-
2768 Inorganic Chemistry, Vol. 9, No. 12, 1970
BETTYR. DAVISAND
JAMES
A. IBERS
C O N T R I B U T I O N FROM T H E D E P A R T M E N T O F C H E M I S T R Y ,
NORTHWESTERN UNIVERSITY,EVANSTON, ILLINOIS
A0201
The Bonding of Molecular Nitrogen. 11. The Crystal and Molecular Structure of Azidodinitrogenbis(ethylenediamine)ruthenium(II) Hexafluorophosphate BY B E T T Y R. DAVIS AND JAMES A. IBERS* Received A p k l 16, 1970 The crystal and molecular structure of the molecular nitrogen complex azidodinitrogenbis(etliylenetliamine)rutenium(II) hexafluorophosphate, [Ru(N3)(N ~ ) ( N H z C H ~ C H ~ N [I'Fe], H ~ ) has ~ ] been determined from three-dimensional X-ray data collected by counter techniques. T h e material is X-ray sensitive and it was necessary to use four different crystals for thc data collection. The central metal atom is coordinated octahedrally to six nitrogen atoms. The Ru-N of (NI) bond distance is 1.894 (9) A and the Ru-N-N bond angle is 179.3 (9)'; the Ru-N (of N3-) bond distance is 2.121 (8) 8, and t h e Ru-N-N bond angle is 116.7 (7)". ' T h e Ru-N distances to the nitrogen atoms of the ethylenediamine groups range from 2.144 (9) to 2.108 (9) A, with a n ave age distance of 2.125 (19) A, Crystal data: monoclinic, space group Cth6-P21/7t;a = 9 . 9 7 (1) A, f b = 12.01 (1) A, c = 12.59 (1) A, P = 102.4 ( 3 ) ' , = 4 ; dobsd = 2.00 =k 0.03 g/cm3, donlcd = 1.98 ,g/cm3. T h e structure was refined using 1375 independent reflections from a litnited data set for which F2 > 3u(F2),and thc refinement converged to a conventional R factor (on F ) of 5.6%.
Introduction I n the previously reported structure of CoH(Nz)(P(C6H&)3,1 we found that the Co-N bond is 1.807 (23) A and by comparison with the Co-N distance of 1.936 (15) A in [ C O ( N H ~ ) ~we] I concluded ~~ that, as expected, the metal-nitrogen (of N2) bond has some multiple-bond character. In carrying out this present study of the bonding of molecular nitrogen, we chose azidodinitrogenbis(ethylenediamine)ruthenium(II) hexafluorophosphate because the central metal atom, ruthenium, was expected to be coordinated to three different types of nitrogen atoms. Thus we expected t o obtain a direct, intramolecular comparison between a Ru-N single bond length and the length of the Ru-N bond when molecular nitrogen is the coordinating ligand. The compound is of further interest because it contains a coordinated azido group. Only a limited number of structures are known in which there is an azido group coordinated to a transition metal. This work bears directly on our previous studies of metalnitrogen multiple bonds3 Collection and Reduction of Intensity Data The material is prepared4 by treating trans- [RuC12(NHzCH7CH2NH2)z]C1 with silver p-toluenesulfonate and, after filtering, adding NaN3. This solution is allowed to stand and after several hours, a saturated solution of NaPF6 is added. The crystals were kindly supplied by Dr. P. S. Sheridan. The N-N (of Nz) stretching frequency in this compound is 2103 cm-l, a t the lower end of the range 2105-2167 cm-' reported for the R U ( N H ~ ) ~ ( Nsalts6 ~)~+
*
T o whom correspondence should be addressed. (1) B. R . Davis, N. C. Payne, and J. A. Ibers, Inorg. Chem., 8, 2719 (1969). (2) N, E Kime and J. A. Ibers, Acta Crystallogr., Sect. B , as, 168 (1969). (3) D. Bright and J. A. Ibers, Inovg. Chem., 8, 709 (1969), and earlier papers. (4) L. A. P. Kane-Maguire, P. S. Sheridan, F. Basolo, and R. G . Pearson, J.Amer. Chem. Soc., 90, 5295 (1968). (5) A. D. Allen, F. Bottomley, R . 0. Harris, V. P. Reinsaler, and C. V. Senoff, ibid., 89, 5595 (1967).
A series of Weissenberg and precession photographs taken with Cu KE radiation showed the crystals to be monoclinic with 2/m Laue symmetry. The systematic extinctions observed were: h01 for h I odd and 0kO for k odd. These extinctions are consistent with the space group Czia5-P21/n. A crystal was mounted, along the long dimension [ l O O ] , in a thin-walled glass capillary for data collection on a Picker four-circle automatic diffractometer. It was observed that the material is extremely X-ray sensitive. The mosaic spread of the crystal, as determined by o scans taken with a narrow source and open counter, increased greatly after only about 12 hr of exposure of the crystal to X-rays. This crystal was used to establish the following experimental conditions for data collection. The data were to be collected using Mo Kal radiation (A 0.7093 and the diffracted beam was to be filtered through 3 mils of Nb foil. A takeoff angle of 2.2' would be used. At this takeoff angle, the peak intensity of a strong reflection was about 80% of the maximum value as a function of takeoff angle. The counter aperture selected was 4.0 mrn X 4.0 mm and was positioned 29 cm from the crystal. The pulse height analyzer was set for approximately a 90% window, centered on the Mo K s peak. The data were to be collected by the 0-20 scan technique a t a scan rate of 1' in 2O/min. An asymmetric scan range of 0.75' on the low-angle side and 1.25' on the high-angle side of the calculated 20 values (Mo Kal) wouId be used. Stationary-counter, stationary-crystal background counts of 10 sec were t o be taken a t each end of the scan range, Attenuators were inserted automatically when the intensity of the diffracted beam exceeded 7000 counts/sec during the scan ; the attenuators were Cu foil, their thicknesses being chosen to give attenuator factors of approximately 2.2. After these experimental conditions were determined, Friedel pairs of reflections (hkl and hEl) were collected in the 20 range 0-25'. These data were corrected for decomposition,
+
a)
Inorganic Chemistry, Vol. 9,No.12,1970 2769
BONDING O F MOLECULAR NITROGEN equivalent forms were averaged, and values of Fo2were derived. These were then used as input to a Patterson function calculation. The rapid decomposition of this crystal indicated unusual sensitivity of the material to X-rays. Therefore, we had no choice but to collect data on several crystals. We will refer to these new crystals as I-IV. All crystals were mounted in thin-walled glass capillaries along the long dimension [loo]. The experimental conditions described above were the same for data collection on each of the four crystals. I n each case, the same ten reflections were centered on the diffractometer and used in a least-squares refinement of setting angles to determine cell constants,6and the same three reference reflections (400, 040, 004) were used as a check on crystal decomposition. These reference reflections were measured every 100 reflections during the early stage of each run and every 50 reflections in the later stages. The cell constants, determined by methods previously described,6 are as follows (Mo Ka1 radiation; X 0.7093 A): a = 9.97 (1) A, b = 12.01 (1) AI c = 12.59 (1) A, /3 = 102.4 ( 3 ) O , a t 22’. The details on each data set are given in Table I. The data in the TABLE I DETAILSO F DATACOLLECTION Crystal no.
Dimensions,a mm
No. of
observations*
Av 28 range, decompn, deg %
20-35 45 33.5-41 79 0-25 40 111 40-43 IV 0.64 X 0.10 X 0.12 60OC 42-49 55 a Parallel t o [ 1001, [ O l l ] , and [OlT], respectively, of the parallelepiped-shaped crystals. * Owing t o the problem of decom-
I
I1
0.32 X 0 . 1 2 X 0 . 1 3 0.44 X 0 . 1 4 X 0.14 0.60 X 0 . 1 4 X 0 . 1 5
759 661 666
position, only unique reflections were collected. Although there were 882 reflections in this 20 range, owing to the weak intensity at higher 20 values coupled with decomposition, only 600 reflections were collected.
20 range 0-25’ were recollected on crystal I11 because the crystal which was used for collection of Friedel pairs of reflections (hkl and Eli) in this 20 range was first used for determination of the experimental conditions for data collection. We felt, therefore] that this crystal had severely decomposed even before data collection was begun and therefore we did not have an accurate measurement of decomposition on this early block of data. In general, all three standards decreased in intensity a t approximately the same rate. A correction for decomposition was applied to each data set based on the average decomposition of the three standards as a function of X-ray exposure. Each block of data, with decomposition correction applied, was processed in the manner previously described,6 with a value of 0.04 for 1, selected for the calculation of a(1). The values of I and a ( I ) were corrected for Lorentz-polarization effects. The data on the four (6) P. W. R . Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).
crystals were interscaled using common reflections.7 At first, all the data for which I > 3a(I) were used for interscaling and the interscaled data were used in the solution of the structure. We found, after solving the structure] that data from crystal 11, which suffered the greatest average decomposition, were markedly inferior in the agreement between Fol and F,], where FoI and IF,I are the observed and calculated structure amplitudes. Therefore, the data were again interscaled using only crystals I, 111, and IV. Of the resultant 1783 unique reflections, obtained by omitting data in the range 35 < 20 < 40°, only the 1375 which had F2> 3a(F2)were used in the final refinement. The absorption coefficient of this compound for Mo K a radiation is 11.9 cm-’. On the basis of absorption correction tests,’ a correction for absorption proved unnecessary as the transmission factors did not vary by more than 1.5% for a given crystal.
1
1
1
Solution and Refinement All least-squares refinements were carried out on F, the function minimized being Zw(lFoI - lFc1)21 where the weight w is taken as 4FO2/a2(Fo2).I n all calculations of F,, the atomic scattering factors for the ruthenium and hydrogen atoms were those calculated by Cromer and Waber8 and by Stewart, Davidson, and S i m p ~ o nrespectively; ,~ scattering factors for all other atoms were taken from the usual tabulation.lO The effects of anomalous dispersion of the ruthenium and phosphorus atoms were included in the calculation of F,;” the values of Af’ and Af” used were those calculated by Cromer.12 The ruthenium atom and six nitrogen atoms coordinated to it were found from a Patterson function’ which was based on the data obtained on the initial crystal. These seven atoms were refined and structure factors were calculated. A difference Fourier synthesis revealed the phosphorus atom and provided no evidence of disorder problems. At this point we collected the data on crystals I-IV. After the data from crystals I-IV were corrected for decomposition and interscaled, structure factors were calculated using the initial positions of the ruthenium, phosphorus, and six nitrogen atoms; this was followed by a difference Fourier synthesis. The positions of the six fluorine, four carbon, and the other three nitrogen atoms were found from this map. Three cycles of refinement were carried out in which the ruthenium and phosphorus atoms were refined with anisotropic thermal parameters] the six fluorine atoms were refined (7) In addition to various local programs, Patterson functions and Fourier syntheses were calculated using a local version of Zalkin’s FORDAP. Absorption correction tests were made by a modification of W. C. Hamilton’s GO NO^ and data were interscaled using Hamilton’s INSCALE. Refinement and structure factor calculations were done by our least-squares program, NUCLS, which, in its nongroup form, resembles the Busing-Levy ORFLS. Errors in derived quantities were obtained from the Busing-Levy ORFFE program, and drawings were made with use of Johnson’s ORTEP program. (8) D. T. Cromer and J. A. Waber, Acta Crystallog?., 18, 104 (1965). (9) R . F. Stewart, E. R. Davidson, and W , T. Simpson, J. Chem. Phys., 40,3175 (1965). (10) “International Tables for X-Ray Crystallography,” Vol. 111, The Kynoch Press, Birmingham, England, 1962. . (11) J. A. Ibers and W. C. Hamilton, A d a Cyystallogr., 17,781 (1964). ._ (12) D. T. Cromer, ibid., 18, 17 (1965).
2770 Inorganic Chemistry, VoZ.9,No.12, 1970
BETTYR. DAVISAND
JAMES
A. IBERS
TABLE I1 POSITIONAL A N D THERMAL PARAMETERS FOR [RU(N~)(N~)(NH~CH~CH~NH~)~] [PFB] Atom
RU N1 C1 C2 N2 N3 C3 C4 N4 N5 N6
N7 N8 N9 P F1 F2 F3 F4 F5 F6
X
0.22316 (8)' 0.4315(9) 0.4626 (11) 0.3445 (13) 0.2149 (lo) 0.2329 (9) 0.0935 (13) -0.0014 (11) 0.0094 (9) 0,1885 ( 8 ) 0.1047 (10) 0.0234 (11) O.ZSll(9) 0.2828 (11) -0.1856 (4) -0.0326 (8) -0.3353 (9) -0.2257 (12) -0.1371 (12) -0.1553 (13) -0.2100 (10)
Y 0.16331 (7) 0.1792 (6) 0.0997 (9) 0.0981 (9) 0.0737 (7) 0.2613 (7) 0.2920 (11) 0.1959 (10) 0.1624 (7) 0.3134 (6) 0.3107 (7) 0.3084 (9) 0.0314 (8) -0.0453 (8) -0.0755 (3) -0.0994 (6) -0.0509 (8) -0.1931 (8) 0.0405 (8) -0.1282 (11) -0,0268 (11)
BlP
I
0.36589 (6) 0.3583 (7) 0.2782 (10) 0.1805 (9) 0.2176 (7) 0.5064 (7) 0.5177 (10) 0.4798 (10) 0.3707 (7) 0.2753 (7) 0.1935 (8) 0.1139 (8) 0.4493 (7) 0.4987 (9) 0.1773 (3) 0.2389 (6) 0.1146 (8) 0.2100 (10) 0.1538 (10) 0.0754 (8) 0.2851 (9)
0.00821 (10) 0.0130 (14) 0.0078 (13) 0.0142 (18) 0.0130 (13) 0,0082 (11) 0.0123 (18) 0.0068 (13) 0.0095 (11) 0.0107 (11) 0.0130 (14) 0.0174 (17) 0.0120 (12) 0.0216 (18) 0.0131 (5) 0,0152 (12) 0.0188 (13) 0.0333 (22) 0.0351 (21) 0.0355 (23) 0.0243 (19)
Baa
822
0.00482 (6) 0.0055 (7) 0.0080 (10) 0.0085 (11) 0.0056 (7) 0.0077 (8) 0.0097 (11) 0.0095 (11) 0.0067 (7) 0.0048 (7) 0.0061 (8) 0.0110 (11) 0.0065 (8) 0,0073 (9) 0.0067 (3) 0,0118 (8) 0.0140 (10) 0.0125 (10) 0.0110 (9) 0.0355 (20) 0.0335 (19)
0.00496 (6) 0.0054 (7) 0.0076 (10) 0.0048 (9) 0.0055 (7) 0,0060 (7) 0.0078 (10) 0,0096 (12) 0.0068 (7) 0.0057 (7) 0.0061 (8) 0.0072 (9) 0.0048 (7) 0.0081 (9) 0,0098 (3) 0.0142 (9) 0.0240 (12) 0.0259 (16) 0.0270 (15) 0.0108 (9) 0.0187 (12)
812
Bia
823
-0.00024 (7) -0.0011 (7) 0,0001 (9) -0.0008 (11) -0,0012 (8) 0.0006 (7) 0.0010 (11) 0,0024 (9) -0.0007 (7) 0.0002 (6) -0,0010 (7) -0.0015 (10) 0.0005 (7) 0.0034 (10) 0.0012 (3) 0.0014 (8) 0.0051 (9) -0.0099 (12) -0.0042 (11) 0.0164 (17) 0.0028 (15)
-0,00065 (5) -0.0000 (7) 0,0018 (9) 0,0014 (10) -0,0021 (7) -0.0014 (7) 0.0014 (11) 0.0031 (10) 0.0003 (7) -0.0020 (7) 0,0002 (8) -0,0027 (9) 0.0021 (7) 0.0039 (10) -0.0011 (3) -0.0042 (8) -0,0117 (10) -0.0070 (13) -0,0118 (14) -0.0012 (12) 0.0073 (12)
-0,00012 (6) -0.0001 (6) -0.0005 (8) -0.0001 (8) -0,0002 (6) -0.0013 (6) -0,0038 (9) -0.0004 (9) -0,0010 (6) 0.0003 (5) 0,0004 (6) 0.0014 (8) -0,0002 (6) 0.0046 (8) -0.0017(2) -0,0021 (7) -0,0050 (9) 0.0039 (10) 0,0083 (10) -0.0073 (12) -0,0124 (13)
a The form of the thermal ellipsoid is exp[ - (pnhz 4- &k2 4- P d 2 f 2 P d k 4- 2PlahZ 4- 28&)]. and in other tables are estimated standard deviations in the least significant digits.
as an octahedral group with an overall group thermal parameter, and the other atoms were refined with isotropic thermal parameters. At this time the contributions of the hydrogen atoms were calculated. Hydrogen atom positions for the two hydrogen atoms on each of the carbon and nitrogen atoms of the ethylenediamine groups were calculated from idealized tetrahedral geometry about the atom (C-H, N-H = 0.90 A). The fixed contributions of the 16 hydrogen atoms to F, were calculated using an isotropic thermal parameter of 5.0 A 2 for each atom. Two cycles of refinement in which the six fluorine atoms were refined as a group with an overall group thermal parameter and all other atoms were refined with anisotropic thermal parameters gave agreement factors RIof 15.1% and R2 of 18.OyG,where Rl = B//FoI- ~ F c / ~ / B and ~ F R2 o ~ (or weighted R factor) = (Zw(\Fo/ - Fc~)2/BwFoz)1'2.Structure factors were calculated and a statistical analysis indicated that the data from crystal I1 were inferior to the data from the other crystals. Therefore, the data were scaled again, as described above, with the omission of those collected from crystal 11. This resulted in a data set which omitted reflections in the range 35' < 28 < 40'. The input parameters for the first cycle of refinement using this limited data set were those derived from the complete data set. After three cycles of refinement the positions of the 16 hydrogen atoms were recalculated and these were added as a fixed contribution to F,. After three more cycles of refinement, in which all 21 atoms (ruthenium, phosphorus, six fluorine, four carbon, and nine nitrogen atoms) were refined anisotropically and data in the range 35' < 28 < 40" were omitted, convergence was reached a t RI= 5.6% and Rz = 6.7YG. A statistical analysis of Zw(( Fol as a function of IFo] and X-l sin 8 revealed no unexpected trends. I n particular, no correction for extinction appeared necessary. The error in an observation of unit weight is 2.6 electrons. The positional and thermal parameters derived from
1
1
Xurnbers in parentheses given here
the last cycle of refinement are presented in Table I1 along with the associated standard deviations in these parameters as derived from the inverse matrix. The idealized positional parameters of the hydrogen atoms of the ethylenediamine rings are listed in Table 111. TABLE 111 DERIVED PARAMETERS FOR ETHYLENEDIAMINE HYDROGEN ATOMS~ Y
X
z
NfHlb 0.450 0.249 0.335 Nf H2 0.488 0.167 0.423 ClHl 0.470 0.030 0,309 Cf H2 0.542 0.115 0.260 C2H 1 0.356 0.051 0.129 C2H2 0.333 0.170 0.149 N2H 1 0.216 -0.002 0.230 N2H2 0.143 0.091 0.167 N3H 1 0.272 0.223 0.568 N3H2 0.279 0.325 0,505 C3H1 0.090 0.308 0.589 C3H2 0.061 0.353 0.478 C4H 1 -0.091 0.220 0.482 C4H2 0.019 0.141 0.529 N4H 1 -0.038 0.212 0.320 N4H2 -0,028 -0,095 0.355 All atoms have B = 5 N f H1 and Nf H2 are attached to iY1, Cf H1 and Cf H2 are attached to C1, etc. Q
wz.
The final values of 101FoI and 101Fa/(in electrons) are given in Table IV for the 1375 reflections which were used in the final refinement. For the 408 reflections omitted from the refinement for which Fo2< 3a(FO2), none had IFoz- Fo2/> 4a(FO2). Thus these data are not included in Table IV. I n principle there are no inherent dangers in dropping a block of data out of a least-squares refinement. If particular parameters are especially sensitive to data of that block, then marked increase in their resultant standard deviations will indicate this. Nevertheless, the procedure may not be a desirable one, as one is never dealing with an idealized least-squares procedure in which the observations suffer only from random
Inorganic Chemistry, Vol.9,No. 12,1970 2771
BONDING OF MOLECULAR NITROGEN
TABLE IV OBSERVED AND CALCULATED STRUCTURE AMPLITUDESX 10 (IN ELECTRONS)
....". .... L
0 0
0
0
0 0
L
. 2
*tJ
Q
fL
Y
1165 795 12U
llbb
I I
9 12
186
79,
1 1
11
I18
202
I2
llil
1. P .lI 2 -10 2 -9 2 -8 2 -7
IO9 IIS
lb4
I
2
16V 1891
3
12,
I
5
17s 355
1151 122 6 . 1 365
6
817
831
I
I n 1 9 I IO
57b
572
28s 210
272
205
bbb
12 Ib
I*? I66
$61 ,I. 1bO
0
LIB
I
I
1
I I
2 2
2 2
2 2 2 2 2 2 2 I 2
3 1
I.
+
. I
2 I
,5
6 7
SOP 5.1 512 *I?$68
1"V
.e7
1160 256
11.1
592
P
791 169
Ib
IIT 1110 .BY
2 1
1
L
172e 299
5 7
Ill1
.. . 3 3 3 4
111 Ibb
0
811
I
4
2 3
b
5
6
7 8
I)
. b
1
b
5 5 6
5 5
5
we
9
II
e 12 I1 1 2
I 6
6
261 5Lb 786 1411
16h
11
I
255
261
8
12
920
920
3
a
s10 715
I003
lei I32 1102 .I,
1
m
291 bl
152 110 5.5 711
le11
757
715
I015 IO6 261
1052 I17 264
120
7
2 3
7. 705.
795
6
435
506
7
295
Ill
9 9
IO IO IO
28. 1.e I10 I15 256 881 157
117 102
17. 98
121 250 916 15B
11, 267
;:. 799 126
225
12 I1 3-12 I -10 J -7 3 -6 3 -5
3 -b
112
161 5lb 80
112 62b 365
112 !UP
17b 551 91 1%
627 166 379
-1
361
3 -2
IOQO 118.
1021
I
110 1591
105 1610
-I
0
I
; 3 1 I 1
2
: 5 6 8
12 -12
.. .. . . 6%
L
-9 -8
4
-1
4 b
-2 -1
I
+
o
itas
8:: ::2119 111 8.8 175 Zb* 111
111 .
156
251 I10
$26 117
Lie
712
II
II 11
.
"
40,
-5 -4
II 5 II 6 11 I II I2 - 7 12 .I 12 -6 I2 12 12 12 I2
82 200
$9
-2
97 1PZ 1 . 7 111 2.b 79
-1 -1 0
302 1.9
12
z
I55 1 . 2
12 I2 I2 I1 I1 13 I1 11 I1
I 5
1.8 1.0
1 -5 -1
I25 LOO 1011 260 111 114
I
-2 -1
0
>
Z
5
1
411
6
700 561
715
222
*6
414
5
2b6
5
0
2W
11,
S
10
108 2% I15 55
5
II 12
319 121 267
h 6
-I
488
5
6
600
6
11
6
218 229
6
-1 -2 -1
6
I
ne
6
121
6.1
271
122 S.1 181
1%
281
119 2b8
281
2U5
209
l'(9
ins
111
I
157
I51
1
251
IO
IO
11 II I1
6
255 211 268 163 2Ib
I1 I1
b
4:; 126
b b 6
IO
13'1
6
I2
7 1 7
1.1
7
112 212 IbO
7 7
7
5
196 LbL
-1
918 b29 Ill
981
15.
356
.L*
505
-2
-I
0
1
T
476 I91 1% 106 216
:: : ::: :::
....*. ..... 1.2
272
1
I
11 12
PPI 116
201 292 a 9 112 .I9 IO1
I20 I96 276
(1.1 17.
606 158
9
-. 9
621
II
6
111
210
0
9
1
261
1
1
Ill1
3
lee 5 . 8 Ill 25e
377 517
4
386
151
6
2b2 IO0
228
s
o 9
I I I I O -1
IO IO IO IO IO
;;
I I
leu
9
207
:: ;:: *
a
172
65 IUI
11
96
51
26, 242
265 251
358 216
17* 216
r
-6
-1
2.2 820
251
7 7
-2
260
251
; -lI
11
2 b 6 -5
7b3
o
0
I I I
I
ins
IO
280
In0
181
601
221
215
I I
111
1.1
I
e*,
122
165
618 211
e
II
P
21s 255
IO*
9
I O -1
9
-1
22e 36"
P
-2 -1
863 377
0
119
21e 311
220 115
1J2 Ilb
I42
411 400
IVl
212
209 525
405
-6
509
1 I
-5
L57
-$
5.1
I
-3 -2
1115 026
ere
982
100. 55U
1
1 -I
I 1
0
1 1 L 5 6
1.2
171 101
.I
II I2
I61 2bl
278 lbb
255 e26
-8
I
1.1
eii
$05
-P
1 I I
171 211
e
101
1 I
I 4 6
11
s
lbl
5s I.9
2
I)
5.1
I91
8
1
506 1602
386 511 211
I78
I
e
201
1391)
654
175
171
I I
0 13 1 -10
ase
62. IO1
176 150
216 201
571
2.1
0
65 BI 1IR
-7 -3 -1
0 0 0 0
46s 370
-I
3
P I
I71
1%
12 1%
0
221
-1
2
81
161 1111
ItP
6 7
-2
.I
297
16L
5
-+
I66
12II
-P
7
8 I
.It
0
7
I
206
2 2 2 2 2 2
275 109
I95 112 201
7
7'16
8
1.6
11
2 -12 2 .IO 2 -9 2
5.6
295 121 lbl 21b
ZILI
n e
I72 111 #65
5 5 5
-8 .I
112
506
191
$12
-6
llb 115 984 2P9 32, 211
-5 4
-3
-2 2 -I
1.1
316 1011 108
35.
20e
-1 -6
-*
5 5 5
-2
.
*I
I
:
35
lei 75
IOU 123 .a5
310
699
317 .e6
3w
311
I?@
271 89
PI
2b0 319 IPS 58" 111
512 311 719 2.8 lPT in7
252 IIP lI& 556
I01
522 l*O 721 7 . 2 720 175
2: ;;; 210 290
7
196
117
5
IO
52
5 5
11
PI 251 210
0
-11 -8
5
6 6 6 6 6
b 6 6
6
I2 -7 -5 -3 -2
.I
17P 1.2
151
LIP
125 120
511
911
990
,eo
171
155 265
652 I36
669 Ill
6
10
6 I1 7 -10
3%
Ill
97
7
-7
260 170
I 7 7
-6
221
7
-I
-5
-1
-L
2
508 113 261
527
3 4
e
I O 10.1
9
8.
IO
I70 211
11
IVI
LO1
1
-9
1.1
b90 101 215
610 630
7
7 7
111 91 I25 280
511
7 7
I
....* . ...... I.
ev
631
1b6 271 I* 16,
o
0
r22 1205 1626
2
1100
b
25')
0
6
IO6
0 D
8
WI Ill .e5 306
1
-9 -b
1
I
I
211 73 212 122
I 1
b
1
II I2
9
e
9 P
9
I)
211
P
20$
IO
lob
lbh
211 603 271
228
0
229 I62
196 1b5
237 112 71 la7 189
176
165
158
I
111
e
1 . 2
2 6
266
IO IO
-7
4
I28
IO
5
165
130 145
IO
6
261
261
IO 11
I -7
I8
$7 236
I1 II
II
II
II I1
II
12
-6
215 115
-5
2.8
-1
92
122 2.6
96
D
99
1
as
159 9b
1111
. 2
1 6
7
-r
I 2 -5 I2 -1 1 2 -1 I2 I I2 2 I2 5 I1 -2
171 111
ID0
160
I02
17
66
227
262 lb5 213
iie
151 213
ne
121 193
176
et
326 1.2
2W 29.
299
I3 -1 I1 0
255
205
2
165
161
3
115
111
I3 11
I85
2'4.
21,
errors. I n the practical instance where observations are also subject to systematic errors i t is more difficult to predict what effects on the derived parameters changes in the observations will have. In the present case it was very clear that the data collected from crystal I1 were inferior, probably because decomposition was most evident with this crystal. We could have dropped out the last quarter or perhaps half of the data block
137
1.1 I42 805 553 211
711 597 01.
7s5 1.9
1*1 712 ,L)P
238
I97
161 212
-8 -7 -5
2 2 2 I 2
2
TIP 915 71.
2 2 2 2
I
6
+
901
I70 590 201 5+2
106
192 5.1 1.6
511
2eb
I60
239 131
2 . 0
Ills Ill9 152
696 91 298
201 rl5
e46
662
*L
I34 111
752 221
IO9 4u9
5 5
5 5 5 6
6
b54 1'11
5
250
6 IO
511 164
I1 -IO
118
-6
b L
-5
6
-1 -2
L 6
6
6 6 6 6
741
-4
'I
IO9 268
217 721 286
+e*
o
120 bas
IO
291 625
2 b 0
+99 779
7-10
101
7
-6
171
7
7
-5 -b
7
-3
7
-2 -1 0 2
7 I 7 I
I 7 1 7
1
6
7 8 9
e
-9
8
-5
I -6 I -1
8 8 8 8 8 8
-2
.5a 211 268 611 5.8
619 LO9 1.L 295 91
I
2 1
I I 1 I 1 I
710 219
I93
192
979 410
915 281 ZbO LO6
95
92
211
0
IO
::: :::
-7
-1 -2
-I
2 2
IO6
703
b74
.76 6bI
I
549 158 1117
1111
211
205
lie
e
151 682 215 1,I
507 205 1u.
I10 269
IO 1I
2
+10
2 6
2
111
0
I 5
2 2 2 2
17e
1
-8
3
-7
2111
266
1
-6
950
1111
1 -4 I -1 1 -2
111
2Ye 232
13n
la2 I@. 182
:
-I I
1
6
185 bee 115 1.
1
5
3
9 10
62I $26
4 -11 6
172 156 111 *55 771 252
I
515 I21 Ib4 SO
26,
I W 696 267 IIP
I22
wi
111
728 2b9 5.
3 3
111 195 .PI
5
2 1
5
b
5
5
I q
410
6
-1
17 211 ZlI 272 ..2 116 311 112 772
6
91
91
114
I 2
750
116
102 15.
312
b2
176 151
-5 6 -1
I 6
6
7
I 1
I
.2P 229 ,I3 $20
I
5
40, 264
2
-76
226 2Y2 190
e1
20s 171 176
112
-6
Ill2
266 Sl 160
11
-5
306
2S2
I 1I II
-2 -1
I22 101
11. I02
-1
1.b
1111
201
I'l9
II
II
0
II I1 11 I2 I2 12
L -b
I2
I
I2
251 9b
2
90
I10
1
I10 I25
lb5
201 92
207
1.2
1.e TI
-3
-2
1
I2b
86
1.
128
e,
-0
-6 -b 0 2 4
-0 IO -6
-5
4
.
-2
-I I 3
572 bll 390 121
519
be8
456
Ibe IO1 305
280 1.1
627 365
1116 171 111
+25 116 I56
I16
5b7 111 165 401
179
PI1
117 .*e 709
290 111
.I1 -7
121 205 657
261 .e2 221 L191 VO
-6 -5
166 215
164
5 II 9
,e* 725
210
--b 3 -2
180 151
99
52
0
I
311 6ze
190
P 5
b76 78. 211
I'
2
?58
112 6.5 In, 716 *61
PO
?C
01255
152 Ib4
a06
206
758 221 106 253 100
677
*6V
372 1154
I55
165
6.0 203
279 2%
211 a31
1.8 10%
168
I72 111
I 9 -9
157 121 118
1bl 278
111 IPI
115
I91 261 150
I7r
621
501
195
2U5
ID 11
-6
II I1 II II
-1
-20
....* . 3 -2
12
201 289
119
3.4
211
221
225 126 117
-6 2
0186 5
5 -56
P. 285 1 71
207 677 a5
137
Ibb
252
252
I.....
0 -11 0 -7
201
0 -5I 0 3 0 7 0 9 1 -10
507 Ill IIS
628 I6
415
I
-5
Ire
I*.,
+I9 IYl ILL 12.
-4
406
1%
210
269
I -8 I
I -2
100
I70 LOO
206 25L
-6
I
1
2 1 I *P
*+ -1 -2 -1 0
I70 169 21
207 122 21i 116
2% I2b
I16
687
I29 bb2
b -9 -8
531 2.7
+55 229
I51
156
-3 .I -1 5
29. 219
I59
211 111 127 IS1
b 7 I
161 90 111
1 . 3
272
271
Z
-7 I
5 7
-5
2
*5.
IS) '46
212
2Dl
211 152 101 208
20s 1bO
2e2 I91
-7
122 I25 11,
90
9 e.
iw
lei
205
1 6
210
I95
Z12 $18 Ill
-e
I
-7
164 165 257
131
2
166
2
5bQ 321
3
T3
2 2
1 2
2 6 1 2 7 2 9 1 .IO 1 -b
I
100 13Y
519 323 116
IO$ 184 118 1.2 108
I67 121 311 1b5
112 111
in4
'83 188 IIl
in7 266 450
b5
L 5
lie I26
$7
-66
281 177
208 275
b 6 -1 -6 -5
b2b 111
616 I17
I29 121 e5
I18 I39 iz
111 129 I76 I92 212
225 279 117
z>e 168
-1
255
111
261
205
-1
13 -2 2
I
219 2.0
I 2
1
1
2.1
213 I98 22.
I18 111 I23 .I1 222
I
I17 I21 122 1 0
-5S
321.0 1 9P
122
-1 0
I90 179 1%
3
*
le6 255 198
1'2 216 172 119 262 19.
-55 -1
21s 220 30b
20. 211
290
296
201
186 111
.b
-3
3
1
1 4 6
9 -10
4
.
-4
- 3o
me 210 27s
2
356
6
299
1
111 282
I
b
1 4
5 5
-v
5
-I
-1
5 -1 5 87
4 5
6
7
7
-6 1
T 7
.
1
12L IO6
IO7 276
212 176 276 581 261 1.2
280
220 2 . b
231
170
159 111
I9b I37 171
195
201 118
155
191
s11s in
255 I17
180 211
27,
I71
-6 7 -b
llee 8b
201 119
8
Ill
112
I
-3 -2
1.1 111,
I50 115
II
P
282
29. 88 386
n1
I
I
2
8
111 166
5
200
I95
e8 -66 'I -5
312 I56 119
137 Ill 9e
9
251 Ill 125
252
-1 -2
q
0 1
291 110
IO
-7
201
I
9 9
IO
IO
-1
-6
Ira
-6
8V
IO 10 -2I
226 211 197 I10
IO IO
I
-.. -I
I
-1
1 I
111
1.0
116 201
137
-6
S.2 96
-5
2Q2
277
-1 -b .2
169 I99 $0
107 1611 e5
-1
201
0
225
I O 221
1 I
212
-. -6
-3 -2
I51 212 112 115 111
91
le1 157
224 I10 112 301
87
Io7 11, 300 Iba 16. e9
215 218
257
in+ IU9 269
112
106
....* . ..... I I -1 11 e
e
1 -9 I1 -5
655
"
118
.98 295
0 -IO 0
I18 251 116
.
-2 -1 I
276
I. 111 lbr I62 97
8 9
-*
1111 $12 PO
b1
-3
e,
284
-7 -b -3 -2 -1
I
325 279 1711
$27
290 108
-I I 2
I
2
I20 229 199
95
IbP 257
-5 -1
2
21. 510 101 156
160
127 218
126 761
263
I*,
221 16
322 7ev 397 212 226
170 92 2ll IlV 290
158 I96
295
I 3
191) se
2
9 IO
205
278 205
111 273
7 0
IO5 111
111
-1
*I
306 209
1
296
-2
-7 -8
I I
iei
118 218
190 2Y5
I". 661
170 19,
125 150
215 1.1
bl 6.7
29Ll
-b 3
2i 2 9 1e
bl2 300
I70 122 469
.o.
-7
I21 210 305
b
220 251
668
1 2 I
1
7 1
-3 -1
*I
0I
259 I10 100 1'1
20
-4
.IO
Ob 166 122 131
-2
1I
-5
371 260 236
1'
20. 3rb
I1
-6
i
26Y 115
LII
1151
5
-3
*Yo
212
I46
-+
227 1.0 1.1
1.3
181
I60
281 187
256
193 113
221 ll'i bbb
21 5
6
tee
227
IO IO
5
I21 146
296 7s. 111
1bO
lee
6
'I
e.*
151
e
-b -2
III
0
LIP
Ilr
-5
266
166
L11
431
120
I63 LIP 199
115 I23
2e5 101
8.0
236
-1 -2
I17
IO .I1
-10
27P
22.
-6
80
I70
I19
-1
122
570
166 80
IO IO IO IO IO
b
121 1%
111
i i :ii 'ib 121
6
$06
166
312
72s 276
$60
6.7 +SO
I
P
2 2
3.L 5.8
3 7
; -1 -2 7 1
322
IbO
e66 666
205 350
711
-+
181 170 213 It*
3YP
l2*
e29
-5
11'
664 116
-.
5
II I0
619 ,011 Ill I76
610
$11
IO
5
IO IO
b27
79 21. LOO
0
IO
515 275
112 115
127 252
..2 I86 102
219 221 672 520
IO IO
-2 -1
$61
571 295
701 151
151
I
10
*(I4
-b -1 .I
8
0
;: 1:
-6
I29
71
1
-I
L b -7
175
165
512 ..2
6
4
-:
+el
e7
5
5
-3 -2 -1 0 5
292
b
S
P51 222
565
&I2 722 LPI 529
4 . e
265 228
-6
+ 2*
-2
2b* 161
-7
4
I1 -11 -8 -7 -6 '5
IO IO
18,
81
I22
2b2 e5 120 I96 161
192
1
P
2*0
.I1
211 110
-11 9
SI.
5 5 5 5 5 5 5
9
271
1 D
965 I10 221
4
b
e
6.0 151
IPb
-1 .2 0
e
I
501
-8
e9
-8 .I -6
. .
8
b60
I
6 7
I
8
2
110
&
4
7 77 8 8
::: :::
I
I
LOP
1 I
lob1
6
G
112 1 . 5
2s.
2.1 612
;
13
-7
ins
252 IO7
299
5
150
96
1)
b 6
656
261
5
; -1: 2 -8 2
601
6S5 212
154
lo*
7
-6
-1 -2
I 1
117 169 515
22e
-1
o
-5
I
1
15)
181
bbl
332 LlV *I7 361 180
-7
9.1
bo2 712
1
860
IObT
118 301
-3
-1 0 1 2
251
219
181 110 630
-6 -5
5
0
217
*ab 301
195
5
5
2U6 1.43
+b7
bQ6
-2
0
670 $19
5 -7
358
0
I15
4
-+
I76 666
30,
IIL 222
5 5
212 1.61 ZQP 211 1166
..... 162
-4
218 215 IIY I51 219
II 5 -11 5 -8
5
111 697
I15
-3
319
9
165
163 210
-6
621 662 182 , . L le6 190 le6 $VI 7.2 766 I75 177
5 6
IO
.,I1
I95 125
2 2 2 2 2
156
6
181 151
2
611 658
1 b 1
0
92
2
I W
6 6
-7 -5 -3
115 111
61 116
572 I56 1.L
1 2
-9
0 0
eo
221
-6 -5
b L
0
-6
-7
0
95
2ul
311
*.
o.
1 1
b
+
210 $8 105
31.
4
-1
I2 -2 I2 I. I2 0 1 I2 12 2 I2 b I1 -1 I3 -2 I1 -1 I1 0
I2 I2
812
lei
361
6
204 155 96
LII IO1 511
417
-1 -2
6 -I -6
520
-I
4
11
10,
21s IO8 287 191 1.779
9 II
6
6
11
-0
6s
1
11
I i
100
-9
379 211 95 IO0
"I
0
5LI
4
7
0 I
115 172 311
107
1152 115
IO
168 '12
171
$62
376
1107 I76 161
I1 -12
IOIl
in7
-2 -1
III
$11
3
0
121 457
-4
II
661
I10
-*-57
II
520
I
I60 11)
-I
1
IO 11 II 11 II II
212
111 291 211
0
115
-7 -6 -5 -1 -2
6
274 I19 .69
115 212
986 6%
7
3 1 3 1 3 1 1
1.7
.e1
960
6
-a
282
6 7 8 -7 b 5
58
0
5111
-9
.20 211 662 9.2 722
-7
*
9 9
IO IO IO IO
313
566 lbb
509 297
IO II
281
82
SlQ
1
5
166
1.1
9 -0
-1 3 5
2 1
i
1 3 3 I
2Ib
-1 .2 0
I 2 2 2
231 110 725
4
; -I 2 1
I
h:
..6
970
2 -10 2 -P
155
.I
I
952 ?,LI 622
2 -12
613
9
7
1095
tee
1268 loill
2.6
38s
-2
5
208
I2b2
256 I W
I19
e
15. 91
I
104
..
91
1
0
: :4
11. $62
2V9
381
I 1
2
229 31)1
IS2
-4
0 1 2 3 1
I I I
1279 271 .5I
-5
-I
1
1251 I600
591
-2
8 9 9
175
iwo 296 res
L
5 6
L.
I L
620
-I
I I
5 5 5 5
8 8 9
12
I .IO
1
221
! I
-L -2
0 0 0 0
-6 I -5 B -1
e
ii
L
0 -12 3.5 o -I l o b e 0 -6 104
-. ::: ::: . . 37,
260
I
9
7
I12
111
0
6
7
274
2
:3
II 11
211
-(I
5 -1
II
I61 100 1%
5 6 8
5 -5 5
111
131
+
10 L 11 5 .I1 5 -9
2Ul 119 1%
IS+ 751 21, 210
-I
b
I) (I
*E $21
(I
'
88
y'' 117
*I I2
200
2 . 5 2 . 6 le?
9.
.e
97
106
p28 142
7
251
211 250 I97 161 I10 212 201 I70 205
.I"
*87
118
12
-.
0
I 7
210 ..2 IO.
116 216 117 1111 103
2 1
Leo
+I1
II II 6 II 7 I, I 12 - 7 I2 12 -2 12 -1 12 0 I2 I
7
I I
I$
I O
651 95 7% 217
L
99
II. 101
-I
12 I2 I3
6
7 -10 7 -7 I -1 7 -5
198 51
a7
186 158
111 1Yl 12. I60 9.7 39
I067
1hO 1.0 $16
126 501 201
-2
61
I.*
-1
-1
I2C
(1.3
-2
P
13
4.1
I69
2Ll
13 I1
1057
177 80
117 $13 7111
11
I
196
211
757
2
4 4 4
11s
546
LIP 221
0In' 04 171
I 5 6 1
BIZ
617
811
171
500
-5
153
6
12"
7YI 1016
850
501
261
-I 6 0 6 1
(I
IU2 LhL
6
1
697
819
-2 .I
0 8
153
1L)I 1.1
1 2 1
I02
613
159
0
IZ2 597
I70 I22
452
-L
-2
256
I
Ill
127
*
I
8
6.1
Lee
6
122 160
1 2 1
LO8
4
611
-9
o
279
e11
239
n .-1
e
291
226 472
-3
25+ 626
I
677
21.
b
-6
I
4.7
IS0 117
J4I
IO II
e
1017 $56
476
16.
.
57 IW
111
I12
172
IIP
02 2*2 262
-5
4
8
190 6.1 690 315
-8 -7
215
7
10.2
6'
6
I
220
b
L
66s
126
4
7
6 -3
6
I66
5
+
II
506
1
1%
2
-9
b
1.2
159 '111 61
121
412 I46 202
1
12 4 -12
L31
....*. .....
I1
3
I25 2 . S
0
e
i 3
1.6
*
+
5 L 7
3
4 4
+
2
1
I11
b 111 6 -I 6 -5 6 -6
6 6
6
368 21,
5 5 5 5 5 5
410 870
299 200
561 5.1
161 I.
265 122
291
I
70+
.97
0 1
2
717
171
413
3
7
112 112 227 177 711
619
7 7
9
.5
-2
T
9
-7 -6
I 1 1
-7
; 1;
202 232 I53
1.1
5 5 5 5 5
-7 365 -6 197 *I 251 -1 660 -2 e6v -1 111 0 222
21. 70 66B
.IO
532 125 212
bo
I38 515 31s .I,
311 686 5V
201
127
5
$10
715
-6 -5
I84
6
5
151
IT*
119
-12
1 I
205 IVI 611 LBO
I2
,' 1111
1 3 1 3 I
1
616 in2 16. 696 200 102 22e
690
199
150
55135
IIV
6
158
4
m
7
599
5
lie
9
ti. 256
6
I
2 2
3116
ab1 le3 1.
IS5 116
2 1
I
996 720
2bb I90
176
209
2 2 2 2
3
71
a
rb9
I"
11.0
311 611 lbl
2
716
1,
28'1
L
0 1
11 I3 1b
1011
b 12 b 11 5 -11 5 -9
re
4
2
2
I3
6
4
6
I .IO
110 97
115
2
6
1
211 270
5
7.0 P@l b+
I
271 63
Ibl
5.6 1111 130
351
L
5
2
I20
711
261
iae
-6 -5
215 I26
4
4
IO5
183
52
I21
112
121 211 262
1.2 I15 261 Ill
-6
1 . 3
311
117
L
4
5 5
I
1
271
5
we
10 10 I0
11
280
221 12e
151 119
9 II
8
96
272
112
5,. 211 451 516 I51 I96
b 2
IC0
9
ILOI
IO
12 11
I21
I
17.
5 6
I P
31V
Ill 419
2
56.
6
915
102
I L
0
5
4.1
,306 572
P -7
113
121 699
(I
; :1 ;::
I
11v. 1211
8
10 II 11
1 . 9
711
796
717 270
112 71e
1
2bUO
1.21
$55
9e
IO
I
5
678
e12 260
700
IO*
+
19
10
P
IIP 111 152
Ill
2
2b2
676
e12 261
7 8
P
11. 1165 1356
IO
-2
91
5
29.
8 0
161
9 4
619 125
-3
5
I41
1108
8 8 8 8
1 L 7
112 161 7,s
-1
5 -I
+$L 798
I129
151
L
0
IO
15') 617
5 5 5
.lb 951
I19
2
IO
20.
110
99a 245
0
211 208
2397
1277
z
I
-I
9
191
6
I
2 2
IO
690
*
7
1YI 145 112
205
I12 111 631
P
11I
e6 11') 971
I 1
1 8
2 2' 2
107
119
9
212
-6 -5
6 6 b b
II 12
2
310
8 IO -7
111 I21 I27
19.
159 *I
-7
b 6
IO
I
2
4
IO
in*
97 711
129"
9
5 -7 5 -6 5 -5
4
6
T 7 8
2
2 2
12116 67
I72 297
6
0 I
T
-1 0 1 2
iize
rc 151
6.5
6
7
-1 -2
IT0 113 316 IO6
F"
I72 103 112
,I. I91 751
7 8 9
7
-1
2 2 2 2
273
L
I 2 I
e
I10 I69
761 1129
12
5
4
2
I -5
121
L 9
620
5 I
5 11
2
~ i ii
IIW
5
7
8
795 739
2.9
I
578
1018 .I.
199
*
I(
561
993 127
79.
b
I
I
FO
6
7
IO
3.0 219
0
L
L
1
I I
-+
..
I .IO
I I 1
1 2 2 2 2
5
*7
I
-1 -2
5 6
1116 121 Ibl 99 310 151 207 98 LO3 261 +E. 213 266
r
211 en7
1 -1 3 5
111
2
1 -9
. 3b
-9 7
246 $1
-I
I16 11, 101 1.0 17. 111 112
b
1
4
L
b b b
b
5 5
5
163 212
5 7 -8 2
I
L99 I32 I16 100
3% 16) 186
VI $7 101 $30
262 256 251 Z Y ~
IIe 222 322
...." ..... * II
211 95 16, I15 11
I11 159 126 1b1
I.
P I
111
I79
where agreement was particularly poor, but this seemed to us t o be too arbitrary. Accordingly since further data collection was not a t that time feasible, we decided to drop the entire block of data. The fact that atomic parameters derived with or without the data from crystal I1 do not differ significantly adds support to the present essential, but perhaps undesirable, procedure.
BETTYR. DAVISAND
2772 Inorganic Chemistry, VoZ.9,No.12, 1970
Figure 1.-A
TABLEV N-H . . . B INTERACTIONS AROUND CALCULATED ETHYLENEDIAMINE HYDROCEX POSITIONS Na
Hb
H...B,A
N..sB,rf
N-H-BC angle,deg
1 1 2.28 3.18 167 1 2 2.37 3.15 146 1 2.43 3.27 153 2 2 2.82 3.45 129 2 1 2.48 3.04 120 3 3 2 2.48 3.12 130 1 2.57 3.29 135 4 2 2.35 3.18 154 4 The numbering scheme of the cation is indicated in Figure 2. In the anion, F1 is trans to F2, F3 is trans to F4, and F5 is trans to F6. The numbering scheme is as indicated in Table 111. c All N-H distances were fixed at 0.90 A. F1
N7 N5 F4 N7 F4 F3 F6
Q
Figure 2.-An
A. IBERS
stereoscopic pair of views of the contents of a unit cell.
Description of the Structure The structure consists of discrete PFe- and Ru(N8)(Nz)( N H z C H ~ C H ~ N+Hions ~ ) ~with no crystallographic symmetry imposed upon either. A stereoscopic pair of views of the contents of a unit cell is given in Figure 1. The closest, nonbonding contact of each of the amine hydrogen atoms is given in Table V. On the basis of
B”
JAMES
nated by six nitrogen atoms. A selection of intramolecular bond distances and angles, together with estimated standard deviations as derived with the inclusion of correlation effects, is given in Tables VI and VII. TABLE VI ISTRAMOLECULAR BONDDISTANCES Atoms Distance, k . Mean distance, A Ru-iYl 2.108 (9) Ru-Ii2 2,140 (9) 2.125 (19)a Ru-IC3 2.109 (8) Ru-N~ 2.144 (9) Ru-N~ 2,121 (8) Ru-N~ 1.894(9) N1-C1 1.470 (13) N2-CZ 1.495(13) 1.474(15) N3-C3 1.474 (13) N4-C4 1.458(14) Cl-C2 1.509(14) 1.507(14) c3-c4 1.504 (15)/ N5-li6 1.162 (23) K6-N7 1.146 (11) K8-N9 1.106 (11) P-F 1 P-F2 1.560 (8) 1.548 (10) P-F3 1.546 (24) 1.524(9) P-F4 P- F5 P-F6 1. 1.545 517 (10) (lo)] T h e standard deviation given for an average quantity in this table is that for an individual estimate as derived from the collection of values assumed to be equivalent or from an individual standard deviation, as obtained from the inverse matrix, whichever is the larger value. On this basis i t appears that individual standard deviations derived from the inverse matrix are optimistic by a factor of 2 .
overall view of the cation.
structural data on N-H * * .Fand N-H. . . N bonds,I3 any such hydrogen bonds in this structure are very weak. The coordination of the cation may be viewed in Figure 2 . The ruthenium atom is octahedrally coordi(13) W. C . Hamilton and J. A. Ibers, “Hydrogen Bonding in Solids,” W. A. Benjamin, New York, PIT. Y., 1968.
Ru-N 1-C1 Ru-NZ-C~ R~-h’3-C3 Ru-iX4-C4 m-c1-c2 N2-CZ-Cl 5 3 -c3-c4 N4-C4-C3 N5-N6-N7
109.1 (6) 107.5 (6) 110.3 ( 6 ) ) 107.5 (6) 108.9(9)’ 108.8 ( 9 ) ) 108.6 (9) 110~) 180 (1)
J
109 (1)
109 (1)
Inorganic Chemistry, Vol. 9, No. 12,1970 2773
BONDING OF MOLECULAR NITROGEN On the assumption that chemically equivalent bonds are indeed equal in length, it appears that these derived standard deviations are optimistic by a factor of approximately 2. The derived standard deviations are reliable if the data are subject only to random errors. Undoubtedly systematic errors have been introduced into the data as a result of decomposition and so we use twice these standard deviations as a basis for discussion. The root-mean-square amplitudes of vibration along the principal axes of vibration for atoms refined anisotropically are given in Table VIII. The directions of viTABLE VI11 ROOT-MEAN-SQUARE AMPLITUDESO F VIBRATION (IN Atom
Min
Ru Nl
0.168(1) 0.189 (13) 0.193 (16) 0.191 (17) 0.169 (13) 0.165(13) 0.189 (19) 0.155 (19) 0.193 (13) 0.167(12) 0.206(14) 0.200 (14) 0.187(15) 0.161 (17) 0.210 (5) 0.225 (11) 0.208(11) 0.240 (12) 0.232 (12) 0.258(13) 0.255(12)
c1
c2 N2 N3 c3 c4 N4 N5 N6 N7 N8 N9 P F1 F2 F3 F4 F5 F6
Intermed
0.189(1) 0.204 (13) 0.234 (16) 0,245 (16) 0,205 (13) 0.223 (12) 0.240 (17) 0.269 (17) 0,228 (12) 0.189 (13) 0.210 (12) 0.273 (14) 0.217 (13) 0.290 (14) 0.225 (5) 0.284 (10) 0.296 (11) 0.349 (12) 0.319 (12) 0.330 (12) 0.359 (13)
A)
Max
0.233 (1) 0.268 (14) 0.248(16) 0.268 (16) 0.292(13) 0.270 (13) 0.313 (16) 0.276 (16) 0.249 (13) 0.275 (12) 0.269 (14) 0.344 (14) 0.242 (12) 0.339 (13) 0.320 (5) 0.396 (11) 0.540 (12) 0.553 (14) 0.592 (14) 0.594 (16) 0.551 (15)
bration of atoms in the cation may be discerned from Figure 2. Figure 2 also displays the numbering scheme employed for the cation. The hexafluorophosphate anion is not unusual in any way. The six values of the P-F bond distance range from 1.517 to 1.581 (8) k to give a mean distance of 1.546 (24) k . Owing to the large amount of thermal motion associated with the F atoms (Table VIII) this mean distance is necessarily shorter than the distance corrected for the effects of thermal motion. Such a correction does not appear to be feasible here, as the motion appears t o be a combination of bond stretching, bond bending, and rigid-body torsional modes. Nevertheless, the mean distance is comparable with the P-F distance of 1.58 8 found in various PFO- salts.16 The F-P-F bond angles range from 87.0 (5) to 95.0 (8)'. I n the ethylenediamine group, the four C-N bond distances have a mean value of 1.474 (15) k and the two C-C distances have an werage value of 1.507 (14) A. If we define the dihedral angle, CY, as that angle between the normal to the plane which contains the metal atom and the ring carbon atoms and the normal to the plane which' contains the metal atom and the ring nitrogen atoms, we would expect this angle to be nonzero for an (14) For reasons discussed in the text, this number is more realistically 1.517 (20)8,instead of 1.517 (10)A. (16) H. Bode and H. Clausen,2.Anorg. Chem., 466,229 (1961).
ethylenediamine ring in the gauche conformation. For the ring containing Nl-Cl-C2-N2, a is 27.6 (6)O, and for the ring containing N3-C3-C4-N4, CY is 26.6 (7)". These values compare well with the average value of 27' found in Cr(NH2CH2CH2NH2)a3+.16 If the azido and molecular nitrogen groups are ignored and one looks a t the plane containing the ruthenium atom and the two ethylenediamine rings, i t is apparent that a pseudo-twofold axis of rotation exists perpendicular to this plane. Upon rotation] C1 would go into C4 and C2 would go into C3. The weighted least-squares plane through these nine atoms is given in Table 1X. It is found that TABLE IX OF PLANE : WEIGHTED LEAST-SQUARES PLANE. EQUATION COORDINATES) 0.650%- 1 0 . 1 7 2 ~ 6 . 3 1 2 ~= 0.790 (MONOCLINIC
+
Atom
RU N1 C1
Dev from plane, 8
Atom
Dev from plane, A
Atom
Dev from plane,
0.0027(8) -0.072(8) 0.252(11)
C2 N2 N3
-0.426(11) -0.027(8) -0.101(9)
C3 C4 N4
-0.432(13) 0.244(12) -0.097(9)
C1 and C4 are approximately 0.2 8 above the plane and C2 and C3 are 0.4 k below the plane. The N-Ru-N angle associated with the ethylenediamine groups is 81.6 (3)" owing to the "bite))of the ligand. The four Ru-N bond distances give a mean value of 2.129 (19) 8. As may be seen by comparison with various Ru-N bond lengths in Table X, the Ru-N bond length associated TABLE X SELECTED METAL-NITROGEN BONDLENGTHS Compound KzOsNCli ReNClz(P(C6Hs)s)z ReCls(NCsH4OCHa)(PCsHa(CzHa)z)t
ReCla(NCsH~COCHs)(PCsHa(CzHa)z)z ReCla(NCH8) (PCeHs(CzHa)z)z Ka[RuzNCls(HzO)z] [Ru(NHs)alIz [Ru(NHa)el(BFds [Ru(NHs)aNzRu(NHa)a](BF4)r
[Ru(Ns)(N1)(NHzCHzCHzNHz)z]PFo
I
Bond type MSN M=N M=N M=N M=N M=N M-N M-N M-N M-N M=N M-N M-N M=N
Distance, A Ref 1.614(3) a 1.602 (9) b 1,709(4) c 1.690(5) c 1 685 (11) d 1.718 e 2.144(5) f 2.105 (4) 2,104(6)(axial) 2.12 (equatorial) g 1.928(6)(Nz) 2,125(19)(mean) 2.121 (8)(azido) h 1.894 (9)(Nz)
If 1
See ref 3. R. J. Doedens and J. A. Ibers, Inorg. Chem., 6, 204 (1967). D. Bright and J. A . Ibers, ibid., 7, 1099 (1968). D. Bright and J. A. Ibers, ibid., 8,703 (1969). M. CiechanH. owicz and A . C. Skapski, Chem. Commun., 574 (1969). Stynes and J. A. Ibers, unpublished results. I. M. Treitel, M. T. Flood, R . E. Marsh, and H. B. Gray, J . Amer. Chem. Soc., 91,6512 (1969). I, This work.
with the ethylenediamine groups is in the range expected for a single-bond distance. The coordinated azido group is of interest in this compound since relatively few structures are known in which this group is a ligand. These include coordination of the ligand to copper," cobalt,18and iron.lB It appears (16) K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Inorg. Chem., 7 , 842 (1968). (17) I. Agell, Acta Chem. Scand., 21, 2647 (1967); 2. Dori, Chem. Commun., 714 (1968); R. F.Ziolo, A. P. Gaughan, 2. Dori, C. G. Pierpont, and R. Eisenberg, J . Amer. Chem. Soc., 92,738 (1970). (18) G.J. Palenik, Acta Crystallogr., 17,360 (1964). (19) J. Drummondand J. S.Wood, Chem. Commun., 1373 (1969).
2774
Inorganic Chemistry, Vol. 9, No. 12, 1990
BETTYR. DAWSAND
JAMES
A. IRERS
TABLE XI BONDLENGTHS A N D BONDANGLESIN COORDIXATED AZIDES Compound
N-N,
A
i
1,240 (3) 1,134 (3) 1.154 (15)
M-N or H-N,
A
1.02 (1)
M-N-N, deg
112.65 ( 5 0 )
Ref
a b
i
l.lS(3)
2.041 (15) (axial) 1.971 (14) (equatorial)
135, I
1.208(7) 1.145 (7)
1.943 (5)
125.2 (2j
d
2.121 ( 8 )
116.7 ( 7 )
e
c
[ l .163 (23) (mean) E. Anikle and B. P. Dailey, J . Chem. Phys., 18, 1422 (1950). * B. L. Evans, .4.D. Yoffe, and P. Gray, Chem. Reu., 59, 515 (1959). See ref 19. d See ref 18. e This work.
a L
on the basis of the data in Table XI that if the azide is covalent, as in HN3, the N-N bond lengths are not equal, but they are equal in an ionic azide, N3-. The asymmetry of the azido group coordinated to a transition metal is open to question. In [Co(N3)(NH3)5](N3)zI1'the azido group is asymmetric whereas in (As(C6H5)4)2[Fe(N3)5]19 the azido group is reported to be symmetric. I n the present structure, the N-N distances do not differ significantly and average 1.162 (23) A. The Ru-N bond distance associated with the azido group is that of an M-N single bond (M = metal), as has been found in other transition metal--azido complexes. The Ru-N-N bond angle is 116.7 (7)", somewhat smaller than the M-N-N angle found in the other two complexes listed in Table XI. The geometry of the coordinated molecular nitrogen is the same as that reported in other dinitrogen complexes. There is no significant lengthening of the N-N bond upon coordination, as may be seen by exaniination of the bond lengths listed in Table XII. The TABLE XI1 NITROGEN-NITROGEN BONDLENGTHS Compound
Distance, A
Ref
Nzk) 1.098 a COH(Nz)( P(C~H5)3)3 X.l12(11) b [ R u ( K H ~ ) ~ N ~ R u ( P(BF4)4 \~H~)~~ 1.124(15) c [Ku(~U'~)(N~)(NHZCHZ I'F6 C ~ Z ~l~. lZ0)6~( ]l l ) d a P. 6. Wilkinson and N. R. Hcuk, J . Gkem. Phys., 24, 528 (1956). b See ref 1. c See ref 22. T h i s work.
Ru-N bond length of 1.894 (9) A is significantly shorter than an M--N single bond distance but not as short as an M=N bond distance, as seen by comparison with various M--N and M=N bond lengths listed in Table X and by comparison with the Ru--N bond distance of 2.121 (8) A associated with the azido group and the mean distance of 2.125 (19) A associated with the ethylenediamine groups found in this present study. The Ru-N distance is comparable with the mean Ru-C distances of 1.94 (3) and 2.01 (6) A found in Ruz(CO)8Br4zoand R u ( C O ) & , ~respectively. ~ Therefore, as we have stated earlier, the bonding between a transb tion metal atom and molecular nitrogen is very similar to that between the metal and the isoelectronic ligand carbon monoxide. It is interesting that the N-N bond distance in this compound, as io C O H ( N ~ ) ( P ( C ~ H ~ ) ~ ) ~ , ~ is not significantly shorter than the N.-N bond length found in the bridging species [Ru(NH3)5N2Ru(NH3)b ](BF4)4.2 2 Acknowledgment-B. R. D. is indebted to the National Institutes of Health for a predoctoral fellowship. We are grateful to the National Science Foundation for support of this work. We thank Dr. P. S. Sheridan, Dr. L. Kane-Maguire, and Professor F. Basolo for preparation of this compound and for useful discussions. (20) S. Merlin0 and G. Montagnoli, Acln C,'ryslallogu., Sect. B., 14, 424 (1968). (21) L. F. Dah1 and D. E. Wompler, ibid., ill, 046 (1062). (22) I. M. Treitel, M. T.Flood, R. E Marsh, and H.B . Gray, J . Amev. Chem. Soc., 92,6612 (1960).