i o n w a s b a s e d o n the f a c t that

aspergillic acid from m e d i u m supplemented

with L-isoleucine- C had 1 4

m o s t of the r a d i o a c t i v i t y i n t h e i s o l e u c i n e m o i e t y a n d o n l y a s m a l l a m o u n t i n the l e u c i n e m o i e t y . T h e o p p o s i t e was f o u n d w h e n a s p e r g i l l i c a c i d w a s produced i n m e d i u m supplemented w i t h DL-leucine- C. D a t a were simi­ 1 4

l a r f r o m studies o n t h e biosynthesis of h y d r o x y a s p e r g i l l i c a c i d . I n another s t u d y a s p e r g i l l i c a c i d - C w a s c o n v e r t e d to h y d r o x y a s p e r g i l l i c a c i d - C , 1 4

1 4

b u t the reverse w a s not true. A l s o , i n t h e e a r l y stages of g r o w t h of A . flavus,

m o r e a s p e r g i l l i c a c i d t h a n h y d r o x y a s p e r g i l l i c a c i d w a s present i n

the m e d i u m , b u t i n the later stages, h y d r o x y a s p e r g i l l i c a c i d p r e d o m i n a t e d . T h e a b o v e findings s u p p o r t t h e hypothesis t h a t h y d r o x y a s p e r g i l l i c a c i d is produced irreversibly from aspergillic acid.

CH

'3

Structure VI.

ό

Aspergillic

Acid

Structure VII. Hydroxyasper­ gillic Acid

78

MYCOTOXINS

Structure VIII. Νeoaspergillie Acid I n l a t e r studies u s i n g radioisotopes, M i c e t i c h a n d M a c D o n a l d

(47)

showed that neoaspergillic a c i d (Structure V I I I ) was biosynthesized from two molecules of leucine.

R e s u l t s also s t r o n g l y suggested t h a t t h e se­

q u e n c e i n t h e biosynthesis o f n e o a s p e r g i l l i c a c i d w a s (2) flavacol

( S t r u c t u r e I X ) —» n e o a s p e r g i l l i c a c i d - >

leucine-»

neohydroxyaspergillic

acid (Structure X ) .

, C M - C H C

H

2

^ N ^ O H

^ C H - C H ^ N ^ O H

3

Stucture IX.

C

Ffovacol

H

3

O H

£

Structure X. Neohydroxyas­ pergillic Acid

E l u c i d a t i o n o f t h e c h e m i c a l structure o f a s p e r g i l l i c a c i d ( C12H20N2O2 ) ( S t r u c t u r e V I ) p r i m a r i l y arose f r o m a n d D u t c h e r a n d W i n t e r s t e i n e r (50)

t h e w o r k of D u t c h e r

(48,

49)

a l o n g w i t h s u b s e q u e n t studies b y

ether investigators w h i c h e v e n t u a l l y r e v i s e d t h e n a t u r e o f t h e side c h a i n s a n d e s t a b l i s h e d t h e i r l o c a t i o n o n t h e p y r a z i n e r i n g (51, 52, 53, 54). P r i n c i p l e c h e m i c a l features

of aspergillic acid are pyrazine ring,

c y c l i c h y d r o x a m i c a c i d , s e c - b u t y l a n d i s o b u t y l moieties.

T h e various

analogs o f a s p e r g i l l i c a c i d differ f r o m e a c h other p r i m a r i l y i n t h e n a t u r e of t h e s i d e - c h a i n substituents o n positions 3 a n d 6. A s p e r g i l l i c a c i d a n d m o s t analogs c a n exist i n e i t h e r t h e h y d r o x a m i c a c i d f o r m

(2-hydroxy-

pyrazine-l-oxide) or the l-hydroxy-2-pyrazinone form (Structure X I ) . T h e u v spectrum of aspergillic a c i d was A a n d 235 n m (c = 10,500) a n d A

m a x

m a x

E t 0 H

328 (e — 8500)

336 n m ( c = 10,800) i n 0.05M p h o s ­

p h a t e buffer, p H 7.3. T h e i r s p e c t r u m s h o w e d absorptions at 3120, 2940,

RAN^OH O

R f ^ N ^ O O H

Structure XI. Ατ±Β Aspergillic Acid Nu­ cleus

5.

79

Aspergillus Toxins

C O L E

2850, 2 8 0 0 - 2 2 5 0 ( b r o a d ) , 2040 ( a b s e n t i n c h l o r o f o r m s o l u t i o n ) , 1 5 8 5 , 1 1 5 0 , a n d 710 c m "

1

1640,

(48).

T h e N M R s p e c t r u m of a s p e r g i l l i c a c i d t a k e n i n t r i f l u o r o a c e t i c a c i d s o l u t i o n w i t h t e t r a m e t h y l s i l a n e as i n t e r n a l reference s h o w e d t h e f o l l o w i n g r e c o g n i z a b l e features: a c h e m i c a l shift r e s o n a t i n g at δ 7.83 f o r a single p r o t o n w a s assigned to t h e a r o m a t i c p r o t o n o n p o s i t i o n 5 ( S t r u c t u r e V I ) ; the m e t h y l e n e protons a t t a c h e d to C - 3 r e s o n a t e d as a d o u b l e t (7 =

8.0

H z ) at δ 3.12; the m e t h i n e p r o t o n i n the s e c - b u t y l side c h a i n a t t a c h e d to C - 6 w a s o b s e r v e d at δ 3.73 ( m u l t i p l e t ) , a n d the f o u r m e t h y l g r o u p s o n the sec-

a n d i s o b u t y l side c h a i n s w e r e at δ 1.02 a n d δ 1.51 ( β - m e t h y l o n

t h e s e c - b u t y l side c h a i n w a s p r e s u m a b l y s u p e r i m p o s e d o n g e m - d i m e t h y l T h e 3 p r o t o n d o u b l e t at δ 1.51 (7 = 6 H z ) w a s a s s i g n e d

doublet) (47).

to the m e t h y l g r o u p o n the s e e - b u t y l s i d e c h a i n ( p o s i t i o n 6 ) a n d a p p a r ­ e n t l y s h o w e d v i r t u a l c o u p l i n g to t h e adjacent m e t h i n e p r o t o n w h i c h w a s i n t u r n c o u p l e d to the adjacent m e t h y l e n e protons. Kojic

Acid

Kojic acid [5-hydroxy-2-(hydroxymethyl)-4ii-pyran-4-one] t u r e X I I ) , a r e l a t i v e l y c o m m o n m e t a b o l i t e of Aspergillus

(Struc­

spp. a n d i n

o

Structure XII. Kojic Acid p a r t i c u l a r of A . flavus,

w a s first d i s c o v e r e d b y S a i t o ( 5 5 ) .

Yabuta

(56)

s t u d i e d t h e c h e m i s t r y of k o j i c a c i d a n d w a s m a i n l y r e s p o n s i b l e f o r e l u c i ­ d a t i n g its c h e m i c a l structure. E a r l y w o r k o n k o j i c a c i d w a s n o d o u b t r e l a t e d to its a n t i m i c r o b i a l properties.

C o n s i d e r a b l e e m p h a s i s r e m a i n e d o n the p o t e n t i a l usefulness

of k o j i c a c i d i n s p i t e of reports of its t o x i c i t y to a n i m a l s . T h u s , k o j i c a c i d has b e e n the target of extensive c h e m i c a l r e s e a r c h ( D a t a sheet N o . 502, Charles Pfizer and C o . ) . A l t h o u g h k o j i c a c i d has n o t b e e n d i r e c t l y i m p l i c a t e d i n n a t u r a l o u t ­ breaks of m y c o t o x i c o s i s , i t r e m a i n s a p o t e n t i a l p r o b l e m i n v i e w of the l a r g e n u m b e r of m i c r o o r g a n i s m s c a p a b l e of i t . T h e L D

5 0

of p r o d u c i n g l a r g e

amounts

of k o j i c a c i d i n 17 g m i c e w a s 30 m g i p i n j e c t i o n

(57).

K o j i c a c i d also s h o w e d t o x i c i t y i n p l a n t cells at 1 0 M ( 5 8 ) . _ 1

K o j i c a c i d is c h a r a c t e r i z e d b y a γ - p y r o n e n u c l e u s s u b s t i t u t e d o n p o s i ations 2 a n d 5 w i t h a h y d r o x y m e t h y l a n d a h y d r o x y g r o u p . trum showed A

m a

x

E t 0 H

268 n m (e = 8000) a n d 216 n m ( = €

Its u v spec­ 11,000).

80

MYCOTOXINS

T h e i n f r a r e d s p e c t r u m of k o j i c a c i d shows t y p i c a l γ - p y r o n e a b s r o p tions—i.e., C = 0 frequencies

s t r e t c h i n g f r e q u e n c y at 1765 c m " a n d v c = c s t r e t c h i n g 1

at 1620 c m "

1

a n d 1588 c m " .

O t h e r significant absorptions

1

o c c u r r e d a t 3 2 8 5 ( O H ) , 1350, 1285, 1230, 1142, 1085, 990, 944, a n d 865 cm' . 1

T h e N M R spectrum of kojic acid, taken i n D 0 solution, exhibited 2

c h e m i c a l shifts f o r a t w o - p r o t o n s i g n a l at δ 4.54 ( s i n g l e t , 2 - h y d r o x y m e t h y l g r o u p ) a n d o n e - p r o t o n singlets at δ 6.59 a n d δ 8.10 for the protons p o s i t i o n s 3 a n d 6.

S i g n a l s f o r the t w o O H protons w e r e n o t

on

observed

b e c a u s e of c h e m i c a l e x c h a n g e w i t h D 0 . A c h e m i c a l shift r e s o n a t i n g at 2

δ 4.69 w a s a s s i g n e d t o H D O

(59).

I n s p i t e of extensive r e s e a r c h o n t h e biosynthesis of k o j i c a c i d , its m o d e of f o r m a t i o n w a s d u b i o u s . T h e w o r k of A r n s t e i n a n d B e n t l e y ( 6 0 , 61, 62, 63, 64)

y

i n a series of elegant experiments u s i n g

cursors w i t h s u b s e q u e n t

1 4

C-labeled pre­

d e g r a d a t i o n of t h e p r o d u c t s , p r o v i d e d

strong

evidence that kojic a c i d was formed directly f r o m the oxidation of D g l u c o s e . T h e y s u g g e s t e d t h a t D-glucose c o u l d b e o x i d i z e d to 3 - k e t o g l u c o n i c a c i d l a c t o n e w h i c h c o u l d i n t u r n take t w o possible p a t h w a y s to kojic acid. B o t h pathways involve enzymatic dehydration and reduction f r o m 3 - k e t o g l u c o n i c a c i d l a c t o n e to f o r m k o j i c a c i d . F u r t h e r s u p p o r t f o r these p a t h w a y s w a s p r o v i d e d w h e n i t w a s e x p e r i m e n t a l l y s h o w n t h a t g l u c o n i c a c i d a n d g l u c o n o l a c t o n e b o t h serve as precursors for k o j i c a c i d b i o s y n t h e s i s (64).

A n excellent c o m p r e h e n s i v e r e v i e w of k o j i c a c i d has

been prepared b y Beelik

(65).

Aust amide S t e y n (66,

67)

r e c e n t l y r e p o r t e d o n t h e c h e m i c a l structures of

n e w d i k e t o p i p e r a z i n e c o m p o u n d s i s o l a t e d f r o m cultures of ustus.

five

Aspergillus

A u s t a m i d e ( S t r u c t u r e X I I I ) a n d 1 2 , 1 3 - d i h y d r o a u s t a m i d e are c h a r ­

a c t e r i z e d b y a b a s i c Ψ-indoxyl m o i e t y s u b s t i t u t e d o n p o s i t i o n t w o w i t h a seven-membered

s p i r a n r i n g system a n d c o n t a i n i n g i n a d d i t i o n d i k e t o ­

piperazine a n d proline moieties.

T h e u v spectra of b o t h

s h o w e d t y p i c a l Φ-indoxyl c h r o m o p h o r e s ( A

m a x

E t 0 H

15

Structure XIII. mide

Austa­

compounds

234, 256, a n d 392 n m ) .

5.

C O L E

81

Aspergillus Toxins

A u s t a m i d e contained additional U V absorptions ( A n m ) a t t r i b u t e d to the e n a m i d e c h r o m o p h o r e cm"

(Ψ-indoxyl C = 0 ) ,

C = 0

groups).

a n d 1680 c m '

1

E t 0 H

268 a n d 282

(66,67).

T h e i r s p e c t r u m of a u s t a m i d e s h o w e d 3420 c m " 1

x

m a

( N H g r o u p ) , 1700

1

a n d 1650 c m "

1

(diketopiperazine

Dihydroaustamide h a d similar ir absorption for

m a j o r f u n c t i o n a l groups.

the

M a s s spectral analysis of austamide s h o w e d a

molecular ion peak ( m * )

at m/e

363 w h i c h a n a l y z e d f o r C21H21N3O3.

T h e b a s e p e a k a p p e a r e d at m/e 203 ( C i i H i i N 0 ) w h i c h r e s u l t e d f r o m 2

2

cleavage of the s p i r a n r i n g to f o r m a n a l i c y c l i c f r a g m e n t at m/e

218

(C12H14N2O2) f o l l o w e d b y a loss of a m e t h y l g r o u p . D i h y d r o a u s t a m i d e s h o w e d a m * p e a k at m/e 365 w i t h a c o r r e s p o n d i n g f r a g m e n t r e p r e s e n t i n g the a l i c y c l i c p a r t o f t h e m o l e c u l e at m/e 220

(67).

C h a r a c t e r i s t i c features of the N M R s p e c t r u m o f a u s t a m i d e

were

c h e m i c a l shifts for t w o n o n e q u i v a l e n t g e m i n a l m e t h y l g r o u p s r e s o n a t i n g at δ 1.38 ( s i n g l e t ) a n d δ 0.88 ( s i n g l e t ) ; t h e o l e f i n i c p r o t o n s l o c a t e d o n t h e other p a r t of the isoprene u n i t a p p e a r e d at δ 4.89 ( d o u b l e t ) a n d at δ 6.82 ( d o u b l e t ) ( J A B — 10 H z ) . T h e n o n e q u i v a l e n t m e t h y l e n e p r o t o n s at p o s i ­ t i o n 3 resonated at δ 3.06 ( e q u i t o r i a l q u a r t e t ) a n d δ 2.10 ( a x i a l q u a r t e t ) as p a r t of a n A B X system w i t h J B — 14, / A X — 5, a n d J x — 12 H z . T h e A

B

X p o r t i o n consisted o f the m e t h i n e p r o t o n o n t h e d i k e t o p i p e r a z i n e m o i e t y r e s o n a t i n g at δ 4.99 as a p a i r of d o u b l e t s ( J x — 5; J x = A

12 H z ) .

B

T h e protons i n the p r o l i n e r i n g c o m p r i s e d a n A M X system. 2

2

The

m e t h y l e n e protons adjacent to t h e p r o l i n e n i t r o g e n a p p e a r e d as t w o o v e r ­ l a p p i n g triplets at δ 3.85 (7 = 9, 9 H z ) ; the c h e m i c a l shifts f o r the t w o protons at p o s i t i o n 19 r e s o n a t e d as a sextet at δ 2.40 ( / = 3, 9, 9 H z ) . T h e a r o m a t i c protons o n the i n d o x y l n u c l e u s w e r e o b s e r v e d b e t w e e n δ 7.7 a n d δ 6.6, a n d the N H p r o t o n ( D 0 e x c h a n g e a b l e ) w a s o b s e r v e d at δ 4.73 as a 2

b r o a d s i g n a l . T h e N M R s p e c t r u m of d i h y d r o a u s t a m i d e w a s s i m i l a r except that the olefinic t r i p l e t at δ 6.26 w a s absent a n d a p r o t o n ( p o s i t i o n 12) a p p e a r e d at δ 4.18; c h e m i c a l shifts f o r the p r o l i n e p r o t o n s b e c a m e m o r e complex. T h e other three d i k e t o p i p e r a z i n e s c o n s i s t e d of c l o s e l y r e l a t e d 2,3d i s u b s t i t u t e d indoles. T h e m a j o r c o m p o u n d of t h i s g r o u p , p r o l y l - 2 - ( l ' , l ' dimethylallyltryptophyldiketopiperazine

[C21H25N3O2]

(Structure X I V )

w i l l serve as a m o d e l f o r d i s c u s s i o n . I t h a d t y p i c a l U V a b s o r p t i o n f o r 2,3-disubstituted indole ( A 3.85, 3.91, a n d 3.85).

m a x

E t 0 H

225, 275, 283, a n d 291 n m ; l o g c 4.51,

T h e i r s h o w e d c h a r a c t e r i s t i c N H a b s o r p t i o n at

3480, 3460, a n d 3365 c m " . T h e a m i d e I b a n d s o c c u r r e d at 1685 1

(weak

s h ) a n d 1670 c m ' . A b s e n c e of a n a m i d e I I b a n d s u p p o r t e d t h e p r e s e n c e 1

of a d i k e t o p i p e r a z i n e system. T h e mass s p e c t r u m of S t r u c t u r e X I V h a d a m * p e a k at m/e 351 a n d one p r o m i n e n t p e a k at m/e

198 ( b a s e p e a k ) r e s u l t i n g f r o m c l e a v a g e of

the b o n d b e t w e e n carbons 8 a n d 9. T h e N M R s p e c t r u m s h o w e d c h e m i c a l

82

M Y C O T O X I N S

shifts f o r t w o D 0 e x c h a n g e a b l e p r o t o n singlets at δ 8.75 a n d δ 5.72 a r i s i n g 2

f r o m the N H protons. T h e f o u r a r o m a t i c protons a p p e a r e d as a m u l t i p l e t b e t w e e n δ 7.52-6.95; the g e m - d i m e t h y l protons w e r e l o c a t e d at δ 1.50 as a s i x - p r o t o n singlet. T h e t h r e e e x o c y c l i c protons o n positions 19 a n d 20 c o m p r i s e d a A A X system w i t h the X p a r t ( H o n p o s i t i o n 19) at δ 6.10 2

(/

_

A X

18.0 H z ; 7 1 χ — 9 H z ) a n d the A A p a r t at δ 5.08 ( 7 A X — 18.0 H z ; 1

Δ

7A1A1 =

9HZ).

T h e 3 protons at positions 8 a n d 9 r e s o n a t e d as a n A B X system at δ 4.44 ( H o n p o s i t i o n 9 — X p a r t ; 7 A X — 4; 7 B X — 11.0 H z ) , δ 3.75 (7AB -

15.5; 7 A X -

4 H z ) , a n d δ 3.17 ( H „ )

(7AB -

15.5; 7 B X -

(H ) A

11.0Hz).

A s i g n a l a r i s i n g f r o m the m e t h i n e p r o t o n at p o s i t i o n 12 w a s o b s e r v e d as a t r i p l e t at δ 4.05 (7 = 7 H z ) . T h e protons o n p o s i t i o n 15 w e r e l o c a t e d at δ 3.66, a n d the other f o u r protons of the p r o l i n e r i n g w e r e

between

δ 2.4 a n d 1.8 as a m u l t i p l e t . A u s t a m i d e ( S t r u c t u r e X I I I ) w a s r e p o r t e d as t o x i c to d u c k l i n g s , b u t n o specific t o x i c o l o g i c a l d a t a h a v e b e e n r e p o r t e d (66). concerning

biosynthesis of

A l t h o u g h no data

the diketopiperazines were

a v a i l a b l e , the

amino acids, tryptophan a n d proline, m i g h t be involved. Ascladiol A

p a t u l i n - p r o d u c i n g s t r a i n of Aspergillus

w h e a t flour (68) XV).

clavatus

isolated

from

produced a new mycotoxin named ascladiol (Structure

A s c l a d i o l ( C H 0 ) , a m e t a b o l i t e closely r e l a t e d to p a t u l i n , w a s 7

8

4

Structure XV. Ascladiol

Structure XIV. Diketo­ piperazine

o n l y o n e - f o u r t h as a c u t e l y t o x i c to m i c e as p a t u l i n . b a n d s i n the i r s p e c t r u m w e r e 1735 c m " five-membered

1

l a c t o n e r i n g s y s t e m ) a n d 3300 c m "

spectrum showed A

m a

x

E t 0 H

M a j o r absorption

a n d 1750 c m ' 1

(OH)

1

(supporting

(68).

The uv

271 n m .

T h e p r o t o n m a g n e t i c resonance s p e c t r u m t a k e n i n a c e t o n e - d

e

solu­

t i o n s h o w e d resonances f o r t w o m e t h i n e protons at δ 6.29 ( m u l t i p l e t ; C - 2 ) a n d δ 5.87 ( q u a r t e t ; C - 5 ) . T h e t w o p a i r of m e t h y l e n e protons l o c a t e d o n C - 6 a n d C - 7 w e r e p o s i t i o n e d at δ 4.74 a n d δ 4.30.

Superimposed on the

m e t h y l e n e protons at δ 4.74 w e r e t w o D 0 e x c h a n g e a b l e protons assigned 2

to t h e O H protons o n C - 6 a n d C - 7

(68).

5.

Aspergillus

C O L E

Terreic

83

Toxins

Acid

T h e a n t i b i o t i c t e r r e i c a c i d ( S t r u c t u r e X V I ) w a s first d i s c o v e r e d W i l k i n s a n d H a r r i s (69).

by

Its u t i l i t y w a s n e g a t e d because i n v i v o tests

s h o w e d that i t w a s h i g h l y t o x i c to m a m m a l s (70). of t e r r e i c a c i d to m i c e s h o w e d a n L D

5 0

Intravenous i n j e c t i o n

of 7 1 - 1 1 9 m g / k g

(70).

T h e c h e m i c a l s t r u c t u r e of t e r r e i c a c i d w a s p r o p o s e d b y S h e e h a n et a l . (71)

as 2 , 3 - e p o x y - 6 - h y d r o x y t o l u q u i n o n e

(Structure X V I ) . T h e structure

a s s i g n m e n t w a s b a s e d o n c o m p a r i s o n s of the N M R s p e c t r a of t e r r e i c a c i d and 2,3-epoxy-l,4-naphthoquinone

( S t r u c t u r e X V I I ) together w i t h p h y s i ­

cal data and chemical transformation products.

Structure XVI. Terreic Acid

Structure XVII. Naphthoquinone

T h e i r s p e c t r u m of t e r r e i c a c i d h a d s h a r p absorptions at 3300, 1655, a n d 1629 c m ' c o m p a t i b l e w i t h the presence of a n e n o f i z e d

1,2,4-triketone

system.

(CH ),

1

A d d i t i o n a l s t r o n g absorptions w e r e

1350, 1305, 1200, 1135, 1035, a n d 760 c m "

1

1690, 1380

(71).

1370,

3

T h e u v spectrum h a d

m a x i m a at 214 ( l o g c 4.03) a n d 316 n m ( l o g e 3 . 8 8 ) ; the l a t t e r a b s o r p t i o n s h i f t e d to 304 n m i n a n a c i d s o l u t i o n . A s i m i l a r shift to 304 n m w a s o b ­ s e r v e d w h e n i t w a s c o n v e r t e d to the m e t h y l e t h e r d e r i v a t i v e . T h e c h e m i c a l shifts f o r t e r r e i c a c i d a n a l y z e d i n c h l o r o f o r m - d s o l u t i o n w e r e r e p o r t e d r e l a t i v e to t h e O H a b s o r p t i o n of w a t e r . T h e N M R s p e c t r u m h a d t h r e e d i s t i n g u i s h a b l e resonances

a t t r i b u t e d to t h e m e t h y l

( + 1 0 7 H z ) , the t w o e p o x i d e protons

( + 3 0 H z ) , and the O H proton

( — 93 H z ) .

The

epoxide

protons

of

group

5,6-epoxy-3-hydroxytoluquinone

( + 32 H z ) a n d t e r r e i c a c i d w e r e s i m i l a r l y p o s i t i o n e d

(71).

Viriditoxin V i r i d i t o x i n w a s i s o l a t e d f r o m m y c e l i a of a t o x i g e n i c strain of gillus veri-nudans 73).

Asper­

f o u n d d u r i n g routine screening for toxigenic f u n g i

(72,

V i r i d i t o x i n w a s s h o w n to b e a s y m m e t r i c a l d i m e r w i t h S t r u c t u r e

XVIII.

E l e m e n t a l a n d mass s p e c t r a l analyses e s t a b l i s h e d t h e m o l e c u l a r

Ο

OH

OH

Structure

XVIII.

Viriditoxin

84

MYCOTOXINS

w e i g h t as 662 w i t h a m o l e c u l a r f o r m u l a of C34H30O14. e t h a n o l s o l u t i o n s h o w e d u v a b s o r p t i o n at A

T h e toxin in

266 a n d 380 n m

m a x

(73).

Significant c a r b o n y l absorptions i n t h e i r s p e c t r u m w e r e 1740 c m "

1

( e s t e r ) a n d 1635 c m ' . T h e latter a b s o r p t i o n s h i f t e d to 1720 after a c e t y l a 1

t i o n w h i c h suggested a h y d r o g e n - b o n d e d lactone. F u r t h e r s u p p o r t arose f r o m t h e N M R s p e c t r u m w h i c h s h o w e d a D 0 e x c h a n g e a b l e p r o t o n at 2

δ 13.70. T h i s e x t r e m e d o w n f i e l d p o s i t i o n is t y p i c a l of a h y d r o g e n - b o n d e d OH

group.

A c h e m i c a l shift f o r a n a d d i t i o n a l O H p r o t o n a p p e a r e d at

δ 9.72. T w o m e t h o x y resonances w e r e at δ 3.66 a n d δ 3.74. C h e m i c a l shifts i n the a r o m a t i c r e g i o n (singlets at δ 6.24 a n d 6.78) w e r e a s s i g n e d to t h e t w o m e t a - p o s i t i o n e d a r o m a t i c protons o n the n a p t h a l e n e r i n g system. T h e m e t h y l e n e protons i n the l a c t o n e r i n g a n d t h e e x o c y c l i c m e t h y l e n e p r o t o n s w e r e c o u p l e d w i t h the adjacent m e t h i n e p r o t o n .

T h e methine proton

resonated as a m u l t i p l e t at δ 4.96, a n d the m e t h y l e n e protons p a r t i a l l y o v e r l a p p e d at δ 2.76 ( m u l t i p l e t ) a n d δ 2.81 ( d o u b l e t ) . an L D

5 0

Viriditoxin had

of 2.8 m g / k g ( i p ) i n 20 g m i c e . N o b i o s y n t h e t i c d a t a w e r e g i v e n

for viriditoxin. Cytochalasin

Ε

A recent r e p o r t i m p l i c a t e d c y t o c h a l a s i n Ε f r o m Aspergillus

clavatus

to h u m a n m o r t a l i t y f r o m i n g e s t i o n of m o l d - d a m a g e d r i c e (74, 7 5 ) .

Cyto­

c h a l a s i n Ε ( S t r u c t u r e X I X ) c o n t a i n e d m o n o - s u b s t i t u t e d a r o m a t i c , sec­ o n d a r y a m i d e , e p o x i d e , k e t o n e , a n d a l k y l v i n y l c a r b o n a t e moieties Its i r s p e c t r u m s h o w e d m a j o r absorptions at 3475 c m "

1

(75).

( O H , N H ) , 1765

c m " , 1 6 6 0 c m " , a n d 1720 c m " . 1

1

1

P r o t o n c h e m i c a l shifts f o r c y t o c h a l a s i n Ε w e r e a s s i g n e d as f o l l o w s : t w o exchangeable protons a p p e a r e d at δ 6.93 ( N H p r o t o n o n C - 2 )

and

δ 4.1 ( O H p r o t o n o n C - 1 5 ) ; t h e a r o m a t i c protons o c c u r r e d as a m u l t i p l e t at δ 7.1. Resonances for 4 m e t h y l groups w e r e o b s e r v e d at δ 1.0

(doublet,

/ = 6 H z ; C - 5 ) , δ 1.2 ( s i n g l e t ; C - 6 ) , δ 1.13 ( d o u b l e t , 7 = 6 H z ; C - 1 3 ) , and

δ 1.4 ( s i n g l e t ; C - 1 5 ) .

T w o s t r o n g l y c o u p l e d p r o t o n s r e s o n a t e d at

δ 5.45 ( d o u b l e t ) a n d δ 6.25 ( d o u b l e t , 7 =

11 H z ) . T h e s e w e r e assigned

t o the protons l o c a t e d o n C - 1 6 a n d C - 1 7

(75).

T h e c o r r e c t e d s t r u c t u r e a n d stereochemistry w e r e o b t a i n e d v i a s i n g l e c r y s t a l x - r a y d i f f r a c t i o n analysis ( 7 5 ) .

Cytochalasin Ε reportedly killed

rats w i t h i n a f e w h o u r s after d o s i n g . T h e L D ( i p ) a n d 9.1 m g / k g ( o r a l )

5 0

v a l u e s w e r e 2.6 m g / k g

(75).

Maltoryzine T w o cases of f e e d p o i s o n i n g i n d a i r y cattle w e r e t r a c e d to m a l t sprout c o n t a m i n a t e d w i t h a t o x i g e n i c s t r a i n of Aspergillus

oryzae v a r .

microsporia

5.

Aspergillus

COLE

Toxins

o:

OH

Structure XIX. Cytochalasin Ε

Ο

Structure XX. Maltoryzine

(76) . T h e t o x i n w a s n a m e d m a l t o r y z i n e (C11H14O4) ( S t r u c t u r e X X ) (77) . M a l t o r y z i n e h a d a n L D

5 0

of 3 m g / k g ( i p ) i n m i c e .

T h e u v s p e c t r u m of this t o x i n w a s A 3.1), a n d 320 n m ( l o g c 2.1).

220 ( l o g c 4 . 1 ) , 280 ( l o g €

m a x

T h e I R s p e c t r u m of m a l t o r y z i n e s u p p o r t e d

O H ( 3 3 0 0 c m " ) , ketone (1700 c m " ) , a n d a r o m a t i c moieties (1600 a n d 1

1500 c m " ) . 1

1

T h e c h e m i c a l s t r u c t u r e of m a l t o r y z i n e w a s d e d u c e d

from

c h e m i c a l d e g r a d a t i o n studies of the t r i m e t h o x y d e r i v a t i v e of m a l t o r y z i n e (77). Other Toxins of A s p e r g i l l u s Spp. T h e f o l l o w i n g is a b r i e f s u r v e y of o t h e r t o x i c Aspergillus B u s h et a l . (78)

metabolites.

isolated a n d identified 3-nitropropanoic a c i d (Structure

X X I ) f r o m toxic extracts of A . flavus c u l t u r e s . 3 - N i t r o p r o p a n o i c a c i d has also b e e n r e p o r t e d as a m e t a b o l i t e of A . oryzae. together w i t h p y r a z i n e c o m p o u n d s

I n b o t h cases, i t o c c u r r e d

w h i c h m a y suggest a r o l e i n the

nitrification pathway. O x a l i c a c i d ( S t r u c t u r e X X I I ) is a m e t a b o l i c p r o d u c t of s e v e r a l f u n g i i n c l u d i n g A . flavus, A. glaucus,

A. luchuensis,

a n d A . niger.

T h e toxicologi-

c a l properties of o x a l i c a c i d m a y r e l y o n t h e presence of l a r g e q u a n t i t i e s i n c o n t a m i n a t e d f e e d s u p p l i e s or o n s y n e r g i s t i c effects w i t h o t h e r m e t a b o ­ lites f u n c t i o n i n g i n concert.

Unfortunately, fundamental information

I

Structure XXI. β-Nitropropanoic Acid

Structure XXII. Oxalic Acid

86

MYCOTOXINS

r e l a t i v e to t h e s y n e r g i s t i c effects of f u n g a l metabolites o c c u r i n g n a t u r a l l y is m i n i m a l or l a c k i n g a l t h o u g h i t is r e c o g n i z e d t h a t s y n e r g i s m occurs naturally. Helvolic acid (fumigacin)

(Structure X X I I I ) , a toxic antibiotic pro­

d u c e d b y some isolates of A . fumigatus,

w a s r e p o r t e d almost s i m u l t a n e ­

o u s l y b y W a k s m a n et a l . ( 7 9 ) a n d C h a i n et a l . ( 8 0 ) . T h e correct c h e m i c a l

CH OH

Ο

2

Structure Helvolic

Structure XXIV. Gliotoxin

XXIII. Acid

s t r u c t u r e of h e l v o l i c a c i d w a s d e t e r m i n e d b y c h e m i c a l a n d p h y s i c a l c o n ­ s i d e r a t i o n s a n d p r o t o n m a g n e t i c resonance studies

(81).

G l i o t o x i n ( C ^ H ^ N a C ^ ) ( S t r u c t u r e X X I V ) , a n a n t i b i o t i c first r e ­ p o r t e d f r o m Gliocladium

frimbriatum

s e v e r a l f u n g i i n c l u d i n g Aspergillus a n d Α . Τ err eus (85, 8 6 ) .

(82),

is a m e t a b o l i c p r o d u c t

fumigatus

(83),

A . chevalieri

of (84),

G l i o t o x i n is c h a r a c t e r i z e d b y a d i s u l f i d e b r i d g e

across a d i k e t o p i p e r a z i n e r i n g system. T h e b a s i c s t r u c t u r e is a 3 , 6 - e p i d i thio-2,5-dioxopiperazine moiety. oxopiperazines

A l t h o u g h several other e p i p o l y t h i o d i -

occur naturally (87),

( S t r u c t u r e X X V ) (86)

only gliotoxin and acetylaranatin

h a v e b e e n r e p o r t e d as metabolites of

Aspergillus

sp. I n a d d i t i o n to potent a n t i b i o t i c p r o p e r t i e s , g l i o t o x i n w a s t o x i c to r a b b i t s ( L D

5 0

— 45 m g / k g ) , m i c e ( L D

( L D o — 5 0 - 6 5 m g / k g ) (88); 5

5 0

acutely

— 5 0 m g / k g ) , a n d rats

at s u b l e t h a l doses the a n i m a l s h a d k i d n e y

lesions. A c o m p r e h e n s i v e r e v i e w of t h e biosynthesis of e p i p o l y t h i o d i o x o piperazines was presented b y T a y l o r (87). O t h e r t o x i g e n i c metabolites of A . fumigatus XXVI)

(89),

fumagillin (Structure X X V I I )

X X V I I I ) (91, 92, 93, 94),

are f u m i g a t i n ( S t r u c t u r e (90),

Terrein (Structure

and spinulosin (Structure X X I X ) (88).

Ο

Ο Structure XXV. Acetylaranatin

Structure XXVI. Fumigatin

Ojima

5.

HOOC

87

Aspergillus Toxins

COLE

(CH=CH)

C=0

4

Structure XXVIII. Terrein

Structure XXVII. Fumagillin

•OH

δ

OH

Structure XXIX. Spinuhsin

Structure XXX. Butenolide

et al. ( 9 5 ) r e c e n t l y r e p o r t e d t h e i d e n t i t y of a n e w b u t e n o l i d e ( S t r u c t u r e XXX)

f r o m c u l t u r e filtrates o f A . terreus.

T h e y also f o u n d s i x other

closely r e l a t e d metabolites associated w i t h this c o m p o u n d .

Information

n o t p r e s e n t e d i n this r e v i e w is p r o v i d e d i n R e f . 96. Literature

Cited

1. Hutchison, R. D., Hozapfel, C. W., Tetrahedron (1971) 27, 426. 2. Van Der Merwe, K. J., Steyn, P. S., Fourie, L., J. Chem. Soc., Β (1965) 7083. 3. Hesseltine, C. W., Vandergraft, Ε. E., Fennell, D. I., Smith, M. L., Shotwell, O. L., Mycologia (1972) 64, 539. 4. Van Walbeek, W., Scott, P. M., Harwig, J., Lawrence, J. W., Can. J. Micro­ biol. (1969) 15, 1281 5. Hutchison, R. D., Steyn, P. S., Thompson, D. L., Tetrahedron Lett. (1971) 43, 4033. 6. Steyn, P. S., Holzapfel, C. W., J. S. Africa Chem. Inst., A (1967) 20, 186. 7. Purchase, I. F. H., Theron, J. J., Food Cosmet. Toxicol. (1968) 6, 479. 8. Chu, F. S., Chang, C. C., J. Amer. Of. Anal. Chem. (1971) 54, 1032. 9. Peckham, J. C., Doupnik, B., Jones, O. H., Appl. Microbiol. (1971) 21, 492. 10. Chu, F. S., Noh, I., Chang, C. C., Life Sci. (1972) 11, 503. 11. Steyn, P. S., Holsapfel, C. W., Tetrahedron, B (1967) 23, 4449. 12. Cole, R. J., Moore, J. H., Davis, N . D., Kirksey, J. W., Diener, U . L., J. Agr. Food Chem. (1971) 19, 909. 13. Maebayashi, Y., Miyaki, K., Yamazaki, M., Chem. Pharm. Bull. (1972) 152, 149. 14. Searcy, J. W., Davis, N . D., Diener, U. L., Appl. Microbiol. (1969) 18, 622. 15. Steyn, P. S., Holzapfel, C. W., Phytochemistry (1970) 9, 1977. 16. Bullock, E., Roberts, J. C., Underwood, J. G., J. Chem. Soc. (1962) 4179. 17. Holzapfel, C. W., Purchase, I. F. H., Steyn, P. S., Gouws, L., S. Afr. Med. J. (1966) 40, 1100.

88

MYCOTOXINS

18. Rodricks, J. V., Henery-Logan, K. R., Campbell, A. D., Stoloff, L., Verrett, M. J., Nature, A (1968) 217, 688. 19. Rodricks, J. V., Lustig, E., Campbell, A. D., Stoloff, L., Tetrahedron Lett., Β (1968) 25, 2975. 20. Waiss, A. C., Jr., Wiley, M., Black, D. R., Lundin, R. E., Tetrahedron Lett. (1968) 28, 3207. 21. Burkhardt, H. J., Forgacs, J., Tetrahedron (1968) 24, 717. 22. Cole, R. J., Kirksey, J. W., Tetrahedron Lett. (1970) 35, 3109. 23. Holker, J. S. E., Kagal, S. Α., Chem. Commun. (1968) 1574. 24. Elsworthy, G. C., Holker, J. S. E., McKeown, J. M., Robinson, J. B., Mulheirn, L. J., Chem. Commun. (1970) 1069. 25. Hatsuda, Y., Hamasaki, T., Ishida, M., Matsui, K., Hara, S., Agr. Biol. Chem., Japan (1972) 36, 521. 26. Englebrecht, J. C., Altenkirk, B., J. Nat. Cancer Inst. (1972) 48, 1647. 27. Dickens, F., Jones, H . E. H., Waynforth, H . B., Brit. J. Cancer (1966) 20, 134. 28. Purchase, I. F. H., Van Der Watt, J. J., Food Cosmet. Toxicol. (1968) 6, 555. 29. Purchase, I. F. H., Van Der Watt, J. J., Food Cosmet. Toxicol. (1970) 8, 289. 30. Davies, J. E., Kirkaldy, D., Roberts, J. C., J. Chem. Soc. (1960) 2169. 31. Asao, T., Buchi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L., Wogan, G. N., J. Amer. Chem. Soc. (1965) 87, 885. 32. Rodricks, J. V., J. Agr. Food Chem. (1969) 17, 457. 33. Tanaka, N . , Katsube, Y., Hatsuda, Y., Hamasaki, T., Ishida, M., Chem. Soc., Japan (1970) 43, 3635. 34. Ranee, M. J., Roberts, J. C., Tetrahedron Lett. (1969) 277. 35. Holker, J. S. E., Mulheirn, L. J., Chem. Commun. (1968) 24, 1576. 36. Holker, J. S. E., Underwood, J. G., Chem. Ind. (1964). 37. Biollaz, M., Buchi, G., Milne, G., J. Amer. Chem. Soc. (1970) 92, 1035. 38. Hsieh, D. P. H., Lin, M. T., Yao, R. C., Biochem. Biophys. Res. Commun. (1973) 52, 992. 39. Schroeder, H . W., Cole, R. J., Grigsby, R. D., Hein, H., Jr., Appl. Micro­ biol. (1974) 27, 394. 40. White, E. C., Science (1940) 92, 127. 41. White, E. C., Hill, J. H., J. Bacteriol. (1943) 45, 433. 42. MacDonald, J. C., Can. J. Biochem. (1973) 51, 1311. 43. Sasaki, M., Asao, Y., Yokotsuka, T., Nippon Nogei Kagaku Kaishi (1968) 42, 351. 44. Yokotsuka, T., Asao, Y., Sasaki, M., Nippon Nogei Kagaku Kaishi (1968) 42, 346. 45. MacDonald, J. C., J. Biol. Chem. (1961) 236, 512. 46. MacDonald, J. C., J. Biol. Chem. (1962) 237, 1977. 47. Micetich, R. G., MacDonald, J. C., J. Biol. Chem. (1964) 240, 1692. 48. Dutcher, J. D., J. Biol. Chem. (1947) 171, 321. 49. Dutcher, J. D., J. Biol. Chem. (1958) 232, 785. 50. Dutcher, J. D., Wintersteiner, O., J. Biol. Chem. (1944) 155, 359. 51. Newbold, G. T., Spring, F. S., J. Chem. Soc. (1947) 373. 52. Dunn, G., Gallagher, J. J., Newbold, G. T., Spring, F. S., J. Chem. Soc., A (1949) 126. 53. Dunn, G., Newbold, G. T., Spring, F. S., J. Chem. Soc., Β (1949) 131. 54. Newbold, G. T., Sharp, W., Spring, F. S., J. Chem. Soc. (1951) 2679. 55. Saito, K., Botan. Mag., Tokyo (1907) 21, 7. 56. Yabuta, T., J. Chem. Soc (1924) 125, 575. 57. Morton, H . E., Kocholaty, W., Junowics-Kocholaty, R., Kelner, Α., J. Bacteriol. (1945) 50, 579. 58. Gaumann, E., von Arx, Α., Ber. Schweiz. Botan. Ges. (1947) 57, 174.

5.

COLE

Aspergillus Toxins

89

59. Bhacca, N . S., Johnson, L..F., Shoolery, J. N., "High Resolution NMR Spectra Catalog," Vol. 2, Varian Associates, 1963. 60. Arnstein, H. R. V., Bentley, R., J. Chem. Soc. (1951) 3436. 61. Arnstein, H. R. V., Bentley, R., Biochem. J., A (1953) 54, 493. 62. Arnstein, H. R. V., Bentley, R., Biochem. J., Β (1953) 54, 508. 63. Arnstein, H . R. V., Bentley, R., Biochem. J., C (1953) 54, 517. 64. Arnstein, H. R. V., Bentley, R., Biochem. J. (1956) 62, 403. 65. Beelik, Α., Advan. Carbohydrate Chem. (1944) Vol. XI. 66. Steyn, P. S., Tetrahedron Lett. (1971) 36, 3331. 67. Steyn, P. S., Tetrahedron (1973) 29, 107. 68. Suzuki, T., Takeda, M., Tanabe, H., Chem. Pharm. Bull. (1971) 19, 1786. 69. Wilkins, W. H., Harris, G. C. M., Brit. J. Exp. Path. (1942) 23, 166. 70. Kaplan, Μ. Α., Hooper, I. R., Heinemann, B., Antibiot. Chemotherapy (1954) 4, 746. 71. Sheehan, J. C., Lawson, W. B., Gaul, R. J., J. Amer. Chem. Soc. (1958) 80, 5536. 72. Weisleder, D., Lillehoj, Ε. B., Tetrahedron Lett. (1971) 48, 4706. 73. Lillehoj, Ε. B., Ciegler, Α., Can. J. Microbiol. (1972) 18, 193. 74. Glinsukon, T., Shank, R. C., Toxicol. Appl. Pharmacol. (1972) 22, 331. 75. Buchi, G., Kitaura, Y., Yaun, S., Wright, H . E., Clardy, J., Demain, A. L., Glinsukon, T., Hunt, N., Wogan, G. N., J. Amer. Chem. Soc. (1973) 95, 5423 76. Iizuka, H., Iida, M., J. Gen. Appl. Microbiol. (1958) 4, 133. 77. Iizuka, H., Iida, M., Nature (1962) 196, 681. 78. Bush, M. T., Touster, O., Brockman, J. E., J. Biol. Chem. (1951) 188, 685. 79. Waksman, S. Α., Horning, E., Spencer, E. L., J. Bacteriol. (1943) 45, 233. 80. Chain, E., Florey, H . W., Jennings, Μ. Α., Williams, T. I., Brit. J. Exp. Pathol. (1943) 24, 108. 81. Okuda, S., Iwasaki, N., Tsuda, K., Sano, Y., Hata, T., Udagawa, S., Nakayama, Y., Yamaguchi, H., Chem. Pharm. Bull. (1964) 12, 121. 82. Weindling, R., Emerson, O., Phyto. Path. (1936) 26, 1068. 83. Menzel, A. E. O., Wintersteiner, O., Hoogerheide, J. C., J. Biol. Chem. (1944) 152, 419. 84. Wilkinson, S., Spilsbury, J. F., Nature (1965) 206, 619. 85. Miller, P. Α., Milstrey, K. P., Trown, P. W., Science, A (1968) 159, 431. 86. Miller, P. Α., Trown, P. W., Fulmor, W., Morton, G. Ο., Karliner, J., Bio­ chem. Biophys. Res. Commun., Β (1968) 33, 219. 87. Taylor, Α., in "Microbiological Toxins," Vol. VII, S. Kadis, A. Ciegler, S. J. Ajl, Eds., p. 293, Academic Press, New York, 1971. 88. Johnson, J. R., Bruce, W. F., Dutcher, J. D., J. Amer. Chem. Soc. (1943) 65, 2005. 89. Anslow, W. K., Raistrick, H., Biochem. J. (1938) 32, 687. 90. Eble, T. E., Hanson, F. R., Antibiot. Chemotherapy (1951) 1, 54. 91. Raistrick, H., Smith, G., Biochem. J. (1935) 29, 606. 92. Grove, J. F., J. Chem. Soc. (1954) 4693. 93. Barton, D. H . R., Miller, E., J. Chem. Soc. (1955) 1028. 94. Birch, A. J., Cassera, Α., Jones, A. R., Chem. Commun. (1965) 167. 95. Ojima, N., Takenaka, S., Seto, S., Phytochemistry (1973) 12, 2527. 96. Wilson, B. J., "Microbiological Toxins," Vol. 6, Chap. 3, Academic, New York, 1971. RECEIVED November 8, 1974.