Carbon Molecular Sieves - ACS Symposium Series (ACS Publications)

May 27, 1988 - Recent results concerning the preparation and adsorptive properties of these inorganic oxide modified-carbon molecular sieves (IOM-CMS)...
0 downloads 0 Views 2MB Size
Chapter

21

Carbon Molecular Sieves Properties and Applications

in Perspective

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

Henry C. Foley Department of Chemical Engineering and The Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716

In this paper we briefly review the important aspects of carbon molecular sieve materials with special emphasis on their use in catalysis, and our most recent results with composite structures that we have termed inorganic oxide-modified carbon molecular sieves (IOM-CMS). The literature on carbon molecular sieves, particularly patents, is large and growing, with European and Japanese researchers dominating in recent years. Carbon molecular sieve research can best be divided into three main areas: (A) fundamentals of preparation and properties, (B) gas separations, and (C) catalytic applications. Research and technological development concerning the carbon-based materials has been devoted primarily to the first two areas, with considerably less attention focused on their catalytic properties and utility. A number of good reviews of the separation applications, particularly pressure swing adsorption technology, have been published recently. This account will briefly summarize the properties of the carbon molecular sieves, review reports dealing with catalytic applications, and then describe our own research which has focused on preparation of composite materials, comprised of molecular sieving carbon and inorganic oxides. These composites contain functionality that is not present in the pure carbons, and ultramicroporosity for molecular sieving properties not found in the inorganic oxides. Recent results concerning the preparation and adsorptive properties of these inorganic oxide modified-carbon molecular sieves (IOM­ -CMS) will be discussed in the context of carbon molecular sieves in general.

0097-6156/88/0368-0335$07.50/0 © 1988 American Chemical Society

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

336

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

Carbon m o l e c u l a r s i e v e s a r e amorphous m a t e r i a l s w i t h a v e r a g e pore dimensions s i m i l a r t o the c r i t i c a l dimensions of small molecules. They a r e p r e p a r e d by t h e p y r o l y s i s o f n a t u r a l and s y n t h e t i c p r e c u r s o r s , i n c l u d i n g c o a l , coconut s h e l l s , p i t c h , phenol-formaldehyde r e s i n , p o l y f u r f u r y l a l c o h o l , p o l y a c r y l o n i t r i l e , and p o l y v i n y l i d e n e c h l o r i d e . P r o p e r t i e s of the c a r b o n m o l e c u l a r s i e v e s a r e q u i t e v a r i a b l e , s p a n n i n g p o r e s i z e s f r o m 3 t o 1 2 Â , p o r e volumes from 0 . 2 t o 0 . 5 cm -g~ and s u r f a c e a r e a s from 3 0 0 t o 1 5 0 0 m -g- . Properties of a p a r t i c u l a r c a r b o n a r e c o n t r o l l e d by t h e c h o i c e o f p r e c u r s o r , a d d i t i v e s o r p o r e f o r m e r s , and p y r o l y s i s c o n d i t i o n s ( 1 ) . The s u r f a c e o f m o l e c u l a r s i e v i n g c a r b o n i s h y d r o p h o b i c and i n e r t i n a net r e d u c i n g environment. However, t r e a t m e n t o f t h e c a r b o n i n a n e t o x i d i z i n g environment can c o n v e r t s u r f a c e s t o a more a c t i v e and h y d r o p h i l i c form. The h y d r o p h i l i c s t a t e i s g e n e r a l l y t h e r m a l l y u n s t a b l e , r e v e r t i n g t o t h e h y d r o p h o b i c f o r m upon h e a t i n g i n an i n e r t o r r e d u c i n g e n v i r o n m e n t . The p o r e s t r u c t u r e i n m o l e c u l a r s i e v i n g c a r b o n i s t y p i c a l l y a s c r i b e d t o a r i s e from a t l e a s t t h r e e d i f f e r e n t mechanisms. In the f i r s t t h e s t r u c t u r e o f t h e c a r b o n i s d e r i v e d f r o m t h e p r e c u r s o r , b u t i n shrunken form. In t h i s way t h e s t r u c t u r e o f wood c h a r c o a l i s s i m i l a r t o t h e c e l l u l a r s t r u c t u r e o f t h e wood (2.). A n o t h e r t y p e o f p o r o s i t y a r i s e s i n t h e f i s s u r e s and c r a c k s l e f t b e h i n d i n t h e c a r b o n m a t r i x . These f a u l t s r e l i e v e t h e t h e r m a l l y - i n d u c e d , m e c h a n i c a l s t r e s s e s b r o u g h t on by p y r o l y s i s . U l t r a m i c r o p o r o s i t y can a l s o o r i g i n a t e from t h e v o l a t i l i z a t i o n o f small molecules. These m o l e c u l e s a r e formed d u r i n g p y r o l y s i s , and l e a v e m o l e c u l a r l y - s i z e d c h a n n e l s i n t h e s o l i d i f y i n g c a r b o n matrix ( 3 - 6 ) . P y r o l y s i s of p o l y f u r f u r y l a l c o h o l , p o l y v i n y l i d e n e c h l o r i d e , and p o l y a c r y l o n i t r i l e l e a d t o t h e f o r m a t i o n o f f o r m a l d e h y d e and water, hydrogen c h l o r i d e , and hydrogen c y a n i d e , r e s p e c t i v e l y . S i n c e c a r b o n m o l e c u l a r s i e v e s a r e amorphous m a t e r i a l s , t h e d i m e n s i o n s o f t h e i r p o r e s t r u c t u r e s must be measured p h e n o m e n o l o g i c a l l y by t h e a d s o r p t i o n o f s m a l l p r o b e m o l e c u l e s with d i f f e r e n t c r i t i c a l dimensions. There i s i n s u f f i c i e n t l o n g range o r d e r t o u t i l i z e s t a n d a r d x-Ray d i f f r a c t i o n methods f o r characterization. The e a r l i e s t r e p o r t s o f m o l e c u l a r s i e v i n g c a r b o n s d e a l t p r i m a r i l y w i t h c o a l s and c h a r c o a l s . Sorption of h e l i u m , water, methanol, n-hexane, and benzene was measured and r e l a t e d t o the p o r o s i t y of the carbon. P o r e - s i z e s were e s t i m a t e d t o be two t o s i x angstroms ( 3 - 6 ) . In a c l a s s i c p a p e r P.H. Emmett d e s c r i b e d methods f o r t a i l o r i n g t h e a d s o r p t i v e p r o p e r t i e s and p o r e s i z e d i s t r i b u t i o n s o f c a r b o n W h e t l e r i t e s . The method combined steam and heat t r e a t m e n t s o f t h e c a r b o n which had been t r e a t e d w i t h v a r i o u s m e t a l s and t h e i r o x i d e s o r chlorides ( 2 ) . S h o r t l y t h e r e a f t e r , i t was r e a l i z e d t h a t m o l e c u l a r s i e v i n g c a r b o n s c o u l d be p r e p a r e d by c o n t r o l l e d p y r o l y s i s o f p o l y m e r i c p r e c u r s o r s (£) . E a r l y e s t i m a t e s o f p o r e s i z e s f o r t h i s c a r b o n were seven t o e i g h t angstroms, but p r o g r e s s i v e a c t i v a t i o n i n c r e a s e d s u r f a c e a r e a , p o r e volume, and p o r e d i m e n s i o n s . F a c t o r s o f 1 / 1 0 0 and more were o b s e r v e d i n t h e a d s o r p t i o n r a t e s f o r b u l k y m o l e c u l e s l i k e 3 , 3 - d i e t h y l p e n t a n e compared t o l i n e a r and p l a n a r m o l e c u l e s . The r a t e d i f f e r e n c e s were a t t r i b u t e d t o s t e r i c l i m i t a t i o n s on t h e a d s o r p t i o n o f t h e b u l k i e r m o l e c u l e s . S e p a r a t i o n o f η-butane from i s o b u t a n e was a c c o m p l i s h e d b o t h on S a r a n - and o t h e r p o l y v i n y l i d e n e c h l o r i d e - d e r i v e d c a r b o n s ( 9 - 1 1 ) . 3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

2

1

1

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

Carbon Molecular Sieves

B a s e d o n t h e s e a n d o t h e r r e s u l t s i t was c o n c l u d e d t h a t m o l e c u l a r s i e v i n g carbons have s l i t - s h a p e d pores (9-11). T h i s view o f t h e pore geometry o f carbon m o l e c u l a r s i e v e s p e r s i s t s and i s s t i l l consistent with the bulk of experimental evidence. R e c e n t l y , c a r b o n m o l e c u l a r s i e v e s have been f a b r i c a t e d i n the f o r m o f p l a n a r membranes and h o l l o w t u b e s b y t h e p y r o l y s i s of p o l y a c r y l o n i t r i l e i n s u i t a b l e forms ( 1 2 - 1 6 ) . V e r y h i g h s e p a r a t i o n s e l e c t i v i t i e s have been r e p o r t e d w i t h t h e s e materials. T h e i r pore s i z e s are i n the range from 3 t o 5.2Â. S e l e c t i v i t i e s o f g r e a t e r t h a n 100:1 a r e o b s e r v e d b e t w e e n m o l e c u l e s w h i c h d i f f e r b y a s l i t t l e a s 0.2Â i n t h e i r c r i t i c a l dimensions. K i n e t i c s o f a d s o r p t i o n on t h e s e m a t e r i a l s h a v e b e e n d e t e r m i n e d (2., 15., 1£) . By f a r t h e most f u l l y d e v e l o p e d a p p l i c a t i o n f o r c a r b o n m o l e c u l a r s i e v e s i s i n t h e s e p a r a t i o n of s m a l l gas m o l e c u l e s . A l a r g e number o f p a t e n t s d e s c r i b e c l a i m s f o r m a t e r i a l s and processes that include carbon-based sieves. Separations that have been a c c o m p l i s h e d i n c l u d e : oxygen and n i t r o g e n , hydrogen and coke g a s e s , methane and c a r b o n d i o x i d e , methane and xenon, e t h y l e n e and ethane, p r o p y l e n e and propane. A number o f companies i n Europe and t h e U n i t e d S t a t e s have r e c e n t l y o f f e r e d commercial systems f o r the s e p a r a t i o n of n i t r o g e n from a i r . A review of t h e use of carbon m o l e c u l a r s i e v e s i n s e p a r a t i o n t e c h n o l o g y i s w e l l beyond t h e scope o f t h i s a r t i c l e and t h e i n t e r e s t e d r e a d e r i s r e f e r r e d t o r e c e n t r e v i e w s and r e f e r e n c e s s i t e d t h e r e i n (12,1&). C a t a l y t i c a p p l i c a t i o n s o f the carbon m o l e c u l a r s i e v e s have b e e n much f e w e r i n n u m b e r . The r e s e a r c h g r o u p s o f W a l k e r a n d Trimm were t h e f i r s t t o have i n v e s t i g a t e d t h e r e a c t a n t shapes e l e c t i v i t y of metal-containing carbon molecular sieves. In a s e r i e s o f p a p e r s and p a t e n t s Trimm and Cooper r e p o r t e d t h e p r e p a r a t i o n , a d s o r p t i v e , and c a t a l y t i c p r o p e r t i e s o f a v a r i e t y of m e t a l - c o n t a i n i n g c a r b o n m o l e c u l a r s i e v e s . I n 1970 t h e y showed t h a t p l a t i n u m - c o n t a i n i n g c a r b o n m o l e c u l a r s i e v e s h y d r o g e n a t e d 1-butene but not 3 - m e t h y l - l - b u t e n e . In contrast a p l a t i n u m c a t a l y s t on a c t i v a t e d c a r b o n h y d r o g e n a t e d b o t h s u b s t r a t e s e q u a l l y e f f e c t i v e l y (19-21). S c h m i t t and Walker a l s o described the preparation of a platinum-containing carbon m o l e c u l a r s i e v e from p o l y f u r f u r y l a l c o h o l and a l s o t e s t e d i t s s h a p e - s e l e c t i v i t y studying the products from a mixture of l i n e a r a n d b r a n c h e d o l e f i n t h a t was p a s s e d o v e r t h e c a t a l y s t w i t h hydrogen. As i n t h e work o f Trimm, t h e s e r e s u l t s i n d i c a t e d t h a t the l i n e a r o l e f i n was r e d u c e d b u t t h e b r a n c h e d was l a r g e l y u n r e a c t e d (22-24). These d e m o n s t r a t i o n s s u g g e s t e d t h a t t h e s t e r i c bulk of the branched molecule prevented access t o the platinum s i t e s w i t h i n the pores of the carbon molecular sieve material. T h i s was a n e x a m p l e o f r e a c t a n t s h a p e - s e l e c t i v i t y s i n c e , t h e c a t a l y s t p a r t i c l e s made a c h r o m a t o g r a p h i c s e p a r a t i o n o f t h e r e a c t a n t s and t h e n hydrogenated the s t e r i c a l l y unhindered molecule. More r e c e n t l y Walker and V a n n i c e have examined i r o n c a r b o n m o l e c u l a r s i e v e s , Fe-CMS, f o r t h e hydrogénation o f c a r b o n monoxide. The r e p o r t was p a r t i c u l a r l y t h o r o u g h a n d r i c h i n d e t a i l r e g a r d i n g t h e p r e p a r a t i o n o f t h e Fe-CMS m a t e r i a l s . C h e m i s o r p t i o n o f CO a n d H2, a s w e l l a s t h e k i n e t i c s o f CO hydrogénation a n d m e t h a n a t i o n w e r e d e s c r i b e d (25.) · In other i n v e s t i g a t i o n s Walker and coworkers have examined t h e e f f e c t o f

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

338

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

heat t r e a t m e n t s on t h e pore s t r u c t u r e o f c a r b o n m o l e c u l a r s i e v e c a t a l y s t s used f o r h y d r o d e s u l f u r i z a t i o n and c o a l l i q u e f a c t i o n

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

(2£)

.

B r a g i n has r e p o r t e d a s t u d y o f t h r e e r e a c t i o n s : c i s - t r a n s i s o m e r i z a t i o n o f 1,2 d i m e t h y l c y c l o p e n t a n e , a r o m a t i z a t i o n o f c y c l o h e x a n e , and t h e d e h y d r o c y c l i z a t i o n o f i s o o c t a n e . The c a t a l y s t s c o n t a i n e d Pt on v a r i o u s c a r b o n m o l e c u l a r s i e v e s u p p o r t s w i t h v a r y i n g pore r a d i i . The h i g h e s t s p e c i f i c a c t i v i t y f o r t h e f i r s t two r e a c t i o n s was o b s e r v e d o v e r t h e c a t a l y s t s w i t h the s m a l l e s t pore s i z e . In c o n t r a s t t h e c a t a l y s t s w i t h t h e s m a l l e s t p o r e r a d i i had immeasurably low a c t i v i t y f o r t h e l a s t r e a c t i o n (22). Connor demonstrated t h e u t i l i t y o f c a r b o n m o l e c u l a r s i e v e s as s u p p o r t s f o r molten i n d i u m m e t a l c a t a l y s t s , which a r e used t o produce aldehyde and ketones by d e h y d r a t i o n o f p r i m a r y and s e c o n d a r y a l c o h o l s . The m o l t e n i n d i u m i s a p p a r e n t l y h e l d i n t h e p o r e s o f t h e c a r b o n m o l e c u l a r s i e v e even a t l o a d i n g s as h i g h as 7.5 wt% w i t h a r e l a t i v e l y h i g h m e t a l s u r f a c e a r e a r e s u l t i n g i n commensurately h i g h a c t i v i t y (2.8.) · Dessau has shown t h a t l a r g e - p o r e c a r b o n m o l e c u l a r s i e v e s w i l l c y c l o d i m e r i z e a l k y d i e n e s i n an D i e l s - A l d e r f a s h i o n . An example i s t h e c o n v e r s i o n o f 1,3- b u t a d i e n e i n t o 4 - v i n y l c y c l o h e x e n e (30%), o v e r a f i x e d bed o f c a r b o n m o l e c u l a r s i e v e (2_2.) . As i s e v i d e n t r e l a t i v e l y l i t t l e r e s e a r c h has been d e v o t e d to c a t a l y s i s with carbon m o l e c u l a r s i e v e s . This i s e s p e c i a l l y s u r p r i s i n g i n view o f t h e amount o f r e c e n t i n t e r e s t t h e r e has been i n n o v e l c a t a l y t i c m a t e r i a l s . The l a t t e r two r e p o r t s d e a l i n g w i t h a l c o h o l d e h y d r a t i o n o v e r In-CMS and D i e l s - A l d e r d i m e r i z a t i o n s w i t h CMS m a t e r i a l s a r e v e r y i n t e r e s t i n g . Although c a r b o n - b a s e d m o l e c u l a r s i e v e s have had c o n s i d e r a b l e impact upon t h e s c i e n c e and t e c h n o l o g y o f s m a l l m o l e c u l e s e p a r a t i o n s , t h e y have been much l e s s i m p o r t a n t i n c a t a l y s i s . T h i s i n v e s t i g a t i o n has s e t out t o e x p l o r e t h e p r e p a r a t i o n and c h a r a c t e r i z a t i o n o f new c a r b o n - b a s e d m o l e c u l a r s i e v e s , which a r e f u n c t i o n a l i z e d w i t h i n o r g a n i c o x i d e s and s u p p o r t e d m e t a l s . The o b j e c t i v e i s t o combine t h e m o l e c u l a r s i e v i n g p r o p e r t i e s of t h e c a r b o n w i t h t h e s u r f a c e c h e m i c a l and p h y s i c a l p r o p e r t i e s o f t h e i n o r g a n i c o x i d e s i n one composite s t r u c t u r e . The advantage o f c o m p o s i t e s i s t h a t t h e y can be d e s i g n e d and e n g i n e e r e d f o r specific applications. Incorporating f u n c t i o n a l i t i e s l i k e m e t a l s and a c i d i c o r b a s i c o x i d e s w i t h h i g h p o r e volume a t t h e c o r e o f t h e s e composite m a t e r i a l s can be an advantage i n t h e a p p l i c a t i o n o f t h e s e m a t e r i a l s t o gas s e p a r a t i o n s . Similarly, combining m o l e c u l a r s i e v i n g c a r b o n w i t h a c t i v e c a t a l y s t phases, t h e composite s t r u c t u r e can p r o v i d e s e p a r a t i o n w i t h c a t a l y s i s f o r enhanced s e l e c t i v i t y . Weak c h e m i s o r p t i o n o r enhanced p h y s i s o r p t i o n can p r o v i d e an a d d i t i o n a l d r i v i n g f o r c e f o r mass t r a n s f e r and s e p a r a t i o n o v e r t h a t p r o v i d e d by pure c a r b o n . The b a l a n c e o f t h i s paper d e a l s w i t h our r e c e n t r e s u l t s i n t h e p r e p a r a t i o n and c h a r a c t e r i z a t i o n o f t h e i n o r g a n i c o x i d e m o d i f i e d - c a r b o n m o l e c u l a r s i e v e (IOM-CMS) c o m p o s i t e s . Experimental C h a r a c t e r i z a t i o n o f IOM-CMS M a t e r i a l s by M o l e c u l a r Probe Adsorption. S i n c e c a r b o n m o l e c u l a r s i e v e s , and t h e IOM-CMS m a t e r i a l s p r e p a r e d h e r e i n , a r e b o t h p o l y c r y s t a l l i n e and amorphous, we have c h a r a c t e r i z e d t h e i r s i e v i n g p r o p e r t i e s p h e n o m e n o l o g i c a l l y by m o l e c u l a r probe a d s o r p t i o n . The probe

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

339

Carbon Molecular Sieves

m o l e c u l e s u t i l i z e d a r e : C O 2 , η-butane, i s o b u t a n e , and neopentane w i t h c r i t i c a l d i m e n s i o n s o f 3.3, 4.3, 5.0, and 6.2À respectively. Comparisons a r e made between t h e s p e c i f i c a d s o r p t i o n o f each o f t h e s e m o l e c u l e s on b o t h t h e pure i n o r g a n i c o x i d e s , and t h e IOM-CMS c o m p o s i t e s . The l a t t e r had d i f f e r e n t s p e c i f i c a d s o r p t i o n s depending upon t h e amount o f c a r b o n present. The m o l e c u l a r probe a p p a r a t u s h a d t o be a b l e t o g e n e r a t e r e l i a b l e a d s o r p t i o n data at high throughput. With t h i s i n mind a system was c o n s t r u c t e d b a s e d on a Cahn e l e c t r o b a l a n c e (see F i g u r e 1 ) . A h i g h vacuum chamber, c o n t a i n i n g a c a r o u s e l c a p a b l e o f h o l d i n g up t o s i x samples was f i t t e d t o t h e b a l a n c e . The c a r o u s e l was a t t a c h e d t o a h e a t e r b l o c k , which c o n t a i n e d c a r t r i d g e h e a t e r s and a t h e r m o c o u p l e . C a r o u s e l t e m p e r a t u r e was s e t and m a i n t a i n e d w i t h a W i z a r d 1601 programmable c o n t r o l l e r . A l l s i x samples i n t h e c a r o u s e l were c o n d i t i o n e d , and s u b s e q u e n t l y e x p o s e d t o t h e a d s o r b a t e , s i m u l t a n e o u s l y , and f o r one hour f o l l o w i n g t h e methods o f Walker and co-workers ( 9 - l l 22-26) . The c a r o u s e l was r o t a t e d so t h a t each sample c o u l d be s e p a r a t e l y p i c k e d up and hung on t h e b a l a n c e t o g r a v i m e t r i c a l l y measure a d s o r p t i v e uptake o f t h e probe m o l e c u l e s . A f t e r an a n a l y s i s w i t h one probe m o l e c u l e , t h e samples were h e a t e d i n vacuo t o r e c o n d i t i o n them, and t h e n e x p o s e d t o t h e n e x t m o l e c u l a r probe m o l e c u l e . T h i s c y c l e was r e p e a t e d u n t i l a l l f o u r probe m o l e c u l e s had been exposed t o a l l o f t h e samples. The a n a l y s e s always began w i t h t h e s m a l l e s t probe m o l e c u l e s f i r s t s i n c e t h e s e gave r e v e r s i b l e a d s o r p t i o n i n an a c c e p t a b l e time frame w i t h a minimum o f pore p l u g g i n g due t o entrappment o f r e s i d u a l amounts o f t h e l a r g e r probe m o l e c u l e s . I n t h i s way a l a r g e number o f samples were c h a r a c t e r i z e d r a p i d l y . The r e s u l t s o f t h e m o l e c u l a r probe a n a l y s e s on t h e IOM-CMS m a t e r i a l s a r e d e s c r i b e d i n t h e next s e c t i o n o f t h i s p a p e r . r

P r e p a r a t i o n o f IOM-CMS M a t e r i a l s . The Type I m a t e r i a l s were p r e p a r e d by b u i l d i n g a c a r b o n o v e r l a y e r i n a s e r i e s o f s u c c e s s i v e s t e p s . The s t e p s i n v o l v e d c o n t a c t i n g t h e p a r t i c l e o f the i n o r g a n i c oxide with p o l y f u r f u r y l a l c o h o l , d r a i n i n g o f f t h e e x c e s s , and h e a t i n g i n a f l o w i n g i n e r t gas t o c o n v e r t t h e r e s i n to carbon. These s t e p s were r e p e a t e d u n t i l a s u f f i c i e n t amount o f c a r b o n was added t o produce t h e d e s i r e d m o l e c u l a r s i e v i n g p r o p e r t i e s , d i a g n o s e d by m o l e c u l a r probe a d s o r p t i o n . The e v o l u t i o n o f t h e pore s t r u c t u r e o f t h e i n o r g a n i c oxides with c a r b o n - c o a t i n g c y c l e s was examined w i t h t i t a n i a p e l l e t s and large-pore s i l i c a p a r t i c l e s . The Type I l a samples were p r e p a r e d by m i x i n g t h e p o l y f u r f u r y l a l c o h o l w i t h m e t a l a l k o x i d e s and t h e n p y r o l y z i n g t h e m i x t u r e i n a tube f u r n a c e under f l o w i n g n i t r o g e n . The Type l i b IOM-CMS samples were p r e p a r e d by m i x i n g m e t a l o x i d e powders, formed by h y d r o l y t i c p r e c i p i t a t i o n o f t h e m e t a l a l k o x i d e s and c a l c i n a t i o n o f t h e p r e c i p i t a t e , w i t h t h e PFA and t h e n pyrolyzing. F o l l o w i n g t h e heat t r e a t m e n t t h e Type 11a and l i b samples were c r u s h e d and s c r e e n e d t o r e t a i n t h e 40x80 mesh p a r t i c l e s f o r m o l e c u l a r probe a n a l y s i s . The Type I I I IOM-CMS m a t e r i a l s were p r e p a r e d by m o d i f y i n g t h e s u r f a c e o f a porous c a r b o n w i t h an i n o r g a n i c o x i d e , c o m b i n i n g t h i s w i t h p o l y f u r f u r y l a l c o h o l , and p y r o l y z i n g t h e mixture. Each o f t h e examples d e s c r i b e d below were chosen t o

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

340

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

r e p r e s e n t the g e n e r a l methods used t o p r e p a r e v a r i o u s c o m p o s i t i o n s o f e a c h t y p e o f IOM-CMS m a t e r i a l . C-SiOo(beads) Type I . 50 g o f m i c r o p o r o u s s i l i c a b e a d s ( A l d r i c h , N o . 2 5 , 5 6 2 - 9 , 3mm d i a m . , N B E T S.A.= 600 m 2 - g ~ p.v. =0.39 cntf-g" , p o r e d i a m . = 2 5 Â ) were immersed i n p o l y f u r f u r y l a l c o h o l ( O c c i d e n t a l Chemical C o r p o r a t i o n , No. 16470, Durez R e s i n , L o t No. 57VIBIA), and t h e n d r a i n e d o f t h e excess. The beads w i t h a d s o r b e d PFA were h e a t e d i n a t u b e furnace under flowing n i t r o g e n with the f o l l o w i n g heat cycle: 1 0 0 - 3 0 0 ° C , i n 5 0 ° C i n c r e m e n t s e v e r y 30 m i n , a n d 3 0 0 ° C f o r 2 h r . T h e s e s t e p s w e r e r e p e a t e d up t o t w e l v e t i m e s . In a d d i t i o n d u r i n g the f o u r t h , e i g h t h , and l a s t h e a t i n g c y c l e s the t e m p e r a t u r e was r a i s e d t o 5 0 0 ° C a n d s o a k e d f o r 6 h r . After this t h e f u r n a c e was c o o l e d d o w n t o r o o m t e m p e r a t u r e i n f l o w i n g n i t r o g e n and the sample removed, and s t o r e d i n a capped v i a l . r

1

2

f

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

1

C - T J Q 2 * T y p e I l a . T i t a n i u m ( I V ) b u t o x i d e was m i x e d w i t h P F A i n seven d i f f e r e n t weight r a t i o s to o b t a i n t h e o r e t i c a l weight ratios of T i 0 t o c a r b o n o f 1:2, 1:1, 2:1, 4:1, 10:1, 15:1, and 20:1. T h e s e m i x t u r e s w e r e h e a t e d by t h e c y c l e : 1 0 0 ° C f o r 1 h r , 30 m i n e a c h i n 1 0 0 ° C i n t e r v a l s f r o m 2 0 0 - 6 0 0 ° C , a n d s o a k a t 6 0 0 ° C for 3 hr. 2

C - T i O o . Type l i b . T i t a n i a was p r e p a r e d by h y d r o l y z i n g t i t a n i u m ( I V ) b u t o x i d e ( A l f a P r o d u c t s , # 77124) t o p r o d u c e a p o w d e r , w h i c h was c a l c i n e d a t 5 0 0 ° C f o r t w o h o u r s i n a i r . T i t a n i a p o w d e r was m i x e d w i t h P F A i n t h e s e w e i g h t r a t i o s : 1:2, 1:4, and 1:8. The samples were h e a t e d at 100°C f o r l h r , 2 0 0 ° C for l h r , 3 0 0 ° C f o r 2 hr, a n d f i n a l l y 5 0 0 ° C f o r 6 hr. C - T i Q o . C-ZrOo. C-TiOo-ZrOo T y p e I I I . Wide-Pore carbon (560 m /gm,0.96cm /gm, - 6 0 Â p o r e r a d i u s , A m e r i c a n C y a n a m i d ) was b a l l m i l l e d f o r 16 h r a n d t h e n f u n c t i o n a l i z e d by c o n t a c t i n g i t w i t h Ti(IV) n - b u t o x i d e , d i s s o l v e d i n a volume o f i s o p r o p y l a l c o h o l s u f f i c i e n t t o f i l l the pore volume of the c a r b o n . In o r d e r not t o e x c e e d t h e p o r e v o l u m e o f t h e c a r b o n t h e c o n t a c t i n g s t e p was repeated three times, with heat treatments of 200°C i n a i r f o r 2-3 hr a f t e r e a c h c o n t a c t i n g s t e p . T h i s r e s u l t e d i n 20 wt% t i t a n i a on the c a r b o n . T h e same p r o c e s s was f o l l o w e d t o p r e p a r e t i t a n i a - m o d i f i e d and z i r c o n i a - m o d i f i e d (using Zr(IV) propoxide) R a v e n 8 0 0 0 c a r b o n b e a d s , a l s o a t t h e 20 wt% l e v e l . Three s a m p l e s o f Type I I I m a t e r i a l s were p r e p a r e d w i t h e a c h o f the t h r e e s u r f a c e - m o d i f i e d p o r o u s c a r b o n s by s e p a r a t e l y m i x i n g 20 g o f t h e m o d i f i e d c a r b o n b a s e w i t h 2 0 , 8 0 , a n d 160 g o f P F A . The m i x t u r e s were t h e n h e a t e d i n f l o w i n g n i t r o g e n at 2 0 ° C / m i n t o 5 0 0 ° C , s o a k e d at 5 0 0 ° C f o r 2 hr, t h e n h e a t e d a g a i n at 2 0 ° C / m i n to 6 0 0 ° C , and soaked f o r 5 hr. 2

Results

3

and

Discussion

I n t h i s r e s e a r c h p r o g r a m we h a v e s o u g h t t o p r e p a r e n o v e l shapes e l e c t i v e m a t e r i a l s comprised of carbon m o l e c u l a r s i e v e s and selected inorganic oxides, r e f e r r e d t o as I n o r g a n i c O x i d e m o d i f i e d C a r b o n M o l e c u l a r S i e v e s o r IOM-CMS m a t e r i a l s . An i n c e n t i v e f o r c o n d u c t i n g t h i s i n v e s t i g a t i o n was t h a t t h e I O M - C M S m a t e r i a l s c o u l d combine the b e s t p r o p e r t i e s of i n o r g a n i c oxides with the molecular s i e v i n g properties of the carbon. The

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21.

FOLEY

Carbon Molecular Sieves

341

i n o r g a n i c o x i d e s , such as alumina, s i l i c a , s i l i c a - a l u m i n a , t i t a n i a , and t i t a n i a - z i r c o n i a have a v a r i e t y o f d e s i r a b l e p r o p e r t i e s n o t a v a i l a b l e w i t h pure c a r b o n . These i n c l u d e macroand mesopore s t r u c t u r e s , m e t a l s u p p o r t i n t e r a c t i o n s , a n d a c i d i t y or b a s i c i t y . I n c o n t r a s t t h e p o l y m e r - d e r i v e d c a r b o n s have t h e u l t r a m i c r o p o r o s i t y needed t o p r o v i d e f o r m o l e c u l a r s i e v i n g b u t a r e r e l a t i v e l y i n e r t and o f f e r l i t t l e i n t h e way o f v a r i a b l e a c i d i t y and b a s i c i t y o r m e t a l s u p p o r t i n t e r a c t i o n s . Therefore i t seemed l o g i c a l t h a t a c o m b i n a t i o n o f t h e two m a t e r i a l s i n t o one composite s i e v e c o u l d make p o s s i b l e s y n e r g i s t i c p r o p e r t i e s , and p r o v i d e a degree o f t a i l o r a b i l i t y a v a i l a b l e o n l y i n a composite m a t e r i a l . With t h e s e f e a t u r e s i n mind t h r e e s e p a r a t e t y p e s o f IOM-CMS m a t e r i a l s were c o n c e p t u a l i z e d .

Type I IQM-CMS M a t e r i a l s The Type I m a t e r i a l i s i d e a l l y c o m p r i s e d o f a p a r t i c l e o f i n o r g a n i c o x i d e s u r r o u n d e d by a s h e l l - c o a t i n g o f t h e m o l e c u l a r s i e v i n g carbon. I n t h i s way t h e i n n e r n o n - s i e v i n g p a r t i c l e i s s u r r o u n d e d by a m o l e c u l a r s i e v i n g g a t e o f c a r b o n (see F i g u r e 2 ) . M o l e c u l a r communication t o t h e i n o r g a n i c o x i d e i s r e g u l a t e d by t h e p o r e r e s t r i c t i o n s o f t h e c a r b o n ; however, once t h r o u g h t h e g a t e t h e r e a c t a n t s e x p e r i e n c e t h e same c a t a l y t i c environment present i n the untreated inorganic oxide. I n many r e s p e c t s t h e s t r u c t u r e o f t h e Type I m a t e r i a l i s s i m i l a r t o t h a t o f t h e a l l c a r b o n composite m o l e c u l a r s i e v e s , f i r s t p r e p a r e d and c h a r a c t e r i z e d by Walker and M e t c a l f e . I n t h e i r system a m o l e c u l a r s i e v i n g o v e r l a y e r o f p o l y m e r - d e r i v e d c a r b o n was d e p o s i t e d on p a r t i c l e s o f porous a c t i v e c a r b o n , r e n d e r i n g t h e c o m b i n a t i o n a m o l e c u l a r s i e v e ( 9-11) . The c a r b o n o v e r l a y e r o f t h e Type I m a t e r i a l s i s p r e p a r e d by a s e r i e s of successive steps, i n v o l v i n g contacting the p a r t i c l e of t h e i n o r g a n i c o x i d e w i t h p o l y f u r f u r y l a l c o h o l , and h e a t i n g i n a f l o w i n g i n e r t gas t o c o n v e r t t h e r e s i n t o c a r b o n . These s t e p s a r e r e p e a t e d u n t i l a s u f f i c i e n t amount o f c a r b o n has been added t o produce t h e d e s i r e d m o l e c u l a r s i e v i n g p r o p e r t i e s . A wide range o f m a t e r i a l s were u s e d f o r t h e Type I , IOM-CMS i n c l u d i n g t h e f o l l o w i n g s u p p o r t and c a t a l y t i c m a t e r i a l s : s i l i c a , alumina, silica-alumina, silica-supported iron, silica-supported potassium-promoted i r o n , t i t a n i a , t i t a n i a - z i r c o n i a , s i l i c a s u p p o r t e d ruthenium, a p r e c i p i t a t e d i r o n F i s c h e r - T r o p s c h (FT) c a t a l y s t (Fe 03:CuO:K 0), a l o n e and i n c o m b i n a t i o n w i t h a h y d r o c r a c k i n g c a t a l y s t (3% CoO-15% M0O3/ A l 0 3 ) . The r e s u l t s o f t h e m o l e c u l a r probe a n a l y s e s on t h e s e m a t e r i a l s are d i s p l a y e d i n Table I . S p e c i f i c adsorptions of the gases a r e g i v e n f o r each i n o r g a n i c o x i d e as a f u n c t i o n o f t h e number o f c y c l e s o f c a r b o n c o a t i n g . The f i r s t two e n t r i e s a r e f o r a h i g h s u r f a c e a r e a (>600 m2-g ) m i c r o p o r o u s s i l i c a and a lower s u r f a c e a r e a ( 40 Â pore diameter, prepared by hydrolysis of Zr(i-Cpr) & Ti(i-OBu)4 h = Zirconia pellets, 5 x 7 mm, 5 χ 7irm, ~ 2 0 0 nf/gm, < 40 Â pore diameter, prepared by hydrolysis of Zr(i-Opr)

CARBONS-

Zr0 pellets

2

pellets

pellets

n

f

e

pellets

2

3

FORM

Ti02-Zr0 9

Ti0

Si02-Al20

INORGANIC OXIDE

Table I. (continued) Specific Adsorptions and Carbon Content on Type I IOM-CMS Materials

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

345

Carbon Molecular Sieves

content. T h i s i s n o t s u r p r i s i n g s i n c e t h e added c a r b o n c o n t a i n s u l t r a m i c r o p o r o s i t y that provides very high surface area. Based on t h e s e r e s u l t s t h e Type I IOM-CMS m a t e r i a l s behave s i m i l a r l y t o a 4A z e o l i t e , a d s o r b i n g o n l y C0 . S i m i l a r r e s u l t s were o b s e r v e d w i t h t h e o t h e r i n o r g a n i c o x i d e s , w i t h some v a r i a t i o n i n t h e amount o f c a r b o n n e c c e s s a r y f o r t h e m a t e r i a l t o be c o n v e r t e d t o a m o l e c u l a r s i e v e (see T a b l e I ) . However, even a f t e r t e n c a r b o n - c o a t i n g c y c l e s t h e gamma-alumina sample was n o t c o n v e r t e d i n t o a molecular s i e v i n g m a t e r i a l , d e s p i t e measurable decreases i n t h e s p e c i f i c a d s o r p t i o n s o f h y d r o c a r b o n probe m o l e c u l e s . A t t h i s time i t i s n o t c l e a r whether t h i s r e s u l t i s due t o t h e c h e m i c a l o r p h y s i c a l p r o p e r t i e s o f gamma-alumina, o r b o t h . These s p e c i f i c a d s o r p t i o n r e s u l t s f o r t h e Type I IOM-CMS m a t e r i a l s i n d i c a t e t h a t a wide v a r i e t y o f i n o r g a n i c o x i d e s w i t h markedly d i f f e r e n t chemical compositions, p h y s i c a l p r o p e r t i e s , and forms c a n be r e n d e r e d m o l e c u l a r s i e v i n g by t h e c a r b o n . Also f o r t h e m a j o r i t y o f t h e i n o r g a n i c o x i d e s used, t h e o n s e t o f m o l e c u l a r s i e v i n g began a f t e r e i g h t c a r b o n c o a t i n g c y c l e s . This s u g g e s t e d a r e l a t i o n s h i p between t h e weight p e r c e n t o f c a r b o n p r e s e n t and t h e m o l e c u l a r s i e v i n g p r o p e r t i e s o f t h e m a t e r i a l s . I t seemed l i k e l y t h a t t h e amount o f c a r b o n needed t o p r o d u c e t h e s i e v i n g p r o p e r t i e s might depend on t h e s u r f a c e a r e a and p o r e s t r u c t u r e of the p a r t i c u l a r inorganic oxide. To d e t e r m i n e i f t h i s were t r u e , t h e c a r b o n c o n t e n t o f t h e IOM-CMS m a t e r i a l s was e v a l u a t e d a f t e r each c a r b o n - c o a t i n g s t e p . The e v a l u a t i o n was done by m e a s u r i n g t h e s p e c i f i c a d s o r p t i o n o f t h e p r o b e m o l e c u l e s and t h e n i t r o g e n a d s o r p t i o n i s o t h e r m s a f t e r each c a r b o n c o a t i n g cycle. The change w i t h c a r b o n c o n t e n t i n t h e s p e c i f i c a d s o r p t i o n o f t h e gaseous p r o b e s was made on t i t a n i a p e l l e t s and l a r g e - p o r e silica particles. These two samples h a d d i f f e r e n t chemical compositions, s u r f a c e a r e a s , and p o r o s i t i e s . These o x i d e s were c o n v e r t e d i n t o Type I IOM-CMS m a t e r i a l s by s u c c e s s i v e c y c l e s o f c o n t a c t i n g i n p o l y f u r f u r y l a l c o h o l and p y r o l y s i s i n f l o w i n g nitrogen. To r e l a t e t h e c a r b o n c o n t e n t t o t h e c o a t i n g c y c l e number, t h e sample was weighed b e f o r e and a f t e r each complete c y c l e , and t h e amount o f c a r b o n added was c a l c u l a t e d by difference. Samples were a l s o s a v e d a f t e r each c o a t i n g s t e p , and a p o r t i o n c a r e f u l l y weighed, t h e n b u r n e d i n f l o w i n g a i r . The r e s i d u a l o x i d e was c a r e f u l l y i s o l a t e d and weighed. The d i f f e r e n c e i n weight b e f o r e and a f t e r b u r n i n g gave a n o t h e r i n d e p e n d e n t measure o f t h e t o t a l amount o f c a r b o n p r e s e n t on t h e sample a t t h a t p o i n t i n t h e p r e p a r a t i v e p r o c e s s . The d a t a from t h e s e e x p e r i m e n t s over t w e l v e c y c l e s a r e d i s p l a y e d g r a p h i c a l l y in Figure 3. The s p e c i f i c a d s o r p t i v i t i e s and n i t r o g e n i s o t h e r m s were a l s o d e t e r m i n e d on t h e s e samples a f t e r each c o a t i n g c y c l e . The s p e c i f i c a d s o r p t i o n r e s u l t s a r e p l o t t e d i n F i g u r e s 4 and 5 f o r t i t a n i a and s i l i c a , r e s p e c t i v e l y . I n b o t h c a s e s t h e c a r b o n d i o x i d e adsorption increases with the a d d i t i o n o f carbon. This i s b e c a u s e t h e added c a r b o n i s u l t r a m i c r o p o r o u s and has a l a r g e s u r f a c e area a v a i l a b l e f o r carbon d i o x i d e a d s o r p t i o n , l a r g e r t h a n t h a t o f t h e pure i n o r g a n i c o x i d e . As t h e c a r b o n c o n t e n t i n c r e a s e s t h e a d s o r p t i o n o f t h e l a r g e r probe m o l e c u l e s d r o p s b e c a u s e t h e l a r g e i n n e r p o r e s a r e made i n a c c e s s i b l e by t h e carbon. In g e n e r a l i t i s n o t e d t h a t e i g h t c a r b o n - c o a t i n g c y c l e s were u s u a l l y needed t o i n d u c e m o l e c u l a r s i e v i n g p r o p e r t i e s i n

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

346

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

0

4

8

12

CARBON COATING CYCLE NO.

· • - WT% CARBON ON SI02 •O- WT% CARBON ON TI02

F i g u r e 3. C h a n g e i n C a r b o n C o n t e n t w i t h C o a t i n g C y c l e Ti0 andS i 0 T y p e I IOM-CMS M a t e r i a l s 2

Number f o r

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

FOLEY

Carbon Molecular Sieves 25

Τ

20

+

15



Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

SPEC. ADS. (MG/GM)

&

20

·•-

WT% CARBON C02

•o- n-Butane

Figure 4.

• ·-

Isobutane

·•-

Neopentane

S p e c i f i c A d s o r p t i o n of Probe Molecules on T i t a n i a as F u n c t i o n of Carbon Content

60

50

40 SPEC. ADS. 30 (MG/GM)

+

v/_\

2 0 -J-

-.1

1^·——V m

• 20

40

60

WT% CARBON

·•-

C02

•o- η-Butane

Figure 5.

·•-

Isobutane

·•-

Neopentane

S p e c i f i c A d s o r p t i o n of Probe Molecules on S i l i c a as F u n c t i o n of Carbon Content

American Chemical Society Library St.,Flank, N.W. In Perspectives in Molecular1155 Sieve16th Science; William H., et al.; ACS Symposium Series; American Chemical D.C. Society: Washington, DC, 1988. Washington, 20036

348

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

most o f t h e i n o r g a n i c o x i d e s used f o r t h e Type I IOM-CMS materials. For t i t a n i a the e i g h t h c o a t i n g step corresponds t o 30% c a r b o n , w h i l e f o r s i l i c a i t c o r r e s p o n d s t o 43-49% c a r b o n . The n i t r o g e n i s o t h e r m and m o l e c u l a r probe a d s o r p t i o n d a t a b o t h suggest t h a t t h e carbon must r e a c h some minimum v a l u e , s e t by t h e p h y s i c a l and c h e m i c a l p r o p e r t i e s o f t h e o x i d e , b e f o r e i t c o n v e r t s t h e composite i n t o a m o l e c u l a r s i e v e .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

Tvoe I I IOM-CMS M a t e r i a l s Type I I m a t e r i a l s were c o n c e p t u a l i z e d as a d i s p e r s i o n o f v e r y f i n e i n o r g a n i c o x i d e p a r t i c l e s , d i s t r i b u t e d t h r o u g h t h e carbon m a t r i x (see F i g u r e 2 ) . This i s i n contrast to the i d e a l i z e d form o f t h e Type I m a t e r i a l i n which t h e i n o r g a n i c o x i d e p a r t i c l e i s l a r g e and i n e f f e c t s u p p o r t s t h e m o l e c u l a r s i e v i n g carbon. We have found t h a t t h e Type I I m a t e r i a l s c a n be p r e p a r e d i n two d i f f e r e n t ways. In t h e f i r s t method a h y d r o l y t i c a l l y u n s t a b l e m e t a l a l k o x i d e compound was used as a p r e c u r s o r t o t h e i n o r g a n i c o x i d e , and was mixed w i t h t h e polyfurfuryl alcohol resin. The m i x t u r e was then p y r o l y z e d under f l o w i n g n i t r o g e n . The p y r o l y s i s o f t h e p o l y f u r f u r y l a l c o h o l l e a d s t o t h e f o r m a t i o n o f water as w e l l as c a r b o n . The m e t a l a l k o x i d e compounds break down t o t h e c o r r e s p o n d i n g m e t a l hydrous o x i d e i n t h e p r e s e n c e o f water. Therefore i t i s l o g i c a l t o e x p e c t t h a t t h e m e t a l a l k o x i d e , which was d i s p e r s e d i n t h e PFA r e s i n , broke down t o t h e m e t a l hydrous o x i d e and a l c o h o l s d u r i n g the i n i t i a l stages of p y r o l y s i s . The m e t a l hydrous o x i d e was t h e n d e h y d r a t e d t o t h e m e t a l o x i d e w i t h f u r t h e r h e a t i n g a t the e l e v a t e d temperatures. This process r e s u l t e d i n the f o r m a t i o n o f a h i g h l y d i s p e r s e d m e t a l o x i d e phase i n t h e carbon matrix. R e l e a s e o f t h e a l c o h o l s and t h e i r subsequent v o l a t i l i z a t i o n i s e x p e c t e d t o a l s o g i v e r i s e t o enhanced pore formation. PFA

M (OR) 4 + H 0 2

600 C, N

600 C, N

2

^

2

^

Carbon + H 0 + C 0 2

M(0)(OH)

2

2

600 C, N

2

^

M

0

2

{M = T i , Zr} M o l e c u l a r probe a n a l y s e s o f t h e Type l i a m a t e r i a l s d e m o n s t r a t e d t h a t a l l o f t h e s e m a t e r i a l s were m o l e c u l a r s i e v e s (see T a b l e 2, F i g u r e s 6a and b ) . They a d s o r b e d n e a r l y as much C0 as t h e pure carbon a l o n e , b u t near z e r o amounts o f t h e l a r g e r probe m o l e c u l e s . Based on t h i s d a t a , t h e s e m a t e r i a l s a r e c l a s s i f i e d as 4A s i z e s i e v e s . I t was somewhat s u r p r i s i n g t o d i s c o v e r t h a t a t m e t a l o x i d e c o n t e n t s o v e r 60 wt% m o l e c u l a r sieving properties s t i l l persist. This result i s consistent w i t h t h e n o t i o n t h a t t h e m e t a l o x i d e p a r t i c l e s , p r o d u c e d from the a l k o x i d e d u r i n g p y r o l y s i s , a r e present at high d i s p e r s i o n . In o r d e r t o determine t h e c o m p o s i t i o n o f t h e Type l i a m a t e r i a l s t h e samples were o x i d i z e d i n a i r . T h i s was done t o b u r n o f f t h e c a r b o n and l e a v e b e h i n d t h e m e t a l o x i d e . By c a r e f u l w e i g h i n g b e f o r e and a f t e r t h e o x i d a t i o n p r o c e s s , t h e amounts o f carbon and i n o r g a n i c o x i d e c o n t a i n e d i n each sample were c a l c u l a t e d . The r e s u l t s o f t h e s e a n a l y s e s , as w e l l as t h e m e t a l a l k o x i d e and p o l y f u r f u r y l a l c o h o l c o n v e r s i o n s , a r e a l s o 2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

21. FOLEY

Carbon Molecular Sieves

349

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

Table II. Specific Adsorptions and Carbon Content on Type H a IOM-CMS Materials

INORGANIC OXIDE

OXIDE PRECURSOR

Ti0

2

Ti(i-OBu)

4

Zr0

2

Zr(i-OPr)

4

AI2O3

Ti0 -Zr0 2

Al(s-OBu)

2

Ti(i-OBu) Zr(i-OPr)

3

4

4

WT% CARBON

WT% Metal Oxide

C0

100 91 86 80 64 58 44 40 37

0 9 14 20 36 42 56 60 63

51 45 65 58 65 34 39 31 30

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

100 88 80 70

0 12 20 30

70 59 48 31

0 0 0 0

0 0 0 0

0 0 0 0

100 87 87 60

0 13 13 40

66 62 63 55

0 0 0 0

0 0 0 0

0 0 0 0

100 68 56

0 32 44

59 57 50

0 0 0

0 0 0

0 0 0

2

SPECIFIC ADSORPTION (mg per gm) n-BUTANE ISOBUTANE NEOPENTANE

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

350

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

70 τ

20 •• 10 •• 0 • 0

•!—•



1

•—!-•

10

20

30

40

1 50

•-• 60

1 70

WT% TI02 ·•-

C02

•o- n-BUTANE

F i g u r e 6a

·•-

ISOBUTANE

·•-

NEOPENTANE

S p e c i f i c A d s o r p t i o n o f Probe M o l e c u l e s IOM-CMS M a t e r i a l s v e r s u s Wt% T i 0

on T1O2 Type l i a

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

Carbon Molecular Sieves

351

20 •• 10 -•

οα

1

0

5

1—• 10

1



15

20

1



25

30

WT%ZR02

F i g u r e 6b

·•-

C02

•o-

n-BUTANE

·•-

ISOBUTANE

·•-

NEOPENTANE

S p e c i f i c Adsorption o f Probe Molecules IOM-CMS M a t e r i a l s v e r s u s Wt% Z r 0

on Z r 0

2

Type 11a

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

352

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

c o l l e c t e d i n T a b l e 3. The t i t a n i a s e r i e s ranged i n o x i d e c o n t e n t from 9 t o 63 wt%, t h e z i r c o n i a s e r i e s from 12 t o 30 wt%, t h e a l u m i n a s e r i e s from 13 t o 40 wt%, and t h e t i t a n i a - z i r c o n i a s e r i e s from 10 t o 26 wt%. I n t h e c o u r s e o f t h i s a n a l y s i s i t was n o t e d t h a t t h e c a r b o n y i e l d from p y r o l y s i s o f p o l y f u r f u r y l a l c o h o l improved i n t h e p r e s e n c e o f t h e m e t a l a l k o x i d e compared t o t h e y i e l d o b t a i n e d from t h e pure r e s i n . In t h e c a s e o f T i ( I V ) b u t o x i d e , t h e c a r b o n y i e l d was o b s e r v e d t o go as h i g h as 50% (weight c a r b o n produced/weight r e s i n u s e d ) , v e r s u s t y p i c a l y i e l d s o f about 25% f o r t h e r e s i n a l o n e . With t h e o t h e r a l k o x i d e s t h e e f f e c t was n o t as g r e a t , l e a d i n g t o c a r b o n y i e l d s o f about 30-35%. The enhanced c a r b o n y i e l d may be a r e s u l t o f metal a l k o x i d e - c a t a l y s e d dehydration or c r o s s l i n k i n g o f the r e s i n , or both. The Type l i b IOM-CMS m a t e r i a l s were p r e p a r e d by m i x i n g f i n e powders o f t h e m e t a l o x i d e s w i t h PFA. The m e t a l a l k o x i d e powders were p r e p a r e d by h y d r o l y s i s o f t h e same a l k o x i d e s u s e d i n t h e p r e p a r a t i o n o f t h e Type l i a s i e v e s w i t h PFA. A f t e r c a l c i n a t i o n and m e c h a n i c a l g r i n d i n g , t h e powders were mixed i n d i f f e r e n t weight r a t i o s w i t h t h e p o l f u r f u r y l a l c o h o l and pyrolyzed. M o l e c u l a r probe a n a l y s e s o f t h e Type l i b m a t e r i a l s showed t h a t t h e y a d s o r b e d s i g n i f i c a n t q u a n t i t i e s o f C 0 and n-butane, but n e a r l y z e r o amounts o f t h e two l a r g e r probe m o l e c u l e s (see T a b l e 3, F i g u r e s 7 a and b ) . Because o f t h i s s e l e c t i v e a d s o r p t i o n , t h e s e m a t e r i a l s behaved s i m i l a r l y t o t h e 5A s i z e m o l e c u l a r s i e v e s , b u t w i t h o u t t h e s h a r p c u t o f f s d i s p l a y e d by zeolites. However, i t i s remarkable t h a t t h e s e Type l i b m a t e r i a l s a d s o r b e d more o f η-butane t h a n t h e Type l i a m a t e r i a l s . I t may be t h a t t h e a d d i t i o n o f t h e f i n e o x i d i c p a r t i c l e s l e d t o i n t e r s t i c e s , which d i d n o t form i n t h e p r e p a r a t i o n s t a r t i n g w i t h the metal a l k o x i d e s . These i n t e r s t i c e s may p r o v i d e a d s o r p t i o n s i t e s f o r the l a r g e r molecules. F u r t h e r i n v e s t i g a t i o n s w i l l be conducted t o determine t h e s t r u c t u r a l f a c t o r s that g i v e r i s e t o these d i f f e r e n t adsorptive p r o p e r t i e s . Carbon b u r n o f f e x p e r i m e n t s were a l s o used w i t h t h e Type l i b samples t o d e t e r m i n e t h e c a r b o n and i n o r g a n i c o x i d e c o n t e n t s o f these m a t e r i a l s . In t h e t i t a n i a s e r i e s t h e metal oxide content ranged from 46 t o 61 wt%, t h e z i r c o n i a s e r i e s from 32 t o 60 wt%, and i n t h e t i t a n i a - z i r c o n i a s e r i e s from 38 t o 44 wt% (see T a b l e 3). In t h i s p r e p a r a t i v e procedure the a d d i t i o n of t h e o x i d i c powders d i d n o t h i n g t o improve t h e y i e l d o f c a r b o n from t h e resin. As a f u r t h e r d i a g n o s t i c o f t h e a d s o r p t i v e p r o p e r t i e s o f t h e IOM-CMS composite m a t e r i a l s , t h e e x t e n t o f water a d s o r p t i o n was d e t e r m i n e d on v a r i o u s Type I , l i a , and l i b samples. It i s i m p o r t a n t t o a s s e s s t h e water a d s o r p t i o n i s o t h e r m s on t h e IOMCMS m a t e r i a l s , s i n c e i t i s a s t a n d a r d method o f comparison between a d s o r b e n t s . The water a d s o r p t i o n d a t a a r e d i s p l a y e d i n F i g u r e 8 f o r IOM-CMS m a t e r i a l s , t h e pure i n o r g a n i c o x i d e s , and z e o l i t e 3A. The z e o l i t e showed t h e c h a r a c t e r i s t i c a l l y h i g h a d s o r p t i o n o f water a t low r e l a t i v e p r e s s u r e s . The t h r e e Type I samples o f S i 0 - A l 0 3 , S i 0 beads, and l a r g e pore S i 0 , a d s o r b e d amounts o f water s i m i l a r t o t h e c a r b o n a l o n e . T h i s i s c o n s i s t e n t w i t h a Type I s t r u c t u r e i n which t h e s u r f a c e a d s o r b i n g t h e water i s c a r b o n . The most i n t e r e s t i n g IOM-CMS sample was t h e Type l i a A l 0 3 ~ c a r b o n sample which has a d i f f e r e n t water a d s o r p t i o n i s o t h e r m 2

2

2

2

2

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

21. FOLEY

353

Carbon Molecular Sieves

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

TABLE III. Specific Adsorptions and Carbon Content on Type l i b IOM-CMS Materials

INORGANIC OXIDE

Ti0

CARBON

WT% Metal Oxides

C0

Ti(i-OBu)4

39 43 53 54

61 57 47 46

27 22 32 29

15 6 13 6

0 0 0 0

2 1 0 0

2

Zr(i-OPr)

40 56 68

60 44 32

28 35 41

26 15 0

4 0 0

1 0 0

2

CABOSIL

94 90 80 66 40 33

11 14 10 28 24 25

26 28 27 19 2

25 30 20 13 2 2

28 30 25 22 2 2

45 56

0 38

0 8

0 0

0

2

Zr0

Si0

OXIDE PRECURSOR

TiQ2-Zr02

Ti(i-OBu) Zr(i-OPr)

4

4

4

68

2

SPECIFIC ADSORPTION (mg per gm) n-BUTANE ISOBUTANE NEOPENTANE

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

354

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

C02 •o- n-BUTANE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

40 Τ

30

f

20

4-

10 f

·•-

ISOBUTANE

·•-

NEOPENTANE

/

o +—•-•45

65

55 WT% TI02

F i g u r e 7a. S p e c i f i c A d s o r p t i o n o f Probe M o l e c u l e s IOM-CMS M a t e r i a l s v e r s u s Wt% T i 0

on T i 0

2

Type l i b

Figure 7 b

on Z r 0

2

Type l i a

2

S p e c i f i c A d s o r p t i o n o f Probe M o l e c u l e s IOM-CMS M a t e r i a l s v e r s u s Wt% Z r 0 2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Carbon Molecular Sieves

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

355

250

200



4

i

*

*



A-—A ZEOLITE V--V AL/C TYPE 2 0---0 CARBON * - - · * SI02/AL TYPE 1 f • SI02 TYPE 1 0 — D SI02 TYPE 1



Ï 150

w

. ..-.-vr*-'-

v

¥

0.2

relative

Figure

8.

.....r-' ·ν·— .

0.4

pressure

v

Λ

0.6

of

0.8

H20

W a t e r A d s o r p t i o n D a t a F o r IOM-CMS M a t e r i a l s

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

356

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

t h a n t h e Type I m a t e r i a l s , c a r b o n , o r t h e pure i n o r g a n i c o x i d e s . I t d i s p l a y e d somewhat s t r o n g e r water a d s o r p t i o n t h a n t h e o t h e r samples a t t h e lower r e l a t i v e p r e s s u r e s . A l t h o u g h much lower on an a b s o l u t e s c a l e , t h i s i s r e m i n i s c e n t o f t h e r e s u l t o b t a i n e d w i t h t h e 3 A z e o l i t e sample. The a d s o r p t i v e b e h a v i o r o f t h e IOMCMS m a t e r i a l s , e s p e c i a l l y of Type I I , i s under c o n t i n u e d i n v e s t i g a t i o n and a n a l y s i s . The Type I I I m a t e r i a l s were c o n c e p t u a l i z e d as Type l i b m a t e r i a l s , e x c e p t t h a t t h e i n o r g a n i c o x i d e was t o be d i s p e r s e d as a c o a t i n g on t h e s u r f a c e of a p o r o u s , but not m o l e c u l a r s i e v i n g , carbon support. The s u r f a c e - m o d i f i e d c a r b o n c o u l d t h e n be mixed w i t h t h e r e s i n as a f i n e powder, and p y r o l y z e d . The m o l e c u l a r probe a n a l y s e s o f t h e n i n e Type I I I samples a r e v e r y i n t e r e s t i n g (see T a b l e 4, and F i g u r e s 9a and b ) . The t h r e e s e t s o f samples each showed t h e same t r e n d s . At t h e l o w e s t r a t i o o f polymer r e s i n t o s u r f a c e - m o d i f i e d porous c a r b o n t h e m a t e r i a l s a l l behaved as 5A s i z e m o l e c u l a r s i e v e s , a d s o r b i n g relatively l a r g e q u a n t i t i e s of C0 and η-butane, but n e a r l y z e r o amounts o f i s o b u t a n e and neopentane. This holds f o r the both the t i t a n i a m o d i f i e d wide p o r e c a r b o n and the Raven 8000 beads, and the z i r c o n i a - m o d i f i e d Raven 8000 beads. At t h e m i d d l e r a t i o of polymer r e s i n t o base m a t e r i a l , the two t i t a n i a - m o d i f i e d samples d i s p l a y e d 4A s i z e m o l e c u l a r s i e v i n g p r o p e r t i e s , a d s o r b i n g C0 in l a r g e q u a n t i t i e s , but o n l y n e g l i g i b l e amounts o f t h e o t h e r l a r g e r probe m o l e c u l e s . The z i r c o n i a - m o d i f i e d Raven 8000 beads behaved more l i k e t h e 5A s i z e s i e v e even a t t h i s m i d d l e r a t i o o f polymer r e s i n t o s u r f a c e - m o d i f i e d c a r b o n b a s e . At t h e h i g h e s t r a t i o o f polymer r e s i n t o s u r f a c e - m o d i f i e d c a r b o n base, a l l t h r e e o f the samples d i s p l a y e d 4A s i z e s i e v i n g p r o p e r t i e s . 2

2

Summary and

Conclusions

Carbon m o l e c u l a r s i e v e s can be made w i t h a wide range o f p h y s i c a l p r o p e r t i e s , and from a v a r i e t y o f n a t u r a l and s y n t h e t i c materials. The p r i m a r y use o f t h e s e m a t e r i a l s has been i n s e p a r a t i o n p r o c e s s e s , the most n o t a b l e o f which i s p r e s s u r e swing a d s o r p t i o n f o r t h e s e p a r a t i o n o f n i t r o g e n from a i r . R e l a t i v e l y l i t t l e a t t e n t i o n has been g i v e n t o t h e c a t a l y t i c p r o p e r t i e s o f t h e s e m a t e r i a l s beyond t h e e a r l y work by Walker and Trimm. However, some of t h e more r e c e n t r e p o r t s i n t h e p a t e n t l i t e r a t u r e are v e r y i n t r i g u i n g , and s u g g e s t t h a t the use of carbon molecular s i e v e s i n c a t a l y s i s merits f u r t h e r attention. T h i s work has aimed a t a d d i n g f u n c t i o n a l i t y t o t h e c a r b o n m o l e c u l a r s i e v e s by p r e p a r i n g composite s t r u c t u r e s o f c a r b o n and inorganic oxides. The o b j e c t i v e i s t o combine t h e s u r f a c e chemical p r o p e r t i e s of the i n o r g a n i c oxides with the molecular s i e v i n g p r o p e r t i e s of the carbon. The r e s u l t s o b t a i n e d t o d a t e i n d i c a t e t h a t composite s t r u c t u r e s can be made w i t h m o l e c u l a r s i e v i n g p r o p e r t i e s i n at l e a s t f o u r forms. The d a t a on t h e Type I I I m a t e r i a l s , combined w i t h t h o s e o b t a i n e d f o r t h e Type l i a and l i b samples, i n d i c a t e t h a t by p r o p e r c o n t r o l of t h e i n o r g a n i c o x i d e p r e c u r s o r c h e m i s t r y , and t h e p h y s i c a l p r o p e r t i e s o f t h e s o l i d a d d i t i v e s , one can b e g i n t o c o n t r o l t h e m o l e c u l a r s i e v i n g p r o p e r t i e s o f t h e IOM-CMS m a t e r i a l s . The m o l e c u l a r s i e v i n g p r o p e r t i e s o f t h e Type l i a IOM-CMS m a t e r i a l s are m a i n t a i n e d even a t low c a r b o n t o i n o r g a n i c o x i d e r a t i o s . These p r o p e r t i e s a r e dependent upon t h e p r e p a r a t i o n v a r i a b l e s , but a s y s t e m a t i c

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

21. FOLEY

TABLE IV.

INORGANIC OXIDE

Carbon Molecular Sieves

357

Specific Adsorptions and Carbon Content on Type III IOM-CMS Materials

OXIDE PRECURSOR

CARBON

WT% Metal Oxides

C0

2

SPECIFIC ADSORPTION (mg per gm) ISOBUTANE NEOPENTANE n-BUTANE

Ti0

2

Ti (i-OBu) 4

86 92 95

14 8 5

50 62 64

30 4 1

0 0 0

6 3 2

Zr0

2

Zr(i-OPr)

4

86 92 95

14 8 5

57 59 55

39 27 1

0 0 0

6 5 2

Ti(i-OBu) Zr(i-OPr)

4

86 92 95

14 8 5

54 47 57

44 6 1

0 0 0

6 3 2

Ti0 /ZrO 2

2

4

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

358

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

·•-

C02

•o- n-BUTANE 70

j ••-

60 "

ISOBUTANE

• • - NEOPENTANE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

50 -• 40 •• SPE. ADS. (MG/GMO

30 •• 20 10 -•

10

15

WT% TI02 Figure

9. a

S p e c i f i c A d s o r p t i o n o f Probe M o l e c u l e s on T i 0 IOM-CMS M a t e r i a l s v e r s u s Wt% T i 0

Type I I I

2

2

C02 •o- n-BUTANE • • - ISOBUTANE

••- NEOPENTANE 60 τ

50 +

40 + SPEC. ADS. 30 + (MG/GM) 20 +

10 +

10 WT%ZR02 F i g u r e 9.

b

15

S p e c i f i c A d s o r p t i o n o f Probe M o l e c u l e s on Z r 0 IOM-CMS M a t e r i a l s v e r s u s Wt% Z r 0

2

2

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Type I I I

21. FOLEY

Carbon Molecular Sieves

359

investigation will be carried out to clearly define the dependencies. Continued studies will define the relationships between composition, structure, and molecular sieving properties of the IOM-CMS materials, and relate these properties to catalytic activities and selectivities for specific reactions. Acknowledgment

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

This research was funded by the Department of Energy's Pittsburgh Energy and Technology Center under contract No. DEAC22-84PC70031. Literature Cited 1. Foley, H.C., "Novel Carbon Molecular Sieve Catalysts for Wax Suppression in the Fischer-Tropsch Reaction;" Dept. of Energy Contract No. DE-AC22-84PC70031, Final Report, June (1987) and references therein. 2. Koresh, J . E . , Sofer, Α., Sep. Sci. and Technol., 18, 723 (1983). 3. Franklin, R.E., Trans. Farad. Soc., 45, 274 (1949) 4. Franklin, R.E., Trans. Farad. Soc., 45, 668 (1949) 5. Anderson, R.B., Hall, W.K., Lecky, T.A., Stein, K.S., J . Phys. Chem., 60, 1548 (1956). 6. Pierce, D., Wiley, J.W., Smith, R.N., J . Phys. Chem., 53, 669 (1949). 7. Emmett, P.H., Chem. Rev., 43, 69 (1948). 8. Dacey, J.R., Thomas, D.G., Trans. Faraday Soc., 50, 740 (1954). 9. Walker, P.L., Jr., Lamond, T.G., Metcalfe, J . E . , III, Proc. 2nd Conf. on Ind. Carbon Graphite, Society of the Chemical Industry, London (1966). 10. Lamond, T.G., Metcalfe, J . E . , III, Walker, P.L., Jr., Carbon, 3, 59 (1965). 11. Metcalfe, J . E . , III, Ph.D. Thesis, The Pennsylvania State University (1965). 12. Koresh, J., Soffer, Α., J . Chem. Soc., Faraday Trans. 1, 76, 2457 (1980). 13. Barton, S.S., Koresh, J., J . Chem. Soc., Faraday Trans. 1, 79, 1147 (1983). 14. Koresh, J., Soffer, Α., J . Chem. Soc., Faraday Trans. 1, 76, 2507 (1980). 15. Koresh, J., Soffer, Α., J . Chem. Soc., Faraday Trans. 1, 76, 2472 (1980). 16. Koresh, J., Soffer, Α., J . Chem. Soc., Faraday Trans. 1, 77, 3005 (1981). 17. Yang, R.T., Gas Separations by Adsorption Processes, Butterworths, Boston (1987). 18. Ray, M.S., Sep. Sci. and Technol., 21, 1 (1986). 19. Trimm, D.L., Cooper, B.J., J.Chem. Soc. D, 8, 477 (1970). 20. Cooper, B . J . , Trimm, D.L., Conf. on Ind. Carbon Graphite, 3rd Mtg. Date, Soc. Chem. Ind., London, (1970). 21. Cooper, B . J . , Plat. Metals Rev., 14, 133 (1970). 22. Schmitt, J.L. J r . , Walker, P.L. J r . , Carbon, 10, 791 (1971). 23. Schmitt, J.L. J r . , Walker, P.L. J r . , Carbon, 10, 87 (1971).

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

360

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 9, 2016 | http://pubs.acs.org Publication Date: May 27, 1988 | doi: 10.1021/bk-1988-0368.ch021

24. Schmitt, J.L. Jr., Diss. Abstr. Int. Β 1971, 32, 807 (1970). 25. Moreno-Castilla, C., Mahajan, O.P., Walker, P.L. Jr., Jung, H.J., Vannice, M.A., Carbon, 18, 271 (1980). 26. Walker, P.L. Jr., Oya, Α., Mahajan, O.P., Carbon, 18, 377 (1980). 27. Bragin, O.V., Olfereva, T.G., Ludwig, J . , Fiebig, W., Heise, K., Schnabel, K.H., Z. Chem., 20, 387 (1980). 28. Connor, H. , DE 3006105 (1980). 29. Dessau, R.M., US 4413154 (1983). RECEIVED February 2, 1988

In Perspectives in Molecular Sieve Science; Flank, William H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.