16 Characterization of Novel Antimony Compounds by Antimony-121 Mössbauer
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
Spectroscopy R. V. PARISH and O W E N PARRY Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester, M60 1QD, England
The
products of
R C:N Li +
2
(R
-
reaction of
SbCl
5
with R C:NH
and
2
= phenyl or substituted phenyl) were investi-
gated. Infrared and
Sb Mössbauer spectroscopy suggest
121
that three different types of compounds are formed. type appears to be the ketiminium (δ
ca. 5.7 mm
InSb
s,
e qQ
-1
2
adventitious hydrolysis. most surprisingly, 2
2
The
s ), -1
ca. —8 mm
-1
2
an Sb-C
g
s, -1
but might otherwise have escaped
detection. The final group of compounds has mm s , e qQ
products,
This oxidation state is indicated un-
4
ca. 10 mm
g
6
derivatives, probably
InSb
e qQ
2
second group of
ambiguously by the Mössbauer spectra (δ 2
One
[R C:NH ][SbCl ]
zero), presumably formed by
g
are antimony (III)
[R C:NH ][SbCl ]. 2
salt
δ
InSb
ca. 5.3
ca. 10 mm s , consistent with the presence of -1
bond, and these materials appear to be the first
examples of o-metallated derivatives involving antimony, for example, Ph(C6H4)C:NHSbCl4.
H p h i s i n v e s t i g a t i o n arose f r o m a v i s i t to the U n i v e r s i t y of M a n c h e s t e r I n s t i t u t e of Science a n d T e c h n o l o g y b y D r . K e n W a d e of D u r h a m U n i v e r s i t y , to d e s c r i b e some w o r k h e h a d b e e n d o i n g o n complexes
of
k e t i m i n e s , R C : N H , w i t h m a i n - g r o u p acceptors ( J ) . T h e D u r h a m g r o u p 2
also w a s c o n c e r n e d w i t h the i n t e r a c t i o n of the k e t i m i n e s or t h e i r l i t h i u m derivatives, R C : N L i , w i t h S b C l 2
+
5
(2),
a n d w e suggested t h a t
1 2 1
Sb
M o s s b a u e r spectroscopy m i g h t a i d t h e c h a r a c t e r i z a t i o n of t h e p r o d u c t s . A c c o r d i n g l y , D r . W a d e sent us t e n samples for i n v e s t i g a t i o n , the M o s s b a u e r d a t a for w h i c h w e r e i n d e e d i n v a l u a b l e , as w e d e s c r i b e i n the f o l l o w i n g 0065-2393/81/0194-0361$05.00/0 © 1981 American Chemical Society
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
362
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
C H E M I C A L APPLICATIONS
sections. A b r i e f r e v i e w of t h e M o s s b a u e r t e c h n i q u e w i t h
1 2 1
S b is g i v e n
a l s o ; m o r e d e t a i l e d treaments h a v e b e e n p r e s e n t e d b y B o w e n ( 3 ) , c r o f t a n d P i a t t (4), 121
and Greenwood and Gibb
Ban
(5).
Sb Mossbauer Spectroscopy Mossbauer
spectroscopy
with
1 2 1
Sb
is
a
frustrating
experience.
Sources u s u a l l y h a v e o n l y l o w a c t i v i t y , a n d t h e s p e c t r a are c o m p l e x a n d i n h e r e n t l y p o o r l y r e s o l v e d . I t is t e d i o u s to o b t a i n g o o d s p e c t r a .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
T h e source m a t e r i a l is t h e 50-year CaSn0 .
T h i s isotope
3
[
1 2 0
Sn(n,y)
1 2 1 m
Sn],
is p r o d u c e d
by
S n , usually i n the f o r m
neutron
of
of
1 2 0
Sn
F r o m t h e h i g h e r - e n e r g y state,
S n decays d i r e c t l y t o t h e 3 7 . 2 - k e V l e v e l of
b a u e r - a c t i v e state.
irradiation
b u t t h e cross section is s m a l l a n d l o w a c t i v i t i e s are
o b t a i n e d e v e n after years of i r r a d i a t i o n . 1 2 1 m
1 2 1 m
1 2 1
S b , w h i c h is t h e M o s s -
T h e source also emits c o n s i d e r a b l e x - r a d i a t i o n , c e n
t e r e d at 26 k e V , a n d t h e n o r m a l m e t h o d of d e t e c t i o n is to m o n i t o r t h e escape p e a k ( 8 k e V )
of a n X e / C 0
2
or X e / C H
4
p r o p o r t i o n a l c o u n t e r or
a N a l ( T l ) scintillator. I n the present w o r k , a high-resolution, h y p e r p u r e g e r m a n i u m L E P S detector
(Ortec)
w a s u s e d to m o n i t o r t h e 37.2-
k e V gamma ray directly. T h e m o d e r a t e l y h i g h e n e r g y of t h e g a m m a r a d i a t i o n results i n r e l a tively small recoil-free
f r a c t i o n s , e s p e c i a l l y for m o l e c u l a r
compounds.
M e a s u r e m e n t s n o r m a l l y m u s t b e m a d e at l i q u i d - n i t r o g e n t e m p e r a t u r e s or below.
M o s t of t h e d a t a r e p o r t e d h e r e refer to 4.2 K . W e h a v e w o r k e d
w i t h a v e r t i c a l - d r i v e cryostat w i t h b o t h source a n d a b s o r b e r i m m e r s e d i n l i q u i d h e l i u m . T o i m p r o v e b a s e l i n e l i n e a r i t y , t h e source w a s s t a t i o n a r y a n d t h e D o p p l e r m o t i o n w a s a p p l i e d to t h e a b s o r b e r .
kept
Isomer
shifts w e r e m e a s u r e d r e l a t i v e t o I n S b . T h e M o s s b a u e r t r a n s i t i o n is f r o m a g r o u n d state w i t h I = e x c i t e d state w i t h I =
7/2.
5 / 2 to a n
Q u a d r u p o l e i n t e r a c t i o n t h e r e f o r e gives a n
e i g h t - l i n e s p e c t r u m ( T a b l e I ; 12 l i n e s are present i f t h e e l e c t r i c g r a d i e n t is not a x i a l l y s y m m e t r i c , rj =7^ 0 ) .
Table I.
Mossbauer Transitions in
Position (mm s' ) 1
-0.3936 -0.2021 -0.1893 -0.0936 -0.0393 +0.0564 +0.0850 +0.0979
Intensity 0.0119 0.0714 0.0357 0.1191 0.2143 0.1191 0.2500 0.1786
121
field
Unfortunately, the natural
S b for e qQ = 1 . 0 0 2
g
m m s" , TJ = 1
\™i\(s) 5/2 5/2 3/2 3/2 1/2 1/2 5/2 3/2
3/2 5/2 1/2 3/2 1/2 3/2 7/2 5/2
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
0
16.
Antimony-121
PARISH AND PARRY
Mossbauer
363
Spectroscopy
l i n e w i d t h is l a r g e (2.1 m m s " ) , a n d f u l l y r e s o l v e d s p e c t r a are n e v e r 1
o b t a i n e d (see F i g u r e 1 ) . H o w e v e r , t h e shape of t h e b r o a d
absorption
e n v e l o p e r e a d i l y reveals t h e s i g n of t h e q u a d r u p o l e c o u p l i n g (e qQ ; 2
a
g
Q
g
constant
is t h e q u a d r u p o l e m o m e n t of t h e ground-state n u c l e u s ) , a n d
r o u g h estimate of its m a g n i t u d e u s u a l l y c a n b e m a d e .
Computer
fitting m u s t b e m a d e w i t h e i g h t lines w h o s e positions a r e c o n s t r a i n e d b y the i s o m e r shift, e qQ ,
a n d t h e r a t i o of g r o u n d - a n d excited-state q u a d r u
pole moments
= 1.34, w h i l e t h e intensities a r e c o n s t r a i n e d t o
2
g
Q x/Q e
g
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
those f o r a r a n d o m p o w d e r ( T a b l e I ) . I t is therefore necessary t o g r i n d the samples c a r e f u l l y t o a v o i d o r i e n t a t i o n effects.
I f the electric
field
g r a d i e n t is not a x i a l l y s y m m e t r i c , a n a p p r o p r i a t e c a l c u l a t i o n of l i n e p o s i tions a n d intensities m u s t b e m a d e , p r e f e r a b l y b y s o l u t i o n of t h e q u a d r u p o l e H a m i l t o n i a n ( 6 ) . I n t h e present w o r k e qQ 2
is s m a l l (^ 10 m m s ' ) , 1
g
a n d t h e shape of t h e s p e c t r u m is r e l a t i v e l y i n s e n s i t i v e t o m o d e r a t e v a l u e s of t h e a s y m m e t r y p a r a m e t e r ( < c a . 0 . 6 ) ; therefore, w e h a v e u s e d o n l y the e i g h t - l i n e
fitting
procedure.
T h e i s o m e r shift c a n b e d e t e r m i n e d
p r e c i s e l y ( c a . ± 0 . 0 5 m m s " ) , b u t , o w i n g t o t h e p o o r r e s o l u t i o n , e qQ 1
2
g
is
m u c h less w e l l d e f i n e d ( c a . ± 0 . 8 m m s ' o r w o r s e ) . 1
T h e shape of t h e s p e c t r u m also c a n b e affected b y t h e thickness of the s a m p l e . T h e o p t i m u m thickness is 5 - 1 0 m g c m " of n a t u r a l a n t i m o n y . 2
For
h i g h e r values, s a t u r a t i o n effects c a n o c c u r , g i v i n g r e l a t i v e e n h a n c e
m e n t of t h e w e a k e r lines. T o o b t a i n a c c u r a t e values of e qQ 2
conditions, the transmission integral described should be used.
g
b y Shenoy
u n d e r these et a l . ( 7 )
T h i s p r o c e d u r e e n o r m o u s l y increases t h e c o m p u t a t i o n
time, even w i t h Cranshaw's ingenious time-saving modification ( 8 ) , a n d s h o u l d b e a t t e m p t e d o n l y after p r e l i m i n a r y fitting b y t h e n o r m a l m e t h o d . U s i n g t h e t r a n s m i s s i o n i n t e g r a l f o r r e l a t i v e l y s m a l l values of e qQ 2
g
(ca.
10 m m s " ) a n d samples of m o d e r a t e thickness results i n a n a p p r o x i m a t e 1
5%
decrease i n t h e fitted v a l u e ( 9 , 1 0 ) .
T h e transmission integral was
n o t u s e d i n t h e present w o r k . For
1 2 1
S b , SR/R is r e l a t i v e l y l a r g e a n d n e g a t i v e . T h e i s o m e r shift is
v e r y sensitive t o s m a l l e l e c t r o n i c changes, a n d t h e t w o o x i d a t i o n states are w e l l d i f f e r e n t i a t e d . S i n c e &R/R is n e g a t i v e , a n t i m o n y ( I I I ) gives t h e m o r e n e g a t i v e i s o m e r shift, a n d I n S b p r o v i d e s a u s e f u l r o u g h d i v i d i n g point—shifts for antimony ( I I I ) being more negative than for InSb a n d those f o r a n t i m o n y ( V ) m o r e p o s i t i v e . F o r e a c h o x i d a t i o n state t h e i s o m e r shift is sensitive t o t h e n a t u r e of t h e g r o u p s b o n d e d t o t h e a n t i m o n y , normally becoming more positive w i t h increasing electronegativity.
Typi
cal ranges of v a l u e s a r e s h o w n i n T a b l e I I . Q u a d r u p o l e c o u p l i n g is n o r m a l l y s m a l l i n a n t i m o n y ( V )
unless t h e
l i g a n d s differ a p p r e c i a b l y i n e l e c t r o n e g a t i v i t y , a n d s u b s t a n t i a l s p l i t t i n g s are seen p r i m a r i l y i n o r g a n o a n t i m o n y c o m p o u n d s . S b — C b o n d ( o r t w o i n cis p o s i t i o n s )
T h e presence of one
gives e qQ 2
g
equal to 10-14 m m
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
364
MOSSBAUER
SPECTROSCOPY
A N D ITS
CHEMICAL
APPLICATIONS
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
V / m m s"
1
i i i i i i i ) i i i i i i i i i i i t i i i i i i i i i i
Figure 1. Calculated Sb Mossbauer spectra for 8 = 0, T = 2.4 mm s' , and e qQ = +30 mm s' (a) and + 20 mm s' (b). In (b) the peak positions are indicated with half intensity. Note the dramatic reduction in resolution as e qQ decreases. 121
2
g
1
1
1
2
g
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
16.
Antimony-121
PARISH AND PARRY Table II.
T y p i c a l Ranges for
Mossbauer 1 2 1
S b Mossbauer
Parameters e qQ^ (mm s' )
hnsb (mm s' )
2
1
" I n o r g a n i c " antimony (III) "Inorganic" antimony (V) Organoantimony (III) Organoantimony (V)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
s"
1
—8 t o —2 + 2 to + 1 2 —2 t o 0 0 to + 6
0 to 0 to + 1 5 to 0 to
( p o s i t i v e i n t h e first case, n e g a t i v e i n t h e second,
1
365
Spectroscopy
+18 ±5 +18 +30
becouse Q
g
is
n e g a t i v e ) , a n d a trans C — S b — C a r r a n g e m e n t gives v a l u e s of 2 2 - 2 7 m m s" . V a l u e s f o r p a r t i c u l a r structures c a n b e e s t i m a t e d b y u s i n g t h e p o i n t 1
c h a r g e t r e a t m e n t ( 4 ) . F o r a n t i m o n y ( I I I ) there is u s u a l l y a l a r g e n e g a t i v e c o n t r i b u t i o n t o t h e e l e c t r i c field g r a d i e n t f r o m t h e l o n e p a i r , w h i c h u s u a l l y o u t w e i g h s t h a t f r o m t h e l i g a n d s , a n d e qQ 2
are f o u n d .
T h e r a n g e reflects differences
v a l u e s of 5 - 1 9 m m s '
g
1
i n t h e h y b r i d i z a t i o n of t h e
a n t i m o n y a t o m a n d t h e w i d e v a r i e t y of structures. I n a f e w c o m p o u n d s c o n t a i n i n g t h e S b C l " i o n t h e a n t i m o n y a t o m o c c u p i e s a site of o c t a 6
3
h e d r a l s y m e m t r y ; t h e l o n e p a i r is n o w f o r c e d t o h a v e 1 0 0 % 55 c h a r a c t e r , e qQ 2
g
b e c o m e s z e r o , a n d t h e i s o m e r shift is r e d u c e d c o r r e s p o n d i n g l y t o
a b o u t — 1 1 m m s" ( I I ) . 1
Preliminary Investigation T h e t e n samples s u p p l i e d b y D r . W a d e w e r e e x a m i n e d i n i t i a l l y b y i n f r a r e d spectroscopy. C=N cm" , 1
M a r k e d differences w e r e f o u n d i n t h e N — H a n d
s t r e t c h i n g regions of t h e spectra, 3000-34,000 c m " a n d 1550-1700 1
respectively.
O n this basis t h e samples w e r e d i v i d e d i n t o t h r e e
g r o u p s . T h e first ( G r o u p I , t w o s a m p l e s ) shows three a b s o r p t i o n p e a k s i n t h e N — H s t r e t c h i n g r e g i o n , a t a b o u t 1600 a n d 1660 c m " . T h e s e s a m 1
ples w e r e p r e p a r e d b y d i r e c t t r e a t m e n t of S b C l
5
with R C : N H . 2
The
s e c o n d g r o u p ( I I , t h r e e s a m p l e s ) h a s o n l y one s t r o n g N — H s t r e t c h i n g b a n d , b u t f o u r p e a k s i n t h e 1550-1700 c m ' r e g i o n , of w h i c h t h e o n e a t 1
a b o u t 1660 c m " is of m e d i u m - w e a k i n t e n s i t y . T h i s g r o u p , a n d t h e t h i r d , 1
were obtained b y interacting S b C l w i t h R C : N L i . T h e third group ( I I I , 5
2
five s a m p l e s ) shows v e r y b r o a d N — H a b s o r p t i o n a n d t h r e e b r o a d b a n d s i n t h e C = N r e g i o n . T h e shape of t h e N — H b a n d suggests t h e h y d r o g e n b o n d i n g effects seen i n a m i n e salts. T h e s p e c t r a a r e t h u s a l l m o r e c o m p l e x t h a n e x p e c t e d f o r s i m p l e a d d u c t s of t h e t y p e R C : N H • S b C l . 2
5
Repre
sentative s p e c t r a f o r samples d e r i v e d f r o m P h C : N H o r P h C : N L i a r e 2
2
s h o w n i n F i g u r e 2. C h e m i c a l analysis showed that the compounds
of G r o u p I h a d a n
S b : C l r a t i o of 1:6, w h i l e a l l t h e other c o m p o u n d s
g a v e a r a t i o of 1:4
( T a b l e I I I ) . A l t h o u g h analyses f o r h y d r o g e n a r e p r o b a b l y t h e least
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
366
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
cm -1
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
3500
3000
1800
1400
Figure 2. Infrared spectra in the N—H and C=N stretching regions for samples derived from (a) Ph CNH/SbCl , Group I; (b) Ph CNLi/SbCl , Group II; and (c) Ph CNLi/SbCl , Group III 2
5
2
2
5
5
r e l i a b l e , t h e a t o m ratios are c o n s i s t e n t l y h i g h e r f o r G r o u p s I a n d I I I , a n d lower for G r o u p I I t h a n expected for the simple adducts R C : N H • S b C l . 2
T h u s , n o n e of t h e c o m p o u n d s
are o f this form, confirming
5
deductions
m a d e p r e v i o u s l y f r o m t h e i n f r a r e d spectra.
Mossbauer
Spectra
The S b M o s s b a u e r s p e c t r a also s h o w e d differences a m o n g t h e samples, a n d c o n f i r m e d t h e g r o u p i n g d e d u c e d f r o m t h e i n f r a r e d spectra. R e p r e s e n t a t i v e s p e c t r a are s h o w n i n F i g u r e 3. T h e c o m p o u n d s o f G r o u p I s h o w s h a r p , s y m m e t r i c a l s i n g l e t s p e c t r a , c e n t e r e d a r o u n d + 6 m m s" . G r o u p I I gives a s l i g h t l y l o w e r i s o m e r shift, b u t t h e shape o f the a b s o r p t i o n e n v e l o p e c l e a r l y demonstrates a s m a l l b u t definite q u a d r u p o l e 1 2 1
1
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
16.
Antimony-121
PARISH AND PARRY
splitting, w i t h
positive.
e qQ 2
g
Mossbauer
T h u s , these
367
Spectroscopy
t w o groups
both
contain
a n t i m o n y ( V ) , b u t differ i n t h e s y m m e t r y of t h e a n t i m o n y e n v i r o n m e n t . T h e r e m a i n i n g samples, v e r y s u r p r i s i n g l y , s h o w e d m a j o r resonances about
at
— 8 m m s" , a n d thus are u n a m b i g u o u s l y d e r i v a t i v e s of t r i v a l e n t 1
a n t i m o n y . I n t w o cases a d d i t i o n a l signals w e r e seen also.
Antimony (III) Species (Group III)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
A l l five samples of G r o u p I I I s h o w e d resonances i n t h e a n t i m o n y ( I I I ) r e g i o n ( T a b l e I V , F i g u r e 4 ) . A l l h a v e a n e qQ 2
g
of a b o u t + 1 0 m m s" (as 1
e x p l a i n e d e a r l i e r , these values a r e a c c u r a t e t o o n l y a b o u t T h e p o s i t i v e s i g n is consistent w i t h t h e p r e s e n c e of a active lone pair.
± 1 m m s" ). 1
stereochemically
F r o m t h e a n a l y t i c a l d a t a i t seems l i k e l y t h a t
these
c o m p o u n d s c o u l d c o n t a i n S b C l ~ a n i o n s , a n d t h e i n f r a r e d s p e c t r a a r e also 4
consistent w i t h t h e p r e s e n c e of R C : N H 2
2
+
cations.
Comparison w i t h the
( r a t h e r l i m i t e d ) d a t a f o r o t h e r salts of these a n i o n s ( T a b l e I V ) confirms this s u g g e s t i o n a n d r u l e s o u t o t h e r t y p e s o f c o o r d i n a t i o n .
Table
III.
Analytical Data R C:NLi/SbCl 2
R
Group
CeHs p-CH C H 3
C H 6
6
5
p-CH C H 3
CeH
4
6
4
5
p-CH C H 3
P-FC H 6
6
4
4
C H ,m-CH C H 6
5
3
6
4
% C
for R C : N H / S b C l Products 2
5
T h e identifi-
5
and
0
%H
%N
%Cl
%Sb
I
31.6 (14.5
2.5 13.8
2.9 1.1
38.9 6.1
21.9 1.0)
I
39.4 (21.0
3.7 23.7
2.5 1.1
35.1 6.3
18.9 1.0)
II
35.2 (12.9
2.1 9.3
2.8 0.9
32.5 4.0
(27.4) 1.0)
II
38.1 (15.0
3.0 14.2
2.9 1.0
29.9 4.0
25.6 1.0)
II
33.7 (13.0
2.4 11.1
2.9 1.0
33.4 4.4
26.1 1.0)
III
34.9 (12.7
2.7 11.8
3.2 1.0
31.7 3.9
27.8 1.0)
III
37.7 (15.4
3.4 16.7
2.7 0.9
30.1 4.2
24.7 1.0)
III
34.8 (14.4
2.3 11.5
2.8 1.0
27.9 3.9
24.3 1.0)
III
35.9 (14.1
3.2 15.1
2.8 0.9
28.8 3.8
25.6 1.0)
° Figures in parentheses are the atom ratios. By difference. 6
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
1
368
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
V / m m s10
0
-10
1
>
19C
x
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch016
X
29C