4 Iron Transporting System of Mitochondria TORGEIR FLATMARK Department of Biochemistry, University of Bergen, N-5000 Bergen, Norway INGE ROMSLO
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
Laboratory of Clinical Biochemistry, University of Bergen, N-5016 Haukeland Sykehus, Norway
Mammalian mitochondria have evolved a transport system to accumulate iron from the environment (cytosol) and are able to utilize Fe(III) of certain synthetic low molecular weight complexes. The process represents a unidirectional transport of Fe(II) across the inner membrane and is driven by energy derived from coupled respiration or ATP hydroly sis and by dissipation of an electric potential gradient of K . The uptake requires reducing equivalents, such as those supplied by the respiratory chain. The iron appears to be tightly bound to protein ligands although not detectable by EPR spectroscopy. The iron can be used for biosynthesis of heme and possibly for iron—sulfur centers within the mito chondria. The chemical nature of the cytosolic iron donor and regulatory mechanisms of the mitochondrial accumula tion of iron are discussed. +
Λ11 l i v i n g organisms r e q u i r e i r o n a n d are f a c e d w i t h the p r o b l e m o f a c c u m u l a t i n g a sufficient a m o u n t o f this m e t a l f r o m the e n v i r o n m e n t . I n m a m m a l s i r o n is t a k e n u p p r e d o m i n a n t l y i n the d u o d e n u m a n d j e j u n u m ( 1 ) a n d is t r a n s p o r t e d to b o d y cells i n e x t r a c e l l u l a r fluid b y the specific i r o n - b i n d i n g p r o t e i n t r a n s f e r r i n (2).
T a k e n u p b y i n d i v i d u a l cells, i r o n
is e i t h e r s t o r e d as f e r r i t i n a n d h e m o s i d e r i n (3) or is u s e d for b i o s y n t h e t i c purposes, n o t a b l y synthesis of h e m e p r o t e i n s (4, 5) a n d n o n - h e m e i r o n proteins
(6).
T h u s , i n the o v e r a l l m e t a b o l i s m o f i r o n i n m a m m a l i a n
o r g a n i s m s s e v e r a l p e r m e a b i l i t y b a r r i e r s exist, a n d a d e t a i l e d u n d e r s t a n d i n g o f the t r a n s p o r t m e c h a n i s m o f the m e t a l across b i o l o g i c a l m e m b r a n e s is essential for a n u n d e r s t a n d i n g of its m e t a b o l i s m i n h i g h e r o r g a n i s m s . So far, h o w e v e r , the m e c h a n i s m b y w h i c h i r o n is t a k e n u p a n d t r a n s f e r r e d across b i o l o g i c a l m e m b r a n e s is p o o r l y u n d e r s t o o d . 78
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
4.
F L A T M A R K
A N D ROMSLO
79
Iron Transporting System
W i t h i n t h e p a s t f e w years, there has b e e n c o n s i d e r a b l e progress i n understanding the role played b y the mitochondria i n the cellular homeostasis o f i r o n .
T h u s , e r y t h r o i d cells d e v o i d o f m i t o c h o n d r i a d o n o t
a c c u m u l a t e i r o n ( 7 , 8), a n d i n h i b i t o r s of t h e m i t o c h o n d r i a l r e s p i r a t o r y c h a i n c o m p l e t e l y i n h i b i t i r o n u p t a k e ( 8 ) a n d h e m e biosynthesis ( 9 ) b y r e t i c u l o c y t e s . F u r t h e r m o r e , t h e e n z y m e ferrochelatase ( p r o t o h e m e f e r r o lyase, E C 4.99.1.1) w h i c h catalyzes t h e i n s e r t i o n o f F e ( I I ) p h y r i n s , appears to b e m a i n l y a m i t o c h o n d r i a l e n z y m e ( J O ,
into por-
11,12,13,14)
c o n f i n e d to t h e i n n e r m e m b r a n e (15, 16, 17). F i n a l l y , t h e i m p o r t a n c e of m i t o c h o n d r i a i n t h e i n t r a c e l l u l a r m e t a b o l i s m o f i r o n is also e v i d e n t f r o m
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
the f a c t t h a t i n disorders w i t h d e r a n g e d h e m e b i o s y n t h e s i s , t h e m i t o c h o n d r i a a r e h e a v i l y l o a d e d w i t h i r o n (see " M i t o c h o n d r i a l I r o n P o o l , " below).
I t w o u l d therefore b e e x p e c t e d that m i t o c h o n d r i a , of a l l m a m -
m a l i a n cells, s h o u l d b e a b l e t o a c c u m u l a t e i r o n f r o m t h e cytosol.
From
t h e p e r m e a b i l i t y characteristics of t h e m i t o c h o n d r i a l i n n e r m e m b r a n e ( 1 8 ) a s p e c i a l i z e d t r a n s p o r t system analogous to t h a t of t h e other m u l t i v a l e n t cations ( f o r r e v i e w , see R e f . 19 ) m a y b e e x p e c t e d .
T h e relatively
s l o w d e v e l o p m e n t of this field of s t u d y , h o w e v e r , m a i n l y reflects t h e difficulties i n s t u d y i n g t h e c h e m i s t r y of i r o n . Methodological
Problems
I n contrast t o studies o n t h e a c c u m u l a t i o n of C a , S r , M g , L a , 2 +
2 +
2 +
3 +
a n d K ( 19), studies o n the a c c u m u l a t i o n of i r o n b y i s o l a t e d m i t o c h o n d r i a +
h a v e to take i n t o a c c o u n t t h e extreme i n s o l u b i l i t y of F e ( I I I ) at n e u t r a l p H , t h e f o r m a t i o n of i r o n complexes w i t h h i g h s t a b i l i t y constants, a n d t h e r e d o x a c t i v i t y o f i r o n . T h u s , i n o r d e r t o o v e r c o m e these difficulties of w o r k i n g i n t h e p h y s i o l o g i c a l p H r a n g e , i t is necessary t o use a c o m p l e x of i r o n w h i c h is s o l u b l e at n e u t r a l p H . A l t h o u g h there is some e x p e r i m e n t a l e v i d e n c e w h i c h p o i n t s to a b i n d i n g of i r o n ions b y specific c y t o s o l i c p r o t e i n s (see " C y t o s o l i c I r o n Donor," below),
these p r o t e i n s , w i t h t h e e x c e p t i o n of t r a n s f e r r i n , a r e
a v a i l a b l e o n l y i n m i n u t e q u a n t i t i e s , a n d t h e n a t u r e a n d extent of i r o n p r o t e i n i n t e r a c t i o n s are p o o r l y u n d e r s t o o d . T h e r e f o r e , a n u m b e r of n o n p r o t e i n i r o n chelates h a v e b e e n s t u d i e d as p o s s i b l e m o d e l d o n o r
com-
plexes ( T a b l e I ) . B e c a u s e of t h e h i g h s t a b i l i t y constants of, f o r e x a m p l e , the F e ( I I ) / F e ( I I I ) - 8 - h y d r o x y q u i n o l i n e
and F e ( I I I ) - A D P
complexes
(20), these i r o n - c h e l a t e c o m p l e x e s are u n f a v o r a b l e as i r o n donors, a n d i n fact n o e n e r g y - d e p e n d e n t u p t a k e of i r o n has b e e n d e t e c t e d u s i n g these complexes
(21, 23).
W e h a v e f o u n d , h o w e v e r , t h a t t h e f e r r i c c o m p l e x w i t h sucrose is s u i t a b l e f o r this p u r p o s e .
A l t h o u g h t h e c o m p l e x does n o t represent a
h o m o g e n o u s m o l e c u l a r species, i t is stable a n d h i g h l y s o l u b l e i n w a t e r at n e u t r a l p H at a r a t i o of i r o n : s u c r o s e < 1:40 a n d h a s a f a v o r a b l e o v e r -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
80
BIOINORGANIC
Table I.
CHEMISTRY
II
Iron Complexes Used in the Study of Mitochondrial Iron Accumulation by Heart and Liver Mitochondria Type of Compound
Accumulation
Energydependent
Energyindependent
— — — +
+ -\+ +
References
Nonprotein chelates
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
Fe(III)-ADP Fe(III)-8-hydroxyquinoline Fe(II)-8-hydroxyquinoline Fe(III)-sucrose°
b
1J> 21 Λ Λ
23,24,27-32
Protein chelates Fe(III)-phosvitin ' Transferrin a
— +
c
d
+ +
e
50 5
3
"Polynuclear Fe(III) complexes. Approximately 7 nmol · 30 sec" · mg of protein" . From avian egg yolk. Partly saturated. See text, h
1
1
c
d e
a l l d i s s o c i a t i o n constant, w h i c h p e r m i t s t h e c o m p l e x
to b e dissociated
b y i n t e r a c t i o n w i t h t h e m i t o c h o n d r i a l m e m b r a n e s ( F i g u r e 1 A ) (23).
A
h i g h c o n c e n t r a t i o n of t h e l i g a n d ( s u c r o s e ) i n t h e i n c u b a t i o n m e d i u m c o n t r i b u t e s t o this s t a b i l i t y . F u r t h e r m o r e , t h e c o m p l e x
is a m p h o t e r i c
(24) a n d s l i g h t l y n e g a t i v e l y c h a r g e d at n e u t r a l p H ; t h e m a i n species has a pZ °c of 5.7. T h e l i g a n d is m e t a b o l i c a l l y i n e r t (25), a n d t h e m i t o c h o n 4
d r i a l i n n e r m e m b r a n e is i m p e r m e a b l e t o t h e c o m p l e x as w e l l as t o t h e l i g a n d (26).
I n spite of s o m e c o m p l i c a t i n g factors r e l a t e d to its u n i q u e
chemistry, the F e ( I I I ) - s u c r o s e
c o m p l e x has b e e n successfully u s e d i n
o u r l a b o r a t o r y t o s t u d y t h e process o f i r o n a c c u m u l a t i o n b y m i t o c h o n d r i a (23,24,
27-32).
Energy-Dependent Isolated Rat Liver
Accumulation
of Iron by
Mitochondria
D e t a i l e d k i n e t i c measurements of t h e i n i t i a l rates of i r o n u p t a k e b y rat l i v e r m i t o c h o n d r i a h a v e b e e n c a r r i e d o u t i n this l a b o r a t o r y d u r i n g the last f e w years u s i n g 27-32).
5 9
Fe(III)-sucrose
as t h e d o n o r c o m p l e x (23, 24,
T h e g e n e r a l features g i v e n i n T a b l e I I s u p p o r t t h e c o n c e p t t h a t
i r o n , l i k e other cations, is a c c u m u l a t e d b y a n e n e r g y - d e p e n d e n t as a n e n e r g y - i n d e p e n d e n t
different t i m e , p H , a n d t e m p e r a t u r e T h e energy-dependent
as w e l l
m e c h a n i s m , a n d these t w o processes
have
dependencies.
u p t a k e , w h i c h b y d e f i n i t i o n is sensitive t o
u n c o u p l e r , is s u p p o r t e d b y e n d o g e n o u s r e s p i r a t i o n a n d l o w c o n c e n t r a -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
4.
F L A T M A R K
A N D ROMSLO
81
Iron Transporting System
tions of A T P , a n d u n c o u p l e r - s e n s i t i v e u p t a k e is also i n c r e a s e d b y a n e l e c t r i c p o t e n t i a l g r a d i e n t of K (see T a b l e I i n R e f . 31). T h e e n e r g i z e d +
u p t a k e is a r a p i d process w i t h s a t u r a t i o n k i n e t i c s . I t is s t i m u l a t e d b y K * and M g
2 +
a n d is i n h i b i t e d b y c o m p l e x i n g agents s u c h as p h o s p h a t e ,
c a r b o x y l a t e s , a n d A D P as w e l l as A T P a t h i g h e r concentrations.
I t is
sensitive t o t h e same cations a n d S H - g r o u p reagents w h i c h i n h i b i t C a
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
Outer m e m b r a n e
Β
Inner m e m b r a n e
2 +
Matrix
Respiratory chain •
Rotenone Antimycin ι Ferro- \ 'chelatase Primarily conserved
-FedlD-r^FeOl)-
ι
1
Fe(Il)-
Ca *(La ) Uncouplers 2
3+
- -Fe(H)-
f w - Fe(lll) /\ " Non-ferritin storage complex(es)"
Figure 1.
Schematic of binding, oxidation-reduction, and transport of iron by
intact rat liver mitochondria. A. Passive binding of Fe(III)-Ln complex and Fe(III) to ligands (acceptor sites) of the outer membrane ana the outer phase of the inner membrane. Fe(III)—Lm represents a soluble chelate complex of Fe(III) with a sufficiently low stability constant, e.g., polynuclear Fe(III)-sucrose complex(es). B. reduction of membrane-hound Fe(III) to Fe(II) by the respiratory chain at the level of cytochrome clcytochrome a and energydependent active transport of Fe(II) across the inner membrane. See text. This model is based on Refs.
23, 24, 27-32.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
82
BIOINORGANIC
Table II.
CHEMISTRY
II
Properties of the Iron Accumulation by Isolated Rat Liver Mitochondria Using Fe(III)-Sucrose as Iron Donor" 59
Energydependent
Properties Sensitive to uncoupler Supported by endogenous respiration A T P (low cone.) electric potential gradient of K
b
+ +
+
not yet c h a r a c t e r i z e d (see the t r a n s p o r t of F e ( I I )
Figure I B ) .
10 dalton) 6
A s for the m o l e c u l a r basis of
across the m i t o c h o n d r i a l i n n e r m e m b r a n e ,
little
is k n o w n except that i t has m a n y features i n c o m m o n w i t h that of C a (27, 31).
C o n s i d e r a b l e e v i d e n c e suggests that the t r a n s p o r t of C a
m e d i a t e d b y a c a r r i e r (38), still uncertain.
2 +
have been isolated from
w i t h h i g h affinity, a n d a n a c i d i c
p r o t e i n has b e e n f o u n d to increase the C a bilayers
(39).
Cytosolic
Iron Donor
2 +
is
b u t the c h e m i c a l n a t u r e of this c a r r i e r is
S e v e r a l p r o t e i n factors
chondria w h i c h can b i n d C a
2 +
B e c a u s e of the l o w s o l u b i l i t y of F e ( I I )
2 +
mitoglyco-
c o n d u c t a n c e of l e c i t h i n
and F e ( I I I )
in a medium
c o r r e s p o n d i n g to the c y t o p l a s m of l i v i n g cells, it is extremely i m p r o b a b l e that i o n i z e d i r o n exists i n the cytosol.
T h u s , i r o n is present either i n
m e t a b o l i c a l l y active c e l l c o m p o n e n t s or b o u n d to i n t r a c e l l u l a r l i g a n d s , a n d specific i r o n - b i n d i n g m o l e c u l e s
have evolved
to m a i n t a i n i r o n i n
s o l u b l e f o r m useable b y the c e l l . It has b e e n k n o w n for 40 years that m a m m a l i a n cells store i r o n i n the f o r m of t w o c o m p l e x e s k n o w n as f e r r i t i n a n d h e m o s i d e r i n (3).
Whereas
f e r r i t i n is a w a t e r - s o l u b l e p r o t e i n c o n t a i n i n g a b o u t 2 0 % i r o n b y w e i g h t , h e m o s i d e r i n represents i n s o l u b l e granules i n w h i c h t y p i c a l f e r r i t i n m o l e cules m a y be w h o l l y or p a r t l y r e p l a c e d b y a m o r p h o u s i r o n deposits (40).
electron-dense
U n t i l recently ferritin a n d hemosiderin were consid-
e r e d solely as storage c o m p o u n d s of i r o n w h i c h c o u l d be d r a w n o n w h e n required.
Recent
findings
i n d i c a t e t h a t f e r r i t i n also p a r t i c i p a t e s i n t h e
t r a n s p o r t of i r o n f r o m d e g r a d e d r e d cells i n the r e t i c u l o e n d o t h e l i a l system to the hepatocytes
(41).
O u r k n o w l e d g e of other proteins a n d m o l e c u l e s
i n the c y t o s o l w h i c h b i n d s i r o n as w e l l as the m e c h a n i s m ( s ) the c y t o s o l i c
involved in
transport of i r o n i n m a m m a l i a n cells is as yet l i m i t e d .
V i r t u a l l y n o t h i n g is k n o w n a b o u t the f o r m ( s ) i n w h i c h i r o n is d e l i v e r e d
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
4.
F L A T M A R K
AND
Iron Transporting System
ROMSLO
87
to the m i t o c h o n d r i a i n v i v o . A l t h o u g h a N A D H : ( f e r r i t i n - F e ( I I I ) ) o x i n
d o r e d u c t a s e system has b e e n d e m o n s t r a t e d i n l i v e r h o m o g e n a t e s
(42),
its p h y s i o l o g i c a l significance i n the r a p i d c y t o s o l i c t r a n s p o r t of i r o n is s t i l l u n c e r t a i n (43, 44, 45, 46).
I n the m u c o s a l cells, f e r r i t i n m a y f u n c t i o n
as p a r t of a stable i r o n p o o l i n e q u i l i b r i u m w i t h a m o r e l a b i l e p o o l ( 1 ). O t h e r possible donors h a v e therefore b e e n s e a r c h e d for. It has b e e n p r o p o s e d that a l o w m o l e c u l a r w e i g h t of p h o s v i t i n n a t u r e (47)
phosphoprotein
w h i c h b i n d s i r o n w i t h h i g h affinity m a y
i n v o l v e d i n the c y t o s o l i c t r a n s p o r t of i r o n i n l i v e r cells (48, 49),
be
but no
e n e r g i z e d u p t a k e of i r o n has b e e n d e m o n s t r a t e d s u c h as i n i s o l a t e d r a t liver mitochondria using a F e ( I I I ) - p h o s v i t i n from avian egg yolk Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
w t 40,000) as the substrate ( 5 0 ) .
(mol
T h e b i o c h e m i c a l significance of
the
c y t o s o l i c i r o n b i n d i n g p h o s p h o p r o t e i n is therefore s t i l l u n c e r t a i n . I n m a m m a l s , i r o n is t r a n s p o r t e d to cells of the b o d y v i a the e x t r a c e l l u l a r f l u i d t i g h t l y b o u n d to t r a n s f e r r i n as a m o n o - or d i f e r r i c c o m p l e x , and
the m e c h a n i s m of i r o n b i n d i n g a n d release has b e e n s t u d i e d ex-
t e n s i v e l y i n recent years ( f o r r e v i e w , see R e f . 2 ) .
Iron can be released
f r o m t r a n s f e r r i n b y cells s u c h as e r y t h r o i d cells ( b o n e m a r r o w cells a n d r e t i c u l o c y t e s ), b u t the m e c h a n i s m b y w h i c h these cells use i r o n f r o m this c a r r i e r is s t i l l p o o r l y u n d e r s t o o d .
O n e of the hypotheses p r o p o s e d is t h a t
the process of i r o n exchange b e t w e e n t r a n s f e r r i n a n d e r y t h r o p o i e t i c cells i n v o l v e s at least f o u r stages i n c l u d i n g a progressive u p t a k e of t r a n s f e r r i n m o l e c u l e s i n t o the c y t o s o l b y surface endocytosis
(for r e v i e w , see
51 ), a n d at this stage i r o n b e c o m e s a v a i l a b l e to the c e l l .
Ref.
It has
been
p r o p o s e d that m i t o c h o n d r i a take a n active p a r t i n the d i s s o c i a t i o n of t h e iron-transferrin complex
(8, 52),
b u t at least i n v i t r o p a r t l y s a t u r a t e d
t r a n s f e r r i n f u n c t i o n s as a p o o r i r o n d o n o r chondria i n a conventional
for i s o l a t e d rat l i v e r m i t o -
i n c u b a t i o n m e d i u m at n e u t r a l p H
an e n e r g i z e d u p t a k e of o n l y 2 - 3 p m o l · 15 m i n " · m g of p r o t e i n " 1
(53); was
1
m e a s u r e d as c o m p a r e d w i t h 3 0 - 4 0 p m o l · 15 m i n " · m g of p r o t e i n " 1
pH
6.2.
T h e l o w d o n o r a c t i v i t y of t r a n s f e r r i n a r o u n d p H 7.0 as
p a r e d w i t h its p o t e n c y at l o w e r p H p r i m a r i l y reflects the of the i r o n b i n d i n g a b i l i t y of t r a n s f e r r i n (51).
1
at
com-
pH-dependence
T h u s , there is n o c o n c l u -
sive e v i d e n c e to s u p p o r t the recent p r o p o s a l ( 5 2 ) t h a t t r a n s f e r r i n is t h e i m m e d i a t e d o n o r of the m i t o c h o n d r i a l i r o n i n v i v o . A l o w m o l e c u l a r w e i g h t p r o t e i n , different f r o m m e t a l l o t h i o n i n e w h i c h r e v e r s i b l y b i n d s i r o n w i t h h i g h affinity has b e e n i s o l a t e d f r o m r a b b i t r e t i c u l o c y t e c y t o s o l (54, 55, 56).
A l t h o u g h v e r y l i t t l e is yet k n o w n a b o u t
its p h y s i o l o g i c a l p r o p e r t i e s , the m o l e c u l a r w e i g h t is a r o u n d 6000,
and
i r o n appears to b e r e v e r s i b l y b o u n d u n d e r p h y s i o l o g i c a l c o n d i t i o n s . T h i s p r o t e i n m a y be a b l e to m o b i l i z e i r o n f r o m the p l a s m a m e m b r a n e
and
d o n a t e i t for h e m e a n d f e r r i t i n biosynthesis ( 5 6 ) , b u t n o d e f i n i t i v e p h y s i o l o g i c a l role for " s i d e r o c h e l i n " has b e e n e s t a b l i s h e d .
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
88
BIOINORGANIC C H E M I S T R Y
Cell Differentiation
and Mitochondrial
Iron
II
Metabolism
T h e p a r e n c h y m a t o u s l i v e r cells ( hepatocytes ) h o l d a k e y p o s i t i o n i n the o v e r a l l m e t a b o l i s m of i r o n (57, 58, 59, 60), a n d since f u n c t i o n a l l y i n t a c t l i v e r m i t o c h o n d r i a c a n b e c o n v e n i e n t l y p r e p a r e d at h i g h y i e l d , these m i t o c h o n d r i a h a v e b e e n most extensively s t u d i e d so far. T h e i r o n t r a n s p o r t i n g system d i s c u s s e d a b o v e for l i v e r m i t o c h o n d r i a is present also i n m i t o c h o n d r i a f r o m other tissues a n d a n i m a l species ( T a b l e I I I ) . Q u a n t i t a t i v e l y , e r y t h r o i d cells of the b o n e m a r r o w p l a y the most i m p o r tant role i n the o v e r a l l m e t a b o l i s m of i r o n (61),
a n d i t w a s therefore not
u n e x p e c t e d to find that the e n e r g i z e d u p t a k e of i r o n b y i s o l a t e d r e t i c u l o Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
c y t e m i t o c h o n d r i a exceeds that of m i t o c h o n d r i a i s o l a t e d f r o m , for e x a m p l e , l i v e r , k i d n e y , a n d heart ( T a b l e I V ). T h u s , a r e l a t i o n s h i p appears to exist b e t w e e n the rate a n d extent of h e m e p r o t e i n t u r n o v e r i n m i t o c h o n d r i a i s o l a t e d f r o m different tissues a n d t h e i r e n e r g i z e d i r o n a c c u m u l a t i o n (30).
T h u s , it is e v i d e n t that c e l l u l a r d i f f e r e n t i a t i o n is expressed at the
m i t o c h o n d r i a l l e v e l b y m o d u l a t i o n of the a c t i v i t y of essential f u n c t i o n s r e l a t e d to i r o n transport a n d h e m e biosynthesis. Biochemical Transporting
Significance System of
T h e r o l e of
of the Iron Mitochondria
m i t o c h o n d r i a i n the r e g u l a t i o n of
cytoplasmic
Ca
2 +
a c t i v i t y is w e l l d o c u m e n t e d a n d n o w g e n e r a l l y a c c e p t e d (62, 63, 64, 65, R e c e n t studies h a v e e s t a b l i s h e d i m p o r t a n t f u n c t i o n s also i n i r o n
66).
metabolism.
In mammals, approximately 7 0 %
of
the
body
iron
is
i n v o l v e d i n the transport a n d storage of o x y g e n , a n d p r o t o h e m e I X , the prosthetic group
of
hemoglobin
a n d m y o g l o b i n , represents the
abundant organic iron-containing compound. protoheme
I X no d o u b t
most
T h u s , the biosynthesis of
q u a n t i t a t i v e l y represents the most i m p o r t a n t
p a t h w a y of the i n t r a c e l l u l a r m e t a b o l i s m of i r o n (61).
T h e role p l a y e d
b y m i t o c h o n d r i a is therefore v e r y i m p o r t a n t since the final step i n t h e Table III. The Iron Content and Most Common Forms of Iron in Isolated Rat Liver Mitochondria" nmol · mg of protein'
1
T o t a l iron H e m e proteins ( c y t o c h r o m e s ) I r o n - s u l f u r centers Other non-heme i r o n c
b
3.9 ± 0.9 (n = 12) 1.38 - 1 . 4 0 not d e t e r m i n e d 1.47-1.53
F r o m R e f . 67. D e t e r m i n e d f r o m the r e d u c e d m i n u s o x i d i z e d difference spectra. I r o n w h i c h u n d e r m i l d r e d u c i n g c o n d i t i o n s (ascorbate + A ^ N , i V ' , i V ' - t e t r a m e t h y l p - p h e n y l e n e d i a m i n e ) reacts w i t h b a t h o p h e n a n t h r o l i n e sulfonate i n the presence of the F e ( I I ) i o n o p h o r e X - 5 3 7 A ( H o f f m a n - L a R o c h e Inc., N u t l e y , N . J . ) . a
b
c
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
4.
F L A T M A R K
Table IV.
AND
ROMSLO
Iron Transporting System
89
Energy-Dependent Accumulation of Iron and Calcium by Mitochondria Isolated from Reticulocytes and Various Organs of R a b b i t a
Mitochondria Reticulocyte Kidney Liver Heart Spleen Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
α
b
c
Ion Accumulated (nmol/mg protein)
Respiratory Control Values
Iron
Calcium
Ratio Fe:Ca
18.3 10.5 8.0 3.6 2.2
20.1 105.9 50.5 174.9 34.6
0.910 0.099 0.158 0.021 0.042
a,b
1.6 3.9 2.7 2.9 1.6
0
F r o m R e f . 29. Endogenous respiration. State 4 r e s p i r a t i o n .
biosynthesis of h e m e , the i n s e r t i o n of F e ( I I )
into protoporphyrin I X ,
appears to be m a i n l y a m i t o c h o n d r i a l e n z y m e (10, 11, 12, 13, 14)
prob
a b l y confined to the i n n e r face of the i n n e r m e m b r a n e (15, 16, 17).
The
conclusions b a s e d o n our i n v i t r o studies are also s u p p o r t e d b y several observations i n v i v o . T h u s , i n reticulocytes the u p t a k e of i r o n b y m i t o c h o n d r i a has b e e n s h o w n to d e p e n d o n m e t a b o l i c energy
(8),
and i n
disorders w i t h d e r a n g e d h e m e biosynthesis, the m i t o c h o n d r i a are h e a v i l y l o a d e d w i t h i r o n (see Mitochondrial
below).
Iron Pool and Its
Regulation
W h e n m a m m a l s ingest m o r e i r o n t h a n t h e y n e e d for
biosynthetic
purposes, this excess is stored i n most tissues, b u t m a i n l y i n l i v e r , s p l e e n , and bone marrow.
A t p h y s i o l o g i c a l levels of i r o n i n the tissues, the
storage f o r m is p r e d o m i n a n t l y f e r r i t i n i n the cytosol, b u t at h i g h e r c o n centrations of i r o n , h e m o s i d e r i n is also f o r m e d same c e l l c o m p a r t m e n t
(19).
the m i t o c h o n d r i a c o n t a i n some n o n - h e m e
i n the
i r o n different f r o m the i r o n -
sulfur proteins of the r e s p i r a t o r y c h a i n (37, 67). is detectable b y E P R spectroscopy (37)
and deposited
I n a d d i t i o n to the cytosolic i r o n deposit, A f r a c t i o n of this i r o n
b y its resonance at a r o u n d g =
4.3
c h a r a c t e r i s t i c of F e ( I I I ) i n the h i g h - s p i n state a n d is accessible to
r e d u c t i o n b y substrates (37)
a n d to r e a c t i o n w i t h i r o n chelators
(67).
T a b l e I I I gives the d i s t r i b u t i o n of i r o n i n l i v e r m i t o c h o n d r i a i n rat. A c c o r d i n g to i r o n a n d h e m e analyses there is m o r e n o n - h e m e t h a n h e m e i r o n , a n d the n o n - h e m e i r o n , w h i c h is not i n v o l v e d i n the e l e c t r o n t r a n s p o r t c h a i n , accounts
for a significant p o o l of the m i t o c h o n d r i a l i r o n .
R e c e n t studies b y H a n s t e i n et a l . (68)
seem to i n d i c a t e t h a t the m a g n i
t u d e of this i r o n p o o l m a y v a r y w i t h the t o t a l i r o n b o d y content. I r o n l o a d i n g of m i t o c h o n d r i a is o b s e r v e d i n s i d e r o b l a s t i c a n e m i a i n b o t h a n i m a l s a n d m a n (for r e v i e w , see R e f . 69).
T h e p r o t o t y p e of this
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
90
BIOINORGANIC
CHEMISTRY
II
g r o u p of anemias is p y r i d o x i n e deficiency, w h e r e t h e n u m b e r o f sideroblasts i n the b o n e m a r r o w increases
( 7 0 ) , a n d their mitochondria are
heavily loaded w i t h iron. Electron-dense iron particles have been found i n t h e space b e t w e e n the m i t o c h o n d r i a l cristae, a n d t h e m i t o c h o n d r i a a r e morphologically
distorted
a n d swollen.
Neither electron microscopic
(71) n o r i m m u n o l o g i c a l studies (72) s u p p o r t t h e c o n c l u s i o n that these p a r t i c l e s represent f e r r i t i n as o r i g i n a l l y p r o p o s e d (73).
T h e r e is e x p e r i
m e n t a l e v i d e n c e that t h e a c c u m u l a t i o n o f m i t o c h o n d r i a l i r o n results f r o m a n i m p a i r e d h e m e b i o s y n t h e t i c p a t h w a y of, f o r e x a m p l e , the i r o n use ( f o r r e v i e w , see R e f . 6 9 ) , as w e l l as a n i n c r e a s e d i r o n u p t a k e b y e r y t h r o i d cells f r o m i n h i b i t e d h e m e synthesis (74).
Thus, the cytosolic hemin pool
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
appears to b e a n a t u r a l n e g a t i v e f e e d b a c k r e g u l a t o r of i r o n u p t a k e
(75)
b y i n h i b i t i n g the d i s s o c i a t i o n of i r o n - t r a n s f e r r i n c o m p l e x i n e r y t h r o i d cells (76) as w e l l as the e n e r g y - d e p e n d e n t
iron accumulation
(77).
H o w e v e r , d u r i n g the most a c t i v e phase o f h e m e synthesis i n m a t u r i n g e r y t h r o i d cells, there is a m a r k e d shift i n the l o c a l i z a t i o n o f c e l l u l a r i r o n f r o m a m e m b r a n e b o u n d p o o l to t h e c y t o s o l (78).
M o r e o v e r , as
s h o w n b y Y o d a a n d Israel ( 7 9 ) , m i t o c h o n d r i a i n c u b a t e d i n c e l l sap o r sucrose synthesize e q u i v a l e n t amounts release o n l y a s m a l l a m o u n t
o f h e m e , b u t those i n sucrose
of h e m e to t h e s u r r o u n d i n g m e d i u m .
In
other w o r d s , t h e release o f h e m e f r o m the m i t o c h o n d r i a seems to d e p e n d o n p r o t e i n ( s ) i n the s u s p e n d i n g m e d i u m . T h u s , t h e c y t o s o l appears t o f a c i l i t a t e t h e u p t a k e of i r o n b y the m i t o c h o n d r i a as w e l l as t h e release o f h e m e f r o m the m i t o c h o n d r i a .
Literature Cited 1. Forth, W., Rummel, W., Physiol. Rev. (1973) 53, 724. 2. Aisen, P., Brown, Ε. B., "Progress in Hematology," Vol. 10, p. 25, Grune and Stratton, New York, 1975. 3. Harrison, P. M., Hoare, R. J., Hoy, T. G., Macara, I. G., "Iron in Bio chemistry and Medicine," p. 73, Academic, New York, 1974. 4. Nicholls, P., Elliott, W. B., "Iron in Biochemistry and Medicine," p. 221, Academic, New York, 1974. 5. Paul, K. -G., "The Enzymes," Vol. 3, p. 277, Academic, New York, 1960. 6. Beinert, H., "Iron-Sulfur Proteins," Vol. 1, p. 1, Academic, New York, 1973. 7. Jandl, J. H., Inman, J. K., Simmons, R. L., Allen, D.,J.Clin. Invest. (1959) 38, 161. 8. Morgan, Ε. H., Baker, E., Biochim. Biophys. Acta (1969) 184, 422. 9. Morgan, Ε. H., Biochim. Biophys. Acta (1971) 244, 103. 10. Barnes, R., Jones, M. S., Tones, O. T. G., Porra, R. J., Biochem. J. (1971) 124, 633. 11. Labbe, R. F., Hubbard, N., Biochim. Biophys. Acta (1960) 41, 185. 12. Lochhead, A. C., Goldberg, Α., Biochem. J. (1961) 78, 146. 13. Minakami, S.,J.Biochem. (Tokyo) (1958) 45, 833. 14. Nishida, G., Labbe, R. F., Biochim. Biophys. Acta (1959) 31, 519. 15. Barnes, R., Conelly, J. L., Jones, O. T. G., Biochem. J. (1972) 128, 1043. 16. Jones, M. S., Jones, O. T. G., Biochem. J. (1969) 113, 507. 17. McKay, R., Druyan, R., Getz, G. S., Rabinowitz, M., Biochem. J. (1969) 114, 455.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
4.
FLATMARK AND ROMSLO
Iron Transporting System
91
18. Klingenberg, M., Essays Biochem. (1970) 6, 119. 19. Azzone, G. F., Massari, S., Biochim. Biophys. Acta (1973) 301, 195. 20. Martell, A. E., "Stability Constants of Metal-Ion Complexes," p. 390, The Chemical Society, London, 1964. 21. Cederbaum, A. I., Wainio, W. W., J. Biol. Chem. (1972) 247, 4593. 22. Stickland, Ε. H., Davis, B. C., Biochim. Biophys. Acta (1965) 104, 596. 23. Flatmark, T., Romslo, I.,J.Biol. Chem. (1975) 250, 6433. 24. Romslo, I., Flatmark, T., Biochim. Biophys. Acta (1973) 305, 29. 25. Pappius, H. M., Elliott, K. A. C., Can. J. Biochem. (1956) 34, 1007. 26. Malamed, S., Recknagel, R. O.,J.Biol. Chem. (1959) 234, 3027. 27. Romslo, I., Flatmark, T., Biochim. Biophys. Acta (1973) 325, 38. 28. Ibid. (1974) 347, 160. 29. Romslo, I., Biochim. Biophys. Acta (1974) 357, 34. 30. Romslo, I., FEBS Lett. (1974) 43, 144. 31. Romslo, I., Biochim. Biophys. Acta (1975) 387, 69. 32. Romslo, I., Flatmark, T., Biochim. Biophys. Acta (1975) 387, 80. 33. Neilands, J. B., ADV. CHEM. SER. (1977) 162, 3. 34. Flatmark,T.,J.Biol. Chem. (1967) 242, 2454. 35. Racker, E., Essays Biochem. (1970) 6, 1. 36. Koller, M.-E., Romslo, I., Flatmark, T., Biochim. Biophys. Acta (1976) 449, 480. 37. Flatmark, T., Beinert, H., unpublished data. 38. Carafoli, E., Sottocasa, G., Dyn. Energy-transducing Membr. I.U.B. Symp. 1973 (1974) 455. 39. Carafoli, E., Prestipino, G. F., Ceccarelli, O., Conti, F., "Membrane Pro teins in Transport and Phosphorylation," p. 85, North-Holland, Amster dam, 1974. 40. Jacobs, Α., Worwood, M., "Progress in Hematology," Vol. 10, p. 1, Grune and Stratton, New York, 1975. 41. Siimes, Μ. Α., Dallman, P. R., Br. J. Haematol. (1974) 28, 7. 42. Sirivech, S., Frieden, E., Osaki, S., Biochem. J. (1974) 143, 311. 43. Hoy, T. G., Harrison, P. M., Shabbir, M., Macara, I. G., Biochem. J. (1974) 137, 67. 44. Hoy, T. G., Harrison, P. M., Shabbir, M., Biochem. J. (1974) 139, 603. 45. Primosigh, J. V., Thomas, E. D., J. Clin. Invest. (1968) 47, 1473. 46. Zail, S. S., Charlton, R. W., Torrance, J. O., Bothwell, T. H.,J.Clin. Invest. (1964) 43, 670. 47. Pinna, L. Α., Clari, G., Moret, V., Biochim. Biophys. Acta (1971) 236, 270. 48. Clari, G., Pinna, L. Α., Moret, V., Siliprandi, N., FEBS Lett. (1971) 17, 300. 49. Donella,A.,Pinna, L. Α., Moret, V., FEBS Lett. (1972) 26, 249. 50. Ulvik, R., Romslo, I., unpublished data. 51. Morgan, Ε. H., "Iron in Biochemistry and Medicine," p. 29, Academic, London, 1974. 52. Neuwirt, J., Borova, J. Poňka, P., "Proteins of Iron Storage and Transport in Biochemistry and Medicine," p. 161, North-Holland, Amsterdam, 1975. 53. Ulvik, R., Koller, M. -E., Prante, P. H., Romslo, I., Scand. J. Clin. Lab. Invest. (1976) 36, 539. 54. Bates, G. W., Workman, E. F., Fed. Proc. (1975) 34, 643. 55. Workman, E. F., Bates, G. W., Biochem. Biophys. Res. Commun. (1974) 58, 787. 56. Workman, E. F., Bates, G. W., "Proteins of Iron Storage and Transport in Biochemistry and Medicine," p. 155, North-Holland, Amsterdam, 1975. 57. Levitt, M., Schacter, Β. Α., Zipursky, Α., Israels, L. G., J. Clin. Invest. (1968) 47, 1281. 58. Pollycove, M., Mortimer, R., J. Clin. Invest. (1961) 40, 753. 59. Snyder, A. L., Schmid, R.,J.Lab. Clin. Med. (1965) 65, 817.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch004
92
BIOINORGANIC CHEMISTRY-II
60. Theorell, H., Beznak, M., Bonnichsen, R., Paul, K. -G., Akeson,Å.,Acta Chem. Scand. (1951) 5, 445. 61. Noyes, W. D., Hosain, F., Finch, C. Α.,J.Lab. Clin. Med. (1964) 64, 574. 62. Borle, A. B., Fed. Proc. (1973) 32, 1944. 63. Carafoli, E., Biochimie (1973) 55, 755. 64. Carafoli, E., Tiozzo, R., Lugli, G., Crovetti, F., Kratzing, G., J. Mol. Cell. Cardiol. (1974) 6, 361. 65. Lehninger, A. L., Bioçhem. J. (1970) 119, 129. 66. Spencer, T., Bygrave, F. L., Bioenergetics (1973) 4, 347. 67. Tangerås, Α., Flatmark, T., unpublished data. 68. Hanstein, W. G. ,Sacks, P. V., Muller-Eberhard, U., Biochem. Biophys. Res. Commun. (1975) 67, 1175. 69. Cartwright, G. E., Deiss, Α., Ν. Engl. J. Med. (1975) 292, 185. 70. Deiss, Α., Kurth, D., Cartwright, G. E.,J.Clin. Invest. (1966) 45, 353. 71. Arstila, A. U., Bradford, W. D., Kinney, T. O., Trump, B. F., Am. J. Pathol. (1970) 58, 419. 72. Romslo, I., Flatmark, T., unpublished data. 73. Bessis, M., Breton-Gorius, J., C. R. Acad. Sci. (Paris) (1957) 244, 2846. 74. Poňka, P., Neuwirt, J., N. Engl. J. Med. (1975) 293, 406. 75. Poňka, P., Neuwirt, J., Br. J. Haematol. (1974) 28, 1. 76. Poňka, P., Neuwirt, J., Borová, J., Enzyme (1974) 17, 91. 77. Koller, M.-E., Prante, P. H., Ulvik, R., Romslo, I., Biochem. Biophys. Res. Commun. (1976) 71, 339. 78. Denton, M. J., Delves, H. T., Arnstein, H. R. V., Biochem. Biophys. Res. Commun. (1974) 61, 8. 79. Yoda, B., Israels, L. G., Can. J. Biochem. (1972) 50, 633. RECEIVED July 26, 1976. This work was supported by the Norwegian Research Council for Science and the Humanities (grant No. C.11.14-3) and the Nor wegian Cancer Society.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.