Biochemistry (Stenesh, Jochanan) - Journal of Chemical Education

Jun 1, 1999 - Biochemistry Instructors' Views toward Developing and Assessing Visual Literacy in Their Courses. Journal of Chemical Education...
1 downloads 0 Views 14KB Size
Chemical Education Today

Book & Media Reviews Biochemistry Jochanan Stenesh. Plenum: New York, 1998. Hardcover, ISBN 0 306-45732-6. $95. Paperback, ISBN 0 306 45733 4. $55 (set of 3). Solutions manual and transparencies available.

According to the promotional materials accompanying this text, its intended audience is students in one-semester undergraduate biochemistry courses. At just over 500 pages, the book is shorter than the norm of well over 1000 pages. The challenge, then, is to present the subject in a coherent and compelling fashion while necessarily omitting a large fraction of the material that one normally finds in more inclusive texts. That kind of editing is obviously going to lead to squawking from some quarters, so I should put my prejudices on the table. I teach a one-semester course in biochemical structure, and I have a long-standing interest in using molecular models to explain biochemical behavior, both in research and in teaching. The editing performed by Professor Stenesh is likely to trouble someone with a structural or mechanistic background. Rather than selectively excluding some topics, Stenesh has created a table of contents that looks like it’s from a much longer text. The usual chapters on biochemical structure, catalysis, metabolism and molecular genetics are included here. The ax fell elsewhere, and most obvious to my eye are the omissions of structure and chemical mechanism beyond those few chapters that are dedicated to them. A brief presentation on the structure and function of hemoglobin is given in the chapter on proteins, and the catalytic mechanism of chymotrypsin is briefly presented in the chapter on catalysis. But in chapters on metabolism, the structures of substrates and products are shown while mechanisms of conversion are omitted. For example, in the description of aldolase, we’re informed that the enzyme catalyzes a reverse aldol condensation, but the reader isn’t shown how the aldol condensation relates to the chemical conversion we see in the figure. (Part of the problem may be that the text assumes only one semester of preparation in organic chemistry, which might not be adequate for a discussion of biochemical mechanism.) In the section on gene regulation, no mention is made of the atomic-level interactions between regulatory proteins and DNA that lead to specific, high-affinity binding. The helix-turn-helix motif isn’t even mentioned. Obviously, in a 500-page text, something had to go. It’s too bad, though, that the omitted material includes the structural and mechanistic explanations for the chemical transformations and cellular processes being described.

760

These complaints shouldn’t overshadow the fact that this is a thoughtfully constructed text. The writing is both clear and simple. Broken into subsections, topics are presented in brief synopses that carefully identify key terms and ideas, and the problems at the back of the chapters are plentiful and appropriate. Stenesh’s presentation is logically sound. I appreciated the presentation of thermodynamics in a chapter that directly precedes metabolism, rather than the more common brief review that appears in the earliest chapters. Likewise, the inclusion of enzyme catalysis directly after protein structure works in the context of this text. I noted a few small errors, but nothing that would cause distractions for the student. Unfortunately, the two-color graphics that accompany the text are less than compelling by current standards (also, a relatively greater number of errors appear in the figures). In drawing chemical structures, little effort is made to show molecular shape. For example, the figures use Fischer projections (without definition before Chapter 5) to define stereoisomers, and only in the appendix are dashes and wedges used to define them. This is particularly problematic in the chapter on amino acids, where their chirality is described but never illustrated. It is difficult to see the three-dimensional concepts being presented in the two-dimensional format being used. In topics where good visuals would be most useful (such as protein and DNA structure), the figures are reminiscent of those from textbooks of the 1970s. For my tastes, this text takes an overly conservative approach to biochemistry. The subject, which has expanded rapidly in the past few decades, can be presented in a format that reflects those changes. My preference would be for a more restricted selection of topics presented with greater emphasis on how mechanism and structure play a role in our understanding in those areas. However, for those who are looking for a no-frills approach to teaching a single-semester course in biochemistry, Stenesh’s text may be a welcome option. It puts all the basic material of biochemistry on the table, and in departments that offer advanced courses, this could be enough for the first semester. In one of the testimonials in the promotional literature that accompanied the book, the text is described as “clearly written, intelligently organized… and devoid of extraneous, distracting ‘glitz’.” It appears that one person’s “substance” can be another’s “glitz”. Consider adopting this text accordingly. Arthur Glasfeld Reed College Portland, OR 97202

Journal of Chemical Education • Vol. 76 No. 6 June 1999 • JChemEd.chem.wisc.edu