Chapter 2
New Anion- and Gas-Selective Potentiometric Sensors 1
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
M. E. Meyerhoff, D. M. Pranitis , Η. S. Yim, N. A. Chaniotakis, and S. B. Park Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
Although highly selective membrane electrodes are now used routinely for direct measurements of various cations (e.g.Η ,Κ , Na , Ca ), there are r e l a t i v e l y few analogous sensing devices that can be u t i l i z e d to determine specific anions and gases. In this paper, recent progress in the design of simple anion and gas selective potentiometric chemical sensors based on solvent/polymeric membranes w i l l be summarized. In the case of anion sensing, the incorporation of various metal-ligand complexes, including metalloporphyrins, within polymeric membranes has resulted in the development of highly selective sensors for sulfite, salicylate and thiocyanate. The sulfite selective membrane may be further used i n conjunction with an outer gas permeable membrane to design SO selective sensing systems. Existing cation and the newer anion polymeric membrane electrodes can also be employed to fabricate novel differential gas sensing cells that exhibit enhanced sensitivity toward the analyte gas. The principles of this differential approach are demonstrated via the design of a new ammonia selective sensor. +
+
+
2+
2
Advances i n t h e development o f ion-selective e l e c t r o d e s o v e r t h e p a s t 20 y e a r s have f o c u s e d p r i m a r i l y on t h e d e s i g n o f membrane-based s e n s o r s f o r m o n i t o r i n g Current address: Lever Brothers Company, Edgewater, NJ 07020
0097-^156^9/0403-0026$06.00/0 © 1989 A m e r i c a n C h e m i c a l Society
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
MEYERHOFF ET AL.
27
Potentiometric Sensors
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
physiologically important cations. Perhaps t h e most useful potentiometric ion-selective devices a r e now f a b r i c a t e d w i t h s o l v e n t / p o l y m e r i c membranes. Selectivity o f t h e s e e l e c t r o d e s f o r one i o n o v e r o t h e r s i s d i c t a t e d by the r e l a t i v e i n t e r a c t i o n s o f ions i n t h e sample s o l u t i o n w i t h a c t i v e c o m p o n e n t s o f t h e o r g a n i c , p o l y m e r i c membrane phase. In p r a c t i c e , t h e s e l e c t i v i t y of polymer membrane e l e c t r o d e s c a n be e v a l u a t e d u s i n g t h e w e l l known N i c o l s k y equation :
a l l
= Κ +
(0.059/z ) l o g
(1)
i
where a i i s t h e a c t i v i t y o f t h e a n a l y t e i o n w i t h z i ; a j i s t h e a c t i v i t y o f a n interfèrent i o n w i t h pot ζ., k,, and
E
.
i s the potentiometric
selectivity
charge charge
coefficient,
n i s expressed i n v o l t s . Either n e u t r a l or charged c a r r i e r molecules (e.g. crown e t h e r s , n a t u r a l a n t i b i o t i c s , s y n t h e t i c ionophores, e t c . ) c a n be doped i n t o p o l y m e r i c membranes t o a c h i e v e desired selectivities. However, d e s p i t e s u c c e s s e s i n the f a b r i c a t i o n o f s e l e c t i v e a n d s t a b l e c a t i o n e l e c t r o d e s (15) , t h e d e v e l o p m e n t o f a n a l o g o u s d e v i c e s f o r a n i o n s h a s thus f a r been limited by the i n a b i l i t y to identify appropriate a n i o n - s e l e c t i v e ionophores. c
e
In t h i s paper, r e s u l t s a r e presented from recent s t u d i e s regarding t h e use o f m e t a l - l i g a n d complexes as a n i o n s e l e c t i v e membrane c o m p o n e n t s . This anion sensor work i s one component o f a l o n g e r t e r m e f f o r t t o d e v e l o p new a n d i m p r o v e d p o t e n t i o m e t r i c g a s s e n s o r s . Indeed, Figure 1 illustrates how a p p r o p r i a t e polymeric i o n s e l e c t i v e membranes c a n be u s e d i n e i t h e r s t a t i c (A) o r flow-through g a s s e n s i n g c o n f i g u r a t i o n s ( B ) . By s e n s i n g i o n i c forms o f t h e gases i n a r e c i p i e n t b u f f e r (rather t h a n pH c h a n g e s i n a n o n - b u f f e r e d l a y e r as i n c o n v e n t i o n a l Severinghaus s t y l e gas sensors), enhanced s e l e c t i v i t y over other acidic a n d b a s i c g a s e s c a n be a c h i e v e d . This concept has been s u c c e s s f u l l y a p p l i e d f o r t h e s e l e c t i v e d e t e c t i o n o f ammonia i n s o l u t i o n a s w e l l a s i n a i r (6-8) using an i n t e r n a l nonactin-based polymeric membrane s e n s i t i v e t o ammonium i o n s . Extending t h i s concept t o o t h e r g a s e s , p a r t i c u l a r l y SO2, NO2, a n d CO2, r e q u i r e s t h e development of suitable anion selective polymeric membranes. While i t i s most advantageous t o u s e membrane e l e c t r o d e s s e n s i t i v e t o i o n i c forms o f t h e a n a l y t e gases, c e r t a i n f a b r i c a t i o n advantages a r e a l s o r e a l i z e d merely by
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
28
CHEMICAL
SENSORS
AND MICROINSTRUMENTATION
. Polymer Membrane
A) p Ë I o r h S e t e c t i v e Electrode?
Aqueous |H ONH
^NHJ*OH"
Ι
I H 0*2N0 ^ N O i • |H OSO ^HSO^H*
I
2
3
2
2
2
2
C0
2
NH
3
N0 S0 2
2
Gm-permeatte
Gas or Liquid
Membrane
Sample
ico.
z
H 0 2
NHjiNÔgSC^ 1
ni C0
^HCOi+H
2
H 0+NH 2
2
^NH;>OH"
3
2
2
to Polymer Membrane ISE ,
1
+
H O+2NO ^NO£+NO +2H* H OS0 ^HSOi+H* 2
• Récipient Solution
3
/
Figure 1. S c h e m a t i c o f s t a t i c (A) a n d c o n t i n u o u s f l o w (Β) g a s s e n s i n g system using solvent/polymeric i o n s e l e c t i v e membrane e l e c t r o d e s a s d e t e c t o r s .
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
MEYERHOFF ET AL.
Potentiometric Sensors
29
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
u s i n g p o l y m e r r a t h e r t h a n g l a s s pH s e l e c t i v e membranes a s internal transducers i n more c l a s s i c a l Severinghaus designs ( 9 , 10) . Moreover, as d e s c r i b e d below, t h e combination o f u s i n g these two d i s t i n c t l y d i f f e r e n t gas d e t e c t i o n schemes ( g a s - i o n d e t e c t i o n a n d pH detection) simultaneously i n a single differential gas sensor configuration can o f f e r a unique enhancement i n gas sensitivity.
Anion S e l e c t i v e Membrane Electrodes The l i t e r a t u r e i s f u l l o f r e p o r t s t h a t d e s c r i b e t h e response properties o f anion s e l e c t i v e solvent/polymeric membrane e l e c t r o d e s ( 4 , 5, 1 1 , 1 2 ) . In almost every instance, the active membrane components of such electrodes are lipophilic quaternary ammonium or phosphonium s a l t s . Since the organic cations of these s a l t s are very hydrophobic, the p o s i t i v e l y charged s i t e s r e m a i n i n t h e o r g a n i c membrane p h a s e . Assuming no d i r e c t i n t e r a c t i o n between t h e l i p o p h i l i c c a t i o n i c s i t e s and counter anions i n t h e membrane p h a s e , p h a s e boundary p o t e n t i a l s a r e g e n e r a t e d a t t h e sample/membrane i n t e r f a c e via the partitioning o f t h e more h y d r o p h i l i c counter anions i n t o t h e aqueous sample. Thus, f o r a f i x e d anion a c t i v i t y i n t h e sample, t h e s o l u b i l i t y o f t h e g i v e n anion i n t h e o r g a n i c membrane p h a s e w i l l d i c t a t e t h e m a g n i t u d e of t h e phase boundary p o t e n t i a l generated. With regard t o selectivity, t h i s mechanism always r e s u l t s i n t h e s o c a l l e d H o f m e i s t e r p a t t e r n (C10 ~" > SCN~ > i " > Br"* > C l " > 4
HC03~) r e g a r d l e s s o f t h e s t r u c t u r e o f q u a t e r n a r y ammonium o r p h o s p h o n i u m s a l t i n c o r p o r a t e d i n t h e membrane. In p h y s i c a l terms, t h e Hofmeister p a t t e r n c o r r e l a t e s d i r e c t l y with the free energies of hydration f o r the various anions. To d e v i a t e f r o m H o f m e i s t e r behavior, the polymeric membrane m u s t b e d o p e d w i t h s p e c i e s t h a t d i r e c t l y i n t e r a c t with, or p r e f e r e n t i a l l y solvate, selected anions. To date, such d e v i a t i o n s have been o b s e r v e d i n o n l y a few instances. F o r example, carbonate anion s e l e c t i v i t y can be induced by incorporating trifluoroacetophenone d e r i v a t i v e s a s t h e membrane a c t i v e c o m p o n e n t (13) . In this case, the carbonate ion i s a strong enough n u c l e o p h i l e t o react w i t h t h e e l e c t r o p h i l i c carbonyl group of the ketone, forming a s t a b l e dianion adduct i n t h e membrane p h a s e . Organotin compounds have been shown t o exhibit selectivity toward thiocyanate, c h l o r i d e , and phosphate, depending on t h e s t r u c t u r e o f t h e s p e c i e s doped into t h e membrane (14-16). Membranes c o n t a i n i n g a lipophilic derivative of vitamin B12 have exhibited unusually strong response t o n i t r i t e and thiocyanate, apparently a r i s i n g from p r e f e r e n t i a l c o o r d i n a t i o n o f these anions with the cobalt ( I I I )center of the corine s t r u c t u r e (17) .
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
30
CHEMICAL SENSORS AND
MICROINSTRUMENTATION
Thiocyanate and S a l i c y l a t e S e l e c t i v e Membranes Using Metalloporphyrins as Ionophores. Studies with metalloporphyrins have suggested t h a t such s p e c i e s can a l s o y i e l d a n i o n s e n s i t i v e membranes w i t h anti-Hofmeister selectivity sequences (18, 1 9 ) . Potentiometric anion responses of the membranes d o p e d w i t h metalloporphyrins may b e a t t r i b u t e d t o t h e d i r e c t i n t e r a c t i o n o f s a m p l e anions with a x i a l coordination s i t e s of the c e n t r a l metal. Thus, controlling the e q u i l i b r i u m constant f o r anion coordination should influence the potentiometric anion selectivity sequences observed. Variations i n the coordination affinities of anions may b e a c h i e v e d by a l t e r i n g the c e n t r a l metal i o n and/or changing s t r u c t u r a l appendages on t h e p o r p h i n e r i n g . To d e m o n s t r a t e t h e s e p r i n c i p l e s , t h e p o t e n t i o m e t r i c anion s e l e c t i v i t i e s o f membrane e l e c t r o d e s p r e p a r e d by doping the various metalloporphyrins shown i n F i g u r e 2 into plasticized PVC membranes (at approx. 1 wt % o f porphyrin) have been examined. Table I summarizes t h e r e s u l t s o f such s t u d i e s . pot T a b l e I. P o t e n t i o m e t r i c S e l e c t i v i t y C o e f f i c i e n t s , l o g k o f D i f f e r e n t M e t a l l o p o r p h y r i n - PVC M e m b r a n e s ' Relative to Chloride c l
x
3
Anion CI" Br" I" C10 IO4" SCN~ Sal" 4
a
b
b
TDMA-C1 M n [ T P P ] C 1 M n [ T P P P ] C l (21 (1L (21 0.0 0.6 2.8 4.6 4.0 3.0 2.7
0.0 0.3 1.5 1.5 1.8 1.3 2.1
Evaluated i n 0.05 a c i d ) b u f f e r , p H 5.5 Sal" = salicylate
0.0 1.0 2.3 2.8 2.5 5.2 3.5 M
Mn[TBrNP]CI (41 0.0 0.2 1.6 0.4 0.6 3.5 2.0
Sn[TPP]Cl2 (11 0.0 0.1 0.1 0.4 0.2 1.3 3.8
MES(2-Morpholinoethanesulfonic
For comparison purposes, selectivity data i s also p r e s e n t e d f o r membranes p r e p a r e d w i t h a t y p i c a l quaternary ammonium e x c h a n g e r , tridodecylmethy1ammonium chloride (TDMA-C1) (D . A l lthe porphyrin species tested yield s e l e c t i v i t i e s which c l e a r l y deviate from t h a t observed w i t h TDMA-C1. M o r e i m p o r t a n t l y , t w o compounds, Μη[TPPP]CI (2.) a n d S n [ T P P ] C I 2 (5.) , s h o w e x t r a o r d i n a r y selectivity toward t h i o c y a n a t e and s a l i c y l a t e , r e s p e c t i v e l y . In t h e case of Mn[TPPP]CI, adding conjugated and bulky s u b s t i t u e n t s i n t h e form o f twelve phenyl groups t o t h e basic tetraphenylporphyrin [TPP] s t r u c t u r e d r a m a t i c a l l y enhances t h e response and s e l e c t i v i t y toward thiocyanate
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
2.
MEYERHOFF ET AL.
Potentiometric Sensors
31
Figure 2. S t r u c t u r e s o f some c o m p o u n d s incorporated i n t o p o l y ( v i n y l c h l o r i d e ) membranes f o r t h e d e v e l o p m e n t of anion sensors; ( J J t r i d o d e c y l m e t h y l ammonium c h l o r i d e (TDMA-C1); (2J chloro (5,10,15,20 tetraphenylporphyrinato) manganese ( I I I ) ( M n [ T P P ] C l ) ; Q) chloro (5,10,15,20) -tetra(triphenyl) phenylporphyrinato) m a n g a n e s e ( I I I ) (Mn [ T P P P ] C l ) ; (±) a, a, a, a - c h l o r o (5, 10, 15,20) tetrakis ( 8-bromo-1-naphthy1) porphyrinato) m a g a n e s e ( I I I ) ( M n [ T B r N P ] C I ) ; (5) d i c h l o r o (5,10,15,20 tetraphenyl-porphyrinato) tin (IV) (Sn[TPP]Cl ). 2
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
32
CHEMICAL SENSORS AND
MICROINSTRUMENTATION
( r e l a t i v e t o Mn[TPP]Cl (2J ) . In f a c t , the resulting membrane e l e c t r o d e r e s p o n d s i n a N e r n s t i a n fashion to t h i o c y a n a t e i n t h e r a n g e f r o m 0.01 mM t o 10 mM (see F i g u r e 3) . The h i g h s e l e c t i v i t y o v e r c h l o r i d e and salicylate
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
m a k e t h i s s e n s o r p o t e n t i a l l y u s e f u l f o r d e t e c t i n g SCN in b i o l o g i c a l samples (e.g., u r i n e and s a l i v a ) where e l e v a t e d levels of thiocyanate c o r r e l a t e with excessive c i g a r e t t e s m o k i n g (20) . The d a t a o b t a i n e d f o r t h e S n [ T P P ] C l 2 ~ b a s e d membranes c l e a r l y i l l u s t r a t e how a c h a n g e i n t h e c e n t r a l m e t a l i o n of the porphyrin can influence potentiometric anion selectivities. As shown i n T a b l e I , i n c o r p o r a t i o n o f t h i s compound i n t o membranes y i e l d s a s e l e c t i v i t y p a t t e r n w h i c h i s m a r k e d l y d i f f e r e n t t h a n t h a t f o r Mn[TPP]Cl. Salicylate (o-hydroxybenzoate) remains the p r e f e r r e d anion, but the r e l a t i v e response toward t h i s ion over other anions is enhanced significantly. The increased response to s a l i c y l a t e i s due t o i t s s t r o n g e r i n t e r a c t i o n as an a x i a l l i g a n d , p r o b a b l y due t o t h e o x o p h i l i c n a t u r e o f t h e S n ( I V ) center. Since the c h a r g e on the t i n center is +4, i n t e r a c t i o n of anion ligands at e i t h e r a x i a l coordination s i t e mandates t h a t t h i s m e t a l l o p o r p h y r i n f u n c t i o n as a c h a r g e d c a r r i e r t y p e i o n o p h o r e i n t h e membrane p h a s e . As shown i n Figure 4, the selectivity of the S n [ T P P ] C l 2 - b a s e d membrane o v e r o t h e r aromatic organic compounds i s q u i t e h i g h . This fact coupled with the membrane's h i g h s e l e c t i v i t y o v e r c h l o r i d e (see T a b l e I) makes t h e r e s u l t i n g membrane e l e c t r o d e p o t e n t i a l l y u s e f u l for monitoring l e v e l s of free s a l i c y l a t e i n p h y s i o l o g i c a l samples. In t h i s regard, p r e l i m i n a r y r e s u l t s have been o b t a i n e d f o r t h e d e t e r m i n a t i o n o f s a l i c y l a t e i n s p i k e d and u n s p i k e d human u r i n e s a m p l e s ( T a b l e I I ) . As c a n be s e e n , there i s reasonably good c o r r e l a t i o n between the values obtained with the new salicylate selective membrane e l e c t r o d e and the c o n v e n t i o n a l c o l o r i m e t r i c method now used i n h o s p i t a l s . Unfortunately, at t h i s point, i n t e r p r e t i n g r e s u l t s f o r the e l e c t r o d e measurement of salicylate in blood samples i s c o m p l i c a t e d by t h e f a c t t h a t a l a r g e f r a c t i o n o f t h e t o t a l s a l i c y l a t e i s b o u n d t o p r o t e i n s ( 2 2 , 23) . The S n ( T P P ) C l 2 - b a s e d membrane e l e c t r o d e d e t e c t s "free" s a l i c y l a t e while the conventional c o l o r i m e t r i c procedure (i.e. the T r i n d e r method (21) or v a r i a t i o n s thereof) measures t o t a l s a l i c y l a t e c o n c e n t r a t i o n ( f r e e p l u s bound). The former i s the p h y s i o l o g i c a l l y a c t i v e form of the c o m p o u n d (24) . Thus, the s a l i c y l a t e s e l e c t i v e e l e c t r o d e c o u l d p r o v i d e a new a n a l y t i c a l t o o l f o r s c i e n t i s t s who are e x a m i n i n g t h e p h a r m a c o l o g i c a l e f f e c t s o f a s p i r i n and other
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Potentiometric Sensors
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
2. MEYERHOFF ET AL.
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
33
34
C H E M I C A L SENSORS A N D MICROINSTRUMENTATION
Anion
Log
k^ s
0.0
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
Salicylate ο c-o"
Ο
-1.4
Benzoate
3-Hydroxy benzoate
l
Ç)- -°-
HO>
c-o-
/x
1
' ·
1
1.0
4-Hydroxybenzoate
OH H O - ^ ^ — c-o-
2,4-Dihydroxy benzoate
«1,4
2,6-Dihydroxybenzoate
^.6
2,5-Dihydroxybenzoate (Gentisate)
.t 3
OH
HO
O
H
OH OH
ο
ο
λ—c—NHCH - C - O"
Salicylurate
-1.5
2
ο CH -C-O-
a
.^8
Phenylacetate
2
ο - Q - ° - CH -C-O" 2
2,4-DIchlorophenoxyacetate
e 1
«j
(2,4-D)
ο H C--^^--S-O3
p-Toluenesulfonate
-2J
ο
ο Phenylphosphonate
.2.9
Figure 4. P o t e n t i o m e t r i c anion s e l e c t i v i t y c o e f f i c i e n t s , r e l a t i v e t o s a l i c y l a t e , o f Sn[TPP] CI2-PVC membrane t o w a r d v a r i o u s a r o m a t i c a n i o n s p e c i e s .
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
Potentiometric Sensors
MEYERHOFF ET A L
Table
II.
Comparison o f R e s u l t s O b t a i n e d f o r Measurement of S a l i c y l a t e Concentrations i n S p i k e d and N o n - S p i k e d Human U r i n e Samples by Sn ( T P P ) C I 2 B a s e d Membrane E l e c t r o d e a n d Conventional C o l o r i m e t r i c Method Sample
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
35
1A IB 1C 2A 2B 2C 3A 3B 3C 4A 4B 4C 5A 5B 5C
3
5
Electrode* ' (mM) 0,.32 1,.05 1,.79 0,.24 0..84 2,.02 0,.26 0,.86 2,.02 0,.18 0,.68 1,.53 0,.24 0,.78 1,.78
c
Colorimetric (mM) 0,.35 1,.02 1,.97 0..07 0,.88 2,.04 0..22 0,.80 1..90 0,.29 1,.02 1,.68 0..36 1,.02 1,.97
a
A-samples are unspiked; B-samples a r e Α-samples s p i k e d w i t h s a l i c y l a t e t o a c h i e v e a change i n c o n c e n t r a t i o n o f 0.7 9 mM; C-samples a r e Α-samples s p i k e d t o a c h i e v e change i n c o n c e n t r a t i o n o f 1.9 mM s a l i c y l a t e . ^average o f 3 determinations samples diluted 1:10 i n MES, ρH 5. 5 buffer for measurements. c
salicylates i n l i v i n g subjects. T h i s a p p l i c a t i o n cannot be pursued at this t i m e due t o t h e e l e c t r o d e s pH response. As shown i n F i g u r e 5, when t h e pH o f t h e sample i s i n t h e p h y s i o l o g i c a l range, d e t e c t i o n l i m i t s toward s a l i c y l a t e a r e poor. O n l y a f t e r t h e sample i s d i l u t e d i n low ρ H b u f f e r (e.g., pH 5.5) c a n s u b - m i l l i m o l a r l e v e l s o f s a l i c y l a t e be q u a n t i t a t e d a c c u r a t e l y . U n f o r t u n a t e l y , such a change i n pH i s l i k e l y t o d i s t u r b t h e s a l i c y l a t e - p r o t e i n binding equilibria. R e c e n t s t u d i e s have s u g g e s t e d that t h e t o t a l w a t e r c o n t e n t o f t h e membrane p l a y s an i m p o r t a n t r o l e i n t h e o b s e r v e d p o t e n t i o m e t r i c pH r e s p o n s e (18,25) . Thus, b y c h a n g i n g t h e p l a s t i c i z e r a n d / o r b y s w i t c h i n g t o p o l y m e r m a t r i c e s o t h e r t h a n PVC, a s i g n i f i c a n t r e d u c t i o n i n pH r e s p o n s e o f t h e membrane may be p o s s i b l e . 1
Sulfite/Bisulfite Selective Electrode B a s e d Q_n B J S ( D i e t h y l d i t h i Q c a r f r a m a t Q Merçyry (II) . The i n c o r p o r a t i o n o f m e t a l - l i g a n d c o m p l e x e s w i t h i n p o l y m e r i c membranes f o r t h e d e v e l o p m e n t o f new a n i o n s e n s o r s i s n o t l i m i t e d t o t h e use o f m e t a l l o p o r p h y r i n s . Indeed, r e c e n t s t u d i e s w i t h t h e Hg ( I I ) complex o f d i e t h y l d i t h i o c a r b a m a t e (Hg(DDC)2) have y i e l d e d a new membrane e l e c t r o d e w i t h r e l a t i v e l y high
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
36
CHEMICAL SENSORS AND MICROINSTRUMENTATION
s p e c i f i c i t y f o r s u l f i t e i o n s ( P r a n i t i s , D.M.; Meyerhoff, M.E. Anal. Chim. A c t a , i n press). The membrane i s p r e p a r e d b y d o p i n g t h e m e r c u r y complex a t 1.8 wt% i n a P V C matrix p l a s t i c i z e d w i t h dibutylphthalate. Potentiometric r e s p o n s e o f t h e membrane t o s t e p c h a n g e s i n s u l f i t e i o n a c t i v i t y i n p h o s p h a t e b u f f e r , pH 10.0, o c c u r i n < 2 m i n . When t h e e q u i l i b r i u m p o t e n t i a l s are plotted vs. the l o g a r i t h m o f s u l f i t e a c t i v i t y i n t h e sample s o l u t i o n , a calibration c u r v e s u c h a s t h a t shown i n F i g u r e 6 i s obtained. Near N e r n s t i a n b e h a v i o r i s o b s e r v e d i n t h e a c t i v i t y r a n g e o f 0.1 t o 1000 μΜ s u l f i t e . S e l e c t i v i t y o f t h e Hg ( D D C ) 2 ~ b a s e d membrane t o w a r d s u l f i t e r e l a t i v e t o o t h e r a n i o n s c o r r e l a t e s w i t h what one might expect f o r anionic species i n t e r a c t i n g with the Hg ( I I ) c e n t e r o f t h e c o m p l e x . As shown i n T a b l e I I I , i o d i d e , bromide, t h i o s u l f a t e , and t h i o c y a n a t e a r e major interferents. However, t h e membrane e x h i b i t s l i t t l e o r no response t o a wide range o f o t h e r anions including sulfate, phosphate, c h l o r i d e , and n i t r a t e , making i t potentially useful as an analyt i c a l sensor f o r measurements i n c e r t a i n samples, e . g . , i n m o n i t o r i n g added s u l f i t e l e v e l s i n f o o d and b e v e r a g e s .
Table
III.
Potentiometric
Selectivity
Hg(DDC)2 -Based Membrane
Coefficients
of
3
pot
Anion sulfite c h l o r i d e , s u l f o n a t e (MES), a c e t a t e , nitrite, citrate, nitrate, p e r c h l o r a t e , cyanate, s a l i c y l a t e , sulfate, bicarbonate/carbonate
l o g k 2SQ
0 < -4
bromide
0
thiocyanate
0
thiosulfate
0.5
iodide
j
7
S e l e c t i v i t y c o e f f i c i e n t s measured w i t h m a t c h e d - p o t e n t i a l , s e p a r a t e - s o l u t i o n method i n 10 mM p h o s p h a t e b u f f e r , pH 10.0. The mechanism by w h i c h t h e Hg(DDC)2 compound a c t s a s an ionophore for sulfite i s not yet c l e a r . Initial s t u d i e s i n d i c a t e that t h e mercury(II) species i s e s s e n t i a l f o r s u l f i t e response. When Zn (DDC)2 i s u s e d i n p l a c e o f
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
MEYERHOFF ET AL.
37
Potentiometric Sensors
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
2.
-8
-6
-4
-2
Log (sulfite activity),M Figure 6. T y p i c a l c a l i b r a t i o n c u r v e Hg ( DDC ) 2 - P V C membrane electrode theroetical Nernstian slope l i n e ) .
toward s u l f i t e (solid line
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
for i s
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
38
C H E M I C A L SENSORS AND MICROINSTRUMENTATION
t h e m e r c u r y c o m p l e x , no s u l f i t e s e n s i t i v i t y i s o b s e r v e d . H o w e v e r , when d i p h e n y l m e r c u r y ( I I ) i s incorporated into polymeric membranes, s i g n i f i c a n t sulfite response i s observed although i t i s inferior to that found with Hg(DDC)2· I t appears that s u l f i t e interacts with the Hg(II) b y d i s p l a c i n g a t h i o c a r b o n y l s u l f u r o f t h e DDC l i g a n d , y i e l d i n g a n e g a t i v e l y charged d i v a l e n t complex. If so, i n c o n t r a s t t o t h e Sn(TPP)CI2 - s a l i c y l a t e system a b o v e , t h e Hg ( D D C ) 2 s p e c i e s s h o u l d b e c l a s s i f i e d a s a n e u t r a l c a r r i e r type ionophore. New P o t e n t i o m e t r i c
Gas S e n s i n g
Systems
A s s t a t e d p r e v i o u s l y , t h e d e v e l o p m e n t o f new anion s e l e c t i v e membrane e l e c t r o d e s c a n a l s o l e a d t o t h e d e s i g n of improved potentiometric gas sensing systems. At p r e s e n t , a l m o s t a l l c o m m e r c i a l gas s e n s o r s r e l y on t h e u s e o f g l a s s m e m b r a n e pH e l e c t r o d e t o d e t e c t p H c h a n g e s i n a thin film of electrolyte sandwiched between t h e g l a s s membrane a n d a n o u t e r g a s p e r m e a b l e membrane (typically microporous Teflon). This i s the s o - c a l l e d Severinghaus d e s i g n (2 6 ) . F o r e x a m p l e , a n S O 2 s e n s o r may b e f a b r i c a t e d by u s i n g an i n t e r n a l e l e c t r o l y t e c o n s i s t i n g o f sodium bisulfite a n d s o d i u m c h l o r i d e (27) . Equilibration of d i s s o l v e d SO2 i n t o t h e t h i n l a y e r o f e l e c t r o l y t e results in a pH change logarithmically proportional to the concentration of SO2 i n t h e sample. However, t h e s e l e c t i v i t y o f such a sensor i s l i m i t e d . In this case, other v o l a t i l e a c i d i c species, such as a c e t i c a c i d , N0 , a n d e v e n CO2 w i l l cause p o s i t i v e i n t e r f e r e n c e w i t h t h e m e a s u r e m e n t o f S O 2 (28) . X
S u l f u r D i o x i d e S e n s i n g B a s e d on S u l f i t e S e l e c t i v e Membrane Electrode. T h e Hg ( D C C ) 2 - b a s e d s u l f i t e s e l e c t i v e e l e c t r o d e d e s c r i b e d a b o v e c a n b e u s e d a s a t r a n s d u c e r t o d e v i s e new SO2 selective gas sensing systems according to the d e t e c t i o n schemes d e p i c t e d i n F i g u r e 1 . The a d d i t i o n o f t h e o u t e r g a s p e r m e a b l e membrane e n a b l e s m e a s u r e m e n t s t o b e made i n t h e p r e s e n c e o f i o n s w h i c h w o u l d n o r m a l l y b e m a j o r interfèrents t o t h e membrane e l e c t r o d e ( e . g . I , B r , S2O3"" etc.). Initial studies have focused on incorporating the s u l f i t e selective electrode i n a flowthrough gas sensing arrangement such as t h e one illustrated i n Figure 7. I t has been found t h a t t h e sulfite electrode e x h i b i t s a mixed response t o both s u l f i t e a n d b i s u l f i t e , w h i c h a l l o w s f o r t h e u s e o f a pH 6.0 b u f f e r e d r e c i p i e n t s t r e a m . Upon a c i d i f y i n g s a m p l e s c o n t a i n i n g s u l f i t e / b i s u l f i t e , s u l f u r d i o x i d e gas i s formed in proportion to the concentration of the sulfites present. T h i s g a s d i f f u s e s t h r o u g h t h e membrane o f t h e d i a l y z e r where i t i s t r a p p e d as a b i s u l t e / s u l f i t e mixture in t h e r e c i p i e n t b u f f e r stream. Potentiometric response of t h e downstream sulfite selective electrode i s 2
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2. MEYERHOFF ET AL.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
proportional concentration
Potentiometrk Sensors
39
to the logarithm of i n the original acidified
sulfite/bisulfite sample.
This approach g r e a t l y enhances t h e s e l e c t i v i t y f o r m e a s u r i n g s u l f i t e s a s SO2 r e l a t i v e t o s e n s i n g s y s t e m s t h a t detect SO2 v i a p H c h a n g e s i n a r e c i p i e n t e l e c t r o l y t e solution. I n d e e d , a s i l l u s t r a t e d i n F i g u r e 8, s u l f i t e c a n b e d e t e c t e d t o l e v e l s b e l o w 10 μ Μ e v e n i n t h e p r e s e n c e o f 0.1M a c e t i c a c i d . While t h e a c e t i c a c i d does permeate t h e gas membrane i n t o t h e r e c i p i e n t s t r e a m , a c e t a t e ions f o r m e d i n t h e r e c i p i e n t s t r e a m go u n d e t e c t e d by t h e Hg(DCC)2-based s u l f i t e s e l e c t i v e s e n s o r . This type of enhanced s e l e c t i v i t y w o u l d be e x t r e m e l y valuable when determining s u l f i t e s i n wine-vinegar o r other samples t h a t contain v o l a t i l e acidic species. Gas Sensing Membrane Electrode-Based E n h a n c e d Gas S e n s i t i v i t y . One frequent complaint r e g a r d i n g t h e use o f p o t e n t i o m e t r i c gas and i o n s e l e c t i v e membrane e l e c t r o d e s f o r a n a l y t i c a l p u r p o s e s i s lack o f p r e c i s i o n owing t o t h e l o g a r i t h m i c response of such devices. Thus, u n c e r t a i n t y i n measured p o t e n t i a l s o f -lmV w i l l r e s u l t i n ±4% p r e c i s i o n f o r s e n s o r s w i t h s l o p e s of 59 mV/decade a n d ^ 8 % f o r t h o s e devices based on r e s p o n s e t o d i v a l e n t i o n s ( e . g . , t h e a b o v e s u l f i t e a n d SO2 gas sensors) . One n o v e l approach suggested i n the l i t e r a t u r e f o r enhancing response slopes o f potentiometric sensors i s t o u s e s e v e r a l membrane e l e c t r o d e c e l l s i n series ( 2 8 , 29) . This arrangement r e s u l t s i n response s l o p e s η t i m e s t h e N e r n s t i a n v a l u e , where η i s t h e number o f two e l e c t r o d e c e l l s (working and r e f e r e n c e ) i n s e r i e s . Unfortunately, t h i s a p p r o a c h r e s u l t s i n a more c o m p l e x system where t h e number of electrodes required i s increased, as i s t h e number of separate sample compartments.
Differential Detectors w i t h
Recently, a novel two electrode differential p o t e n t i o m e t r i c c e l l f o r enzyme e l e c t r o d e s y s t e m s h a s b e e n d e s c r i b e d t h a t provides enhanced s u b s t r a t e sensitivities c o m p a r e d t o c o n v e n t i o n a l c e l l s composed o f a s i n g l e enzyme electrode and reference ( C h a , G.S.; Meyerhoff, M.E. Electroanalysis, i n press). The c e l l e m p l o y s two w o r k i n g enzyme e l e c t r o d e s , one w h i c h r e s p o n d s t o t h e a n a l y t e i n the p o s i t i v e p o t e n t i a l d i r e c t i o n v i a detection of cations, and o n e w h i c h r e s p o n d s t o t h e same a n a l y t e b u t i n a negative d i r e c t i o n owing t o anion d e t e c t i o n . A similar a p p r o a c h c a n b e a p p l i e d i n t h e d e s i g n o f new t w o e l e c t r o d e g a s - s e l e c t i v e sensors w i t h enhanced gas s e n s i t i v i t y . Such a d i f f e r e n t i a l gas s e n s i n g system i s composed o f two w o r k i n g g a s s e n s o r s , e a c h w i t h a d i f f e r e n t i n n e r i o n s e l e c t i v e p o l y m e r membrane e l e c t r o d e a s t h e t r a n s d u c e r . F o r e x a m p l e , a d i f f e r e n t i a l ammonia s e n s i n g arrangement i n v o l v e s t h e u s e o f two ammonia s e n s i n g probes whose
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
40
CHEMICAL SENSORS AND MICROINSTRUMENTATION
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
Recipient Buffer
toISE
SO^HSO-ZSO-Gas-permeable Membrane HS03/S03-- ^S0 ?
2
Plexiglass Dialysis Chamber Acidified Sample Solution
to Waste
Figure 7. F l o w - t h r o u g h g a s s e n s i n g a r r a n g e m e n t u s e d t o e v a l u a t e H g ( D D C ) 2 - P V C membrane e l e c t r o d e s f o r s e l e c t i v e d e t e c t i o n o f s u l f i t e s a s SO2.
L o g [sulfite],M Figure 8 . T y p i c a l response o f S O 2 g a ssensing system t o w a r d s u l f i t e s t a n d a r d s p r e p a r e d i n a b a c k g r o u n d o f 0.1 M sodium a c e t a t e . S a m p l e s a c i d i f i e d w i t h 0.1 M H3PO4; r e c i p i e n t stream; 0.1 M M E S b u f f e r , p H 6.0.
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
2. MEYERHOFF ET AL.
Potentiometric Sensors
41
i n t e r n a l f i l l i n g solutions are connected v i a a salt bridge ( s e e F i g u r e 9 ) . One h a l f c e l l r e s p o n d s t o a m m o n i a g a s b y d e t e c t i n g a n i n c r e a s e i n pH i n a t h i n f i l m o f e l e c t r o l y t e ( i . e . , NH4CI) s a n d w i c h e d b e t w e e n a p o l y m e r i c p H s e n s i t i v e membrane ( p r e p a r e d w i t h t r i d o d e c y l a m i n e a s membrane a c t i v e species ( 9 ) ) a n d an o u t e r g a s p e r m e a b l e membrane. The s e c o n d h a l f c e l l d e t e c t s ammonia gas i n t h e s a m p l e b y r e s p o n d i n g t o c h a n g e s i n ammonium i o n a c t i v i t i e s i n a t h i n layer of buffer sandwiched between a nonactin-based ammonium i o n - s e l e c t i v e p o l y m e r i c membrane a n d a n o t h e r o u t e r g a s p e r m e a b l e f i l m (6) . Accordingly, the overall measured p o t e n t i a l f o r t h i s two w o r k i n g e l e c t r o d e c e l l i s t h e d i f f e r e n c e i n p o t e n t i a l b e t w e e n t h e ammonium i o n s e l e c t i v e e l e c t r o d e a n d t h e p o l y m e r i c pH electrode: Ε
= Ε cell
- Ε NH+
(2) pH
V
'
or E
ceii
= Κ + 0.059 l o g a
w h e r e Ε ., i s i n v o l t s ,
a
c e J.X
M U +
N H +
- 0.059 l o g a +
(3)
fl
and a + a r e t h e a c t i v i t i e s
NH.
of
M
4
ammonium i o n s a n d p r o t o n s i n the thin films of internal s o l u t i o n s h e l d between t h e o u t e r g a s p e r m e a b l e membranes and t h e r e s p e c t i v e i o n - s e l e c t i v e membranes, a n d Κ i s t h e sum o f a l l c o n s t a n t p o t e n t i a l s i n t h e c e l l ( e . g . , j u n c t i o n p o t e n t i a l s a t s a l t bridge, inner Ag/AgCl p o t e n t i a l s o f e a c h membrane e l e c t r o d e , e t c . ) . D i f f u s i o n o f gaseous ammonia i n t o t h e t h i n f i l m s r e s u l t s i n t h e e q u i l i b r i u m h y d r o l y s i s o f t h e ammonia: NH + H O NH++OH" (4) 3 2 4 w i t h an e q u i l i b r i u m constant
3
4
of
3
T h e r e f o r e , i f t h e pH o f t h e f i l m i n c o n t a c t w i t h t h e ammonium e l e c t r o d e i s b u f f e r e d , t h e a i n the film i s N H +
4
directly gas,
proportional to the partial
4
3
pressure
o f ammonia
3
On t h e o t h e r h a n d , f o r t h e p H e l e c t r o d e h a l f c e l l , since a ~ = K /a f then the a c t i v i t y of protons i n the thin f i l m i s given by, +
0 H
w
H
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
42
C H E M I C A L SENSORS AND
a + = H
However,
a
κ,'ΝΗ
NH ^ 1 4
i n t h e pH
half
MICROINSTRUMENTATION
(7) 3
cell,
a„„
i s kept
+
high
and
NH-
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
4
relatively constant by u s i n g N H 4 C I as t h e t h i n film electrolyte. Thus, s u b s t i t u t i n g e q u a t i o n s (6) a n d (7) into equation (3) a n d c o m b i n i n g a l l the constant terms together y i e l d s the following expression f o r the o v e r a l l differential cell potential, Ε (8) = Κ + 0.118 l o g P. NH cell 1
3
As c a n be s e e n , s u c h a c e l l pressure of ammonia w i t h mV/decade.
should respond a theoretical
to the slope
partial of 118
F i g u r e 10 i l l u s t r a t e s t h e r e s u l t s o b t a i n e d f o r s u c h a d i f f e r e n t i a l gas sensor cell arrangement. Varying concentrations of ammonia were generated by adding ammonium c h l o r i d e standards t o a 0.01 M NaOH sample solution. The s l o p e o f t h e d i f f e r e n t i a l s e n s o r i s 93.6 m V / d e c a d e i n t h e r a n g e o f 10"" -10~ M NH^ This less than 6
2
β
t h e o r e t i c a l v a l u e i s e x p e c t e d b a s e d on t h e d i f f i c u l t i e s i n e f f e c t i v e l y i s o l a t i n g a t h i n f i l m of s o l u t i o n at the t i p of each sensing h a l f c e l l from the bulk s o l u t i o n required for e l e c t r o l y t i c contact (30), and t h e f a c t t h a t t h e pH and ammonium p o l y m e r membranes t y p i c a l l y e x h i b i t subN e r n s t i a n b e h a v i o r ( e . g . , s l o p e s o f 5 2 - 5 6 mV d e c a d e ) . In addition, earlier theoretical predictions on t h e ammonia response o f t h e h a l f c e l l d e t e c t i n g ammonium i o n s a l s o p o i n t t o l o w e r t h a n t h e o r e t i c a l s l o p e s o w i n g t o s m a l l pH changes i n the b u f f e r e d f i l m (31). N a t u r a l l y t h e s e l e c t i v i t y o f t h e new d i f f e r e n t i a l g a s sensor design will be d e p e n d e n t on the combined gas selectivities of each gas sensing half-cell. Thus, enhanced s e n s i t i v i t y comes a t the expense of poorer s e l e c t i v i t y o w i n g t o t h e r e s p o n s e o f t h e pH s e n s i n g h a l f c e l l t o v o l a t i l e amines. However, f o r c e r t a i n t y p e s of samples (e.g. p h y s i o l o g i c a l f l u i d s ) t h i s should not pose a problem. Conclusions As d e s c r i b e d above, s i g n i f i c a n t progress in the d e s i g n o f a n i o n and gas s e l e c t i v e membrane e l e c t r o d e s has b e e n made. W h i l e f u r t h e r work i s needed t o understand fully the response mechanisms and to improve the performance of the new thiocyanate, salicylate, and sulfite selective membrane e l e c t r o d e s , e a c h o f these s e n s o r s appears t o o f f e r adequate s e l e c t i v i t y f o r use i n real sample measurements. In a d d i t i o n , by carefully
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2. MEYERHOFF ET AL.
43
Potentiometric Sensors
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
Ag/AgCI réf. electrode
ΐ Salt lonBridge selective Membrane NH;
NH =^NH£ 3
Gas —Permeable Membrane
NH =^OH~ 3
NH
ΝΗΛ
3
Figure 9. S c h e m a t i c o f d i f f e r e n t i a l a m m o n i a g a s s e n s o r fabricated w i t h two d i f f e r e n t polymer i o n - s e l e c t i v e membranes: ( a ) 0.1 M NH4CI; (b) 0.2 M p h o s p h a t e b u f f e r s p H 7 . 0 , c o n t a i n i n g 0.1 M N a C l ; ( c ) 0.1 M Tris-HCl b u f f e r , p H 7.8; (d) 0.05 M N H 4 C I .
too
-100
mV -200
300h
-400
_i
-8
I
-7
1
L
-6
-5
-4
-3
-2
log [ N H ] , M 3
F i g u r e 10. T y p i c a l c a l i b r a t i o n c u r v e f o r d i f f e r e n t i a l a m m o n i a s e n s o r s h o w n i n F i g u r e 9, i l l u s t r a t i n g e n h a n c e d ammonia g a s s e n s i t i v i t y .
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
44
CHEMICAL SENSORS AND MICROINSTRUMENTATION
studying the anion-coordinating p r o p e r t i e s o f d i f f e r e n t m e t a l - l i g a n d c o m p l e x e s i n p o l y m e r membranes, i t i s l i k e l y t h a t s e n s o r s f o r o t h e r i m p o r t a n t a n i o n s c a n be d e v i s e d . F u r t h e r m o r e , a s d e m o n s t r a t e d w i t h t h e new s u l f i t e s e n s o r , the development of anion responsive membranes a l s o d i r e c t l y i m p a c t s a d v a n c e s which c a n be made i n t h e a r e a o f gas s e l e c t i v e s e n s i n g s y s t e m s . Indeed, r e c o n f i g u r i n g t h e new s u l f i t e p o l y m e r i c membrane e l e c t r o d e a s a d e t e c t o r i n a f l o w - t h r o u g h gas phase s n i f f i n g arrangement (8) s h o u l d enable t h e continuous and s e l e c t i v e d e t e c t i o n o f t r a c e l e v e l s o f ambient SO2. The s e n s i t i v i t y o f t h i s a n d o t h e r gas s e n s i n g e l e c t r o d e s y s t e m s may be e n h a n c e d b y t a k i n g advantage of the novel differential cell concept, i n t r o d u c e d h e r e f o r t h e d e t e c t i o n o f d i s s o l v e d ammonia. Acknowledgments. The a u t h o r s gratefully acknowledge f i n a n c i a l support from t h e N a t i o n a l I n s t i t u t e s o f H e a l t h (GM-28882) a n d M a l l i n c k r o d t S e n s o r S y s t e m s . The a u t h o r s a l s o w i s h t o t h a n k P r o f e s s o r John T. G r o v e s , Department o f Chemistry, P r i n c e t o n U n i v e r s i t y , f o r p r o v i d i n g s e v e r a l o f the m e t a l l o p o r p h y r i n s t r u c t u r e s used i n these s t u d i e s .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12 13. 14.
Morf, W.E. The Principles of Ion-Selective Electrodes and of Membrane Transport; Elsevier: Amsterdam, 1981. Ammann, D.; Morf, W.E.; Anker, P.; Meier, P.C.; Pretsch, Ε.; Simon, W. Ion-Selective Electrode Rev. 1983, 5, 3-92. Oesch, U.; Ammann, D.; Simon, W. C l i n . Chem. 1986, 32, 1448-1459. Solsky, R.L. Anal. Chem. 1988, 60, 106R-113R. Koryta, J. Anal. Chim. Acta 1988, 206, 1-48. Meyerhoff, M.E.; Robins, R.H. Anal. Chem. 1980, 52, 2383-2388. F r a t i c e l l i , Y.M.; Meyerhoff, M.E. Anal. Chem. 1981, 53, 992-997 P r a n i t i s , D.M.; Meyerhoff, M.E. Anal. Chem. 1987, 59, 2345-2350. Opdycke, W.N.; Parks, S.Κ.; Meyerhoff, M.E. Anal. Chim. Acta 1983, 155, 11-20. Opdycke, W.N.; Meyerhoff, M.E. Anal. Chem. 1986, 54, 950-956. Yu, R.Q. Ion-Selective Electrode Rev. 1986, 8, 153171. Arnold, M.A.; Solsky, R.C. Anal. Chem. 1986, 58, 84R101R. Meyerhoff, M.E.; Pretsch, E.; Welti, D.H.; Simon, W. Anal. Chem. 1987, 59, 144-150. Wuthier, U.; Pham, H.V.; Zund., R.; Welti, D.; Funk, R.J.J.; Bezegh, A.; Ammann, D.; Pretsch, Ε.; Simon, W. Anal. Chem. 1984, 56, 535-538.
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2. MEYERHOFF ET AL. 15.
16. 17.
Downloaded by NORTH CAROLINA STATE UNIV on December 30, 2017 | http://pubs.acs.org Publication Date: August 24, 1989 | doi: 10.1021/bk-1989-0403.ch002
18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.
Potentiometric Sensors
45
Oesch, U.; Ammann, D.; Pham, H.V.; Wuthier, U.; Zund, R.; Simon, W. J . Chem. Soc. Faraday Trans. 1986, 82, 1179-1186. Arnold, M.A.; Glazier, S.A., U.S. Patent 4, 735, 692, 1988. Schulthess, P.; Ammann, D.; Krautler, B.; Caderas, C.; Stepanek, R.; Simon, W. Anal. Chem. 1985, 57, 1397-1401. Chaniotakis, N.A.; Chasser. A.M.; Meyerhoff, M.E.; Groves, J.T. Anal. Chem. 1988, 60, 185-188. Ammann, D.; Huser, M.; Krautler, B.; Rusterholtz, B.; Schulthess, Ρ.; Lindermann, B.; Holder, E.; Simon, W. Helv. Chim. Acta 1986, 69, 849-854. Haley, Ν. J.; Axelrad, CM.; Tilton, K.A. J . Public Health 1983, 73, 1204-1207. Trinder, P. Biochem. J . 1954, 57, 301-303. Stewart, M.S.; Watson, I.D. Ann. C l i n . Biochem. 1987, 24, 552-565. Smith, M.J.H.; Smith, P.K. The Salicylates, A C r i t i c a l Bibliographic Review; Interscience: New York, 1966; Chapter 1. Levy, G. Drug Metabs. Rev. 1979, 9, 3-19. Ma, S.C.; Chaniotakis, N.A.; Meyerhoff, M.E. Anal. Chem. 1988, 60, 2293-2299. Severinghaus, J.W.; Bradley, A.F. J . Appl. Physiol. 1958, 13, 515-520. Bailey, Ρ.L.; Riley, M. The Analyst 1975, 100, 145156. Parczewski, A.; Stepak, R.. Fresenius' Z. Anal Chem. 1983, 316, 29-31. Stepak, R. Fresenius' Z. Anal. Chem. 1983, 315, 629630. Ross, J.W.; Riseman, J.A.; Krueger, J.A. Pure Appl. Chem. 1973, 35, 473-487. Meyerhoff, M.E.; F r a t i c e l l i , Y.M.; Opdycke, W.N.; Bachas, L.G.; Gordus, A.D. Anal. Chim. Acta 1983, 154, 17-31.
RECEIVED March 9, 1989
Murray et al.; Chemical Sensors and Microinstrumentation ACS Symposium Series; American Chemical Society: Washington, DC, 1989.