Capacity Enhancement of Ionic Liquids-Based Nanofluid for Fuels

Sep 28, 2018 - Gas-Phase Chemistry of the NO–SO2–ClO2 System Applied to Flue Gas Cleaning. Industrial & Engineering Chemistry Research. Johansson ...
1 downloads 0 Views 2MB Size
Subscriber access provided by UNIV OF LOUISIANA

Separations

Capacity enhancement of ionic liquids based nanofluid for fuels desulfurization purposes Karolina Kedra-Krolik, Laëtitia Cesari, Fabrice Mutelet, and Marek Rogalski Ind. Eng. Chem. Res., Just Accepted Manuscript • DOI: 10.1021/acs.iecr.8b02905 • Publication Date (Web): 28 Sep 2018 Downloaded from http://pubs.acs.org on October 2, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Capacity enhancement of ionic liquids based nanofluid for fuels desulfurization purposes Karolina KĘDRA-KRÓLIKa, Laëtitia CESARIb, Fabrice MUTELET b,*Marek ROGALSKIc a

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw,

Poland. b

Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 1 rue Grandville, BP

20451 54001 Nancy, France. c

Laboratoire de Chimie de Méthodologies pour l’environnement, EA 4164, Université de

Lorraine, 1, bd Arago-57078 METZ, Cedex 3, France. Abstract For the first time, nanoparticles enhanced ionic liquids (NEILs) were used to improve the capacity of IL to extract sulphur compounds from aliphatic. Study on 6 ternary systems containing {Thiophene (1) + Heptane (2) + NEILs} shows that NEILs composed of TiO2 or Fe2O3

nanoparticles

and

1,3

dimethylimidazolium

methylphosphonate,

1-ethyl-3-

methylimidazolium thiocyanate or 1-butyl-3-methylimidazolium thiocyanate increase up to 2.5 the solute distribution ratio values compared to results obtained with pure ionic liquids. Yet, the selectivity decreases of NEILS is lower than those obtained with pure ILs but its value remains important. The Dynamic Light Scattering measurements show that nanoparticles of Fe2O3 and TiO2 aggregate in ILs and the size of nanoaggregates depends on the nature of nanoparticles and of ionic liquid.

Keywords: Ionic liquids, nanoparticles, thiophene, liquid-liquid equilibria, desulfurization.

1

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 37

(*) author to whom the correspondence should be addressed: e-mail: [email protected] - Telephone number: +33 3 83 17 51 31 - Fax number: +33 3 83 17 53 95

2

ACS Paragon Plus Environment

Page 3 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Introduction One priority of international environmental laws is the reduction of emissions from diesel engines. These last decades, Petroleum industry had developed different processes able to produce ultra-low-sulfur content fuels. Recently, ionic liquids have been used as non-volatile alternatives toward the desulfurization of liquid fuels.1 Ionic liquids (ILs) were used for many industrial applications due to their unique physical and chemical properties. They are molten salts composed of anions and cations with a melting temperature below 100 °C. ILs display a negligible vapour pressure, high thermal stability and miscibility with compounds in wide ranges of polarities. Moreover, it is possible to tune some of their properties by adjusting different cation-anion combinations. Molecular interactions of ILs are complex comparing to classical solvents, and include dispersive, n-π, π-π, dipolar, hydrogen bonding, hydrophobic, and ionic interactions. Due to these unique properties, ILs were successfully used in liquid−liquid extraction, catalysis, organic/inorganic synthesis and electrochemistry.2–4 Selectivity of ILs is often much higher than those obtained with classical solvents.5 Moreover, by adjusting different cation-anion combinations, it is possible to control ILs miscibility or polarity, making them suitable solvents for separation of a wide variety of polar, apolar, organic, inorganic or organometallic molecules. Numerous papers proved that imidazolium based ionic liquids can be used for the extraction of aromatic compounds from aliphatic hydrocarbons.6–14 Results obtained by Nuclear Magnetic Resonance (NMR)15,16 pointed out that thiophene compounds are associated into structures formed by ionic pairs of IL that enable a highly selective recovery of aromatic sulphur compounds from fuels. The absorption capacity of thiophene by ionic liquids strongly depends on the size and structure of the cation and anion of IL.7,16Some alkyl-

3

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 37

imidazolium ILs with anions such as [SCN]-, [MP]-, [BF4]-, [PF6]-, [EtSO4]-, [NTf2]- have been found to successfully remove thiophene from a hydrocarbon environment.17–21 Good results of extraction of sulphur compounds (e. g. thiophenes or dibenzothiophenes) from gasoline or diesel oil using ILs indicate that this process could be a promising alternative to the usual (deep) desulfurization by hydrotreating. However, an efficient extraction of sulphur compounds requires high selectivity and capacity values. Indeed, numerous ILs such as [DMIM][MP] and [EMIM][SCN]7 show extremely high selectivity (over 1000) but their solute distribution ratio is in a range from 0.6 to 0.8 and from 0.2 to 1.1 respectively that leads to high amount of IL necessary to extract one kg of the sulphur compound (low capacity). One way to improve the sulphur extraction capacity of IL could be the use of nanoparticles (Nps).

22,23

Behavior of

nanoparticles in IL solution depends on their physico-chemical properties. Generally, Nps dispersed in liquids display a propensity to gather and to forming stable, nanometric aggregates. However, Nps dispersed in ILs may exist as single particles

17

. For example, ILs composed of

1,3-dialkylimidazolium are well known to form nanoparticles in suspension. In this case, anions and cations of ILs behave as electrostatic stabilizing agents and form a layer avoiding the aggregation of Nps. At present, stabilization mechanisms are not perfectly understood while numerous parameters have to be taken into account (interaction, chemical and physical properties of NPs, structure of the IL). 18 Pensado et Padua

19

demonstrated that the solvation of ruthenium nanoparticles in 1-butyl-3-

methylimidazolium bis(trifluoromethanesulfonyl)amide is mainly due to the most charged part of the ions. The ruthenium-IL interface is composed of one ion layer and apolar parts are preferentially directed away from the surface. Results of dynamic molecular show that metallic nanoparticles are mainly stabilized in ILs by steric effects of the alkyl chains. Fu et al have studied the impact of the size of gold nanoparticles in 1-butyl-3-methylimidazolium 4

ACS Paragon Plus Environment

Page 5 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

tetrafluoroborate on the stabilization mechanism by molecular dynamic20. It was found that solutions containing small gold Nps are stabilized by the alkyl chain of the cation whereas the imidazolium ring plays a major role in the stabilization of large nanoparticles. Magnetic nanoparticles are strongly used as sorbents in solid phase extraction.21 However, their use is somewhat limited because Nps can oxidize or agglomerate in solution. For this reason, nanoparticles are coated by SiO2 and functional groups such as alkyl chains 24,25or ionic liquids 26 are grafted on the surface. Numerous solid hybrid materials constituted of Fe3O4 or Fe2O3//SiO2//IL were proposed for extraction applications of aromatics26, industrial dyes27,28, anti-inflammatory drugs

29

or acaricides

30

from water. The findings reported confirm that Nps

may influence properties of ILs and in certain cases may improve their extraction capacity. Results of the recent studies on elaboration and applications of nanoparticules converge towards the opinion that nanoparticles of metal and metal oxides form stable dispersions in ionic liquids without the need of additional stabilizers. Rodriguez-Cabo et al.31studied the methods to obtain stable nanodispersions of metal oxide Nps. They found that stirring the nanopowder with IL at temperatures higher than 100°C for several hours yields a nanofluid with dispersion of single Nps.

In the present study, the performance of 6 NEILs were evaluated for the extraction of sulphur compounds from hydrocarbon environment with the goal of improving the capacity of the process. In this work, TiO2 or Fe2O3 nanoparticles are used with 1,3 dimethylimidazolium methylphosphonate [DMIM][MP], 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN] or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN]} ionic liquids to enhance their capacity to extract sulphur compounds from aliphatic media.

5

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 37

Experimental Materials and methods The names, abbreviations, CAS numbers, molar masses, structures, suppliers and purity of the substances are listed in Table 1. The nanoparticles of TiO2 (d = 10-20 nm) and Fe2O3 (d 99.5%

Heptane Titanium

142-82-5 TiO2

dioxide Iron Oxide 1-Ethyl-3-

13463-67-

100.2 79.87

7 Fe2O3 [EMIM][SCN]

methylimidazoli

1309-37-1 331717-

159.69 169.25

63-6

C7H16 TiO2 Fe2O3

Sigma Aldrich >99% Sigma Aldrich 99% Sigma Aldrich >99% Fluka >95%

um thiocyanate 1-butyl-3-

[BMIM][SCN]

methylimidazoli

344790-

197.30

87-0

Fluka >95%

um thiocyanate 1,3-

[DMIM][MP]

--

192.15

dimethylimidaz

Solvionic >98%

olium methylphosphon ate,

19

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 37

Table 2. GC operating conditions for composition analysis.

Injector Temperature

250 °C

Carrier Gas

Helium

Capillary column

WCOT Ulti-Metal coated with HT-SIMDIST-CB (10 m × 0.53 mm × 0.53 µm) with an empty pre-column.

Flow rate

2 mL.min-1

Column Oven

70 °C→125 °C (5°C/min), 5min

Detector Type

FID

Detector Temperature

250 °C

20

ACS Paragon Plus Environment

Page 21 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Table 3. Experimental data for LLE of ternary systems at 298.15K and 0.1 MPa.a Hydrocarbon-rich phase x1HC 0.047

x2HC

IL-rich phase x3HC

x1IL

x2IL

x3IL

S

βm

575.1

0.67

β

Thiophene (1) + Heptane (2) + [DMIM][MP] with nano-TiO2 (0.05 wt %) (3) 0.932 0.021 0.058 0.002 0.94 1.23

0.198

0.802

0.000

0.192

0.003

0.805

0.97

259.2

0.55

0.353

0.647

0.000

0.249

0.003

0.748

0.71

152.1

0.40

0.42

0.58

0.000

0.28

0.003

0.713

0.67

128.9

0.39

0.436

0.564

0.000

0.292

0.003

0.705

0.67

125.9

0.39

0.558

0.442

0.000

0.345

0.004

0.651

0.62

68.3

0.37

0.75

0.25

0.000

0.367

0.003

0.63

0.49

40.9

0.28

1.000

0.000

0.000

0.425

0.000

0.575

0.43

-

0.099

Thiophene (1) + Heptane (2) + [DMIM][MP] with nano-TiO2 (0.1 wt %) (3) 0.819 0.082 0.158 0.002 0.84 1.60

653.5

0.97

0.073

0.927

0.000

0.13

0.002

0.868

1.78

825.4

0.99

0.196

0.772

0.032

0.226

0.002

0.772

1.15

445.0

0.69

0.306

0.681

0.013

0.237

0.002

0.761

0.77

263.7

0.45

0.489

0.511

0.000

0.272

0.002

0.726

0.56

142.1

0.32

0.544

0.456

0.000

0.311

0.003

0.686

0.57

86.9

0.33

0.735

0.265

0.000

0.455

0.003

0.542

0.62

54.7

0.38

Thiophene (1) + Heptane (2) + [DMIM][MP] with nano-Fe2O3 (0.05 wt %) (3) 0.079

0.921

0.000

0.086

0.002

0.912

1.09

501.3 0.59

0.196

0.804

0.000

0.172

0.002

0.826

0.88

352.8 0.50

0.39

0.61

0.000

0.247

0.002

0.751

0.63

193.2 0.36

0.471

0.529

0.000

0.301

0.002

0.697

0.64

0.485

0.515

0.000

0.315

0.003

0.682

0.65

111.5 0.38

0.768

0.232

0.000

0.332

0.003

0.665

0.43

33.43 0.24

1

0.000

0.000

0.465

0.000

0.535

0.47

-

0.28

96.52

0.34

0.825

Thiophene (1) + Heptane (2) + [DMIM][MP] with nano-Fe2O3 (0.1 wt %) (3) 0.55 0.175 0.0000 0.455 0.001 0.544

169

0.37

0.098

0.899

0.003

0.096

0.001

0.902

0.98

0.708

0.292

0.000

0.421

0.002

0.577

0.59

0.325

0.666

0.008

0.180

0.002

0.818

0.55

0.577

0.423

0.000

0.310

0.003

0.688

0.54

184.43 0.31 75.75 0.31

0.528

0.461

0.011

0.271

0.003

0.726

0.51

78.87

0.040

Thiophene (1) + Heptane (2) + [EMIM][SCN] with nano-TiO2 (0.05 wt %) (3) 0.953 0.008 0.073 0.005 0.922 1.84

880.65 0.53 86.82 0.36

0.29

380.75 1.13 21

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 37

0.172

0.828

0.000

0.208

0.003

0.789

1.21

0.293

0.707

0.000

0.325

0.003

0.672

1.11

0.318

0.682

0.000

0.352

0.004

0.646

1.11

0.362

0.638

0.000

0.383

0.004

0.613

1.06

0.420

0.580

0.000

0.429

0.003

0.568

1.02

0.488

0.512

0.000

0.482

0.005

0.513

0.99

179.72 0.72 103.33 0.71

0.612

0.388

0.000

0.497

0.007

0.496

0.81

48.60

0.58

1.000

0.000

0.000

0.621

0.000

0.379

0.62

-

0.45

796.4

1.02

0.035

Thiophene (1) + Heptane (2) + [EMIM][SCN] with nano-TiO2 (0.1 wt %) (3) 0.956 0.010 0.058 0.002 0.940 1.67

312.74 0.78 230.80 0.75 188.46 0.75 168.53 0.73

0.123

0.877

0.000

0.145

0.002

0.853

1.18

518.4

0.74

0.175

0.825

0.000

0.192

0.002

0.806

1.10

453.5

0.70

0.225

0.775

0.000

0.234

0.002

0.764

1.04

402.1

0.67

0.293

0.707

0.000

0.290

0.002

0.708

0.99

349.2

0.65

0.359

0.641

0.000

0.340

0.002

0.658

0.95

304.1

0.64

0.413

0.587

0.000

0.377

0.002

0.621

0.91

267.9

0.62

0.478

0.520

0.002

0.425

0.002

0.570

0.89

231.1

0.62

0.711

0.289

0.000

0.619

0.003

0.378

0.87

83.8

0.66

0.782

0.218

0.000

0.668

0.003

0.329

0.85

62.0

0.67

Thiophene (1) + Heptane (2) + [EMIM][SCN] with nano-Fe2O3 (0.05 wt %) (3) 0.937 0.003 0.087 0.004 0.909 1.45

316.0

0.90

0.060 0.164

0.813

0.023

0.212

0.004

0.784

1.29

262.1

0.85

0.285

0.715

0.000

0.299

0.005

0.697

1.05

166.9

0.70

0.294

0.707

0.000

0.318

0.005

0.677

1.08

152.6

0.73

0.395

0.605

0.000

0.407

0.005

0.588

1.03

124.6

0.72

0.462

0.538

0.000

0.458

0.005

0.537

0.99

111.0

0.71

0.524

0.476

0.000

0.473

0.005

0.523

0.9

85.6

0.64

0.379

0.621

0.000

0.390

0.005

0.605

1.03

128.0

0.71

1.0000

0.0000

0.0000

0.670

0.0000

0.330

0.67

-

0.053

Thiophene (1) + Heptane (2) + [EMIM][SCN] with nano-Fe2O3 (0.1 wt %) (3) 0.947 0.000 0.066 0.002 0.932 1.24

561.2

0.76

0.121

0.879

0.000

0.125

0.002

0.873

1.04

455.2

0.64

0.189

0.811

0.000

0.179

0.002

0.819

0.95

349.4

0.60

0.252

0.748

0.000

0.237

0.002

0.762

0.94

351.7

0.61

0.317

0.683

0.000

0.288

0.002

0.709

0.91

282.8

0.60

0.384

0.616

0.000

0.331

0.002

0.668

0.86

294.6

0.57

0.426

0.574

0.000

0.389

0.004

0.607

0.91

138.1

0.63

0.510

0.490

0.000

0.453

0.003

0.544

0.89

145.1

0.63

0.711

0.289

0.000

0.559

0.004

0.437

0.79

55.3

0.58

0.835

0.165

0.000

0.723

0.004

0.274

0.87

40.8

0.58 22

ACS Paragon Plus Environment

Page 23 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

0.116

Thiophene (1) + Heptane (2) + [BMIM][SCN] with nano-TiO2 (0.1 wt %) (3) 0.856 0.0282 0.214 0.004 0.782 1.84

394.8

1.08

0.185

0.787

0.028

0.273

0.005

0.722

1.48

232.3

0.89

0.298

0.7

0.003

0.328

0.005

0.667

1.10

154.1

0.66

0.353

0.628

0.019

0.335

0.012

0.653

0.95

49.7

0.58

0.392

0.561

0.047

0.4

0.011

0.589

1.02

52.0

0.67

0.527

0.473

0.000

0.541

0.012

0.447

1.03

40.5

0.70

0.595

0.405

0.000

0.557

0.008

0.435

0.94

47.4

0.64

0.746

0.254

0.000

0.66

0.02

0.32

0.88

11.2

0.65

Thiophene (1) + Heptane (2) + [BMIM][SCN] with nano-Fe2O3 (0.1 wt %) (3) 0.945 0.000 0.109 0.009 0.882 1.97

208.6

1.06

0.055 0.155

0.845

0.000

0.250

0.012

0.737

1.61

109.8

0.94

0.270

0.710

0.020

0.324

0.013

0.663

1.20

67.7

0.74

0.378

0.575

0.047

0.420

0.012

0.568

1.11

54.1

0.74

0.423

0.578

0.000

0.475

0.014

0.512

1.12

47.3

0.74

0.480

0.520

0.000

0.520

0.013

0.466

1.08

42.1

0.73

a: u(T) = 0.1K, u(x) < 0.005

23

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 37

Table 4. Distribution ratio (βm) and selectivity (S) values obtained for ternary systems {Thiophene (1) + Heptane (2) + NEILs or ILs}. Solvent

T (K); P (kPa)

β max

S

Ref.

[DMIM][MP] with nano-TiO2 (0.1 wt %)

298.15; 101.25

1.60

653

This work

[EMIM][SCN] with nano-Fe2O3 (0.1 wt %)

298.15; 101.25

1.24

561

This work

[BMIM][SCN] with nano-TiO2 (0.1 wt %)

298.15; 101.25

1.84

395

This work

[DMIM][MP]

298.15; 101.25

0.42

1756

16

1-ethyl-3-methylimidazolium thiocyanate

298.15; 101.25

0.64

1598

16

1-ethyl-3-methylimidazolium thiocyanate

305.15; 101.25

0.69

497

16

tris-(2-hydroxyethyl)methylammoniummethylsulfate 1-ethyl-3-methylimidazolium tricyanomethanide

298.15; 101.25

0.08

102

16

298.15; 101.25

2.38

233

36

1-ethyl-3-methylimidazolium tricyanomethanide

308.15; 101.25

1.94

164

36

1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate 1-butyl-1-methylpyrrolidinium tetracyanoborate

298.15; 101.25

5.46

58

37

298.15; 101.25

3.31

75

37

1-butyl-1-methylpyrrolidinium tricyanomethanide

298.15; 101.25

3.47

133

37

1-ethyl-3-methylimidazolium ethylsulfate

298.15; 101.25

1.03

78

38

1-methyl-3-octylimidazolium tetrafluoroborate

298.15; 101.25

1.61

10

39

24

ACS Paragon Plus Environment

Page 25 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 1. Tie line for ternary mixtures {Thiophene + Heptane + NEIL} at 298.15 K. NEIL = {[EMIM][SCN] + x TiO2}: x = 0.05 wt %: ♦; x = 0.1 wt %: . Pure [EMIM][SCN]:  and (data from article K. Kedra-Krolik et al.7).

25

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 37

Figure 2. Tie line for ternary mixtures {Thiophene + Heptane + NEIL} at 298.15 K. NEIL = {[EMIM][SCN] + x Fe2O3}: x = 0.05 wt %: ♦; x = 0.1 wt %: . Pure [EMIM][SCN]:  and (data from article K. Kedra-Krolik et al.7).

26

ACS Paragon Plus Environment

Page 27 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 3. Tie line for ternary mixtures {Thiophene + Heptane + NEIL} at 298.15 K. NEIL = {[DMIM][MP] + x TiO2}: x = 0.05 wt %: ♦; x = 0.1 wt %: . Pure [DMIM][MP]:  and (data from article A.-L. Revelli et al.17).

27

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 37

Figure 4. Tie line for ternary mixtures {Thiophene + Heptane + NEIL} at 298.15 K. NEIL = {[DMIM][MP] + x Fe2O3}: x = 0.05 wt %: ♦; x = 0.1 wt %: . Pure [DMIM][MP]:  and (data from article A-L. Revelli et al.17).

28

ACS Paragon Plus Environment

Page 29 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 5. Effect of TiO2 and Fe2O3 nanoparticles addition (0.1 wt % of IL) in ternary system {Thiophene + Heptane + [BMIM][SCN]} at 298.15 K. TiO2: ♦; Fe2O3: . Mixture without nanoparticles:  and

(data from article A-L. Revelli et al.17).

29

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 37

Figure 6. Pictures of NEILs constituted of (a) [DMIM][MP]+Fe2O3, (b) [DMIM][MP]+TiO2 and liquid-liquid equilibria of ternary systems (c) {[DMIM][MP] + Fe2O3 + Heptane + thiophene}, (d) {[DMIM][MP] + TiO2 + Heptane + thiophene}.

30

ACS Paragon Plus Environment

Page 31 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 7. Solute distribution ratio β as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for∗ pure [DMIM][MP]; ■ {[DMIM][MP] + 0.1% TiO2}; □ {[DMIM][MP] + 0.05% TiO2}; ▲ {[DMIM][MP] + 0.1% Fe2O3}; ∆ {[DMIM][MP] + 0.05% Fe2O3}.

31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 37

Figure 8. Selectivity S as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for∗ pure [DMIM][MP]; ■ {[DMIM][MP] + 0.1% TiO2}; □ {[DMIM][MP] + 0.05% TiO2}; ▲ {[DMIM][MP] + 0.1% Fe2O3}; ∆ {[DMIM][MP] + 0.05% Fe2O3}.

32

ACS Paragon Plus Environment

Page 33 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 9. Solute distribution ratio βm as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for: ∗ pure [EMIM][SCN]; ■ {[EMIM][SCN] + 0.1% TiO2}; □ {[EMIM][SCN] + 0.05% TiO2}; ▲ {[EMIM][SCN] + 0.1% Fe2O3}; ∆ {[EMIM][SCN] + 0.05% Fe2O3}.

33

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 37

Figure 10. Selectivity S as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for: ∗ pure [EMIM][SCN]; ■ {[EMIM][SCN] + 0.1% TiO2}; □ {[EMIM][SCN] + 0.05% TiO2}; ▲ {[EMIM][SCN] + 0.1% Fe2O3}; ∆ {[EMIM][SCN] + 0.05% Fe2O3}.

34

ACS Paragon Plus Environment

Page 35 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Figure 11. Solute distribution ratio β as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for pure [BMIM][SCN] and its suspensions with TiO2 and Fe2O3 nanopowders. ∗ pure [BMIM][SCN]; ■ {[BMIM][SCN] + 0.1% TiO2}; ▲ {[BMIM][SCN] + 0.1% Fe2O3}.

35

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 36 of 37

Figure 12. Selectivity S as function of solute mass fraction (thiophene) in hydrocarbon-rich phase, at 298.15 K for pure [BMIM][SCN] and its suspensions with TiO2 and Fe2O3 nanopowders. ∗ pure [BMIM][SCN]; ■ {[BMIM][SCN] + 0.1% TiO2}; ▲ {[BMIM][SCN] + 0.1% Fe2O3}.

36

ACS Paragon Plus Environment

Page 37 of 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Table of Contents (TOC) Graphic:

37

ACS Paragon Plus Environment