7 Beavon Sulfur Removal Process for Claus Plant Tail Gas DAVID K. BEAVON
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
The Ralph M. Parsons Co., Pasadena, Calif. 91124 RAY N. FLECK Union Oil Co. of California, Brea, Calif. 92621
The Beavon sulfur removal process for the cleanup of Claus plant tail gas is a two-step process in which the sulfur contaminants are first catalytically
hydrolyzed and/or
hydro-
genated to hydrogen sulfide and the hydrogen sulfide is then converted to elemental sulfur and recovered in a Stretford process unit. Commercial
plants reduce the
concentration
of sulfur compounds as hydrogen sulfide in the tail gas from 1-3
vol % to less than 100 ppm.
less than 1 ppm hydrogen sulfide.
The treated gas contains The chemistry, design
criteria, operating experience, and economics of the process are discussed.
/ ^ l a u s plants are used in petroleum refineries and elsewhere to partially ^
oxidize hydrogen sulfide to elemental sulfur using air as the oxidant.
The efficiency of such plants is limited, and a nitrogen-rich tail gas is produced which contains water, carbon dioxide, and smaller of other substances including sulfur compounds. Typically, about
amounts 3-10%
of the entering sulfur is produced with the tail gas as carbonyl sulfide, methyl mercaptan, carbon disulfide, hydrogen sulfide, sulfur dioxide, and elemental sulfur as vapor or entrained droplets.
Disposal of the incin-
erated tail gas has in the past been an air pollution problem because it contains about 10,000-20,000 ppm sulfur dioxide. A number of commercial plants are now using the Beavon sulfur removal process to convert the sulfur content of Claus tail gas first to hydrogen sulfide and finally to elemental sulfur. These plants reduce the sulfur content of the tail gas from about 1-3%
to less than 100 ppm of
which less than 1 ppm is present as hydrogen sulfide. The foregoing con93
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
94
SULFUR
REMOVAL
AND RECOVERY
centrations are c a l c u l a t e d as the s u l f u r d i o x i d e e q u i v a l e n t o n a v o l u m e basis. T h e p r o c e s s e d t a i l gas c a n b e d i r e c t l y d i s c h a r g e d t o t h e atmosphere without environmental problems. Chemistry of the Claris Process I n a C l a u s p l a n t a b o u t o n e - t h i r d of the h y d r o g e n sulfide is c o m b u s t e d to s u l f u r d i o x i d e , a n d the b a l a n c e reacts a c c o r d i n g to R e a c t i o n 1; t h e r m a l l y at h i g h temperatures a n d c a t a l y t i c a l l y at l o w e r temperatures (i,
2): 2 H S + S0
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
2
?± 3 S + 2 H 0
2
(1)
2
T h e c a t a l y t i c r e a c t i o n p r o c e e d s stagewise w i t h interstage r e m o v a l of the s u l f u r to shift t h e e q u i l i b r i u m .
Interstage r e m o v a l of w a t e r to shift
t h e e q u i l i b r i u m e v e n f u r t h e r is i m p r a c t i c a l because of p l u g g i n g p r o b l e m s (3) w i t h solid sulfur. D u r i n g the c o m b u s t i o n of the h y d r o g e n sulfide some of t h e s u l f u r reacts w i t h h y d r o c a r b o n s n o r m a l l y present to f o r m c a r b o n d i s u l f i d e a n d m e t h y l m e r c a p t a n . C a r b o n y l sulfide is also f o r m e d e i t h e r b y the p a r t i a l h y d r o l y s i s of c a r b o n d i s u l f i d e a n d / o r b y the r e a c t i o n of c a r b o n d i o x i d e a n d h y d r o g e n sulfide.
Some hydrogen and carbon monoxide
are also
f o r m e d i n the C l a u s c o m b u s t i o n step. Chemistry
of the Catalytic
Reactor
T h e heart of t h e B e a v o n process is a c a t a l y t i c reactor w h i c h converts essentially a l l of t h e s u l f u r i n t h e t a i l gas to h y d r o g e n sulfide either b y hydrogénation or h y d r o l y s i s . H y d r o l y s i s reactions are t y p i f i e d b y R e a c tions 2 a n d 3: CS
+ 2 H
2
COS +
0 ^ 2 H S + C0
2
2
H 0 ï± H S + C 0 2
2
2
(2) (3)
2
R e s i d u a l c a r b o n y l sulfide a n d c a r b o n d i s u l f i d e t y p i c a l l y t o t a l a b o u t 25 p p m c a l c u l a t e d as s u l f u r d i o x i d e . Hydrogénation reactions are t y p i f i e d b y R e a c t i o n s 4, 5, a n d 6: S + H S0
+ 3 H
2
CH SH + 3
2
2
—> H S
(4)
2
-> H S + 2 H 0
H
2
2
(5)
2
-> H S + C H 2
4
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(6)
7.
BEAVON AND FLECK
Beavon Sulfur Removal
95
Process
W h i l e c a r b o n d i s u l f i d e a n d c a r b o n y l sulfide c a n also b e c o n v e r t e d
to
h y d r o g e n sulfide b y hydrogénation, b o t h are p r e d o m i n a n t l y c o n v e r t e d
by
hydrolysis.
The
s u p p l y of h y d r o g e n
is s u p p l e m e n t e d
b y the
carbon
m o n o x i d e content of the reactor f e e d gas w h i c h undergoes R e a c t i o n 7, the w a t e r - g a s shift r e a c t i o n : CO +
H 0 H 2
2
+
C0
(7)
2
Chemistry of the Stretford Process T h e h y d r o g e n s u l f i d e - c o n t a i n i n g stream f r o m the c a t a l y t i c step c a n Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
be p r o c e s s e d several w a y s to r e c o v e r the s u l f u r content. mercial development
uses the S t r e t f o r d process (4-10)
T h e initial comto convert
the
h y d r o g e n sulfide to e l e m e n t a l s u l f u r b y a w e t c h e m i s t r y process d e v e l o p e d b y T . N i c k l i n a n d others at N o r t h W e s t G a s of S t r e t f o r d , E n g l a n d . T h e S t r e t f o r d process has b e e n a c c e p t e d w i d e l y for t r e a t i n g coke o v e n gas a n d r e c e i v e d the Queen's A w a r d for i n d u s t r i a l
developments.
I n this process the gas is first c o n t a c t e d i n a n absorber w h e r e h y d r o g e n sulfide is a b s o r b e d i n t o a n a l k a l i n e s o l u t i o n a n d e v e n t u a l l y c o n v e r t e d to s u l f u r b y R e a c t i o n 8 w h e r e V 2 V+ The reduced V
+ 4
5
+
+ 5
is present as s o d i u m m e t a v a n a d a t e .
H S - » 2 V+ 2
4
+
2H+ + S
(8)
is l a t e r o x i d i z e d b y a i r b l o w i n g i n t h e presence of the
d i s o d i u m salt of a n t h r a q u i n o n e , 2,7-disulfonic a c i d ( A D A ) . T h e o v e r a l l o x i d a t i o n is r e p r e s e n t e d b y R e a c t i o n 9: 2V Sulfur formed
+ 4
+ 2H++
1/2 0
2
-> 2 V +
i n R e a c t i o n 8 is r e c o v e r e d
5
+
H 0 2
(9)
b y flotation d u r i n g the a i r
b l o w i n g i n R e a c t i o n 9. S o m e of the h y d r o g e n sulfide f e e d u n d e r g o e s side reactions a n d is c o n v e r t e d to s o d i u m t h i o s u l f a t e a n d s o d i u m sulfate. m o r e of the i n c o m i n g h y d r o g e n
However, 9 8 %
or
sulfide f e e d is n o r m a l l y c o n v e r t e d
to
e l e m e n t a l sulfur. Plant
Design
Pilot Plant.
T h e B e a v o n s u l f u r r e m o v a l process was s t u d i e d i n a
p i l o t p l a n t w h e r e the scale-up f a c t o r w a s 100 a n d 200 for t h e first t w o c o m m e r c i a l units.
G e n e r a l process o p e r a b i l i t y w a s e s t a b l i s h e d at this
stage. Commercial Design.
T h e d e s i g n for a c o m m e r c i a l p l a n t is s h o w n
s c h e m a t i c a l l y i n F i g u r e 1. R e d u c i n g gas is generated b y p a r t i a l o x i d a t i o n
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
96
SULFUR
REMOVAL
AND RECOVERY CLEAN OFF G A S
CLAUS TAIL GAS
cru
FUEL GAS
ABSORBER
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
REDUCING GAS GENERATOR
CATALYST BED
Figure 1.
OXIDIZER
WASTE HEAT BOILER
SULFUR
FROTH FILTER & WASH
SULFUR MELTER
Flow diagram of the Beavon sulfur removal process
of a f u e l gas a n d t h e n m i x e d w i t h the f e e d t a i l gas as a source of h y d r o g e n and carbon monoxide.
T h e hot r e d u c i n g gas also preheats the t a i l gas.
T h e m i x e d gases flow to the c a t a l y t i c step after w h i c h the b u l k of the w a t e r m a y b e r e m o v e d , a n d t h e gas stream is passed to the S t r e t f o r d absorber.
I n the S t r e t f o r d process, e l e m e n t a l s u l f u r r e c o v e r e d as a f r o t h
i n the o x i d i z e r is filtered, w a s h e d , a n d passed to a m e l t e r to separate m o l t e n s u l f u r a n d the e n t r a i n e d w a t e r . Special Design Considerations.
T h e i n i t i a l plants consisted of
two
C l a u s / B e a v o n strings so that w h e n one s t r i n g w a s shut d o w n the other c o u l d process the h y d r o g e n sulfide l o a d f r o m the e n t i r e refinery w i t h o u t p o l l u t i o n . S o m e p l a n t s n o w u n d e r c o n s i d e r a t i o n w i l l h a v e o n l y a single s t r i n g w i t h s p a r i n g of some items of e q u i p m e n t , e.g., p u m p s , to p r o v i d e sufficient r e l i a b i l i t y . H y d r o l y s i s , hydrogénation, a n d the shift r e a c t i o n take p l a c e c o n c u r r e n t l y at m o d e r a t e temperatures a n d a t m o s p h e r i c pressure over a n ext r u d e d c o b a l t m o l y b d a t e catalyst w h i c h is sulfided. Space velocities are a b o u t 2000 c u ft of t a i l gas p l u s r e d u c i n g g a s / h r / c u ft of catalyst. B e cause of the excessive heat released w h e n sufficient a i r contacts
these
catalysts, extraneous a i r m u s t b e e x c l u d e d f r o m the catalyst at a l l times, especially d u r i n g start-up a n d shutdown. F o r m a x i m u m c o n v e r s i o n of s u l f u r c o m p o u n d s i t is d e s i r a b l e to o p erate as close to c h e m i c a l e q u i l i b r i u m as possible.
B o t h the p i l o t p l a n t
a n d c o m m e r c i a l plants a t t a i n e d a f a i r l y close a p p r o a c h to e q u i l i b r i u m w i t h respect to the c o n v e r s i o n of s u l f u r c o m p o u n d s . reactions
t h r o u g h o u t the reactor
together
with
The many competing a close a p p r o a c h
to
e q u i l i b r i u m c o m p l i c a t e s process analysis. S e v e r a l things w e r e d o n e at the p i l o t p l a n t stage to m i n i m i z e reactor scale-up problems.
T h e catalyst p a r t i c l e size i n the p i l o t p l a n t w a s the
same as that n o w u s e d i n c o m m e r c i a l p l a n t s . C a t a l y s t b e d d e p t h s i n the p i l o t a n d c o m m e r c i a l u n i t s w e r e s i m i l a r i n order to h a v e s i m i l a r mass
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
BEAVON AND FLECK
Beavon
velocities t h r o u g h b o t h beds.
Sulfur Removal
97
Process
B e c a u s e of the large gas v o l u m e s a n d l o w
pressure d r o p r e q u i r e m e n t s , the catalyst b e d is r e l a t i v e l y s h a l l o w . d e s i g n r e q u i r e s p r o p e r gas d i s t r i b u t i o n at the reactor i n l e t to
This
prevent
channeling. T h e pilot plant operated exclusively on a commercial Claus p l a n t t a i l gas i n o r d e r to i n c l u d e the effects of a n y a n d a l l u n k n o w n t a i l gas constituents i n the process e v a l u a t i o n . F i n a l l y , the p i l o t p l a n t w a s o p e r a t e d for over 3 months to m a k e c e r t a i n that the catalyst d i d not deter i o r a t e r a p i d l y w i t h use. A s of m i d - J a n u a r y 1974, U n i o n ' s t w o c o m m e r c i a l units h a d each o p e r a t e d for 6 m o n t h s w i t h o u t o b s e r v a b l e catalyst d e a c t i v a t i o n . T h e u l t i m a t e catalyst l i f e is e x p e c t e d to b e m o r e t h a n a year.
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
U n f o r t u n a t e l y , upsets i n a n o i l refinery C l a u s u n i t are r o u t i n e because of f r e q u e n t s u d d e n changes i n f e e d c o m p o s i t i o n a n d
flow.
The Beavon
u n i t p r o v i d e s excess h y d r o g e n i n the c a t a l y t i c section to
hydrogenate
s u l f u r d i o x i d e surges.
T h e r e s u l t i n g h y d r o g e n sulfide surges as w e l l as
those f r o m the C l a u s u n i t are h a n d l e d i n the S t r e t f o r d u n i t b y p r o v i d i n g a s u i t a b l e excess of c h e m i c a l s i n the S t r e t f o r d s o l u t i o n .
Because
the
hydrogénation reactions are e x o t h e r m i c , s u l f u r d i o x i d e surges, for a m p l e , w i l l increase the t e m p e r a t u r e rise across the catalyst b e d .
exThe
d e s i g n tolerates surges w i t h o u t d a m a g i n g the catalyst. A waste-heat b o i l e r m a y be i n s t a l l e d o n the reactor outlet gas l i n e i f the i n s t a l l a t i o n is large e n o u g h to generate steam e c o n o m i c a l l y . S t e a m m a y b e g e n e r a t e d at a n y pressure u p to a b o u t 200 p s i g . W a t e r b u i l d u p m u s t be p r e v e n t e d i n the S t r e t f o r d l i q u o r .
Water
enters the S t r e t f o r d u n i t w i t h the feed gas a n d is also a r e a c t i o n p r o d u c t i n the S t r e t f o r d process.
A d d i t i o n a l w a t e r enters w i t h the filter w a s h . A n
e v a p o r a t i v e cooler evaporates excess w a t e r a n d controls t e m p e r a t u r e . T h e absorber is a s i m p l e splash-deck tower.
B e c a u s e the b a c k pres-
sure of h y d r o g e n sulfide over S t r e t f o r d s o l u t i o n is n e g l i g i b l e , the a b s o r b e r c a n b e s i z e d to r e d u c e the i n l e t h y d r o g e n sulfide c o n c e n t r a t i o n b y a f a c t o r of 100,000.
C o m m e r c i a l absorbers have met this d e s i g n c r i t e r i o n .
I n p r a c t i c e the o x i d a t i o n of S t r e t f o r d s o l u t i o n b y R e a c t i o n 9 is k i n e t i c a l l y l i m i t e d so that a s u b s t a n t i a l i m p r o v e m e n t i n p e r f o r m a n c e be o b t a i n e d b y s t a g i n g the process.
can
It is e s t i m a t e d that the o v e r a l l r e s i -
d e n c e t i m e i n the o x i d i z e r c a n be decreased b y as m u c h as 5 0 %
when
three o x i d i z e r stages are u s e d i n p l a c e of a single stage.
Commercially,
a
stirrers c h u r n
three-stage
o x i d i z e r is u s e d
air i n t o s m a l l b u b b l e s .
in which power-driven
A n analysis of c o m m e r c i a l o x i d i z e r
i n d i c a t e s that mass transfer is not a significant factor.
performance
H e n c e the b u b b l e
size is s u i t a b l y s m a l l . Operating
Experience
A t the present t i m e seven units are o p e r a t i n g a n d a b o u t
fifteen
more
are i n v a r i o u s stages of e n g i n e e r i n g a n d c o n s t r u c t i o n . B y the t i m e of this
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
98
SULFUR
REMOVAL
AND RECOVERY
p u b l i c a t i o n , t h e t o t a l o p e r a t i n g t i m e l o g g e d w i l l b e a b o u t 36 u n i t - m o n t h s . T o d a t e t h e h y d r o g e n sulfide content of t h e treated t a i l gas has e x c e e d e d 1 p p m o n l y d u r i n g severe upsets. T h e aggregate t i m e of these upsets is p r o b a b l y less t h a n h a l f a d a y . T h e treated t a i l gas p u r i t y has at a l l times e x c e e d e d t h e most r i g i d regulations b y a w i d e m a r g i n . Operating Problems. D u r i n g t h e startups of t h e first t w o p l a n t s there w a s some difficulty, w i t h s o l u t i o n o v e r l o a d i n g , m a i n l y because of upsets i n t h e C l a u s u n i t s a n d i n spite of the fact t h a t these plants are d e s i g n e d w i t h generous
over-capacity.
T h e frequency
of these upsets q u i c k l y
d e c r e a s e d as p e r s o n n e l l e a r n e d to m a i n t a i n p r o p e r o p e r a t i n g ratios i n t h e C l a u s units.
F o r example, a 5 %
deficiency
i n t h e a m o u n t of a i r i n
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
the C l a u s unit c a n double the load o n the B e a v o n plant. T h e f r o t h filter w a s t h e most t r o u b l e s o m e single p i e c e of m e c h a n i c a l e q u i p m e n t . T r o u b l e s d i m i n i s h e d g r e a t l y as t h e operators b e c a m e f a m i l i a r w i t h this n e w t y p e of e q u i p m e n t .
M e t h o d s to e l i m i n a t e t h e filter h a v e
n o w b e e n d e v e l o p e d a n d w i l l b e tested o n a c o m m e r c i a l scale. Construction Materials. C a r b o n steel is u s e d for most of t h e p l a n t s ; i n s o m e areas i t is p r o t e c t e d against r u s t i n g b y a c o a l t a r e p o x y c o a t i n g . T h e w a t e r o u t l e t l i n e of t h e s u l f u r m e l t e r is stainless steel. N o n o t a b l e c o r r o s i o n has o c c u r r e d . Table I.
Beavon Sulfur Removal Process Operating Costs"
Commodity Power F u e l gas Soft w a t e r Catalyst replacement Chemicals
Unit Cost
6
T o t a l costs L e s s c r e d i t for 50 p s i g s t e a m L e s s c r e d i t for incinerator fuel N e t cost a 6
0.725*f/kw-hr S1.00/MM Btu 20φ/Μ g a l — —
Consumption Rate
Daily Cost ($)
300 k w 125 M M B t u 12 M g a l / d a y — —
52 125 2 8 140 327
S 1 . 0 0 / M lb $1.00/MM Btu
2,500 l b / h r
60
250 M M B t u
250 17
Basis: 100 long-ton/day Claus Unit. Assumed catalyst life is 3 yrs. Economics. T h e c a p i t a l i n v e s t m e n t f o r a B e a v o n p l a n t to process t a i l
gas f r o m a 1 0 0 - l o n g - t o n / d a y C l a u s u n i t is a b o u t $1,250,000.
Operating
costs f o r a u n i t of this size a r e g i v e n i n T a b l e I. T h e f u e l a n d steam r e q u i r e d b y t h e process
is less t h a n o n e - f o u r t h of that r e q u i r e d f o r
s i m p l e i n c i n e r a t i o n . S h o u l d f u e l gas cost increase to $ 2 / M M B t u as has b e e n forecast, t h e energy savings w o u l d m a k e t h e o p e r a t i o n profitable.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
BEAVON AND F L E C K
Beavon Sulfur Removal Process
99
Conclusions The Beavon sulfur removal process is now a reliable, established method for cleaning up Claus plant tail gas well beyond any proposed regulations. As with any new process, work is currently directed toward reducing capital and operating costs. T h e capital investment has already been reduced by about 2 0 % over the original design.
A further cost
reduction now seems possible, thereby increasing the application possibilities of this process.
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch007
Literature
Cited
1. Gamson, B. W., Elkins, R. H . , Chem. Eng. Progr. (1953) 49, 203. 2. Palm, J. W., Hydrocarbon Process. (1972) 51 (3), 105. 3. Bailleul, M . R., Berthier, P., Guyot, G., Proc. Ann. Conv., Nat. Gas Process. Ass., 49th (March 17-19, 1970) 89. 4. Nicklin, T., Brunner, E . , "Hydrogen Sulfide Removal by the Stretford Liquid Purification Process," Inst. Gas Eng. Meetg. (May 16-19, 1961), Publication No. 593. 5. Nicklin, T., Brunner, E . , Hydrocarbon Process. Petrol. Refiner (1961) 40(12), 141. 6. Ellwood, P., Chem. Eng. (1964) 71(15), 128. 7. Oil Gas J. (1971) 69(41), 68. 8. Nicklin, T., et al., U.S. Patent #2,997,439 (Aug. 22, 1961). 9. Ibid., #3,035,889 (May 22, 1962). 10. Ibid., #3,097,926 (July 16, 1963). RECEIVED April 4, 1974. The process is patented in the U.S. (#3,752,877, D. K. Beavon, Aug. 14, 1973) and Canada (#916,898, D. K. Beavon, Dec. 19, 1972), and patents are being sought in other countries. The process is licensed by the Union Oil Co. of California and is designed by the Ralph M . Parsons Co.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.