Catalytic Activation of Carbon Dioxide - American Chemical Society

Henry's law), on temperature (according to its en- thalpy of solution) ... governed by Henry's law: the concentration of CO2 i n solution i s ..... Wh...
1 downloads 0 Views 669KB Size
Chapter

2

Carbon Dioxide Equilibria

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

James N . Butler Division of Applied Sciences, MA

Harvard University, Cambridge, 02138

The solubility of carbon dioxide in aqueous and nonaqueous solutions depends on its partial pressure (via Henry's law), on temperature (according to its enthalpy of solution) and on acid-base reactions within the solution. In aqueous solutions, the equilibria forming HCO - and CO = depend on pH and ionic strength; the presence of metal ions which form insoluble carbonates may also be a factor. Some speculation is made about reactions in nonaqueous solutions, and how thermodynamic data may be applied to reduction of CO to formic acid, formaldehyde, or methanol by heterogenous catalysis, photoreduction, or electrochemical reduction. 3

3

2

The s o l u b i l i t y o f carbon d i o x i d e i n aqueous o r nonaqueous media depends on three p r i m a r y f a c t o r s : temperature, p a r t i a l p r e s s u r e o f carbon d i o x i d e , and a c i d - b a s e r e a c t i o n s i n t h e s o l u t i o n . A c c u r a t e d a t a f o r s o l u b i l i t y and e q u i l i b r i a are well-known f o r aqueous s o l u t i o n s ( 1 - 3 ) , b u t n o t f o r nonaqueous s o l u t i o n s . N e i t h e r the s t a n dard c o m p i l a t i o n s o f e q u i l i b r i u m c o n s t a n t s (1,2) n o r r e c e n t r e v i e w s on nonaqueous e l e c t r o l y t e s (4·) c o v e r what appears t o be a l a r g e and poorly indexed l i t e r a t u r e . The reason I say " p o o r l y i n d e x e d " i s t h a t out o f s e v e r a l t h o u sand e n t r i e s i n the 10th c o l l e c t i v e i n d e x t o C h e m i c a l A b s t r a c t s (1977-81), r e l a t i n g t o carbon d i o x i d e , o n l y two e n t r i e s c o n t a i n e d the term " s o l u b i l i t y " and n e i t h e r o f these p e r t a i n e d t o the s o l u b i l i t y o f carbon d i o x i d e i n a l i q u i d phase. On the o t h e r hand, the many e n t r i e s under terms l i k e " r e m o v a l from n a t u r a l gas" i m p l i e d t h a t q u i t e a l o t o f d a t a c o u l d be found w i t h enough e f f o r t . A h i s t o r i c a l p e r s p e c t i v e may g i v e a rough e s t i m a t e : A c o m p i l a t i o n r e p o r t i n g work done b e f o r e 1928 ( 5 ) , c o n t a i n s three and a h a l f l a r g e pages o f c l o s e l y - p a c k e d q u a n t i t a t i v e d a t a f o r t h e s o l u b i l i t y of carbon d i o x i d e i n 48 nonaqueous s o l v e n t s . A 1958 collection (6) g i v e s 17 pages o f t a b l e s summarizing the s o l u b i l i t y o f carbon

0097-6156/88/0363-0008506.00/0 © 1988 American Chemical Society

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

2. BUTLER

Carbon Dioxide

9

Equilibria

d i o x i d e i n 45 o r g a n i c s o l v e n t s , as w e l l as s a l t s o l u t i o n s and mix­ t u r e s of s o l v e n t s . I f t h e amount o f p u b l i s h e d i n f o r m a t i o n i n t h i s f i e l d has doubled e v e r y 7 y e a r s , as i t has i n most s c i e n c e s , the c u r r e n t l i t e r a t u r e ( a f t e r 28 y e a r s ) s h o u l d be about 16 times as l a r g e , o r about 2 70 pages o f t a b l e s . I f a r e c e n t c r i t i c a l r e v i e w o f d a t a f o r carbon d i o x i d e i n non­ aqueous media has n o t y e t been c o m p i l e d , i t c e r t a i n l y s h o u l d be commissioned as soon as p o s s i b l e .

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

Pressure The s o l u b i l i t y o f carbon d i o x i d e under c o n d i t i o n s where i t does n o t undergo s i g n i f i c a n t r e a c t i o n (such as a c i d i c aqueous s o l u t i o n s ) i s governed by Henry's law: t h e c o n c e n t r a t i o n o f CO2 i n s o l u t i o n i s p r o p o r t i o n a l to i t s p a r t i a l p r e s s u r e i n t h e gas phase ( 3 ) : [CO ]Y 2

O

=

H

°

P

C

0

2

N o n i d e a l i t y i n t h e s o l u t i o n phase, r e s u l t i n g from the s a l t i n g out e f f e c t (see b e l o w ) , i s accounted f o r by an a c t i v i t y c o e f f i c i e n t Ύ . N o n i d e a l i t y i n t h e gas phase a t h i g h p r e s s u r e can be accounted f o r by c o n s i d e r i n g t h e c o e f f i c i e n t K H t o be p r e s s u r e - d e p e n d e n t , o r by i n t r o d u c i n g a f u g a c i t y c o e f f i c i e n t m u l t i p l y i n g P, as i s common i n the Chemical E n g i n e e r i n g l i t e r a t u r e . The Henry's law c o n s t a n t i s a l s o f r e q u e n t l y r e p r e s e n t e d as H, the r e c i p r o c a l o f K J J (7) : 0

y J

a

Φ Ρ = m Ύ H a a a a

where Ρ i s t o t a l p r e s s u r e , Φ i s f u g a c i t y c o e f f i c i e n t o f CO2, y i s gaseous mole f r a c t i o n , m i s m o l a l i t y o f CO2 i n the aqueous phase, and Y i s the a c t i v i t y c o e f f i c i e n t o f CO2 i n t h e aqueous phase. A t ambient p r e s s u r e s and t e m p e r a t u r e s , Henry's law i s e s s e n ­ t i a l l y l i n e a r ; b u t a t lower temperatures and h i g h e r p r e s s u r e s ( p a r ­ t i c u l a r l y i n the s u p e r c r i t i c a l r e g i o n ) n o n l i n e a r i t y i n the p r e s s u r e dependence o f s o l u b i l i t y can be q u i t e s u b s t a n t i a l . In general, K i s somewhat h i g h e r a t h i g h e r p r e s s u r e . F o r example ( d a t a s e l e c t e d from Ref. 5 ) , K i n w a t e r a t 100°C and 70 atm i s 0.00343; a t 140 atm i t i s 0.00408; K i n acetone a t -78°C and 50 t o r r (0.0658 atm) i s 12.28; a t 650 t o r r (0.855 atm) i t i s 13.54. Ά

a

a

a

H

H

H

Temperature Temperature i s the most i m p o r t a n t parameter a f f e c t i n g the Henry's law c o e f f i c i e n t . Table 1 l i s t s a few randomly ( n o t c r i t i c a l l y ) s e l e c t e d v a l u e s f o r aqueous and nonaqueous media (.5). I n w a t e r , K J J decreases by a f a c t o r o f t e n as temperature i s r a i s e d from 0°C t o 200°C, b u t above t h a t i t i n c r e a s e s w i t h i n c r e a s i n g temperature. One e m p i r i c a l e q u a t i o n d e s c r i b i n g the temperature dependence o f K from 0 t o 100°C i s (2) H

-log

K„ = l o g H = 470.067 - 14947.2/T - 79.163 In Τ + 0.10926 Τ

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

10

CATALYTIC ACTIVATION OF CARBON DIOXIDE T a b l e I . Henry's Law C o e f f i c i e n t

Temp °C

Pressure

-78 -78 -78 -78 -65.3

50 650 740 700

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

0

f o r CO,

Ref

Solution

torr torr torr torr 1 atm

acetone acetone methanol ethanol 99% e t h a n o l

12.28 13.54 7.92 4.67 1.76

ICT ICT ICT ICT ICT

1 atm

water

.0776

Stumm

25 25 25 25 25 20 25 25 25 25 25 25 20 25 25 20 20 25 20

1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 20 20 1 1

atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm

water water water 3 M Aqueous NaCl 3.2 M NH C1 95.6 % H S 0 CCI4 CS CHCI3 methanol C2H4CI2 99% e t h a n o l ethanol pyridine benzene benzene chlorobenzene aniline petroleum

.03388 .03367 .03374 .01698 .02717 .0412 .0938 .140 • 141 .139 .144 .125 .157 .149 .0991 .150 .130 .0541 .0522

Stumm ICT ICT JNB ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT ICT

100 100 100 100 100 100 200 330

1 70 140 50 135 97 16 90

atm atm atm atm atm atm atm atm

water water water ethanol ethanol ethyl ether water water

.01023 .00343 .00408 .02936 .04363 .05842 .00891 .0200

Stumm ICT ICT ICT ICT ICT Stumm Ellis

4

2

2

4

Notes: Temperature has t h e b i g g e s t e f f e c t , i n c r e a s e s a t lower T. P r e s s u r e has s m a l l e f f e c t : K i n c r e a s e s a t h i g h e r P. K i s l a r g e r i n o r g a n i c s o l v e n t s than i n water. No d r a m a t i c d i f f e r e n c e among s o l v e n t s . H

H

Refs:

Stumm, W.; Morgan, J . J . A q u a t i c C h e m i s t r y ; New Y o r k : W i l e y , 2nd Ed., 1981. See Ref. (3) i n t e x t . E l l i s , A . J . G o l d i n g , R.M. Am. J . S c i . 1963, 261, 47-60. ICT = I n t e r n a t i o n a l C r i t i c a l T a b l e s (1928). R e f . (5) i n text.

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

2. BUTLER

11

Carbon Dioxide Equilibria

where Τ i s i n degrees K e l v i n . At 25°C, l o g K = -1.472, o r K = 0.0337, i n agreement w i t h T a b l e 1. An a l t e r n a t i v e e m p i r i c a l equa­ t i o n (8) c o v e r s t h e range from 0 t o 250°C: H

-log

K

H

H

= 41.0371 - 2948.44/T - 4.9734 In Τ - 0.0045401 Τ

At 25°C t h i s g i v e s l o g K = -1.458, o r K = 0.0348, a l i t t l e h i g h e r than t h e d a t a i n T a b l e I . However, the w i d e r temperature range i s an advantage f o r some purposes. At low temperatures carbon d i o x i d e i s e x t r e m e l y s o l u b l e i n most p o l a r o r g a n i c s o l v e n t s such as a l c o h o l s and ketones (Table I ) . H

H

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

Solvent At ambient t e m p e r a t u r e , carbon d i o x i d e i s t h r e e t o f i v e times more s o l u b l e i n most o r g a n i c s o l v e n t s than i n water (Table I ) . The d i f f e r e n c e s among p o l a r (e.g. methanol, = 0.139) and n o n p o l a r (e.g. carbon t e t r a c h l o r i d e , K J J = 0.094) s o l v e n t s a r e s m a l l . Two s o l v e n t s which have r e c e n t l y been o f p r a c t i c a l i n t e r e s t i n removing carbon d i o x i d e from n a t u r a l gas a r e p r o p y l e n e c a r b o n a t e (9) and monoethanolamine (10) - t h i s l a s t ought t o be c l a s s i f i e d as an a c i d - b a s e r e a c t i o n . J u d g i n g from t h e number o f e n t r i e s i n t h e 1 0 t h c o l l e c t i v e i n d e x t o Chemical A b s t r a c t s , t h e r e i s a s u b s t a n t i a l c h e m i c a l e n g i n e e r i n g l i t e r a t u r e on t h i s t o p i c . Salts The i o n s o f n o n r e a c t i v e s a l t s i n f l u e n c e t h e s o l u b i l i t y o f C0 v i a the s a l t i n g - o u t e f f e c t . T h i s i s accounted f o r by an a c t i v i t y c o e f f i c i e n t f o r uncharged CO2, whose l o g a r i t h m i s d i r e c t l y p r o p o r ­ t i o n a l t o t h e i o n i c s t r e n g t h . At 25°C ( 3 ) , 2

log

γ

= 0.1 I ο

0

for sodium c h l o r i d e s o l u t i o n s . At o t h e r temperatures and h i g h e r i o n i c s t r e n g t h s , t h i s e m p i r i c a l e q u a t i o n (.11, 12) can be used: 2

log

γ

ο

=

2

(33.5-0.109t+0.0014t )I - ( 1 . 5 + 0 . 0 1 5 t + 0 . 0 0 4 t ) I (t 4- 273)

2

where t i s temperature i n degrees C e l s i u s . A l t h o u g h t h e s a l t e f f e c t i s somewhat g r e a t e r a t h i g h e r temper­ a t u r e s , i t i s not l a r g e compared t o t h e e f f e c t s o f p r e s s u r e , temper­ a t u r e , s o l v e n t , and e s p e c i a l l y a c i d - b a s e r e a c t i o n s . Acid-Base Reactions R e a c t i o n o f CO2 w i t h bases - e i t h e r as s o l v e n t o r s o l u t e - i s by f a r the most s i g n i f i c a n t e f f e c t on C0 s o l u b i l i t y i n aqueous media. The e q u i l i b r i a a r e well-known f o r aqueous s o l u t i o n s ( 1 , 2, 3, 7 ) , but l i t t l e data has been s y s t e m a t i c a l l y c o m p i l e d on a c i d - b a s e r e a c t i o n s of CO2 i n nonaqueous s o l u t i o n s (see I n t r o d u c t i o n ) . 2

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

12

CATALYTIC ACTIVATION OF CARBON DIOXIDE

E f f e c t s of o t h e r i o n s i n s o l u t i o n on the a c i d - b a s e r e a c t i o n s are accounted f o r i n two complementary ways - v i a a c t i v i t y c o e f f i ­ c i e n t s i n the e q u i l i b r i u m e q u a t i o n s ( 3 ) : γ_ = K A ] _ [ C 0 ]

+

[H ][HC0 ~] γ 3

+

=

[H ][C0 ] γ 3

+

+

γ

2

γ

=

=

ο

[HC0 ""] γ_ 3

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

and v i a e q u i l i b r i a of i o n - p a i r i n g , e x e m p l i f i e d by the i n t r o d u c t i o n of a sodium-carbonate i o n p a i r e q u i l i b r i u m [NaC0 ~] = K. 3

+

=

[Na ][C0 ] . 3

+

The i o n p a i r i s i n c l u d e d i n a d d i t i o n t o N a , mass and charge b a l a n c e s ( 3 ) : CT

= [ C 0 ] + [HC0 "] + 2

+

3

=

[C0 ] + 3

+

=

[H ] + [ N a ] = [HC0 "] + 2 [ C 0 ] + 3

3

HCO3", and C 0

= 3

i n the

[NaC0 "] 3

[NaCO^] +

[0H~]

The d i s t i n c t i o n between " p u r e " e l e c t r o s t a t i c e f f e c t s and i o n a s s o c i a t i o n i s somewhat a r b i t r a r y ; f o r example, many workers have used an extended Debye-Huckel e q u a t i o n w i t h f i x e d i o n - s i z e p a r a ­ meters t o compute the a c t i v i t y c o e f f i c i e n t s , and a s s i g n e d a l l o t h e r n o n i d e a l i t y t o i o n - p a i r i n g e q u i l i b r i a ( 3 , 13, 14). Recent r e v i e w s have surveyed more e l a b o r a t e s o l v a t i o n - b a s e d thermodynamic t h e o r i e s of e l e c t r o l y t e s (15, 16). The f i r s t a c i d i t y c o n s t a n t d e c r e a s e s m o n o t o n i c a l l y w i t h temper­ ature: p K = - l o g ( K ) changes from 6.58 at 0°C t o 6.352 at 25°C to 6.30 at 65°C ( 7 K An e m p i r i c a l r e l a t i o n f o r the range 0 - 6 5 ° C i s : a l

log

Κ

a l

= 1202.09 - 34771.1/T - 207.876 In Τ + 0.310514 Τ

pK i n c r e a s e s t o 7.08 a t 200°C and 8.3 at 3 0 0 ° C (3 8, 17). An e m p i r i c a l r e l a t i o n s h i p c o v e r i n g the range from 0 - 2 2 5 ° C i s ( 8 ) : a l

log

Κ

= 102.268 - 5251.53/T - 15.9740 In Τ

which g i v e s p K = 6.36 at 2 5 ° C and 7.22 at 2 0 0 ° C . An e x t e n s i v e d i s s e r t a t i o n on the p r e d i c t i o n o f thermodynamic p r o p e r t i e s f o r aqueous e l e c t r o l y t e s can be found i n the work of Helgeson and Kirkham ( 1 8 ) . The second a c i d i t y c o n s t a n t a l s o goes through an extremum: pK d e c r e a s e s from 10.625 at 0°C t o a minimum of 10.14 at about 9 0 ° C , then i n c r e a s e s t o 10.89 at 218°C ( 1 7 ) . At h i g h p r e s s u r e s and t e m p e r a t u r e s , o r i n nonaqueous media, pH may not be a c o n v e n i e n t q u a n t i t y t o measure; however, any quan­ t i t y can be made i n t o a master v a r i a b l e v i a the a p p r o p r i a t e mass and charge b a l a n c e s . One o b v i o u s q u a n t i t y i s the p a r t i a l p r e s s u r e of CO2; another i s the t i t r a t i o n a l k a l i n i t y (3) a l

a 2

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

2. BUTLER A

13

Carbon Dioxide Equilibria

c

= [HC0

] + 2 [C0

3

+

] + [OH ] - [ H ] + ...

3

w h i c h t o a f i r s t a p p r o x i m a t i o n i s independent o f CO2 c o n c e n t r a t i o n . I n the absence o f a good l i t e r a t u r e s u r v e y , l e t me s p e c u l a t e about what e f f e c t s one might expect i n nonaqueous media. In the t o t a l absence o f w a t e r , C 0 would not form H2CO3, and hence would not p r o v i d e HCO3" o r C 0 3 . On the o t h e r hand, a s t r o n g l y b a s i c s o l v e n t o r s o l u t e might form analogous i o n s w i t h CO2. For example: 2

=

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

C0 C0

2

2

+ OH" = HC0 "; 3

+ NH ~ = C0 NH ". 2

2

2

In s o l v e n t s o f low d i e l e c t r i c c o n s t a n t ( i . e . carbon t e t r a c h l o r i d e o r benzene), d i s s o c i a t i o n i n t o i o n s i s more d i f f i c u l t , and i o n a s s o c i a t i o n i s the r u l e r a t h e r than the e x c e p t i o n . In a p r o t i c s o l v e n t s of high d i e l e c t r i c constant ( i . e . propylene carbonate o r d i m e t h y l s u l f o x i d e ) , d i s s o c i a t i o n i n t o ions i s f a c i l i t a t e d , b u t t o produce HCO^ one would have t o p r o v i d e some water t o r e a c t w i t h CO2. H y d r o x i d e s and c a r b o n a t e s tend t o be i n s o l u b l e i n anhydrous a p r o t i c s o l v e n t s ( 1 9 ) , and thus HCO3" and C 0 3 would tend t o be p r e s e n t a t v e r y low c o n c e n t r a t i o n , i f a t a l l . -

=

Electrochemistry R e d u c t i o n o f carbon d i o x i d e can produce a wide v a r i e t y o f p o s s i b l e p r o d u c t s . Thermodynamically, the most s t a b l e p r o d u c t i s methane, but p r o d u c t s o f i n t e r m e d i a t e o x i d a t i o n s t a t e such as methanol, methanal, f o r m a t e , o x a l a t e , carbon monoxide, and e l e m e n t a l carbon a r e a l l p o s s i b i l i t i e s (20, 2 1 ) . CO2 r e d u c t i o n proceeds r e a d i l y t o f o r m i c a c i d on most m e t a l e l e c t r o d e s , and f o r m i c a c i d r e d u c t i o n proceeds most r a p i d l y on e l e c t r o d e s w i t h h i g h hydrogen o v e r v o l t a g e such as l e a d , t i n , and i n d i u m ; t h i s appears t o be r e l a t e d t o the s t a b i l i t y o f i n t e r m e d i a t e s (22, 23). The a n i o n s HCO3"" and C 0 3 tend t o be r e p e l l e d from the negat i v e l y charged e l e c t r o d e . I t has been e s t a b l i s h e d (24) t h a t even i n c o n c e n t r a t e d s o l u t i o n s o f NaHC0 , r e d u c t i o n o f b i c a r b o n a t e i o n o c c u r s v i a uncharged C 0 . D i r e c t r e d u c t i o n o f the a n i o n i s v e r y slow by comparison. R e d u c t i o n o f carbon d i o x i d e and i t s i n t e r m e d i a t e s i s c a t a l y z e d by i l l u m i n a t i o n . P h o t o c a t a l y z e d r e d u c t i o n o f CO2 t o formaldehyde and methanol has been observed on semiconductor powders suspended i n s o l u t i o n (25) as w e l l as on GaAs e l e c t r o d e s ( 2 6 ) . One might expect t h a t the h i g h e r c o n c e n t r a t i o n s o f CO2 i n s o l u t i o n , o b t a i n e d i n nonaqueous media, might i n c r e a s e the r a t e o f r e d u c t i o n , but s i n c e the enhancement o f s o l u b i l i t y i s not g r e a t (Table I ) and the e f f e c t o f the d i f f e r e n t s o l v e n t on r e a c t i o n i n t e r mediates i s d i f f i c u l t t o p r e d i c t , i n c r e a s i n g the r a t e o f CO2 reduct i o n by changing s o l v e n t i s p r o b a b l y not a s i m p l e o r s t r a i g h t f o r w a r d problem. =

3

2

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

CATALYTIC ACTIVATION OF CARBON DIOXIDE

14 Acknowledgments

P r e p a r a t i o n o f t h i s paper was s u p p o r t e d i n p a r t by Harvard U n i v e r s i t y . The author thanks Jeanne S a t t e l y f o r h e l p i n g w i t h t h e i l l u s t r a t i o n s and t r a n s p a r e n c i e s ; and C a r r i e Kent o f the Cabot S c i e n c e L i b r a r y f o r her b r i e f but e n t h u s i a s t i c a t t a c k on t h e ignorance e x p l o s i o n .

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

Literature Cited 1. Sillen, L.G.; Martell, A.E. Stability Constants; London: The Chemical Society, Special Pub. 17, 1964 and 25, 1971. 2. Martell, A.E.; Smith, R.M. Critical Stability Constants; New York: Plenum Press, 4 volumes, 1974-1977. 3. Butler, J.N. Carbon Dioxide Equilibria; Reading, MA: Addison­ -Wesley Publishing Co., 1982. 4. Janz, G.J.; Tomkins, R.P.T.; et al. Nonaqueous Electrolytes Handbook; New York: Academic Press, 2 volumes, 1972-1973. 5. Washburn, E.W. et al. International Critical Tables; Washington, DC: National Research Council, 1928; Vol. 3, pp. 260-283. 6. Seidell, Α.; Linke, W.F. Solubilities; New York: Van Nostrand, 4th ed., 1958; Vol. 1, pp. 476-493. 7. Edwards, T.J.; Newman, J . ; Prausnitz, J.M. "Thermodynamics of aqueous solutions containing volatile weak electrolytes," A.I.Ch.E. Journal 1975, 21(2), 248-259. 8. Edwards, T.J.; Maurer; G., Newman, J; Prausnitz, J.M. "Vapor­ -liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes," A.I.Ch.E. Journal 1978, 24, 966-976. 9. Freireich, E.; Tennyson, R.N. Proc. Gas. Cond. Conf. 1977, 27, D/1-D/11, Chem Abstr. 1977, 88, 107620W. 10. DeCoursey, W.J. Des. Process Plants. Can. Chem. Eng. Conf. 27th 1977, 136-142, Chem. Abstr. 1977, 88, 109792C. 11. Wigley, T.M.L.; Plummer, L.N. Geochim. Cosmochim. Acta 1976, 40, 989-995. 12. Harned, H.S.; Davis, R. Jr. J. Am. Chem. Soc. 1943, 65, 20302037. 13. Garrels, R.M.; Thompson, M.E. Am. J. Sci. 1962, 260, 57-66. 14. Whitfield, M. Limnol. Oceanogr. 1974, 19, 235-245. 15. Maurer, G. Fluid Phase Equil. 1983, 13, 269-296. 16. Horvath, A.L. Handbook of Aqueous Electrolyte Solutions; New York: Ellis Horwood Ltd. - John Wiley & Sons, 1985, pp. 206-232. 17. Helgeson, H.C. "Thermodynamics of complex dissociation in aque­ ous solution at elevated temperatures," J. Phys. Chem. 1967, 71, 3121-3136. 18. Helgeson, H.C.; Kirkham, D. "Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high temper­ atures and pressures," Part I: Am. J. Sci. 1974, 274, 10891198; Part II: Am. J. Sci. 1974, 1199-1261, Part III: Am. J. Sci. 1976, 97-240. 19. Butler, J.N. J. Electroanal. Chem. 1967, 14, 89-116.

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by JOHNS HOPKINS UNIV on January 8, 2015 | http://pubs.acs.org Publication Date: December 17, 1988 | doi: 10.1021/bk-1988-0363.ch002

2. BUTLER

Carbon Dioxide Equilibria

15

20. Pourbaix, M. Atlas of Electrochemical Equilibria; Brussels: CEBELCOR and Houston, TX: National Assoc. of Corrosion Engineers, 1958, pp. 449-457. 21. Bard, A.J.; Parsons, R.; Jordan, J., Eds. Standard Potentials in Aqueous Solution; New York: Marcel Dekker, 1985, pp. 189-200. 22. Russell, P.G., et al. J. Electrochem. Soc. 1977, 124, 13291338. 23. Kapusta, S.; Hackerman, N. J. Electrochem. Soc. 1983, 130, 607613. This paper contains a brief review of the earlier literature. 24. Hori, Y.; Suzuki, S. J. Electrochem. Soc. 1983, 130, 2387-2390. 25. Inoue, T., et al. Nature 1979, 277, 637-638. 26. Frese, K.W.; Canfield, D. J. Electrochem. Soc. 1984, 131, 2518-2522. RECEIVED June 24, 1987

In Catalytic Activation of Carbon Dioxide; Ayers, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.