Bonding of molecular nitrogen. II. Crystal and molecular structure of

A linear RN2 transition metal linkage. The structure of Ru(H2)(N2)(B10H8)(SMe2)(PPh3)3.3C6H6. K. Dahl. Schramm and James A. Ibers. Inorganic Chemistry...
0 downloads 0 Views 1MB Size
-

2768 Inorganic Chemistry, Vol. 9, No. 12, 1970

BETTYR. DAVISAND

JAMES

A. IBERS

C O N T R I B U T I O N FROM T H E D E P A R T M E N T O F C H E M I S T R Y ,

NORTHWESTERN UNIVERSITY,EVANSTON, ILLINOIS

A0201

The Bonding of Molecular Nitrogen. 11. The Crystal and Molecular Structure of Azidodinitrogenbis(ethylenediamine)ruthenium(II) Hexafluorophosphate BY B E T T Y R. DAVIS AND JAMES A. IBERS* Received A p k l 16, 1970 The crystal and molecular structure of the molecular nitrogen complex azidodinitrogenbis(etliylenetliamine)rutenium(II) hexafluorophosphate, [Ru(N3)(N ~ ) ( N H z C H ~ C H ~ N [I'Fe], H ~ ) has ~ ] been determined from three-dimensional X-ray data collected by counter techniques. T h e material is X-ray sensitive and it was necessary to use four different crystals for thc data collection. The central metal atom is coordinated octahedrally to six nitrogen atoms. The Ru-N of (NI) bond distance is 1.894 (9) A and the Ru-N-N bond angle is 179.3 (9)'; the Ru-N (of N3-) bond distance is 2.121 (8) 8, and t h e Ru-N-N bond angle is 116.7 (7)". ' T h e Ru-N distances to the nitrogen atoms of the ethylenediamine groups range from 2.144 (9) to 2.108 (9) A, with a n ave age distance of 2.125 (19) A, Crystal data: monoclinic, space group Cth6-P21/7t;a = 9 . 9 7 (1) A, f b = 12.01 (1) A, c = 12.59 (1) A, P = 102.4 ( 3 ) ' , = 4 ; dobsd = 2.00 =k 0.03 g/cm3, donlcd = 1.98 ,g/cm3. T h e structure was refined using 1375 independent reflections from a litnited data set for which F2 > 3u(F2),and thc refinement converged to a conventional R factor (on F ) of 5.6%.

Introduction I n the previously reported structure of CoH(Nz)(P(C6H&)3,1 we found that the Co-N bond is 1.807 (23) A and by comparison with the Co-N distance of 1.936 (15) A in [ C O ( N H ~ ) ~we] I concluded ~~ that, as expected, the metal-nitrogen (of N2) bond has some multiple-bond character. In carrying out this present study of the bonding of molecular nitrogen, we chose azidodinitrogenbis(ethylenediamine)ruthenium(II) hexafluorophosphate because the central metal atom, ruthenium, was expected to be coordinated to three different types of nitrogen atoms. Thus we expected t o obtain a direct, intramolecular comparison between a Ru-N single bond length and the length of the Ru-N bond when molecular nitrogen is the coordinating ligand. The compound is of further interest because it contains a coordinated azido group. Only a limited number of structures are known in which there is an azido group coordinated to a transition metal. This work bears directly on our previous studies of metalnitrogen multiple bonds3 Collection and Reduction of Intensity Data The material is prepared4 by treating trans- [RuC12(NHzCH7CH2NH2)z]C1 with silver p-toluenesulfonate and, after filtering, adding NaN3. This solution is allowed to stand and after several hours, a saturated solution of NaPF6 is added. The crystals were kindly supplied by Dr. P. S. Sheridan. The N-N (of Nz) stretching frequency in this compound is 2103 cm-l, a t the lower end of the range 2105-2167 cm-' reported for the R U ( N H ~ ) ~ ( Nsalts6 ~)~+

*

T o whom correspondence should be addressed. (1) B. R . Davis, N. C. Payne, and J. A. Ibers, Inorg. Chem., 8, 2719 (1969). (2) N, E Kime and J. A. Ibers, Acta Crystallogr., Sect. B , as, 168 (1969). (3) D. Bright and J. A. Ibers, Inovg. Chem., 8, 709 (1969), and earlier papers. (4) L. A. P. Kane-Maguire, P. S. Sheridan, F. Basolo, and R. G . Pearson, J.Amer. Chem. Soc., 90, 5295 (1968). (5) A. D. Allen, F. Bottomley, R . 0. Harris, V. P. Reinsaler, and C. V. Senoff, ibid., 89, 5595 (1967).

A series of Weissenberg and precession photographs taken with Cu KE radiation showed the crystals to be monoclinic with 2/m Laue symmetry. The systematic extinctions observed were: h01 for h I odd and 0kO for k odd. These extinctions are consistent with the space group Czia5-P21/n. A crystal was mounted, along the long dimension [ l O O ] , in a thin-walled glass capillary for data collection on a Picker four-circle automatic diffractometer. It was observed that the material is extremely X-ray sensitive. The mosaic spread of the crystal, as determined by o scans taken with a narrow source and open counter, increased greatly after only about 12 hr of exposure of the crystal to X-rays. This crystal was used to establish the following experimental conditions for data collection. The data were to be collected using Mo Kal radiation (A 0.7093 and the diffracted beam was to be filtered through 3 mils of Nb foil. A takeoff angle of 2.2' would be used. At this takeoff angle, the peak intensity of a strong reflection was about 80% of the maximum value as a function of takeoff angle. The counter aperture selected was 4.0 mrn X 4.0 mm and was positioned 29 cm from the crystal. The pulse height analyzer was set for approximately a 90% window, centered on the Mo K s peak. The data were to be collected by the 0-20 scan technique a t a scan rate of 1' in 2O/min. An asymmetric scan range of 0.75' on the low-angle side and 1.25' on the high-angle side of the calculated 20 values (Mo Kal) wouId be used. Stationary-counter, stationary-crystal background counts of 10 sec were t o be taken a t each end of the scan range, Attenuators were inserted automatically when the intensity of the diffracted beam exceeded 7000 counts/sec during the scan ; the attenuators were Cu foil, their thicknesses being chosen to give attenuator factors of approximately 2.2. After these experimental conditions were determined, Friedel pairs of reflections (hkl and hEl) were collected in the 20 range 0-25'. These data were corrected for decomposition,

+

a)

Inorganic Chemistry, Vol. 9,No.12,1970 2769

BONDING O F MOLECULAR NITROGEN equivalent forms were averaged, and values of Fo2were derived. These were then used as input to a Patterson function calculation. The rapid decomposition of this crystal indicated unusual sensitivity of the material to X-rays. Therefore, we had no choice but to collect data on several crystals. We will refer to these new crystals as I-IV. All crystals were mounted in thin-walled glass capillaries along the long dimension [loo]. The experimental conditions described above were the same for data collection on each of the four crystals. I n each case, the same ten reflections were centered on the diffractometer and used in a least-squares refinement of setting angles to determine cell constants,6and the same three reference reflections (400, 040, 004) were used as a check on crystal decomposition. These reference reflections were measured every 100 reflections during the early stage of each run and every 50 reflections in the later stages. The cell constants, determined by methods previously described,6 are as follows (Mo Ka1 radiation; X 0.7093 A): a = 9.97 (1) A, b = 12.01 (1) AI c = 12.59 (1) A, /3 = 102.4 ( 3 ) O , a t 22’. The details on each data set are given in Table I. The data in the TABLE I DETAILSO F DATACOLLECTION Crystal no.

Dimensions,a mm

No. of

observations*

Av 28 range, decompn, deg %

20-35 45 33.5-41 79 0-25 40 111 40-43 IV 0.64 X 0.10 X 0.12 60OC 42-49 55 a Parallel t o [ 1001, [ O l l ] , and [OlT], respectively, of the parallelepiped-shaped crystals. * Owing t o the problem of decom-

I

I1

0.32 X 0 . 1 2 X 0 . 1 3 0.44 X 0 . 1 4 X 0.14 0.60 X 0 . 1 4 X 0 . 1 5

759 661 666

position, only unique reflections were collected. Although there were 882 reflections in this 20 range, owing to the weak intensity at higher 20 values coupled with decomposition, only 600 reflections were collected.

20 range 0-25’ were recollected on crystal I11 because the crystal which was used for collection of Friedel pairs of reflections (hkl and Eli) in this 20 range was first used for determination of the experimental conditions for data collection. We felt, therefore] that this crystal had severely decomposed even before data collection was begun and therefore we did not have an accurate measurement of decomposition on this early block of data. In general, all three standards decreased in intensity a t approximately the same rate. A correction for decomposition was applied to each data set based on the average decomposition of the three standards as a function of X-ray exposure. Each block of data, with decomposition correction applied, was processed in the manner previously described,6 with a value of 0.04 for 1, selected for the calculation of a(1). The values of I and a ( I ) were corrected for Lorentz-polarization effects. The data on the four (6) P. W. R . Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).

crystals were interscaled using common reflections.7 At first, all the data for which I > 3a(I) were used for interscaling and the interscaled data were used in the solution of the structure. We found, after solving the structure] that data from crystal 11, which suffered the greatest average decomposition, were markedly inferior in the agreement between Fol and F,], where FoI and IF,I are the observed and calculated structure amplitudes. Therefore, the data were again interscaled using only crystals I, 111, and IV. Of the resultant 1783 unique reflections, obtained by omitting data in the range 35 < 20 < 40°, only the 1375 which had F2> 3a(F2)were used in the final refinement. The absorption coefficient of this compound for Mo K a radiation is 11.9 cm-’. On the basis of absorption correction tests,’ a correction for absorption proved unnecessary as the transmission factors did not vary by more than 1.5% for a given crystal.

1

1

1

Solution and Refinement All least-squares refinements were carried out on F, the function minimized being Zw(lFoI - lFc1)21 where the weight w is taken as 4FO2/a2(Fo2).I n all calculations of F,, the atomic scattering factors for the ruthenium and hydrogen atoms were those calculated by Cromer and Waber8 and by Stewart, Davidson, and S i m p ~ o nrespectively; ,~ scattering factors for all other atoms were taken from the usual tabulation.lO The effects of anomalous dispersion of the ruthenium and phosphorus atoms were included in the calculation of F,;” the values of Af’ and Af” used were those calculated by Cromer.12 The ruthenium atom and six nitrogen atoms coordinated to it were found from a Patterson function’ which was based on the data obtained on the initial crystal. These seven atoms were refined and structure factors were calculated. A difference Fourier synthesis revealed the phosphorus atom and provided no evidence of disorder problems. At this point we collected the data on crystals I-IV. After the data from crystals I-IV were corrected for decomposition and interscaled, structure factors were calculated using the initial positions of the ruthenium, phosphorus, and six nitrogen atoms; this was followed by a difference Fourier synthesis. The positions of the six fluorine, four carbon, and the other three nitrogen atoms were found from this map. Three cycles of refinement were carried out in which the ruthenium and phosphorus atoms were refined with anisotropic thermal parameters] the six fluorine atoms were refined (7) In addition to various local programs, Patterson functions and Fourier syntheses were calculated using a local version of Zalkin’s FORDAP. Absorption correction tests were made by a modification of W. C. Hamilton’s GO NO^ and data were interscaled using Hamilton’s INSCALE. Refinement and structure factor calculations were done by our least-squares program, NUCLS, which, in its nongroup form, resembles the Busing-Levy ORFLS. Errors in derived quantities were obtained from the Busing-Levy ORFFE program, and drawings were made with use of Johnson’s ORTEP program. (8) D. T. Cromer and J. A. Waber, Acta Crystallog?., 18, 104 (1965). (9) R . F. Stewart, E. R. Davidson, and W , T. Simpson, J. Chem. Phys., 40,3175 (1965). (10) “International Tables for X-Ray Crystallography,” Vol. 111, The Kynoch Press, Birmingham, England, 1962. . (11) J. A. Ibers and W. C. Hamilton, A d a Cyystallogr., 17,781 (1964). ._ (12) D. T. Cromer, ibid., 18, 17 (1965).

2770 Inorganic Chemistry, VoZ.9,No.12, 1970

BETTYR. DAVISAND

JAMES

A. IBERS

TABLE I1 POSITIONAL A N D THERMAL PARAMETERS FOR [RU(N~)(N~)(NH~CH~CH~NH~)~] [PFB] Atom

RU N1 C1 C2 N2 N3 C3 C4 N4 N5 N6

N7 N8 N9 P F1 F2 F3 F4 F5 F6

X

0.22316 (8)' 0.4315(9) 0.4626 (11) 0.3445 (13) 0.2149 (lo) 0.2329 (9) 0.0935 (13) -0.0014 (11) 0.0094 (9) 0,1885 ( 8 ) 0.1047 (10) 0.0234 (11) O.ZSll(9) 0.2828 (11) -0.1856 (4) -0.0326 (8) -0.3353 (9) -0.2257 (12) -0.1371 (12) -0.1553 (13) -0.2100 (10)

Y 0.16331 (7) 0.1792 (6) 0.0997 (9) 0.0981 (9) 0.0737 (7) 0.2613 (7) 0.2920 (11) 0.1959 (10) 0.1624 (7) 0.3134 (6) 0.3107 (7) 0.3084 (9) 0.0314 (8) -0.0453 (8) -0.0755 (3) -0.0994 (6) -0.0509 (8) -0.1931 (8) 0.0405 (8) -0.1282 (11) -0,0268 (11)

BlP

I

0.36589 (6) 0.3583 (7) 0.2782 (10) 0.1805 (9) 0.2176 (7) 0.5064 (7) 0.5177 (10) 0.4798 (10) 0.3707 (7) 0.2753 (7) 0.1935 (8) 0.1139 (8) 0.4493 (7) 0.4987 (9) 0.1773 (3) 0.2389 (6) 0.1146 (8) 0.2100 (10) 0.1538 (10) 0.0754 (8) 0.2851 (9)

0.00821 (10) 0.0130 (14) 0.0078 (13) 0.0142 (18) 0.0130 (13) 0,0082 (11) 0.0123 (18) 0.0068 (13) 0.0095 (11) 0.0107 (11) 0.0130 (14) 0.0174 (17) 0.0120 (12) 0.0216 (18) 0.0131 (5) 0,0152 (12) 0.0188 (13) 0.0333 (22) 0.0351 (21) 0.0355 (23) 0.0243 (19)

Baa

822

0.00482 (6) 0.0055 (7) 0.0080 (10) 0.0085 (11) 0.0056 (7) 0.0077 (8) 0.0097 (11) 0.0095 (11) 0.0067 (7) 0.0048 (7) 0.0061 (8) 0.0110 (11) 0.0065 (8) 0,0073 (9) 0.0067 (3) 0,0118 (8) 0.0140 (10) 0.0125 (10) 0.0110 (9) 0.0355 (20) 0.0335 (19)

0.00496 (6) 0.0054 (7) 0.0076 (10) 0.0048 (9) 0.0055 (7) 0,0060 (7) 0.0078 (10) 0,0096 (12) 0.0068 (7) 0.0057 (7) 0.0061 (8) 0.0072 (9) 0.0048 (7) 0.0081 (9) 0,0098 (3) 0.0142 (9) 0.0240 (12) 0.0259 (16) 0.0270 (15) 0.0108 (9) 0.0187 (12)

812

Bia

823

-0.00024 (7) -0.0011 (7) 0,0001 (9) -0.0008 (11) -0,0012 (8) 0.0006 (7) 0.0010 (11) 0,0024 (9) -0.0007 (7) 0.0002 (6) -0,0010 (7) -0.0015 (10) 0.0005 (7) 0.0034 (10) 0.0012 (3) 0.0014 (8) 0.0051 (9) -0.0099 (12) -0.0042 (11) 0.0164 (17) 0.0028 (15)

-0,00065 (5) -0.0000 (7) 0,0018 (9) 0,0014 (10) -0,0021 (7) -0.0014 (7) 0.0014 (11) 0.0031 (10) 0.0003 (7) -0.0020 (7) 0,0002 (8) -0,0027 (9) 0.0021 (7) 0.0039 (10) -0.0011 (3) -0.0042 (8) -0,0117 (10) -0.0070 (13) -0,0118 (14) -0.0012 (12) 0.0073 (12)

-0,00012 (6) -0.0001 (6) -0.0005 (8) -0.0001 (8) -0,0002 (6) -0.0013 (6) -0,0038 (9) -0.0004 (9) -0,0010 (6) 0.0003 (5) 0,0004 (6) 0.0014 (8) -0,0002 (6) 0.0046 (8) -0.0017(2) -0,0021 (7) -0,0050 (9) 0.0039 (10) 0,0083 (10) -0.0073 (12) -0,0124 (13)

a The form of the thermal ellipsoid is exp[ - (pnhz 4- &k2 4- P d 2 f 2 P d k 4- 2PlahZ 4- 28&)]. and in other tables are estimated standard deviations in the least significant digits.

as an octahedral group with an overall group thermal parameter, and the other atoms were refined with isotropic thermal parameters. At this time the contributions of the hydrogen atoms were calculated. Hydrogen atom positions for the two hydrogen atoms on each of the carbon and nitrogen atoms of the ethylenediamine groups were calculated from idealized tetrahedral geometry about the atom (C-H, N-H = 0.90 A). The fixed contributions of the 16 hydrogen atoms to F, were calculated using an isotropic thermal parameter of 5.0 A 2 for each atom. Two cycles of refinement in which the six fluorine atoms were refined as a group with an overall group thermal parameter and all other atoms were refined with anisotropic thermal parameters gave agreement factors RIof 15.1% and R2 of 18.OyG,where Rl = B//FoI- ~ F c / ~ / B and ~ F R2 o ~ (or weighted R factor) = (Zw(\Fo/ - Fc~)2/BwFoz)1'2.Structure factors were calculated and a statistical analysis indicated that the data from crystal I1 were inferior to the data from the other crystals. Therefore, the data were scaled again, as described above, with the omission of those collected from crystal 11. This resulted in a data set which omitted reflections in the range 35' < 28 < 40'. The input parameters for the first cycle of refinement using this limited data set were those derived from the complete data set. After three cycles of refinement the positions of the 16 hydrogen atoms were recalculated and these were added as a fixed contribution to F,. After three more cycles of refinement, in which all 21 atoms (ruthenium, phosphorus, six fluorine, four carbon, and nine nitrogen atoms) were refined anisotropically and data in the range 35' < 28 < 40" were omitted, convergence was reached a t RI= 5.6% and Rz = 6.7YG. A statistical analysis of Zw(( Fol as a function of IFo] and X-l sin 8 revealed no unexpected trends. I n particular, no correction for extinction appeared necessary. The error in an observation of unit weight is 2.6 electrons. The positional and thermal parameters derived from

1

1

Xurnbers in parentheses given here

the last cycle of refinement are presented in Table I1 along with the associated standard deviations in these parameters as derived from the inverse matrix. The idealized positional parameters of the hydrogen atoms of the ethylenediamine rings are listed in Table 111. TABLE 111 DERIVED PARAMETERS FOR ETHYLENEDIAMINE HYDROGEN ATOMS~ Y

X

z

NfHlb 0.450 0.249 0.335 Nf H2 0.488 0.167 0.423 ClHl 0.470 0.030 0,309 Cf H2 0.542 0.115 0.260 C2H 1 0.356 0.051 0.129 C2H2 0.333 0.170 0.149 N2H 1 0.216 -0.002 0.230 N2H2 0.143 0.091 0.167 N3H 1 0.272 0.223 0.568 N3H2 0.279 0.325 0,505 C3H1 0.090 0.308 0.589 C3H2 0.061 0.353 0.478 C4H 1 -0.091 0.220 0.482 C4H2 0.019 0.141 0.529 N4H 1 -0.038 0.212 0.320 N4H2 -0,028 -0,095 0.355 All atoms have B = 5 N f H1 and Nf H2 are attached to iY1, Cf H1 and Cf H2 are attached to C1, etc. Q

wz.

The final values of 101FoI and 101Fa/(in electrons) are given in Table IV for the 1375 reflections which were used in the final refinement. For the 408 reflections omitted from the refinement for which Fo2< 3a(FO2), none had IFoz- Fo2/> 4a(FO2). Thus these data are not included in Table IV. I n principle there are no inherent dangers in dropping a block of data out of a least-squares refinement. If particular parameters are especially sensitive to data of that block, then marked increase in their resultant standard deviations will indicate this. Nevertheless, the procedure may not be a desirable one, as one is never dealing with an idealized least-squares procedure in which the observations suffer only from random

Inorganic Chemistry, Vol.9,No. 12,1970 2771

BONDING OF MOLECULAR NITROGEN

TABLE IV OBSERVED AND CALCULATED STRUCTURE AMPLITUDESX 10 (IN ELECTRONS)

....". .... L

0 0

0

0

0 0

L

. 2

*tJ

Q

fL

Y

1165 795 12U

llbb

I I

9 12

186

79,

1 1

11

I18

202

I2

llil

1. P .lI 2 -10 2 -9 2 -8 2 -7

IO9 IIS

lb4

I

2

16V 1891

3

12,

I

5

17s 355

1151 122 6 . 1 365

6

817

831

I

I n 1 9 I IO

57b

572

28s 210

272

205

bbb

12 Ib

I*? I66

$61 ,I. 1bO

0

LIB

I

I

1

I I

2 2

2 2

2 2 2 2 2 2 2 I 2

3 1

I.

+

. I

2 I

,5

6 7

SOP 5.1 512 *I?$68

1"V

.e7

1160 256

11.1

592

P

791 169

Ib

IIT 1110 .BY

2 1

1

L

172e 299

5 7

Ill1

.. . 3 3 3 4

111 Ibb

0

811

I

4

2 3

b

5

6

7 8

I)

. b

1

b

5 5 6

5 5

5

we

9

II

e 12 I1 1 2

I 6

6

261 5Lb 786 1411

16h

11

I

255

261

8

12

920

920

3

a

s10 715

I003

lei I32 1102 .I,

1

m

291 bl

152 110 5.5 711

le11

757

715

I015 IO6 261

1052 I17 264

120

7

2 3

7. 705.

795

6

435

506

7

295

Ill

9 9

IO IO IO

28. 1.e I10 I15 256 881 157

117 102

17. 98

121 250 916 15B

11, 267

;:. 799 126

225

12 I1 3-12 I -10 J -7 3 -6 3 -5

3 -b

112

161 5lb 80

112 62b 365

112 !UP

17b 551 91 1%

627 166 379

-1

361

3 -2

IOQO 118.

1021

I

110 1591

105 1610

-I

0

I

; 3 1 I 1

2

: 5 6 8

12 -12

.. .. . . 6%

L

-9 -8

4

-1

4 b

-2 -1

I

+

o

itas

8:: ::2119 111 8.8 175 Zb* 111

111 .

156

251 I10

$26 117

Lie

712

II

II 11

.

"

40,

-5 -4

II 5 II 6 11 I II I2 - 7 12 .I 12 -6 I2 12 12 12 I2

82 200

$9

-2

97 1PZ 1 . 7 111 2.b 79

-1 -1 0

302 1.9

12

z

I55 1 . 2

12 I2 I2 I1 I1 13 I1 11 I1

I 5

1.8 1.0

1 -5 -1

I25 LOO 1011 260 111 114

I

-2 -1

0

>

Z

5

1

411

6

700 561

715

222

*6

414

5

2b6

5

0

2W

11,

S

10

108 2% I15 55

5

II 12

319 121 267

h 6

-I

488

5

6

600

6

11

6

218 229

6

-1 -2 -1

6

I

ne

6

121

6.1

271

122 S.1 181

1%

281

119 2b8

281

2U5

209

l'(9

ins

111

I

157

I51

1

251

IO

IO

11 II I1

6

255 211 268 163 2Ib

I1 I1

b

4:; 126

b b 6

IO

13'1

6

I2

7 1 7

1.1

7

112 212 IbO

7 7

7

5

196 LbL

-1

918 b29 Ill

981

15.

356

.L*

505

-2

-I

0

1

T

476 I91 1% 106 216

:: : ::: :::

....*. ..... 1.2

272

1

I

11 12

PPI 116

201 292 a 9 112 .I9 IO1

I20 I96 276

(1.1 17.

606 158

9

-. 9

621

II

6

111

210

0

9

1

261

1

1

Ill1

3

lee 5 . 8 Ill 25e

377 517

4

386

151

6

2b2 IO0

228

s

o 9

I I I I O -1

IO IO IO IO IO

;;

I I

leu

9

207

:: ;:: *

a

172

65 IUI

11

96

51

26, 242

265 251

358 216

17* 216

r

-6

-1

2.2 820

251

7 7

-2

260

251

; -lI

11

2 b 6 -5

7b3

o

0

I I I

I

ins

IO

280

In0

181

601

221

215

I I

111

1.1

I

e*,

122

165

618 211

e

II

P

21s 255

IO*

9

I O -1

9

-1

22e 36"

P

-2 -1

863 377

0

119

21e 311

220 115

1J2 Ilb

I42

411 400

IVl

212

209 525

405

-6

509

1 I

-5

L57

-$

5.1

I

-3 -2

1115 026

ere

982

100. 55U

1

1 -I

I 1

0

1 1 L 5 6

1.2

171 101

.I

II I2

I61 2bl

278 lbb

255 e26

-8

I

1.1

eii

$05

-P

1 I I

171 211

e

101

1 I

I 4 6

11

s

lbl

5s I.9

2

I)

5.1

I91

8

1

506 1602

386 511 211

I78

I

e

201

1391)

654

175

171

I I

0 13 1 -10

ase

62. IO1

176 150

216 201

571

2.1

0

65 BI 1IR

-7 -3 -1

0 0 0 0

46s 370

-I

3

P I

I71

1%

12 1%

0

221

-1

2

81

161 1111

ItP

6 7

-2

.I

297

16L

5

-+

I66

12II

-P

7

8 I

.It

0

7

I

206

2 2 2 2 2 2

275 109

I95 112 201

7

7'16

8

1.6

11

2 -12 2 .IO 2 -9 2

5.6

295 121 lbl 21b

ZILI

n e

I72 111 #65

5 5 5

-8 .I

112

506

191

$12

-6

llb 115 984 2P9 32, 211

-5 4

-3

-2 2 -I

1.1

316 1011 108

35.

20e

-1 -6

-*

5 5 5

-2

.

*I

I

:

35

lei 75

IOU 123 .a5

310

699

317 .e6

3w

311

I?@

271 89

PI

2b0 319 IPS 58" 111

512 311 719 2.8 lPT in7

252 IIP lI& 556

I01

522 l*O 721 7 . 2 720 175

2: ;;; 210 290

7

196

117

5

IO

52

5 5

11

PI 251 210

0

-11 -8

5

6 6 6 6 6

b 6 6

6

I2 -7 -5 -3 -2

.I

17P 1.2

151

LIP

125 120

511

911

990

,eo

171

155 265

652 I36

669 Ill

6

10

6 I1 7 -10

3%

Ill

97

7

-7

260 170

I 7 7

-6

221

7

-I

-5

-1

-L

2

508 113 261

527

3 4

e

I O 10.1

9

8.

IO

I70 211

11

IVI

LO1

1

-9

1.1

b90 101 215

610 630

7

7 7

111 91 I25 280

511

7 7

I

....* . ...... I.

ev

631

1b6 271 I* 16,

o

0

r22 1205 1626

2

1100

b

25')

0

6

IO6

0 D

8

WI Ill .e5 306

1

-9 -b

1

I

I

211 73 212 122

I 1

b

1

II I2

9

e

9 P

9

I)

211

P

20$

IO

lob

lbh

211 603 271

228

0

229 I62

196 1b5

237 112 71 la7 189

176

165

158

I

111

e

1 . 2

2 6

266

IO IO

-7

4

I28

IO

5

165

130 145

IO

6

261

261

IO 11

I -7

I8

$7 236

I1 II

II

II

II I1

II

12

-6

215 115

-5

2.8

-1

92

122 2.6

96

D

99

1

as

159 9b

1111

. 2

1 6

7

-r

I 2 -5 I2 -1 1 2 -1 I2 I I2 2 I2 5 I1 -2

171 111

ID0

160

I02

17

66

227

262 lb5 213

iie

151 213

ne

121 193

176

et

326 1.2

2W 29.

299

I3 -1 I1 0

255

205

2

165

161

3

115

111

I3 11

I85

2'4.

21,

errors. I n the practical instance where observations are also subject to systematic errors i t is more difficult to predict what effects on the derived parameters changes in the observations will have. In the present case it was very clear that the data collected from crystal I1 were inferior, probably because decomposition was most evident with this crystal. We could have dropped out the last quarter or perhaps half of the data block

137

1.1 I42 805 553 211

711 597 01.

7s5 1.9

1*1 712 ,L)P

238

I97

161 212

-8 -7 -5

2 2 2 I 2

2

TIP 915 71.

2 2 2 2

I

6

+

901

I70 590 201 5+2

106

192 5.1 1.6

511

2eb

I60

239 131

2 . 0

Ills Ill9 152

696 91 298

201 rl5

e46

662

*L

I34 111

752 221

IO9 4u9

5 5

5 5 5 6

6

b54 1'11

5

250

6 IO

511 164

I1 -IO

118

-6

b L

-5

6

-1 -2

L 6

6

6 6 6 6

741

-4

'I

IO9 268

217 721 286

+e*

o

120 bas

IO

291 625

2 b 0

+99 779

7-10

101

7

-6

171

7

7

-5 -b

7

-3

7

-2 -1 0 2

7 I 7 I

I 7 1 7

1

6

7 8 9

e

-9

8

-5

I -6 I -1

8 8 8 8 8 8

-2

.5a 211 268 611 5.8

619 LO9 1.L 295 91

I

2 1

I I 1 I 1 I

710 219

I93

192

979 410

915 281 ZbO LO6

95

92

211

0

IO

::: :::

-7

-1 -2

-I

2 2

IO6

703

b74

.76 6bI

I

549 158 1117

1111

211

205

lie

e

151 682 215 1,I

507 205 1u.

I10 269

IO 1I

2

+10

2 6

2

111

0

I 5

2 2 2 2

17e

1

-8

3

-7

2111

266

1

-6

950

1111

1 -4 I -1 1 -2

111

2Ye 232

13n

la2 I@. 182

:

-I I

1

6

185 bee 115 1.

1

5

3

9 10

62I $26

4 -11 6

172 156 111 *55 771 252

I

515 I21 Ib4 SO

26,

I W 696 267 IIP

I22

wi

111

728 2b9 5.

3 3

111 195 .PI

5

2 1

5

b

5

5

I q

410

6

-1

17 211 ZlI 272 ..2 116 311 112 772

6

91

91

114

I 2

750

116

102 15.

312

b2

176 151

-5 6 -1

I 6

6

7

I 1

I

.2P 229 ,I3 $20

I

5

40, 264

2

-76

226 2Y2 190

e1

20s 171 176

112

-6

Ill2

266 Sl 160

11

-5

306

2S2

I 1I II

-2 -1

I22 101

11. I02

-1

1.b

1111

201

I'l9

II

II

0

II I1 11 I2 I2 12

L -b

I2

I

I2

251 9b

2

90

I10

1

I10 I25

lb5

201 92

207

1.2

1.e TI

-3

-2

1

I2b

86

1.

128

e,

-0

-6 -b 0 2 4

-0 IO -6

-5

4

.

-2

-I I 3

572 bll 390 121

519

be8

456

Ibe IO1 305

280 1.1

627 365

1116 171 111

+25 116 I56

I16

5b7 111 165 401

179

PI1

117 .*e 709

290 111

.I1 -7

121 205 657

261 .e2 221 L191 VO

-6 -5

166 215

164

5 II 9

,e* 725

210

--b 3 -2

180 151

99

52

0

I

311 6ze

190

P 5

b76 78. 211

I'

2

?58

112 6.5 In, 716 *61

PO

?C

01255

152 Ib4

a06

206

758 221 106 253 100

677

*6V

372 1154

I55

165

6.0 203

279 2%

211 a31

1.8 10%

168

I72 111

I 9 -9

157 121 118

1bl 278

111 IPI

115

I91 261 150

I7r

621

501

195

2U5

ID 11

-6

II I1 II II

-1

-20

....* . 3 -2

12

201 289

119

3.4

211

221

225 126 117

-6 2

0186 5

5 -56

P. 285 1 71

207 677 a5

137

Ibb

252

252

I.....

0 -11 0 -7

201

0 -5I 0 3 0 7 0 9 1 -10

507 Ill IIS

628 I6

415

I

-5

Ire

I*.,

+I9 IYl ILL 12.

-4

406

1%

210

269

I -8 I

I -2

100

I70 LOO

206 25L

-6

I

1

2 1 I *P

*+ -1 -2 -1 0

I70 169 21

207 122 21i 116

2% I2b

I16

687

I29 bb2

b -9 -8

531 2.7

+55 229

I51

156

-3 .I -1 5

29. 219

I59

211 111 127 IS1

b 7 I

161 90 111

1 . 3

272

271

Z

-7 I

5 7

-5

2

*5.

IS) '46

212

2Dl

211 152 101 208

20s 1bO

2e2 I91

-7

122 I25 11,

90

9 e.

iw

lei

205

1 6

210

I95

Z12 $18 Ill

-e

I

-7

164 165 257

131

2

166

2

5bQ 321

3

T3

2 2

1 2

2 6 1 2 7 2 9 1 .IO 1 -b

I

100 13Y

519 323 116

IO$ 184 118 1.2 108

I67 121 311 1b5

112 111

in4

'83 188 IIl

in7 266 450

b5

L 5

lie I26

$7

-66

281 177

208 275

b 6 -1 -6 -5

b2b 111

616 I17

I29 121 e5

I18 I39 iz

111 129 I76 I92 212

225 279 117

z>e 168

-1

255

111

261

205

-1

13 -2 2

I

219 2.0

I 2

1

1

2.1

213 I98 22.

I18 111 I23 .I1 222

I

I17 I21 122 1 0

-5S

321.0 1 9P

122

-1 0

I90 179 1%

3

*

le6 255 198

1'2 216 172 119 262 19.

-55 -1

21s 220 30b

20. 211

290

296

201

186 111

.b

-3

3

1

1 4 6

9 -10

4

.

-4

- 3o

me 210 27s

2

356

6

299

1

111 282

I

b

1 4

5 5

-v

5

-I

-1

5 -1 5 87

4 5

6

7

7

-6 1

T 7

.

1

12L IO6

IO7 276

212 176 276 581 261 1.2

280

220 2 . b

231

170

159 111

I9b I37 171

195

201 118

155

191

s11s in

255 I17

180 211

27,

I71

-6 7 -b

llee 8b

201 119

8

Ill

112

I

-3 -2

1.1 111,

I50 115

II

P

282

29. 88 386

n1

I

I

2

8

111 166

5

200

I95

e8 -66 'I -5

312 I56 119

137 Ill 9e

9

251 Ill 125

252

-1 -2

q

0 1

291 110

IO

-7

201

I

9 9

IO

IO

-1

-6

Ira

-6

8V

IO 10 -2I

226 211 197 I10

IO IO

I

-.. -I

I

-1

1 I

111

1.0

116 201

137

-6

S.2 96

-5

2Q2

277

-1 -b .2

169 I99 $0

107 1611 e5

-1

201

0

225

I O 221

1 I

212

-. -6

-3 -2

I51 212 112 115 111

91

le1 157

224 I10 112 301

87

Io7 11, 300 Iba 16. e9

215 218

257

in+ IU9 269

112

106

....* . ..... I I -1 11 e

e

1 -9 I1 -5

655

"

118

.98 295

0 -IO 0

I18 251 116

.

-2 -1 I

276

I. 111 lbr I62 97

8 9

-*

1111 $12 PO

b1

-3

e,

284

-7 -b -3 -2 -1

I

325 279 1711

$27

290 108

-I I 2

I

2

I20 229 199

95

IbP 257

-5 -1

2

21. 510 101 156

160

127 218

126 761

263

I*,

221 16

322 7ev 397 212 226

170 92 2ll IlV 290

158 I96

295

I 3

191) se

2

9 IO

205

278 205

111 273

7 0

IO5 111

111

-1

*I

306 209

1

296

-2

-7 -8

I I

iei

118 218

190 2Y5

I". 661

170 19,

125 150

215 1.1

bl 6.7

29Ll

-b 3

2i 2 9 1e

bl2 300

I70 122 469

.o.

-7

I21 210 305

b

220 251

668

1 2 I

1

7 1

-3 -1

*I

0I

259 I10 100 1'1

20

-4

.IO

Ob 166 122 131

-2

1I

-5

371 260 236

1'

20. 3rb

I1

-6

i

26Y 115

LII

1151

5

-3

*Yo

212

I46

-+

227 1.0 1.1

1.3

181

I60

281 187

256

193 113

221 ll'i bbb

21 5

6

tee

227

IO IO

5

I21 146

296 7s. 111

1bO

lee

6

'I

e.*

151

e

-b -2

III

0

LIP

Ilr

-5

266

166

L11

431

120

I63 LIP 199

115 I23

2e5 101

8.0

236

-1 -2

I17

IO .I1

-10

27P

22.

-6

80

I70

I19

-1

122

570

166 80

IO IO IO IO IO

b

121 1%

111

i i :ii 'ib 121

6

$06

166

312

72s 276

$60

6.7 +SO

I

P

2 2

3.L 5.8

3 7

; -1 -2 7 1

322

IbO

e66 666

205 350

711

-+

181 170 213 It*

3YP

l2*

e29

-5

11'

664 116

-.

5

II I0

619 ,011 Ill I76

610

$11

IO

5

IO IO

b27

79 21. LOO

0

IO

515 275

112 115

127 252

..2 I86 102

219 221 672 520

IO IO

-2 -1

$61

571 295

701 151

151

I

10

*(I4

-b -1 .I

8

0

;: 1:

-6

I29

71

1

-I

L b -7

175

165

512 ..2

6

4

-:

+el

e7

5

5

-3 -2 -1 0 5

292

b

S

P51 222

565

&I2 722 LPI 529

4 . e

265 228

-6

+ 2*

-2

2b* 161

-7

4

I1 -11 -8 -7 -6 '5

IO IO

18,

81

I22

2b2 e5 120 I96 161

192

1

P

2*0

.I1

211 110

-11 9

SI.

5 5 5 5 5 5 5

9

271

1 D

965 I10 221

4

b

e

6.0 151

IPb

-1 .2 0

e

I

501

-8

e9

-8 .I -6

. .

8

b60

I

6 7

I

8

2

110

&

4

7 77 8 8

::: :::

I

I

LOP

1 I

lob1

6

G

112 1 . 5

2s.

2.1 612

;

13

-7

ins

252 IO7

299

5

150

96

1)

b 6

656

261

5

; -1: 2 -8 2

601

6S5 212

154

lo*

7

-6

-1 -2

I 1

117 169 515

22e

-1

o

-5

I

1

15)

181

bbl

332 LlV *I7 361 180

-7

9.1

bo2 712

1

860

IObT

118 301

-3

-1 0 1 2

251

219

181 110 630

-6 -5

5

0

217

*ab 301

195

5

5

2U6 1.43

+b7

bQ6

-2

0

670 $19

5 -7

358

0

I15

4

-+

I76 666

30,

IIL 222

5 5

212 1.61 ZQP 211 1166

..... 162

-4

218 215 IIY I51 219

II 5 -11 5 -8

5

111 697

I15

-3

319

9

165

163 210

-6

621 662 182 , . L le6 190 le6 $VI 7.2 766 I75 177

5 6

IO

.,I1

I95 125

2 2 2 2 2

156

6

181 151

2

611 658

1 b 1

0

92

2

I W

6 6

-7 -5 -3

115 111

61 116

572 I56 1.L

1 2

-9

0 0

eo

221

-6 -5

b L

0

-6

-7

0

95

2ul

311

*.

o.

1 1

b

+

210 $8 105

31.

4

-1

I2 -2 I2 I. I2 0 1 I2 12 2 I2 b I1 -1 I3 -2 I1 -1 I1 0

I2 I2

812

lei

361

6

204 155 96

LII IO1 511

417

-1 -2

6 -I -6

520

-I

4

11

10,

21s IO8 287 191 1.779

9 II

6

6

11

-0

6s

1

11

I i

100

-9

379 211 95 IO0

"I

0

5LI

4

7

0 I

115 172 311

107

1152 115

IO

168 '12

171

$62

376

1107 I76 161

I1 -12

IOIl

in7

-2 -1

III

$11

3

0

121 457

-4

II

661

I10

-*-57

II

520

I

I60 11)

-I

1

IO 11 II 11 II II

212

111 291 211

0

115

-7 -6 -5 -1 -2

6

274 I19 .69

115 212

986 6%

7

3 1 3 1 3 1 1

1.7

.e1

960

6

-a

282

6 7 8 -7 b 5

58

0

5111

-9

.20 211 662 9.2 722

-7

*

9 9

IO IO IO IO

313

566 lbb

509 297

IO II

281

82

SlQ

1

5

166

1.1

9 -0

-1 3 5

2 1

i

1 3 3 I

2Ib

-1 .2 0

I 2 2 2

231 110 725

4

; -I 2 1

I

h:

..6

970

2 -10 2 -P

155

.I

I

952 ?,LI 622

2 -12

613

9

7

1095

tee

1268 loill

2.6

38s

-2

5

208

I2b2

256 I W

I19

e

15. 91

I

104

..

91

1

0

: :4

11. $62

2V9

381

I 1

2

229 31)1

IS2

-4

0 1 2 3 1

I I I

1279 271 .5I

-5

-I

1

1251 I600

591

-2

8 9 9

175

iwo 296 res

L

5 6

L.

I L

620

-I

I I

5 5 5 5

8 8 9

12

I .IO

1

221

! I

-L -2

0 0 0 0

-6 I -5 B -1

e

ii

L

0 -12 3.5 o -I l o b e 0 -6 104

-. ::: ::: . . 37,

260

I

9

7

I12

111

0

6

7

274

2

:3

II 11

211

-(I

5 -1

II

I61 100 1%

5 6 8

5 -5 5

111

131

+

10 L 11 5 .I1 5 -9

2Ul 119 1%

IS+ 751 21, 210

-I

b

I) (I

*E $21

(I

'

88

y'' 117

*I I2

200

2 . 5 2 . 6 le?

9.

.e

97

106

p28 142

7

251

211 250 I97 161 I10 212 201 I70 205

.I"

*87

118

12

-.

0

I 7

210 ..2 IO.

116 216 117 1111 103

2 1

Leo

+I1

II II 6 II 7 I, I 12 - 7 I2 12 -2 12 -1 12 0 I2 I

7

I I

I$

I O

651 95 7% 217

L

99

II. 101

-I

12 I2 I3

6

7 -10 7 -7 I -1 7 -5

198 51

a7

186 158

111 1Yl 12. I60 9.7 39

I067

1hO 1.0 $16

126 501 201

-2

61

I.*

-1

-1

I2C

(1.3

-2

P

13

4.1

I69

2Ll

13 I1

1057

177 80

117 $13 7111

11

I

196

211

757

2

4 4 4

11s

546

LIP 221

0In' 04 171

I 5 6 1

BIZ

617

811

171

500

-5

153

6

12"

7YI 1016

850

501

261

-I 6 0 6 1

(I

IU2 LhL

6

1

697

819

-2 .I

0 8

153

1L)I 1.1

1 2 1

I02

613

159

0

IZ2 597

I70 I22

452

-L

-2

256

I

Ill

127

*

I

8

6.1

Lee

6

122 160

1 2 1

LO8

4

611

-9

o

279

e11

239

n .-1

e

291

226 472

-3

25+ 626

I

677

21.

b

-6

I

4.7

IS0 117

J4I

IO II

e

1017 $56

476

16.

.

57 IW

111

I12

172

IIP

02 2*2 262

-5

4

8

190 6.1 690 315

-8 -7

215

7

10.2

6'

6

I

220

b

L

66s

126

4

7

6 -3

6

I66

5

+

II

506

1

1%

2

-9

b

1.2

159 '111 61

121

412 I46 202

1

12 4 -12

L31

....*. .....

I1

3

I25 2 . S

0

e

i 3

1.6

*

+

5 L 7

3

4 4

+

2

1

I11

b 111 6 -I 6 -5 6 -6

6 6

6

368 21,

5 5 5 5 5 5

410 870

299 200

561 5.1

161 I.

265 122

291

I

70+

.97

0 1

2

717

171

413

3

7

112 112 227 177 711

619

7 7

9

.5

-2

T

9

-7 -6

I 1 1

-7

; 1;

202 232 I53

1.1

5 5 5 5 5

-7 365 -6 197 *I 251 -1 660 -2 e6v -1 111 0 222

21. 70 66B

.IO

532 125 212

bo

I38 515 31s .I,

311 686 5V

201

127

5

$10

715

-6 -5

I84

6

5

151

IT*

119

-12

1 I

205 IVI 611 LBO

I2

,' 1111

1 3 1 3 I

1

616 in2 16. 696 200 102 22e

690

199

150

55135

IIV

6

158

4

m

7

599

5

lie

9

ti. 256

6

I

2 2

3116

ab1 le3 1.

IS5 116

2 1

I

996 720

2bb I90

176

209

2 2 2 2

3

71

a

rb9

I"

11.0

311 611 lbl

2

716

1,

28'1

L

0 1

11 I3 1b

1011

b 12 b 11 5 -11 5 -9

re

4

2

2

I3

6

4

6

I .IO

110 97

115

2

6

1

211 270

5

7.0 P@l b+

I

271 63

Ibl

5.6 1111 130

351

L

5

2

I20

711

261

iae

-6 -5

215 I26

4

4

IO5

183

52

I21

112

121 211 262

1.2 I15 261 Ill

-6

1 . 3

311

117

L

4

5 5

I

1

271

5

we

10 10 I0

11

280

221 12e

151 119

9 II

8

96

272

112

5,. 211 451 516 I51 I96

b 2

IC0

9

ILOI

IO

12 11

I21

I

17.

5 6

I P

31V

Ill 419

2

56.

6

915

102

I L

0

5

4.1

,306 572

P -7

113

121 699

(I

; :1 ;::

I

11v. 1211

8

10 II 11

1 . 9

711

796

717 270

112 71e

1

2bUO

1.21

$55

9e

IO

I

5

678

e12 260

700

IO*

+

19

10

P

IIP 111 152

Ill

2

2b2

676

e12 261

7 8

P

11. 1165 1356

IO

-2

91

5

29.

8 0

161

9 4

619 125

-3

5

I41

1108

8 8 8 8

1 L 7

112 161 7,s

-1

5 -I

+$L 798

I129

151

L

0

IO

15') 617

5 5 5

.lb 951

I19

2

IO

20.

110

99a 245

0

211 208

2397

1277

z

I

-I

9

191

6

I

2 2

IO

690

*

7

1YI 145 112

205

I12 111 631

P

11I

e6 11') 971

I 1

1 8

2 2' 2

107

119

9

212

-6 -5

6 6 b b

II 12

2

310

8 IO -7

111 I21 I27

19.

159 *I

-7

b 6

IO

I

2

4

IO

in*

97 711

129"

9

5 -7 5 -6 5 -5

4

6

T 7 8

2

2 2

12116 67

I72 297

6

0 I

T

-1 0 1 2

iize

rc 151

6.5

6

7

-1 -2

IT0 113 316 IO6

F"

I72 103 112

,I. I91 751

7 8 9

7

-1

2 2 2 2

273

L

I 2 I

e

I10 I69

761 1129

12

5

4

2

I -5

121

L 9

620

5 I

5 11

2

~ i ii

IIW

5

7

8

795 739

2.9

I

578

1018 .I.

199

*

I(

561

993 127

79.

b

I

I

FO

6

7

IO

3.0 219

0

L

L

1

I I

-+

..

I .IO

I I 1

1 2 2 2 2

5

*7

I

-1 -2

5 6

1116 121 Ibl 99 310 151 207 98 LO3 261 +E. 213 266

r

211 en7

1 -1 3 5

111

2

1 -9

. 3b

-9 7

246 $1

-I

I16 11, 101 1.0 17. 111 112

b

1

4

L

b b b

b

5 5

5

163 212

5 7 -8 2

I

L99 I32 I16 100

3% 16) 186

VI $7 101 $30

262 256 251 Z Y ~

IIe 222 322

...." ..... * II

211 95 16, I15 11

I11 159 126 1b1

I.

P I

111

I79

where agreement was particularly poor, but this seemed to us t o be too arbitrary. Accordingly since further data collection was not a t that time feasible, we decided to drop the entire block of data. The fact that atomic parameters derived with or without the data from crystal I1 do not differ significantly adds support to the present essential, but perhaps undesirable, procedure.

BETTYR. DAVISAND

2772 Inorganic Chemistry, VoZ.9,No.12, 1970

Figure 1.-A

TABLEV N-H . . . B INTERACTIONS AROUND CALCULATED ETHYLENEDIAMINE HYDROCEX POSITIONS Na

Hb

H...B,A

N..sB,rf

N-H-BC angle,deg

1 1 2.28 3.18 167 1 2 2.37 3.15 146 1 2.43 3.27 153 2 2 2.82 3.45 129 2 1 2.48 3.04 120 3 3 2 2.48 3.12 130 1 2.57 3.29 135 4 2 2.35 3.18 154 4 The numbering scheme of the cation is indicated in Figure 2. In the anion, F1 is trans to F2, F3 is trans to F4, and F5 is trans to F6. The numbering scheme is as indicated in Table 111. c All N-H distances were fixed at 0.90 A. F1

N7 N5 F4 N7 F4 F3 F6

Q

Figure 2.-An

A. IBERS

stereoscopic pair of views of the contents of a unit cell.

Description of the Structure The structure consists of discrete PFe- and Ru(N8)(Nz)( N H z C H ~ C H ~ N+Hions ~ ) ~with no crystallographic symmetry imposed upon either. A stereoscopic pair of views of the contents of a unit cell is given in Figure 1. The closest, nonbonding contact of each of the amine hydrogen atoms is given in Table V. On the basis of

B”

JAMES

nated by six nitrogen atoms. A selection of intramolecular bond distances and angles, together with estimated standard deviations as derived with the inclusion of correlation effects, is given in Tables VI and VII. TABLE VI ISTRAMOLECULAR BONDDISTANCES Atoms Distance, k . Mean distance, A Ru-iYl 2.108 (9) Ru-Ii2 2,140 (9) 2.125 (19)a Ru-IC3 2.109 (8) Ru-N~ 2.144 (9) Ru-N~ 2,121 (8) Ru-N~ 1.894(9) N1-C1 1.470 (13) N2-CZ 1.495(13) 1.474(15) N3-C3 1.474 (13) N4-C4 1.458(14) Cl-C2 1.509(14) 1.507(14) c3-c4 1.504 (15)/ N5-li6 1.162 (23) K6-N7 1.146 (11) K8-N9 1.106 (11) P-F 1 P-F2 1.560 (8) 1.548 (10) P-F3 1.546 (24) 1.524(9) P-F4 P- F5 P-F6 1. 1.545 517 (10) (lo)] T h e standard deviation given for an average quantity in this table is that for an individual estimate as derived from the collection of values assumed to be equivalent or from an individual standard deviation, as obtained from the inverse matrix, whichever is the larger value. On this basis i t appears that individual standard deviations derived from the inverse matrix are optimistic by a factor of 2 .

overall view of the cation.

structural data on N-H * * .Fand N-H. . . N bonds,I3 any such hydrogen bonds in this structure are very weak. The coordination of the cation may be viewed in Figure 2 . The ruthenium atom is octahedrally coordi(13) W. C . Hamilton and J. A. Ibers, “Hydrogen Bonding in Solids,” W. A. Benjamin, New York, PIT. Y., 1968.

Ru-N 1-C1 Ru-NZ-C~ R~-h’3-C3 Ru-iX4-C4 m-c1-c2 N2-CZ-Cl 5 3 -c3-c4 N4-C4-C3 N5-N6-N7

109.1 (6) 107.5 (6) 110.3 ( 6 ) ) 107.5 (6) 108.9(9)’ 108.8 ( 9 ) ) 108.6 (9) 110~) 180 (1)

J

109 (1)

109 (1)

Inorganic Chemistry, Vol. 9, No. 12,1970 2773

BONDING OF MOLECULAR NITROGEN On the assumption that chemically equivalent bonds are indeed equal in length, it appears that these derived standard deviations are optimistic by a factor of approximately 2. The derived standard deviations are reliable if the data are subject only to random errors. Undoubtedly systematic errors have been introduced into the data as a result of decomposition and so we use twice these standard deviations as a basis for discussion. The root-mean-square amplitudes of vibration along the principal axes of vibration for atoms refined anisotropically are given in Table VIII. The directions of viTABLE VI11 ROOT-MEAN-SQUARE AMPLITUDESO F VIBRATION (IN Atom

Min

Ru Nl

0.168(1) 0.189 (13) 0.193 (16) 0.191 (17) 0.169 (13) 0.165(13) 0.189 (19) 0.155 (19) 0.193 (13) 0.167(12) 0.206(14) 0.200 (14) 0.187(15) 0.161 (17) 0.210 (5) 0.225 (11) 0.208(11) 0.240 (12) 0.232 (12) 0.258(13) 0.255(12)

c1

c2 N2 N3 c3 c4 N4 N5 N6 N7 N8 N9 P F1 F2 F3 F4 F5 F6

Intermed

0.189(1) 0.204 (13) 0.234 (16) 0,245 (16) 0,205 (13) 0.223 (12) 0.240 (17) 0.269 (17) 0,228 (12) 0.189 (13) 0.210 (12) 0.273 (14) 0.217 (13) 0.290 (14) 0.225 (5) 0.284 (10) 0.296 (11) 0.349 (12) 0.319 (12) 0.330 (12) 0.359 (13)

A)

Max

0.233 (1) 0.268 (14) 0.248(16) 0.268 (16) 0.292(13) 0.270 (13) 0.313 (16) 0.276 (16) 0.249 (13) 0.275 (12) 0.269 (14) 0.344 (14) 0.242 (12) 0.339 (13) 0.320 (5) 0.396 (11) 0.540 (12) 0.553 (14) 0.592 (14) 0.594 (16) 0.551 (15)

bration of atoms in the cation may be discerned from Figure 2. Figure 2 also displays the numbering scheme employed for the cation. The hexafluorophosphate anion is not unusual in any way. The six values of the P-F bond distance range from 1.517 to 1.581 (8) k to give a mean distance of 1.546 (24) k . Owing to the large amount of thermal motion associated with the F atoms (Table VIII) this mean distance is necessarily shorter than the distance corrected for the effects of thermal motion. Such a correction does not appear to be feasible here, as the motion appears t o be a combination of bond stretching, bond bending, and rigid-body torsional modes. Nevertheless, the mean distance is comparable with the P-F distance of 1.58 8 found in various PFO- salts.16 The F-P-F bond angles range from 87.0 (5) to 95.0 (8)'. I n the ethylenediamine group, the four C-N bond distances have a mean value of 1.474 (15) k and the two C-C distances have an werage value of 1.507 (14) A. If we define the dihedral angle, CY, as that angle between the normal to the plane which contains the metal atom and the ring carbon atoms and the normal to the plane which' contains the metal atom and the ring nitrogen atoms, we would expect this angle to be nonzero for an (14) For reasons discussed in the text, this number is more realistically 1.517 (20)8,instead of 1.517 (10)A. (16) H. Bode and H. Clausen,2.Anorg. Chem., 466,229 (1961).

ethylenediamine ring in the gauche conformation. For the ring containing Nl-Cl-C2-N2, a is 27.6 (6)O, and for the ring containing N3-C3-C4-N4, CY is 26.6 (7)". These values compare well with the average value of 27' found in Cr(NH2CH2CH2NH2)a3+.16 If the azido and molecular nitrogen groups are ignored and one looks a t the plane containing the ruthenium atom and the two ethylenediamine rings, i t is apparent that a pseudo-twofold axis of rotation exists perpendicular to this plane. Upon rotation] C1 would go into C4 and C2 would go into C3. The weighted least-squares plane through these nine atoms is given in Table 1X. It is found that TABLE IX OF PLANE : WEIGHTED LEAST-SQUARES PLANE. EQUATION COORDINATES) 0.650%- 1 0 . 1 7 2 ~ 6 . 3 1 2 ~= 0.790 (MONOCLINIC

+

Atom

RU N1 C1

Dev from plane, 8

Atom

Dev from plane, A

Atom

Dev from plane,

0.0027(8) -0.072(8) 0.252(11)

C2 N2 N3

-0.426(11) -0.027(8) -0.101(9)

C3 C4 N4

-0.432(13) 0.244(12) -0.097(9)

C1 and C4 are approximately 0.2 8 above the plane and C2 and C3 are 0.4 k below the plane. The N-Ru-N angle associated with the ethylenediamine groups is 81.6 (3)" owing to the "bite))of the ligand. The four Ru-N bond distances give a mean value of 2.129 (19) 8. As may be seen by comparison with various Ru-N bond lengths in Table X, the Ru-N bond length associated TABLE X SELECTED METAL-NITROGEN BONDLENGTHS Compound KzOsNCli ReNClz(P(C6Hs)s)z ReCls(NCsH4OCHa)(PCsHa(CzHa)z)t

ReCla(NCsH~COCHs)(PCsHa(CzHa)z)z ReCla(NCH8) (PCeHs(CzHa)z)z Ka[RuzNCls(HzO)z] [Ru(NHs)alIz [Ru(NHa)el(BFds [Ru(NHs)aNzRu(NHa)a](BF4)r

[Ru(Ns)(N1)(NHzCHzCHzNHz)z]PFo

I

Bond type MSN M=N M=N M=N M=N M=N M-N M-N M-N M-N M=N M-N M-N M=N

Distance, A Ref 1.614(3) a 1.602 (9) b 1,709(4) c 1.690(5) c 1 685 (11) d 1.718 e 2.144(5) f 2.105 (4) 2,104(6)(axial) 2.12 (equatorial) g 1.928(6)(Nz) 2,125(19)(mean) 2.121 (8)(azido) h 1.894 (9)(Nz)

If 1

See ref 3. R. J. Doedens and J. A. Ibers, Inorg. Chem., 6, 204 (1967). D. Bright and J. A . Ibers, ibid., 7, 1099 (1968). D. Bright and J. A. Ibers, ibid., 8,703 (1969). M. CiechanH. owicz and A . C. Skapski, Chem. Commun., 574 (1969). Stynes and J. A. Ibers, unpublished results. I. M. Treitel, M. T. Flood, R . E. Marsh, and H. B. Gray, J . Amer. Chem. Soc., 91,6512 (1969). I, This work.

with the ethylenediamine groups is in the range expected for a single-bond distance. The coordinated azido group is of interest in this compound since relatively few structures are known in which this group is a ligand. These include coordination of the ligand to copper," cobalt,18and iron.lB It appears (16) K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Inorg. Chem., 7 , 842 (1968). (17) I. Agell, Acta Chem. Scand., 21, 2647 (1967); 2. Dori, Chem. Commun., 714 (1968); R. F.Ziolo, A. P. Gaughan, 2. Dori, C. G. Pierpont, and R. Eisenberg, J . Amer. Chem. Soc., 92,738 (1970). (18) G.J. Palenik, Acta Crystallogr., 17,360 (1964). (19) J. Drummondand J. S.Wood, Chem. Commun., 1373 (1969).

2774

Inorganic Chemistry, Vol. 9, No. 12, 1990

BETTYR. DAWSAND

JAMES

A. IRERS

TABLE XI BONDLENGTHS A N D BONDANGLESIN COORDIXATED AZIDES Compound

N-N,

A

i

1,240 (3) 1,134 (3) 1.154 (15)

M-N or H-N,

A

1.02 (1)

M-N-N, deg

112.65 ( 5 0 )

Ref

a b

i

l.lS(3)

2.041 (15) (axial) 1.971 (14) (equatorial)

135, I

1.208(7) 1.145 (7)

1.943 (5)

125.2 (2j

d

2.121 ( 8 )

116.7 ( 7 )

e

c

[ l .163 (23) (mean) E. Anikle and B. P. Dailey, J . Chem. Phys., 18, 1422 (1950). * B. L. Evans, .4.D. Yoffe, and P. Gray, Chem. Reu., 59, 515 (1959). See ref 19. d See ref 18. e This work.

a L

on the basis of the data in Table XI that if the azide is covalent, as in HN3, the N-N bond lengths are not equal, but they are equal in an ionic azide, N3-. The asymmetry of the azido group coordinated to a transition metal is open to question. In [Co(N3)(NH3)5](N3)zI1'the azido group is asymmetric whereas in (As(C6H5)4)2[Fe(N3)5]19 the azido group is reported to be symmetric. I n the present structure, the N-N distances do not differ significantly and average 1.162 (23) A. The Ru-N bond distance associated with the azido group is that of an M-N single bond (M = metal), as has been found in other transition metal--azido complexes. The Ru-N-N bond angle is 116.7 (7)", somewhat smaller than the M-N-N angle found in the other two complexes listed in Table XI. The geometry of the coordinated molecular nitrogen is the same as that reported in other dinitrogen complexes. There is no significant lengthening of the N-N bond upon coordination, as may be seen by exaniination of the bond lengths listed in Table XII. The TABLE XI1 NITROGEN-NITROGEN BONDLENGTHS Compound

Distance, A

Ref

Nzk) 1.098 a COH(Nz)( P(C~H5)3)3 X.l12(11) b [ R u ( K H ~ ) ~ N ~ R u ( P(BF4)4 \~H~)~~ 1.124(15) c [Ku(~U'~)(N~)(NHZCHZ I'F6 C ~ Z ~l~. lZ0)6~( ]l l ) d a P. 6. Wilkinson and N. R. Hcuk, J . Gkem. Phys., 24, 528 (1956). b See ref 1. c See ref 22. T h i s work.

Ru-N bond length of 1.894 (9) A is significantly shorter than an M--N single bond distance but not as short as an M=N bond distance, as seen by comparison with various M--N and M=N bond lengths listed in Table X and by comparison with the Ru--N bond distance of 2.121 (8) A associated with the azido group and the mean distance of 2.125 (19) A associated with the ethylenediamine groups found in this present study. The Ru-N distance is comparable with the mean Ru-C distances of 1.94 (3) and 2.01 (6) A found in Ruz(CO)8Br4zoand R u ( C O ) & , ~respectively. ~ Therefore, as we have stated earlier, the bonding between a transb tion metal atom and molecular nitrogen is very similar to that between the metal and the isoelectronic ligand carbon monoxide. It is interesting that the N-N bond distance in this compound, as io C O H ( N ~ ) ( P ( C ~ H ~ ) ~ ) ~ , ~ is not significantly shorter than the N.-N bond length found in the bridging species [Ru(NH3)5N2Ru(NH3)b ](BF4)4.2 2 Acknowledgment-B. R. D. is indebted to the National Institutes of Health for a predoctoral fellowship. We are grateful to the National Science Foundation for support of this work. We thank Dr. P. S. Sheridan, Dr. L. Kane-Maguire, and Professor F. Basolo for preparation of this compound and for useful discussions. (20) S. Merlin0 and G. Montagnoli, Acln C,'ryslallogu., Sect. B., 14, 424 (1968). (21) L. F. Dah1 and D. E. Wompler, ibid., ill, 046 (1062). (22) I. M. Treitel, M. T.Flood, R. E Marsh, and H.B . Gray, J . Amev. Chem. Soc., 92,6612 (1960).