Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols

Nov 17, 2007 - This asymmetric transformation is directly applied to the synthesis of Maraviroc, the selective CCR5 antagonist with potent activity ag...
0 downloads 0 Views 328KB Size
Published on Web 11/17/2007

Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols Sha Lou, Philip N. Moquist, and Scott E. Schaus* Contribution from the Department of Chemistry and Center for Chemical Methodology and Library DeVelopment, Life Science and Engineering Building, Boston UniVersity, 24 Cummington Street, Boston, Massachusetts 02215 Received July 28, 2007; E-mail: [email protected]

Abstract: Chiral BINOL-derived diols catalyze the enantioselective asymmetric allylboration of acyl imines. The reaction requires 15 mol % (S)-3,3′-Ph2-BINOL as the catalyst and allyldiisopropoxyborane as the nucleophile. The reaction products are obtained in good yields (75-94%) and high enantiomeric ratios (95:5-99.5:0.5) for aromatic and aliphatic imines. High diastereoselectivities (diastereomeric ratio > 98:2) and enantioselectivities (enantiomeric ratio > 98:2) are obtained in the reactions of acyl imines with crotyldiisopropoxyboranes. This asymmetric transformation is directly applied to the synthesis of Maraviroc, the selective CCR5 antagonist with potent activity against HIV-1 infection. Mechanistic investigations of the allylboration reaction including IR, NMR, and mass spectrometry studies indicate that acyclic boronates are activated by chiral diols via exchange of one of the boronate alkoxy groups with activation of the acyl imine via hydrogen bonding.

Introduction

Chiral homoallylic amines are valuable building blocks for use in synthesis.1 They have found use as precursors for β-amino acids2 and heterocycles.3 Chiral homoallylic amines have also served as key intermediates in complex natural product synthesis and pharmacologically relevant compounds.4 In addition, the structural motif is also present in a variety of bioactive molecules with wide-ranging biological properties.5 The asymmetric allylation of imines provides direct access to chiral homoallylic amines.6 Significant progress has been made in the development of practical approaches to these building blocks using chiral allyl metal reagents such as allyl silanes,7 allyl boronates,8 and boranes,9 as well as diastereose(1) Reviews: (a) Denmark, S. E.; Almstead, N. G. Allylation of Carbonyls: Methodology and Stereochemistry. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VHC: Weinheim, Germany, 2000; Ch. 10. (b) Puentes, C. O.; Kouznetsov, V. J. Heterocycl. Chem. 2002, 39, 595-614. (c) Ding, H.; Friestad, G. K. Synthesis 2005, 2815-2829. (2) (a) Laschat, S.; Kunz, H. J. Org. Chem. 1991, 56, 5883-5889. (b) Robl, J. A.; Cimarusti, M. P.; Simpkins, L. M.; Brown, B.; Ryono, D. E.; Bird, J. E.; Asaad, M. M.; Schaeffer, T. R.; Trippodo, N. C. J. Med. Chem. 1996, 39, 494-502. (3) (a) Felpin, F.-X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305-6312. (b) Lee, C.-L. K.; Lui, H. Y.; Loh, T.-P. J. Org. Chem. 2004, 69, 7787-7789. (c) Goodman, M.; Del Valle, J. R. J. Org. Chem. 2004, 69, 8945-8946. (4) (a) Kim, G.; Chu-Moyer, M. Y.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 2003-2005. (b) Nicolaou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rubsam, F.; Rodriguez, R. M. Angew. Chem., Int. Ed. 1998, 37, 18711874. (c) Wright, D. L.; Schulte, J. P., II; Page, M. A. Org. Lett. 2000, 2, 1847-1850. (d) Xie, W.; Zou, B.; Pei, D. Ma, D. Org. Lett. 2005, 27752777. (e) White, J. D.; Hansen, J. D. J. Org. Lett. 2005, 70, 1963-1977. (5) (a) Lloyd, H. A.; Horning, E. C. J. Org. Chem. 1960, 25, 1959-1962. (b) Doherty, A. M.; Sircar, I.; Kornberg, B. E.; Quin, J., III; Winters, R. T.; Kaltenbronn, J. S.; Taylor, M. D.; Batley, B. L.; Rapundalo, S. R.; Ryan, M. J.; Painchaud, C. A. J. Med. Chem. 1992, 35, 2-14. (c) Schmidt, U.; Schmidt, J. Synthesis 1994, 300-304. (d) Barrow, R. A.; Moore, R. E.; Li, L.-H.; Tius, M. A. Tetrahedron 2000, 56, 3339-3351. (e) Janjic, J. M.; Mu, Y.; Kendall, C.; Stephenson, C. R. J.; Balachandran, R.; Raccor, B. S.; Lu, Y.; Zhu, G.; Xie, W.; Wipf, P.; Day, B. W. Bioorg. Med. Chem. 2005, 13, 157-164. (f) Suvire, F. D.; Sortino, M.; Kouznetsov, V. V.; Vargas, M. L. Y.; Zacchino, S. A.; Cruz, U. M.; Enriz, R. D. Bioorg. Med. Chem. 2006, 14 1851-1862. 15398

9

J. AM. CHEM. SOC. 2007, 129, 15398-15404

lective allyl metal additions to chiral imines.10 Innovative catalytic approaches include the development of chiral main group Cu-11 and Zn-promoted12 reactions as well as Pd-13 and Zr-mediated14 allyl metal additions to imines and, more recently, allylindium reagents generated in the presence of BINOLderived15 and chiral thiourea catalysts,16 which result in enan(6) Reviews: (a) Kleinman, E. F.; Volkmann, R. A. Additions of Nucleophilic Alkenes to CdNR and CdNR2+. In ComprehensiVe Organic Synthesis, Vol. 2; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; p 975. (b) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207-2293. (c) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895-1946. (d) Bloch, R. Chem. ReV. 1998, 98, 1407-1438. (e) Alvaro, G.; Savoia, D. Synlett 2002, 651-673. (f) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541-2569. (7) (a) Panek, J. S.; Jain, N. F. J. Org. Chem. 1994, 59, 2674-2675. (b) Schaus, J. V.; Jain, N. F.; Panek, J. S. Tetrahedron 2000, 56, 10263-10274. (c) Berger, R.; Rabbat, P.; Leighton, J. J. Am. Chem. Soc. 2003, 125, 95969597. (d) Berger, R.; Duff, K.; Leighton, J. J. Am. Chem. Soc. 2004, 126, 5686-5687. (8) (a) Chataigner, I.; Zammattio, F.; Lebreton, J.; Villie´ras, J. Synlett 1998, 275-276. (b) Watanabe, K.; Kuroda, S.; Yokoi, A.; Ito, K.; Itsuno, S. J. Organomet. Chem. 1999, 581, 103-107. (c) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182-7183. (d) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646-9647. (9) (a) Ramachandran, P. V.; Burghardt, T. E. Chem.sEur. J. 2005, 11, 43874395. (b) Canales, E.; Hernandez, E.; Sodequist, J. A. J. Am. Chem. Soc. 2006, 128, 8712-8713. (10) (a) Cook, G. R.; Maity, B. C.; Karbo, R. Org. Lett. 2004, 6, 1741-1743. (b) Miyabe, H.; Yamaoka, Y.; Naito, T.; Takemoto, Y. J. Org. Chem. 2004, 69, 1415-1418. (c) Vilaivan, T.; Winotapan, C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464-3471. (d) Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org. Chem. 2006, 71, 281-289. (11) (a) Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 1999, 64, 4844-4849. (b) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67-77. (c) Kiyohara, H.; Nakamura, Y.; Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 1615-1617. (d) Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7687-7691. (12) Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem., Int. Ed. 2003, 42, 3927-3930. (13) (a) Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 4242-4243. (b) Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133-14139. (c) Yamamoto, Y.; Fernandes, R. J. Org. Chem. 2004, 69, 735-738. (14) Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2001, 40, 1896-1898. 10.1021/ja075204v CCC: $37.00 © 2007 American Chemical Society

Allylboration of Acyl Imines Catalyzed by Chiral Diols

ARTICLES

Table 1. Asymmetric Allylboration of Acyl Iminesa

entry

catalyst

mol %b

% yieldc

erd

1 2 3 4 5 6 7 8 9 10 11 12

7a 7b 7c 7d 7e 7f 7g 7h 7h 7h 7i

15 15 15 15 15 15 10 15 10 5 15