Building a Novel Chemically Modified Polyaniline ... - ACS Publications

Aug 4, 2017 - Graphene Oxide Hybrid through π−π Interaction for Fabricating. Acrylic Resin Elastomer-Based Composites with Enhanced Dielectric. Pr...
2 downloads 0 Views 30MB Size
Subscriber access provided by University of Florida | Smathers Libraries

Article

Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through #-# Interaction for Fabricating Acrylic Resin Elastomer Based Composites with Enhanced Dielectric Property Sen-Qiang Wu, Jing-Wen Wang, Jing Shao, Lei Wei, Kai Yang, and Hua Ren ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.7b07785 • Publication Date (Web): 04 Aug 2017 Downloaded from http://pubs.acs.org on August 7, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Applied Materials & Interfaces is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through π-π Interaction for Fabricating Acrylic Resin Elastomer Based Composites with Enhanced Dielectric Property Sen-Qiang WU, Jing-Wen WANG *, Jing SHAO, Lei WEI, Kai YANG, Hua REN

ABSTRACT: Sustainability urgently demands low dielectric loss and low elastic modulus as fostering high permittivity (Hi-K) conductor/polymer composites. This work introduces a ternary composite system, consisting of acrylic resin elastomer (AR), chemically modified polyaniline (HBSiPA), and the thermally reduced graphene oxides (TrGO), for applying to actuators, of which AR was fabricated by the free radical polymerization. The unique hybridized graphene (HBSiPA-TrGO) was prepared by a two-step procedure including the doped polyaniline modified by the hyperbranched polysiloxane via ring opening reaction, followed by the decoration of the HBSiPA on the surface of TrGO, the conductivity of which is the same desired as that of graphene. Afterwards, diverse filler contents of HBSiPA-TrGO were put into the AR matrix to fabricate composites with solution casting method, and TrGO/AR composites were fabricated as well for comparison. Unlike TrGO, the HBSiPA has plenty of polyaniline chain segments that ensures better dispersion of graphene hybrids in the AR, and thus the composites inherit the excellent electrical property of the graphene. The permittivity and dielectric loss of HBSiPA-TrGO/AR composite at 100 Hz are 3.5 and 0.27 times that of TrGO/AR composite, respectively, when the loading of fillers approaches to the percolation threshold (fc), which originates from the HBSiPA anchored onto the graphene serving as spacer and thus decreases the leakage currents induced by the contact of graphene sheets. Besides, elastic modulus of 2.83vol.% HBSiPA-TrGO/AR composite was lower than 5 MPa. KEYWORDS: acrylic resin, polyaniline, graphene, π-π interaction, dielectric property __________________________________________________________________________________________

*Jing-Wen WANG College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, 29 Yudao Street, Nanjing 210016, P. R. China E-mail: [email protected] Sen-Qiang WU, Jing SHAO, Lei WEI Department of Materials Science and Engineering, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China Kai YANG College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China Hua REN 1

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 104

Department of Materials Science and Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China

1. INTRODUCTION There have been eximious achievements in dielectric materials since electroactive polymers (EAPs) hold wide foreground of applications in numerous cutting-edge fields including MEMS devices, biomedical, artificial muscle and tactile displays.1-4 In particular, dielectric elastomers (DEs) that are capable of changing shape or volume once applied electric field, such as acrylic resin elastomer (AR), 5 silicone rubber (SR), 6 polyurethane elastomer (PU) 7 and nitrile rubber (NR), 8 have aroused diffusely interests due to their immanent advantages, such as fast response, excellent load matching, high efficiency of electromechanical conversion, strong environmental adaptability, lightness and low cost. Among the dielectric elastomers, AR is one of the appropriate selections at the present stage for dielectric elastomer actuators and supercapacitors, since the AR furnishes a higher energy density (≈3.4 J cm-3), larger electrical induced strain and higher breakdown field strength compared with the other polymer matrices. 9 Actuated relative area strains were showed up to 215% with VHB 4910 acrylic elastomer. 10 Howbeit AR suffers from a low dielectric constant (≈3)which restricts its practical applicability in actuators and energy harvesters. Therefore, an efficacious approach to improve its actuation strain s is to increase permittivity (εr) of AR according to a formula Pelrine proposed for s: ‫=ݏ‬

ఌೝ ఌబ ௒

‫ܧ‬ଶ

(1)

Where ε0 is the dielectric constant of vacuum (8.85×10-12 F m-1), Y is the modulus of elasticity, and E is the electric field intensity. 11 Not only should desired dielectric materials applicable for DEs have a high εr and extremely low conductivity, the modulus of elasticity Y is also of great importance for it directly affects machinability and achievable deformation of the devices. Accordingly, AR with a lower elastic modulus by adjusting the proportion of soft monomer and hard monomer shows more strain under the identical electric field strength, and more output stress is available while the composites with high dielectric constant. 2

ACS Paragon Plus Environment

Page 3 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Recently, DEs filled with varieties of fillers, such as ceramics,

12-13

metal

particles, 14 carbon black, 15-17 conductive polymers, 18-19 have received tremendous attention owing to the synergistic effects between the fillers and the high breakdown voltage of the polymer matrices12-15. Particularly, ceramic fillers, including PbTiO3, BaTiO3,

CaCu3Ti4O12,

Li0.05Ti0.02Ni0.93O,

PbZrxTi1-xO3,

PbMg1/3Nb2/3O3,

K1-x

NaxNbO3, and their mixtures, have been widely used in dielectric composites due to their extremely high permittivity of several thousands. 12-13, 20-21 N. Tangboriboon et al. reported that PbTi1−xO3 and PbZrxO3 particles could consumedly improve the electrical activity and the dielectric constant of the AR-based nanocomposite.

22

Although such enhancements via adding inorganic ceramics, these ceramic/polymer composites demand higher filler concentration to improve their dielectric properties, thus the increased concentration of these inorganic fillers inevitably deteriorates the flexibility and breakdown voltage of the resultant composites. Moreover, the leaded ceramics may destroy the environment to some degree. Based on these facts thoroughly discussed above, more suitable fillers with environmental friendliness, high flexibility and low filler loading are required for the construction of the comprehensive high-performance AR-based actuators. High dielectric constant (marked as Hi-K) carbon conductor/polymer nanocomposites possess superiorities of cheaper cost, quite lower filler loadings, better flexibility as well as better mechanical properties compared with the other forms of composite materials.16-17 Graphene, a single-atom-thick honeycomb planar architecture of sp2 carbon atoms, has become one of the most attractive and preferential fillers depending on its prominent conductivity, thermal stability, electron mobility and large specific surface area.23-24 Nevertheless, a remarkable improvement of dielectric constant simultaneously brings an increasing dielectric loss, which conflicts with the application indexes of the actuators and energy harvesters. To facilitate the compatibility between graphene and acrylic resin elastomer, therefore, researchers attempt to decorate conductors with an insulator layer to reduce the dielectric loss. 3

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 104

So far, covalent (chemical) 25-27 and noncovalent (physical) 28-30 approaches have been utilized to modify graphene. Especially, noncovalent modification forms covering anchored organics onto graphene sheets through physical action, for example, π-π conjugation, van der Waals forces and electrostatic force, to cut off the leakage current generated by the conductive path from the interconnection between conductors and to reduce the tunneling current. This powerful interaction isolates the direct connection of graphene sheets, thereby the dielectric loss decreases effectively. Moreover, in contrast to the covalent modification, noncovalent modification guarantees the excellent integrated properties which preserves the intrinsic unique π-conjugated structure of graphene. For instance, Wang et al. reported that graphene modified by surface active agent polyvinylpyrrolidone (PVP) resulted in better dispersion in the AR matrix and significantly intensified the dielectric and thermal properties of the ultimate nanocomposites.31 Hence, there is of great necessity to design novel conductive fillers for developing Hi-K composites based on graphene. Doped polyaniline (d-PANI) is one of the most promising candidates to noncovalently modify graphene originating from its outstanding virtues such as handy preparation, reversible redox behavior and good conductivity.

32

Moreover, the

d-PANI of nanometer sizes ( ݂௖

(3)

ߪ஽஼ ∝ ሺ݂௖ − ݂ ሻି௦

for ݂ < ݂௖

(4)

Where σDC is the DC conductivities of composites, fc the percolation threshold, f the volume fraction of fillers, and t, s are the critical parameters. 46 As displayed in the inset plots of Figure 5a and b, the resultant calculated fc values of TrGO/AR and HBSiPA–TrGO/AR nanocomposites are 1.87vol.% and 2.42vol.%, respectively. The percolation threshold of HBSiPA–TrGO/AR nanocomposites increasing slightly are attributable to the following reasons. On the one hand, the dispersion of TrGO in the matrix improves significantly owing to the HBSiPA, which restricts the contact of TrGO, and thereby postpones the formation of conductive networks as shown in the Scheme 3. While, on the other hand, the conductivity of hybrids is fractionally lower than that of the graphene, thus it is of essence to append higher content of the graphene hybrids. As displayed in the Figure 6a and b is the dependence of the permittivity on the frequency from 100 Hz to 106 Hz of TrGO/AR and HBSiPA-TrGO/AR composites with different filler contents. In detail, the permittivity practically is independent of the frequency with no filler in the AR, which illustrates there is no sufficient accumulation of charges on the interface within the neat AR. As comparison, the dielectric constant decreases in pace with frequency increasing with the addition of fillers, which is ascribed to the following explanations. (1) The dielectric constant of 16

ACS Paragon Plus Environment

Page 17 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

materials is caused by polarization; the polarization is originated from the directional alignment of some dipoles which is capable of reversing applied with the electrical field due to the change of frequency. (2) When the frequency increases, the reversion of dipoles is unable to keep up with the change of electrical fields on account of resistance in the materials, which consequently forms relaxation.47 (3) While the frequency reaches very high, some dipoles cease reversing that results in making no contribution to the permittivity. Observing the Figure 6a and b, it is easily found that the permittivity of 2.83vol.% HBSiPA-TrGO/AR at 102 Hz or 103 Hz is as high as 355 and 325, approximately 3.5 and 2.8 times that of 1.69vol.% TrGO/AR, respectively. These phenomena can be illustrated by the following causes. (1) Maxwell-Wagner-Sillars (MWS) polarization effect.48 It is universally known that provided there is a disparity of the permittivity between the insulating phase and conducting phase, a great deal of charge carrier accumulates on the interface of the both phases, and then interface polarization occurs. Especially, compared with TrGO/AR composites, HBSiPA-TrGO/AR composites exist interfaces of HBSiPA-AR and HBSiPA-TrGO besides the interface of TrGO/AR, which possesses more interfaces than that of TrGO/AR composites resulting in stronger MWS polarization, which is the specific essence that endows HBSiPA-TrGO with a particular virtue in enhancing the permittivity. (2) HBSiPA-TrGO has better dispersion than that of TrGO in the AR, forming larger number of micro capacitors which are very significant for improving charge storage capacity and achieving high dielectric constant. Moreover, the unsatisfactory dispersity of graphene in TrGO/AR composites easily forms conductive paths resulting in worse permittivity performance. In contrast, the much better dispersity of HBSiPA-TrGO hybrid in the composite, which is beneficial to the better dielectric property, leads to the delay in the formation of conductive networks.49 Figure 6c presents the dependence of the permittivity (100 Hz) on the filler content of TrGO/AR and HBSiPA-TrGO/AR nanocomposites. What the difference of the trend between the DC conductivity is that the permittivity decreases drastically 17

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

while the filler loading goes beyond the percolation threshold, which indicates resultant composites turn from the insulator into the conductor. The foregoing results are attributed to the following reasons. (1) The quantity of the micro capacitors that the graphene sheets are acted as the electrode plates and AR is served as the dielectric is relatively small as the filler content is far low, which leads to ascending slowly of the permittivity. (2) Thus, the more filler content is put in, the larger number of the micro capacitors and the dielectric constant gain. Importantly, the micro capacitors in the composites mutual overlaps and progressively build a conductive network while the TrGO or HBSiPA-TrGO approaches to the percolation threshold, which realizes the transition from the insulator to the conductor of the composites contributing to the steep increase of the permittivity. (3) Nevertheless, the dielectric constant decreases remarkably when even more TrGO or HBSiPA-TrGO is added since the conductive network has been accomplished.50 In addition, it is easily to found that the permittivity of HBSiPA–TrGO/AR is much higher than that of TrGO/AR at the same filler content. This phenomenon is attributed to the much better dispersity of HBSiPA-TrGO hybrid than graphene in the matrix. Furthermore, the better dispersity generates more microcapacitors that is capable of enhancing the ability of charge storage. As shown in the Figure 6d and e is the dependence of dielectric loss on the frequency from 102 Hz to 106 Hz of TrGO/AR and HBSiPA–TrGO/AR composites with different filler content. In the wake of the increase of the filler loading, the dielectric loss appears the analogous percolation phenomenon as the dielectric constant, which is the inevitable outcome of the improved conductivity of the composites. Moreover, the dielectric loss falls first and then rises slightly along with the increase of the frequency, which results from the two parameters. (1) The relaxation phenomenon discussed above begins to emerge at the low frequency, thus the relaxation polarization fails to fully build, which contributes to the sharp decline of the dielectric loss for reactive current is inversely proportional to frequency. (2) The increase of polarization loss enforces the active current increasing faster than the

18

ACS Paragon Plus Environment

Page 18 of 104

Page 19 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

reactive current in the anomalous dispersion region; therefore, the dielectric loss ascends with the increase of frequency ranging from 105 Hz to 106 Hz. Observing the Figure 6a and b, it is easily summarized that dielectric loss of 2.83vol.% HBSiPA-TrGO/AR at 102 Hz or 103 Hz is as low as 0.37 and 0.18, approximately 0.27 and 0.24 times that of 1.69vol.% TrGO/AR, respectively. Note that there exist two main currents for the electrical conductivity including leakage current and tunneling current, of which the leakage current acts a more important role in conductivity than the latter since it is relevant to the formation of the conductive paths. Accordingly, the dispersion and the directly touch of fillers result in the dielectric loss of nanocomposites. (1) The π-π interaction between the HBSiPA and TrGO makes it better dispersion in the AR matrix than that of TrGO. (2) Furthermore, coating the low conductivity HBSiPA on the graphene cuts the leakage current arising from the immediate contact of the graphene sheets. The two aforementioned reasons lead to the greatly reduced dielectric loss.51 To further detect the origin behind the distinction in electrical and dielectric performances between the TrGO/AR and HBSiPA-TrGO/AR composites, the results confirmed that two distinctive equivalent circuits should be utilized to simulate the electrochemical impedance spectra of these composites (Figure 7).53 The equivalent circuit of TrGO/AR (Figure 7a) is composed of matrix resistance (Rm), contact resistance (Rc), charge-transfer resistance (Rct), matrix capacitance (Cm), contact capacitance (Cc), and charge-transfer capacitance (Cct). The constant phase angle element (CPE) is the calibration of the capacitance deviating from a pure capacitive behavior. Different from TrGO/AR, the equivalent circuit of HBSiPA-TrGO/AR composite introduces an extra parallel circuit including a CPEp and a polarization resistance (Rp) (Figure 7b), which represent the outcome that the dispersity of graphene improves on account of introducing HBSiPA and thus enhances the interfacial polarization of HBSiPA-AR resin and HBSiPA-TrGO. It is universally known that the semicircle diameter of Nyquist curve represents charge transfer resistance (Rct) when it comes to dielectric materials. In the light of 19

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 104

the formulas, ܼ = ܼோ + ܼ௉ ܼ௣ = ܴ௣ +

(5) ଵ

(6)

௝௪஼ು

the impedance can be regarded as synergistic effect between conductivity impedance and polarization impedance, where ZR represents conductivity impedance, ZP the polarization impedance, RP the polarization resistance, CP the polarization capacitance, w the angular frequency, j the imaginary unit. The Nyquist plot of 1.69%TrGO/AR composite (Figure 7a) presents a classical semicircle shape, which demonstrates that dielectric property results from the formation of conductive paths through directly contacting of graphene. Consequently, the charge transfer inside the composite improves greatly. As comparison, the Nyquist plot of 2.83%HBSiPA-TrGO/AR composite contains two overlapped semicircles (Figure 7b), one of which stands for the RP in low-frequency region; another reflects the ZR of the composite in high-frequency region as ZP can be ignored on account of polarization relaxation. Along with the increase of HBSiPA-TrGO content, the Nyquist curves change from straight line to semicircle indicating conductive network forms gradually (Figure 7c). In detail, the double-semicircle Nyquist curve suggests that the formation of conductive channels of graphene as well as the enhanced MWS polarization are two significant elements for the increased dielectric constant of HBSiPA-TrGO/AR composite. The enhanced MWS polarization is ascribed to more polarization interfaces arising from the interaction between dipoles in HBSiPA and TrGO, together with more micro capacitors induced by the desiring dispersity of hybrids in the AR matrix. To monitor the electrical strength of elastomer films, dielectric withstand voltage tests were carried out. Eventually, the breakdown field strength or dielectric strength of 1.0wt%HBSiPA-TrGO/AR composite (62V/µm) is higher than that of 1.0wt%TrGO/AR composite (48 V/µm), which is in virtue of better dispersion delaying the formation of conductive paths. 20

ACS Paragon Plus Environment

Page 21 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

The elastic modulus is another important indicator to evaluate the suitability of composite material elastomers for actuators. Figure 8 shows the elastic modulus of composite materials with different loadings. Firstly, the elastic modulus increases along with the larger filler content both in TrGO/AR composites and HBSiPA-TrGO/AR composites. Moreover, in the case of the same loadings, the HBSiPA-TrGO/AR composites have a little bit higher than that of TrGO/AR composites. The phenomena can be accounted for the following factors. (1) Movement of the chain segments of the polymer AR is hindered from the presence of graphene sheets for its large surface. (2) The HBSiPA ameliorates the dispersion of TrGO in the AR, which enhances the interfacial interaction between the TrGO and AR. Though improving elastic modulus, it is still under the acceptance applying in the actuators. Therefore, the composites are of practical significance.

4. CONCLUSIONS By means of π-π noncovalent interaction, the HBSiPA is coated on the graphene surface, building a unique type of graphene hybrids (HBSiPA-TrGO) with comparable conductivity as the neat graphene. The hybridization endows the graphene sheets with better dispersion in the AR matrix and exfoliates graphene sheets to single or few layered structure, which leads to improving dielectric and thermal properties of resultant HBSiPA-TrGO/AR composite. The permittivity and dielectric loss of HBSiPA-TrGO /AR composite at 100 Hz are 3.5 and 0.27 times that of TrGO /AR composite, respectively, when the loading of fillers approaches to the percolation threshold (fc), which results from the discrepant structures. In detail, the presence of HBSiPA in the AR not only forms increasing micro capacitors, but also decreases the leakage currents induced by the contact of graphene sheets for HBSiPA acting as spacer. Moreover, the elastic modulus of composite below 5MPa is still suitable for applying in actuators.

ACKNOWLEDGEMENTS 21

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 104

This work was supported by the National Natural Science Foundation of China (No.21174063), the Natural Science Foundation of Jiangsu Province (No. BK20131358), the Aeronautical Science Foundation of China (Nos. 2011ZF52063 and 2014ZF52069), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

SUPPORTING INFORMATION Molecular weight (Mw), polydispersity and quantity of epoxide groups of HBSi, 1H NMR,

13

C NMR and

29

Si NMR spectra of

HBSiPA, the solubility (the UV spectra at 600 nm with different solvents) and thermal stability (TG curves) differences between d-PANI and HBSiPA, dielectric property of d-PANI-TrGO/AR composites and HBSiPA-TrGO/AR composites with different filler loadings, and thermal property (DSC and TG curves) of HBSiPA-TrGO/AR composites.

REFERENCES (1) Suo Z. Theory of Dielectric Elastomers. Acta Mech. Solida Sin. 2010, 23, 549-578. (2) Tian M.; Yan B.; Yao Y.; Zhang L.; Nishi T.; Ning N. J. Largely Improved Actuation Strain at Low Electric Field of Dielectric Elastomer by Combining Disrupting Hydrogen Bonds with Ionic Conductivity. Mater. Chem. C 2014, 2, 8388-8397. 22

ACS Paragon Plus Environment

Page 23 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(3) Henann D. L.; Chester S. A.; Bertoldi K. Modeling of Dielectric Elastomers: Design of Actuators and Energy Harvesting Devices. J. Mech. Phys. Solids 2013, 61, 2047-2066. (4) Carpi F.; Frediani G.; Turco S.; De Rossi D. Bioinspired Tunable Lens with Muscle-like Electroactive Elastomers. Adv. Funct. Mater. 2011, 21, 4152-4158. (5) Fabbri P.; Valentini L.; Bon S. B.; Foix D.; Pasquali L.; Montecchi M.; Sangermano, M. In-situ Graphene Oxide Reduction during UV-photopolymerization of Graphene Oxide/Acrylic Resins Mixtures. Polymer 2012, 53, 6039-6044. (6) Dang Z. M.; Xia Y. J.; Zha J. W.; Yuan J. K.; Bai J. Preparation and Dielectric Properties of Surface Modified TiO2/Silicone Rubber Nanocomposites. Mater. Lett. 2011, 65, 3430-3432. (7) Buckley C. P.; Prisacariu C.; Martin C. Elasticity and Inelasticity of Thermoplastic Polyurethane Elastomers: Sensitivity to Chemical and Physical Structure. Polymer 2010, 51, 3213-3224. (8) George S.; Varughese K. T.; Thomas S. Dielectric Properties of Isotactic Polypropylene/Nitrile Rubber Blends: Effects of Blend Ratio, Filler Addition, and Dynamic Vulcanization. J. Appl. Polym. Sci. 1999, 73, 255-270. (9) Michel S.; Zhang X. Q.; Wissler M.; Löwe C.; Kovacs G. A Comparison between Silicone and Acrylic Elastomers as Dielectric Materials in Electroactive Polymer Actuators. Polym. Int. 2010, 59, 391-399.

23

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(10) Pelrine R.; Kornbluh R.; Joseph J.; Heydt R.; Pei Q.; Chiba S. High-field Deformation of Elastomeric Dielectrics for Actuators. Mater. Sci. Eng. C 2000, 11, 89-100. (11) Pelrine R.; Kornbluh R.; Pei Q.; Joseph J. High-speed Electrically Actuated Elastomers with Strain Greater than 100%. Science 2000, 287, 836-839. (12) Mendes S. F.; Costa C. M.; Caparrós C.; Sencadas V.; Lanceros-Méndez S. Effect of Filler Size and Concentration on the Structure and Properties of Poly (Vinylidene Fluoride)/BaTiO3 Nanocomposites. J. Mater. Sci. 2012, 47, 1378-1388. (13) Zhou T.; Zha J. W.; Cui R. Y.; Fan B. H.; Yuan K. J.; Dang Z. M. Improving Dielectric Properties of BaTiO3/Ferroelectric Polymer Composites by Employing Surface Hydroxylated BaTiO3 Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 2184-2188. (14) Fredin L. A.; Li Z.; Lanagan M. T.; Ratner M. A.; Marks T. J. Sustainable High Capacitance at High Frequencies: Metallic Aluminum-polypropylene Nanocomposites. ACS Nano 2012, 7, 396-407. (15) Wang J.; Dong S.; Ding B.; Wang Y.; Hao X.; Dou H.; Zhang X. Pseudocapacitive Materials for Electrochemical Capacitors: from Rational Synthesis to Capacitance Optimization. Natl. Sci. Rev. 2017, 4, 71-90. (16) Dang Z. M.; Zheng M. S.; Zha J. W. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Small 2016, 12, 1688-1701.

24

ACS Paragon Plus Environment

Page 24 of 104

Page 25 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(17) Chen X.; Paul R.; Dai L. Carbon-based Supercapacitors for Efficient Energy Storage. Natl. Sci. Rev. 2017, 0, 1-8. (18) Ma R.; Baldwin A. F.; Wang C.; Offenbach I.; Cakmak M.; Ramprasad R.; Sotzing G. A. Rationally Designed Polyimides for High-energy Density Capacitor Applications. ACS Appl. Mater. Interfaces 2014, 6, 10445-10451. (19) Cho S.; Kim M.; Lee J. S.; Jang J. Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor. ACS Appl. Mater. Interfaces 2015, 7, 22301-22314. (20) Feng Z.; Zhao X.; Luo H. Large Pyroelectric Effect in Relaxor℃Based Ferroelectric Pb (Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. J. Am. Ceram. Soc. 2006, 89, 3437-3440. (21) Wu J.; Nan C. W.; Lin Y.; Deng Y. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett. 2002, 89, 217601/1-4. (22) Tangboriboon N.; Sirivat A.; Kunanuruksapong R.; Wongkasemjit S. Electrorheological Properties of Novel Piezoelectric Lead Zirconate Titanate Pb(Zr0.5, Ti0.5)O3-acrylic Rubber Composites. Mater. Sci. Eng. C 2009, 29, 1913-1918. (23) Allen M. J.; Tung V. C.; Kaner R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132-145. (24) Shin K. Y.; Hong J. Y.; Lee S.; Jang J. J. Evaluation of Anti-Scratch Properties of Graphene Oxide/Polypropylene Nanocomposites. Mater. Chem. 2012, 22, 7871-7879.

25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(25) Johns J. E.; Hersam M. C. Atomic Covalent Functionalization of Graphene. Acc. Chem. Res. 2013, 46, 77-86. (26) Chua C. K.; Pumera M. Covalent Chemistry on Graphene. Chem. Soc. Rev. 2013, 42, 3222-3233. (27) Liao L.; Xie Q.; Guo X.; Liu Z. Fabrication of Chemical Graphene Nanoribbons via Edge-Selective Covalent Modification. Adv. Mater. 2015, 27, 4093-4096. (28) Ji X.; Cui L. Xu Y.; Liu J. Non-covalent Interactions for Synthesis of New Graphene Based Composites. Compos. Sci. Technol. 2015, 106, 25-31. (29) Wang H.; Bi S. G.; Ye Y. S. Xue Y.; Xie X. L.; Mai Y. W. An Effective Non-covalent Grafting Approach to Functionalize Individually Dispersed Reduced Graphene Oxide Sheets with High Grafting Density, Solubility and Electrical Conductivity. Nanoscale 2015, 7, 3548-3557. (30) Jana M.; Saha S.; Khanra P.; Samanta P.; Koo H.; Murmu N. C.; Kuila T. Non-covalent Functionalization of Reduced Graphene Oxide Using Sulfanilic Acid Azocromotrop and its Application as a Supercapacitor Electrode Material. J. Mater. Chem. A 2015, 3, 7323-7331. (31) Wang G.; Wang J.; Zhou S.; Wu S. Enhanced Dielectric Properties of Acrylic Resin Elastomer Based Nanocomposite with Thermally Reduced Graphene Nanosheets. RSC Adv. 2016, 6, 98440-98448. (32) Dey A.; De S.; De A.; De S. K. Characterization and Dielectric Properties of Polyaniline-TiO2 Nanocomposites. Nanotechnology 2004, 15, 1277-1283.

26

ACS Paragon Plus Environment

Page 26 of 104

Page 27 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(33) Virji S.; Kaner R. B.; Weiller B. H. Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibers. J. Phys. Chem. B 2006, 110, 22266-22270. (34) Imran S. M.; Kim Y. N.; Shao G. N.; Hussain M.; Choa Y. H.; Kim H. T. Enhancement of Electroconductivity of Polyaniline/Graphene Oxide Nanocomposites through in Situ Emulsion Polymerization. J. Mater. Sci. 2014, 49, 1328-1335. (35) Potts J. R.; Dreyer D. R.; Bielawski C. W.; Ruoff R. S. Graphene-based Polymer Nanocomposites. Polymer 2011, 52, 5-25. (36) Qiang Z.; Liang G.; Gu A.; Yuan L. Hyperbranched Polyaniline: a New Conductive Polyaniline with Simultaneously Good Solubility and Super High Thermal Stability. Mater. Lett. 2014, 115, 159-161. (37) Yavari F.; Fard H. R.; Pashayi K.; Rafiee M. A.; Zamiri A.; Yu Z.; Koratkar N. Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. J. Phys. Chem. C 2011, 115, 8753-8758. (38) Hsiao S. T.; Ma C. C. M.; Tien H. W.; Liao W. H.; Wang Y. S.; Li S. M.; Yang R. B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-borne Polyurethane Composite. ACS Appl. Mater. Interfaces 2015, 7, 2817-2826. (39) Cho S.; Lee J. S.; Jun J.; Kim S. G.; Jang J. Fabrication of Water-Dispersible and Highly

Conductive

PSS-doped

PANI/Graphene

Nanocomposites

Using

a

High-molecular Weight PSS Dopant and Their Application in H2S Detection. Nanoscale 2014, 6, 15181-15195.

27

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(40) Cho S.; Kim M.; Lee J. S.; Jang J. Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor. ACS Appl. Mater. Interfaces 2015, 7, 22301-22314. (41) Pourjavadi A.; Hosseini S. H.; Doulabi M.; Fakoorpoor S. M.; Seidi F. Multi-layer Functionalized Poly (Ionic Liquid) Coated Magnetic Nanoparticles: Highly Recoverable and Magnetically Separable Bronsted Acid Catalyst. ACS Catal. 2012, 2, 1259-1266. (42) Chen T.; Qiu J.; Zhu K.; Li J.; Wang J.; Li S.; Wang X. Achieving High Performance Electric Field Induced Strain: A Rational Design of Hyperbranched Aromatic Polyamide Functionalized Graphene-Polyurethane Dielectric Elastomer Composites. J. Phys. Chem. B 2015, 119, 4521-4530. (43) Zhu Z.; Sun X.; Xue H.; Guo H.; Fan X.; Pan X.; He J. Graphene-Carbonyl Iron Cross-inked Composites with Excellent Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2014, 2, 6582-6591. (44) Acik M.; Dreyer D. R.; Bielawski C. W.; Chabal Y. J. Impact of Ionic Liquids on the Exfoliation of Graphite Oxide. J. Phys. Chem. C 2012, 116, 7867-7873. (45) Zhang Q. X.; Yu Z. Z.; Xie X. L.; Mai Y. W. Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites with Nonionic Modifier. Polymer 2004, 45, 5985-5994. (46) Dang Z. M.; Lin Y. H.; Nan C. W. Novel Ferroelectric Polymer Composites with High Dielectric Constants. Adv. Mater. 2003, 15, 1625-1629. 28

ACS Paragon Plus Environment

Page 28 of 104

Page 29 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(47) Dash B. K.; Achary P. G. R.; Nayak N. C. Dielectric Relaxation Behaviour of Ethylene-Vinyl Acetate-Exfoliated Graphene Nanoplatelets (xGnP) Composites. J. Mater. Sci.: Mater. Electron. 2015, 26, 7244-7254. (48) Su Q.; Pang S.; Alijani V.; Li C.; Feng X. Composites of Graphene with Large Aromatic Molecules. Adv. Mater. 2009, 21, 3191-3195. (49) Fan P.; Wang L.; Yang J.; Chen F.; Zhong M. Graphene/Poly (Vinylidene Fluoride) Composites with High Dielectric Constant and Low Percolation Threshold. Nanotechnology 2012, DOI: 10.1088/0957-4484/23/36/365702. (50) Kirkpatrick S. Classical Transport in Disordered Media: Scaling and Effective-Medium Theories. Phys. Rev. Lett. 1971, 27, 1722-1725. (51) Chang J.; Liang G.; Gu A.; Cai S.; Yuan L. The Production of Carbon Nanotube/Epoxy Composites with a Very High Dielectric Constant and Low Dielectric Loss by Microwave Curing. Carbon 2012, 50, 689-698. (52) Striolo, A.; Prausnitz, J. M. Adsorption of branched homopolymers on a solid surface. J. Chem. Phys. 2001, 114, 8565-8572. (53) Liu, J.; Duan, C.-G.; Yin, W.-G.; Mei, W.-N.; Smith, R. W.; Hardy, J. R., Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 2004, 70, 144106.

Schemes and Figures

29

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(a)

(b)

30

ACS Paragon Plus Environment

Page 30 of 104

Page 31 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(c)

(d) Scheme 1. Entire procedure for preparing (a) HBSiPA, (b) thermally reduced graphene oxide, (c) acrylic resin elastomer, and (d) HBSiPA-TrGO/AR composite

31

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Scheme 2. The interaction of HBSiPA-TrGO and AR

Scheme 3. Composites of graphene sheets (black) in AR (left); overlapped conductive sheets forming a conductive path. Composites of graphene sheets coated by HBSiPA (green) in AR (right); Graphene sheets are polarized applied in an electric field, therefore, positive and negative charges gather at the surface and the sheets begin to feel each other leading to mutual attraction.

32

ACS Paragon Plus Environment

Page 32 of 104

Page 33 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

33

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

34

ACS Paragon Plus Environment

Page 34 of 104

Page 35 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 1. Deconvoluted XPS spectra: (a) survey spectra of HBSiPA-TrGO, TrGO and GO; XPS core spectra of (b) C1s, (c) N1s, and (d) O1s of HBSiPA-TrGO.

35

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

36

ACS Paragon Plus Environment

Page 36 of 104

Page 37 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 2. FT-IR (a) spectra of GO,TrGO,d-PANI, HBSi, HBSiPA and HBSiPA-TrGO; UV-vis (b) spectra of TrGO, d-PANI and HBSiPA-TrGO; Raman (c) spectra of TrGO and HBSiPA-TrGO; XRD (d) spectra of TrGO, d-PANI and HBSiPA-TrGO.

37

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

38

ACS Paragon Plus Environment

Page 38 of 104

Page 39 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

39

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. 40

ACS Paragon Plus Environment

Page 40 of 104

Page 41 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Layer number (i) statistical distribution of HBSiPA according to AFM images.

41

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR.

42

ACS Paragon Plus Environment

Page 42 of 104

Page 43 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 5. The DC conductivity as a function of the filler loading of TrGO/AR (a) and 43

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

HBSiPA-TrGO/AR (b) composites. The inset shows the log(ߪ)-log(fc-f ) plot for fc >f and log(ߪ)-log(f-fc ) plot for fc<f.

44

ACS Paragon Plus Environment

Page 44 of 104

Page 45 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

45

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

46

ACS Paragon Plus Environment

Page 46 of 104

Page 47 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR

(d) and

HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers.

47

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

48

ACS Paragon Plus Environment

Page 48 of 104

Page 49 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 7. Experimental data (hollow circle) and fitting curves (solid line); the inset shows an equivalent circuit of the corresponding composite ((a) 1.69%TrGO/AR; (b) 2.83%HBSiPA-TrGO/AR). Impedance spectra of HBSiPA-TrGO/AR composites (c). The inset is an enlarged version of the circled area.

49

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 8. The elastic modulus of TrGO/AR and HBSiPA-TrGO/AR composites.

TOC

50

ACS Paragon Plus Environment

Page 50 of 104

Page 51 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Scheme 1. Entire procedure for preparing (a) HBSiPA, (b) thermally reduced graphene oxide, (c) acrylic resin elastomer, and (d) HBSiPA-TrGO/AR composite 133x78mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Scheme 1. Entire procedure for preparing (a) HBSiPA, (b) thermally reduced graphene oxide, (c) acrylic resin elastomer, and (d) HBSiPA-TrGO/AR composite 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 52 of 104

Page 53 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Scheme 1. Entire procedure for preparing (a) HBSiPA, (b) thermally reduced graphene oxide, (c) acrylic resin elastomer, and (d) HBSiPA-TrGO/AR composite 73x30mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Scheme 1. Entire procedure for preparing (a) HBSiPA, (b) thermally reduced graphene oxide, (c) acrylic resin elastomer, and (d) HBSiPA-TrGO/AR composite 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 54 of 104

Page 55 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Scheme 2. The interaction of HBSiPA-TrGO and AR 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 56 of 104

Scheme 3. Composites of graphene sheets (black) in AR (left); overlapped conductive sheets forming a conductive path. Composites of graphene sheets coated by HBSiPA (green) in AR (right); Graphene sheets are polarized applied in an electric field, therefore, positive and negative charges gather at the surface and the sheets begin to feel each other leading to mutual attraction. 241x82mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 57 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 1. Deconvoluted XPS spectra: (a) survey spectra of HBSiPA-TrGO, TrGO and GO; XPS core spectra of (b) C1s, (c) N1s, and (d) O1s of HBSiPA-TrGO. 229x176mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 58 of 104

Figure 1. Deconvoluted XPS spectra: (a) survey spectra of HBSiPA-TrGO, TrGO and GO; XPS core spectra of (b) C1s, (c) N1s, and (d) O1s of HBSiPA-TrGO. 230x178mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 59 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 1. Deconvoluted XPS spectra: (a) survey spectra of HBSiPA-TrGO, TrGO and GO; XPS core spectra of (b) C1s, (c) N1s, and (d) O1s of HBSiPA-TrGO. 236x188mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 60 of 104

Figure 1. Deconvoluted XPS spectra: (a) survey spectra of HBSiPA-TrGO, TrGO and GO; XPS core spectra of (b) C1s, (c) N1s, and (d) O1s of HBSiPA-TrGO. 237x189mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 61 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 2. FT-IR (a) spectra of GO,TrGO,d-PANI, HBSi, HBSiPA and HBSiPA-TrGO; UV-vis (b) spectra of TrGO, d-PANI and HBSiPA-TrGO; Raman (c) spectra of TrGO and HBSiPA-TrGO; XRD (d) spectra of TrGO, d-PANI and HBSiPA-TrGO. 237x189mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 62 of 104

Figure 2. FT-IR (a) spectra of GO,TrGO,d-PANI, HBSi, HBSiPA and HBSiPA-TrGO; UV-vis (b) spectra of TrGO, d-PANI and HBSiPA-TrGO; Raman (c) spectra of TrGO and HBSiPA-TrGO; XRD (d) spectra of TrGO, d-PANI and HBSiPA-TrGO. 205x156mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 63 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 2. FT-IR (a) spectra of GO,TrGO,d-PANI, HBSi, HBSiPA and HBSiPA-TrGO; UV-vis (b) spectra of TrGO, d-PANI and HBSiPA-TrGO; Raman (c) spectra of TrGO and HBSiPA-TrGO; XRD (d) spectra of TrGO, d-PANI and HBSiPA-TrGO. 231x179mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 64 of 104

Figure 2. FT-IR (a) spectra of GO,TrGO,d-PANI, HBSi, HBSiPA and HBSiPA-TrGO; UV-vis (b) spectra of TrGO, d-PANI and HBSiPA-TrGO; Raman (c) spectra of TrGO and HBSiPA-TrGO; XRD (d) spectra of TrGO, d-PANI and HBSiPA-TrGO. 229x177mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 65 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 706x469mm (72 x 72 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 66 of 104

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 706x469mm (72 x 72 DPI)

ACS Paragon Plus Environment

Page 67 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 706x469mm (72 x 72 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 68 of 104

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 706x469mm (72 x 72 DPI)

ACS Paragon Plus Environment

Page 69 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 107x115mm (96 x 96 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 70 of 104

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 107x115mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 71 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 199x146mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 72 of 104

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 185x126mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 73 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 3. TEM images of TrGO (a and b) and TrGO-HBSiPA (c and d). AFM images (e and f) and the corresponding height curves (g and h) of TrGO and HBSiPA-TrGO. Layer number (i) statistical distribution of HBSiPA according to AFM images. 203x152mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR. 127x96mm (254 x 254 DPI)

ACS Paragon Plus Environment

Page 74 of 104

Page 75 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR. 95x71mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR. 127x96mm (254 x 254 DPI)

ACS Paragon Plus Environment

Page 76 of 104

Page 77 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR. 95x71mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. SEM images of fracture surfaces of TrGO/AR (a and b) and HBSiPA-TrGO/AR (c and d). XRD spectra (e) of AR, TrGO/AR and HBSiPA-TrGO/AR. 213x168mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 78 of 104

Page 79 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 5. The DC conductivity as a function of the filler loading of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites. The inset shows the log(σ)-log(fc-f ) plot for fc>f and log(σ)-log(f-fc ) plot for fc<f. 206x157mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 5. The DC conductivity as a function of the filler loading of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites. The inset shows the log(σ)-log(fc-f ) plot for fc>f and log(σ)-log(f-fc ) plot for fc<f. 203x152mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 80 of 104

Page 81 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR (d) and HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers. 205x156mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 82 of 104

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR (d) and HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers. 203x152mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 83 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR (d) and HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers. 205x156mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 84 of 104

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR (d) and HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers. 204x153mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 85 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 6. Dependence of the dielectric constant on the frequency of TrGO/AR (a) and HBSiPA-TrGO/AR (b) composites at room temperature with different mass fraction of fillers. Dielectric constant of TrGO/AR and HBSiPA-TrGO/AR composites as a function of the filler content measured at 100 Hz and room temperature (c). Dependence of dielectric loss on the frequency of TrGO/AR (d) and HBSiPA-TrGO/AR (e) composites at room temperature with different mass fraction of fillers. 203x152mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 7. Experimental data (hollow circle) and fitting curves (solid line); the inset shows an equivalent circuit of the corresponding composite ((a) 1.69%TrGO/AR; (b) 2.83%HBSiPA-TrGO/AR). Impedance spectra of HBSiPA-TrGO/AR composites (c). The inset is an enlarged version of the circled area. 198x144mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 86 of 104

Page 87 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 7. Experimental data (hollow circle) and fitting curves (solid line); the inset shows an equivalent circuit of the corresponding composite ((a) 1.69%TrGO/AR; (b) 2.83%HBSiPA-TrGO/AR). Impedance spectra of HBSiPA-TrGO/AR composites (c). The inset is an enlarged version of the circled area. 188x130mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 7. Experimental data (hollow circle) and fitting curves (solid line); the inset shows an equivalent circuit of the corresponding composite ((a) 1.69%TrGO/AR; (b) 2.83%HBSiPA-TrGO/AR). Impedance spectra of HBSiPA-TrGO/AR composites (c). The inset is an enlarged version of the circled area. 185x127mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 88 of 104

Page 89 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 8. The elastic modulus of TrGO/AR and HBSiPA-TrGO/AR composites. 227x174mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

TOC 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 90 of 104

Page 91 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

TOC 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

TOC 203x152mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 92 of 104

Page 93 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

TOC 185x126mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 94 of 104

Figure S1. 1H NMR spectrum (a), solid-state 13C NMR spectrum (b) and solid-state 29Si NMR spectrum (c) of HBSiPA. 249x229mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 95 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure S1. 1H NMR spectrum (a), solid-state 13C NMR spectrum (b) and solid-state 29Si NMR spectrum (c) of HBSiPA. 543x836mm (96 x 96 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 96 of 104

Figure S1. 1H NMR spectrum (a), solid-state 13C NMR spectrum (b) and solid-state 29Si NMR spectrum (c) of HBSiPA. 216x173mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 97 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure S1. 1H NMR spectrum (a), solid-state 13C NMR spectrum (b) and solid-state 29Si NMR spectrum (c) of HBSiPA. 539x836mm (96 x 96 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 98 of 104

Figure S1. 1H NMR spectrum (a), solid-state 13C NMR spectrum (b) and solid-state 29Si NMR spectrum (c) of HBSiPA. 213x168mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 99 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure S2. UV-vis transmittances of d-PANI and HBSiPA solutions (a). TG curves of d-PANI and HBSiPA under a nitrogen atmosphere (b). Permittivity and dielectric loss of d-PANI-TrGO/AR composites (c) and HBSiPA-TrGO/AR composites (d). 191x134mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 100 of 104

Figure S2. UV-vis transmittances of d-PANI and HBSiPA solutions (a). TG curves of d-PANI and HBSiPA under a nitrogen atmosphere (b). Permittivity and dielectric loss of d-PANI-TrGO/AR composites (c) and HBSiPA-TrGO/AR composites (d). 201x150mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 101 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure S2. UV-vis transmittances of d-PANI and HBSiPA solutions (a). TG curves of d-PANI and HBSiPA under a nitrogen atmosphere (b). Permittivity and dielectric loss of d-PANI-TrGO/AR composites (c) and HBSiPA-TrGO/AR composites (d). 182x122mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 102 of 104

Figure S2. UV-vis transmittances of d-PANI and HBSiPA solutions (a). TG curves of d-PANI and HBSiPA under a nitrogen atmosphere (b). Permittivity and dielectric loss of d-PANI-TrGO/AR composites (c) and HBSiPA-TrGO/AR composites (d). 180x120mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 103 of 104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure S3. DSC (a) and TG (b) curves of AR and HBSiPA-TrGO/AR composites. 220x178mm (300 x 300 DPI)

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure S3. DSC (a) and TG (b) curves of AR and HBSiPA-TrGO/AR composites. 202x150mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 104 of 104